JP7257221B2 - 非熱膨張部材の製造方法 - Google Patents

非熱膨張部材の製造方法 Download PDF

Info

Publication number
JP7257221B2
JP7257221B2 JP2019069023A JP2019069023A JP7257221B2 JP 7257221 B2 JP7257221 B2 JP 7257221B2 JP 2019069023 A JP2019069023 A JP 2019069023A JP 2019069023 A JP2019069023 A JP 2019069023A JP 7257221 B2 JP7257221 B2 JP 7257221B2
Authority
JP
Japan
Prior art keywords
plate
plane
thermal expansion
processing step
expansion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019069023A
Other languages
English (en)
Other versions
JP2020165523A (ja
Inventor
浩之 阪本
光 黒崎
智広 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019069023A priority Critical patent/JP7257221B2/ja
Priority to PCT/JP2019/043037 priority patent/WO2020202623A1/ja
Priority to CN201980092934.3A priority patent/CN113498463A/zh
Priority to DE112019007116.5T priority patent/DE112019007116T5/de
Publication of JP2020165523A publication Critical patent/JP2020165523A/ja
Priority to US17/411,407 priority patent/US20210379883A1/en
Application granted granted Critical
Publication of JP7257221B2 publication Critical patent/JP7257221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16SCONSTRUCTIONAL ELEMENTS IN GENERAL; STRUCTURES BUILT-UP FROM SUCH ELEMENTS, IN GENERAL
    • F16S1/00Sheets, panels, or other members of similar proportions; Constructions comprising assemblies of such members
    • F16S1/14Assemblies of such members with members of forms covered by group F16S3/00 or F16S5/00
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、非熱膨張部材の製造方法に関する。
メタマテリアルと呼ばれる材料に関する研究に注目が集まっている。メタマテリアルとは、従来の材料では実現できなかった性質を有する材料である。メタマテリアルとしては、例えば負の屈折率を有する光学的メタマテリアルがこれまでに実現されてきた。一方で、3Dプリンタの実用化に伴って、力学的メタマテリアルと呼ばれる材料も実用化されつつある。力学的メタマテリアルとして、負のポアソン比を有するものや、負又はゼロの熱膨張率を有する非熱膨張部材が特に注目されている。
非熱膨張部材の具体例として、下記特許文献1に記載されたものが知られている。特許文献1に記載された非熱膨張材料は、負の熱膨張を示す金属酸化物からなる八面体配位子又は四面体配位子の隙間に、第三の元素が配置される。これにより、配位子が回転することによる金属酸化物分子間のズレが抑制され、負の熱膨張が抑制される。その結果、全体として熱膨張をゼロにできるとされている。
上述の特許文献1に記載された技術は、化学的に分子構造を操作することによって非熱膨張部材を得るものである。一方で、複数の材料を組み合わせて、ラティス構造を有するユニットセルを互いに組み合わせることで非熱膨張部材を得る手法も提唱されている。この手法では、例えば棒状に成形したそれぞれの材料を組み立ててラティス構造を作成する方法や、3Dプリンタによって当該構造を立体化する方法が考えられる。
特開2002-173359号公報
しかしながら、上記のように材料を逐一組み立てる方法は正確性や生産性の観点で現実的ではない。また、3Dプリンタを用いる方法では、複数種類の材料を扱うことに困難が伴う。特に、3Dプリンタを用いる場合、複数の金属材料で非熱膨張部材を形成することに大きな困難がある。例えばパウダーベッドタイプの3Dプリンタでは、同一の層内に複数種類の材料を混在させることが難しいためである。
本発明は上記課題を解決するためになされたものであって、容易かつ正確に非熱膨張部材を製造することが可能な非熱膨張部材の製造方法を提供することを目的とする。
本発明の一態様に係る非熱膨張部材の製造方法は、第一材料と、前記第一材料よりも線膨張係数が小さい第二材料とを用いて、非熱膨張部材を製造する方法であって、前記第一材料からなる第一板材と、前記第二材料からなる第二板材とが、交互に複数積層された積層体を準備する準備工程と、前記第一板材と前記第二板材との積層方向に直交する平面を含む面内方向の複数方向から前記第二板材に対して貫通加工を施す面内加工工程と、を含み、前記面内加工工程では、前記貫通加工を施すことで、前記第一板材同士を接続するように前記積層方向及び前記面内方向に対して傾斜して延びる複数の部材が前記第二板材により形成される。
上記方法によれば、非熱膨張部材に熱が加えられた場合、線膨張係数が相対的に大きい第一板材が面内方向に膨張する。一方で、第二板材の線膨張係数は相対的に小さいことから、熱膨張量は小さくなる。その結果、面内方向には熱膨張が生じるものの、面内方向に直交する積層方向における熱膨張は負又はゼロとなるか、第一材料及び第二材料をそれぞれ単独で用いた場合に比べて小さな正の熱膨張を示す。このように、上記の製造方法によれば、積層体に対して貫通加工を施すことのみによって非熱膨張部材を得ることができる。これにより、例えば3Dプリンタを用いる方法に比べて、より容易かつ短時間で非熱膨張部材を得ることができる。
上記方法によれば、第一板材と第二板材とが交互に積層された積層体を準備し、第二板材に対して当該第二板材の面内方向の複数方向から直線的に貫通加工を施すことのみによって、第二板材が複数の梁に形成される。これら複数の梁は第一板材同士を接続した状態となる。非熱膨張部材に熱が加えられた場合、線膨張係数が相対的に大きい第一板材が面内方向に膨張する。一方で、第二板材から形成された梁の線膨張係数は相対的に小さいことから、熱膨張量は小さくなる。その結果、面内方向には熱膨張が生じるものの、面内方向に直交する積層方向における熱膨張は負又はゼロとなるか、第一材料及び第二材料をそれぞれ単独で用いた場合に比べて小さな正の熱膨張を示す。このように、上記の製造方法によれば、積層体に対して貫通加工を施すことのみによって非熱膨張部材を得ることができる。さらに、例えば第一板材同士を、予め形成された梁によって順次接続する方法に比べて、より容易かつ正確に非熱膨張部材を得ることができる。
上記非熱膨張部材の製造方法では、前記面内加工工程において、複数の前記部材からなる三次元トラス構造を形成するように前記第二板材が加工されてもよい。
また、本発明の一態様に係る非熱膨張部材の製造方法は、第一材料と、前記第一材料よりも線膨張係数が小さい第二材料とを用いて、非熱膨張部材を製造する方法であって、前記第一材料からなる第一板材と、前記第二材料からなる第二板材とが、交互に複数積層された積層体を準備する準備工程と、前記第一板材と前記第二板材との積層方向に直交する平面を含む面内方向の複数方向から前記第二板材に対して貫通加工を施す面内加工工程と、
を含み、前記面内加工工程では、前記貫通加工を施すことで、前記第一板材同士を接続する複数の部材が前記第二板材により形成され、前記面内加工工程において、複数の前記部材からなる三次元トラス構造を形成するように前記第二板材が加工される。
上記方法によれば、複数の梁によって三次元トラス構造が形成される。ここで、三次元トラス構造とは、複数の梁によって形成された四角錐を連続的に組み合わせた構造を指す。三次元トラス構造では、外力が加わった場合、それぞれの梁には自身の延びる方向における圧縮又は引っ張りのみが作用することが知られている。したがって、このように構成された非熱膨張部材では、第一板材に熱膨張が生じた場合に梁に生じる力の方向が梁の軸方向に限定されていることから、梁の線膨張係数を容易に調節することができる。具体的には、第一板材や梁の太さ(延びる方向における断面積)を変えることで、発現する線膨張係数を容易に変更することができる。これにより、非熱膨張部材の特性を高い自由度のもとで決定することができる。さらに、三次元トラス構造を形成する四角錐は、第二板材の面内で直交する二方向から貫通加工を施すことのみによって容易に形成することができる。
上記非熱膨張部材の製造方法では、前記面内加工工程において、前記第二板材に対して前記面内方向に含まれる互いに交差する二方向から貫通加工を施してもよい。
上記方法によれば、第二板材の面内方向に含まれる互いに交差する二方向から貫通加工を施すことのみによって、容易かつ正確に非熱膨張部材を得ることができる。したがって、非熱膨張部材をより低コストで製造することができる。さらに、このような貫通加工を施すことによって、三次元梁構造を形成する四角錐を含め、種々の立体構造を容易に形成することもできる。
本発明の一態様に係る非熱膨張部材の製造方法は、第一材料と、前記第一材料よりも線膨張係数が小さい第二材料とを用いて、非熱膨張部材を製造する方法であって、前記第一材料からなる第一板材と、前記第二材料からなる第二板材とが、交互に複数積層された積層体を準備する準備工程と、前記第一板材と前記第二板材との積層方向に直交する平面を含む面内方向の複数方向から前記第二板材に対して貫通加工を施す面内加工工程と、を含み、前記積層体に対して前記積層方向及び前記面内方向に対して傾斜する複数方向から貫通加工を施すことで、前記第一板材を格子板状のベース板に形成しながら前記第二板材を孔空き構造体に形成する斜め加工工程をさらに含む。
上記方法によれば、斜め加工工程を実行することによって、第二板材のみならず、積層方向に隣接する第一板材に対しても貫通加工を施すことができる。第一板材は、格子状のベース板に形成されることで、例えば第二板材のみに加工が施されている場合に比べて、より高い自由度のもとで非熱膨張部材の特性を変えることができる。即ち、上記の製造方法によれば、特性が異なる多様な非熱膨張部材を得ることができる。
上記非熱膨張部材の製造方法では、前記斜め加工工程は、前記積層方向から見て互いに交差する四方向から貫通加工を施してもよい。
上記方法によれば、斜め加工工程において、積層方向から見て互いに交差する四方向から貫通加工を施すことによって、積層方向に直交する面内方向における非熱膨張部材の特性を均一化することができる。即ち、面内方向における熱膨張の方向性に偏りのない非熱膨張部材を、貫通加工を行うことのみによって得ることができる。さらに、面内方向における貫通加工と組み合わせることで、梁をより一層細く形成することができる。これにより、非熱膨張部材の特性をさらに精緻に調整することができる。
上記非熱膨張部材の製造方法では、前記斜め加工工程は、前記格子状をなす第一板材の交差部の角から前記面内方向に突出する突出部を残しながら、かつ、加工方向から見て前記突出部と重なる前記孔空き構造体の一部を残しながら貫通加工を施してもよい。
上記方法によれば、加工方向において突出部と重なる孔空き構造体の一部を残しながら貫通加工を施すことで、当該残された孔空き構造体の一部によって梁を形成することができる。言い換えると、突出部が形成されていることによって、貫通加工で必要とされる貫通形状をより単純化することができる。これにより、低コストかつ容易に非熱膨張部材を製造することができる。
本発明によれば、容易かつ正確に非熱膨張部材を製造することが可能な非熱膨張部材の製造方法を提供することができる。
本発明の第一実施形態に係る非熱膨張部材の構成を示す全体図である。 図1におけるA方向から非熱膨張部材を見た図である。 本発明の第一実施形態に係る非熱膨張部材の挙動を示す説明図である。 本発明の第一実施形態に係る非熱膨張部材の製造方法を示す工程図である。 本発明の第一実施形態に係る積層体の構成を示す図である。 本発明の第一実施形態に係る面内加工工程の一部を示す図である。 本発明の第一実施形態に係る面内加工工程の他の一部を示す図である。 本発明の第二実施形態に係る非熱膨張部材の構成を示す全体図である。 図8におけるA方向から非熱膨張部材を見た図である。 図8におけるB方向から非熱膨張部材を見た図である。 本発明の第二実施形態に係る非熱膨張部材の製造方法を示す工程図である。 本発明の第二実施形態に係る積層体の構成を示す図である。 本発明の第二実施形態に係る斜め加工工程に含まれる第一加工工程を示す図である。 第一加工工程後の積層体を図13のB1方向から見た図である。 本発明の第二実施形態に係る斜め加工工程に含まれる第二加工工程を示す図である。 第二加工工程後の積層体を図15のB2方向から見た図である。 本発明の第二実施形態に係る斜め加工工程に含まれる第三加工工程を示す図である。 第三加工工程後の積層体を図17のB3方向から見た図である。 本発明の第二実施形態に係る斜め加工工程に含まれる第四加工工程を示す図である。 第四加工工程後の積層体を図19のB4方向から見た図である。 本発明の第二実施形態に係る面内加工工程の一部を示す図である。 図21のA方向から積層体を見た図である。 本発明の第二実施形態に係る面内加工工程の他の一部を示す図である。 図23のA´方向から非熱膨張部材を見た図である。
[第一実施形態]
本発明の第一実施形態について、図1から図7を参照して説明する。図1に示すように、本実施形態に係る非熱膨張部材100は、板状に形成されるとともに、厚さ方向に間隔をあけて配列された複数のベース板1と、これらベース板1同士を互いに接続する三次元梁構造2と、を備えている。ベース板1を形成する材料の線膨張係数は、三次元梁構造2を形成する材料線膨張係数に対して相対的に大きい。複数のベース板1は、延在領域の全体にわたって等間隔をあけて互いに対向している。
三次元梁構造2は、互いに交差する方向に延びる複数の梁21を有している。それぞれの梁21は棒状をなしている。この三次元梁構造2では、4つの梁21が、互いに対向する一対のベース板1のうち、一方側のベース板1の表面に格子状に配列された複数の支持点の一つ(第一支持点31)と、他方側のベース板1の表面に格子状に配列された4つの支持点(第二支持点32)とをそれぞれ接続している。
ベース板1に直交する方向から見て、第一支持点31と第二支持点32とは、位置が互いに重ならないような位置にそれぞれ配列されるとともに、互いに等間隔をあけて格子状に配列されている。即ち、上記4つの梁21は、1つの第一支持点31を頂点とするとともに、4つの第二支持点32によってベース板1上に形成される四角形を底面とする四角錐を形成している。複数の梁21は、互いに同一の長さを有している。
上記のような三次元梁構造2が、ベース板1を挟んで当該ベース板1の広がる面に直交する方向に鏡像対称となるように配置されている。言い換えれば、ベース板1の一方側の面における1つの第一支持点31の反対側(ベース板1の他方側の面上)には、他の第一支持点31が位置している。図1と図2の例では、これらベース板1、及び三次元梁構造2が、4層にわたって積層されている構成を示している。また、図2に示すように、図1におけるA方向から見た場合、即ち、梁21同士が互いに重なる方向から見た場合、一対の梁21とベース板1との間には、二等辺三角形を断面形状として当該A方向に貫通する貫通孔41が形成される。言い換えれば、このA方向から見た場合、貫通孔41は、A方向の全域にわたって同一の断面積と断面形状を有している。なお、上記のA方向は、より詳細には以下のように表現される。まず、図1中に示すように、非熱膨張部材100におけるベース板1の一辺の延びる方向をx軸方向とし、当該一辺に直交する他の一辺の延びる方向をy軸とし、これらx軸、及びy軸に直交する方向をz軸とする。この際、x軸及びy軸については、それぞれの方向に配列し隣接する第一支持点31同士または第二支持点32同士の距離の半分を単位長さに、z軸については隣接するベース板の間隔を単位長さにとる。即ち、ベース板1はxy平面内に広がっており、このベース板1と三次元梁構造2とが、z軸方向に積層されている。(なお、以降の説明では、xy平面を含む面方向を「面内方向」と呼び、z軸方向を「積層方向」と呼ぶことがある。)このとき、上記のA方向は、三次元ベクトルとして、(-1,1,0)と表現される。即ち、このA方向は、ベース板1の広がる面内において、x軸及びy軸の単位長さが等しい場合、非熱膨張部材100に対して斜め45°を向く方向に相当する。
次に、上記の非熱膨張部材100の挙動について、図3を参照して説明する。図3では、一対のベース板1と、これらベース板1同士の間に設けられた1層の三次元梁構造2のみを代表的に示している。非熱膨張部材100に熱が加えられた場合、ベース板1、及び三次元梁構造2は、以下のような挙動を示す。まず、ベース板1は、自身の延在する面方向(図3中の矢印Da方向)に膨張する(ベース板1a)。したがって、上述の第一支持点31同士の間隔が広がる。ここで、梁21の線膨張係数が、ベース板1の線膨張係数よりも小さいことから、ベース板1の熱膨張量に比べて、梁21の熱膨張量は小さくなっている。これにより、上述の第一支持点31同士の間隔が広がり(第一支持点31a)、一対の梁21はベース板1の膨張する方向へ引っ張られる(梁21a)。その結果、一方側のベース板1に対して、他方側のベース板1が近付く方向(図3中の矢印Db方向)に変位する。このように、ベース板1の広がる面方向(Da方向)に膨張が生じる一方で、面方向に直交する厚さ方向(積層方向;Db方向)では熱膨張が抑制される(積層方向における線膨張係数が梁21より小さい値、ゼロ又は負)。また、梁21の太さを変えることによって、積層方向における収縮をゼロとすることも可能である。
他方で、上記のような非熱膨張部材100とは異なる、一様な材料で形成された中実の板材に熱を加えた場合、面方向と厚さ方向に材料固有の熱膨張が生じる。即ち、上記の非熱膨張部材100では、従来発現が難しい特性を実現することができる。
続いて、上記の非熱膨張部材100の製造方法について、図4から図7を参照して説明する。図4に示すように、この製造方法は、準備工程S1と、面内加工工程S2と、を含む。
準備工程S1では、それぞれ板状をなす第一板材51、及び第二板材52が交互に複数積層された積層体5を準備する(図5参照)。第一板材51を形成する材料(第一材料)の線膨張係数は、第二板材52を形成する材料(第二材料)の線膨張係数よりも大きく設定されている。第一材料、及び第二材料としては、ステンレス鋼(SUS304、SUS310、SUS316、SUS410)や、Ti6Al4V、Ni基合金(インコネル600、718)、高クロム鋼(9Cr、12Cr)、2.25Cr-1Mo材等から選択された材料が適宜用いられる。より具体的には、第一材料としてSUS304を用い、第二材料としてこのSUS304よりも線膨張係数が小さいSUS410を用いることが考えられる。また、第一材料としてSUS304を用い、第二材料としてTi6Al4Vを用いることも可能である。この他、アルミ合金、銅、カーボンスチールや非金属材料を第一材料、又は第二材料として用いることも可能である。
また、第一板材51の厚さ寸法(積層方向における寸法)は、第二板材52の厚さ寸法よりも通常、小さく設定されている。このような積層体5の具体例としては、クラッド鋼(圧着鋼)や、肉盛溶接による積層材が挙げられる。なお、本実施形態では、第一板材51は、上述のベース板1を形成している。
準備工程S1の後に、面内加工工程S2を実行する。面内加工工程S2では、まず上述したA方向から第二板材52のみに対して貫通加工を施す(図6)。ここで言う貫通加工とは、切削やレーザ加工、又はウォータージェットによる穴あけ加工(機械加工)を指す。より詳細には、この貫通加工では、直線方向に同一の断面形状、及び断面積で加工対象物に貫通孔41が形成される。本実施形態では、上述の三次元梁構造2を形成するために、図2で示した二等辺三角形の断面形状を有する貫通孔41が第二板材52に対して形成される。
A方向における貫通加工が完了した後で、第二板材52の面内において当該A方向に交差する(直交する)A´方向に向かって、同様の貫通加工が施される(図7)。このA´方向は、上記のようなベクトルで表すと、(1,1,0)となる。即ち、この面内加工工程S2では、第二板材52の広がる面(面内方向)に含まれる二方向から貫通加工が施される。これにより、一対のベース板1同士の間に、複数の梁21からなる三次元梁構造2が形成される。以上により、本実施形態に係る非熱膨張部材100の製造方法の全工程が完了する。
以上、説明したように、本実施形態に係る非熱膨張部材100の製造方法によれば、第一板材51と第二板材52とが交互に積層された積層体5を準備し、第二板材52に対して当該第二板材52の面内方向の複数方向から直線的に貫通加工を施すことのみによって、第二板材52が複数の梁21に形成される。これら複数の梁21は第一板材51同士を接続した状態となる。非熱膨張部材100に熱が加えられた場合、線膨張係数が相対的に大きい第一板材51が面内方向に膨張する。一方で、第二板材52から形成された梁21の線膨張係数は相対的に小さいことから、熱膨張量は小さくなる。その結果、面内方向には熱膨張が生じるものの、面内方向に直交する積層方向における熱膨張は抑制される(積層方向における線膨張係数が梁21より小さい値、ゼロ又は負)。このように、上記の製造方法によれば、積層体5に対して単純な機械加工(貫通加工)を施すことのみによって非熱膨張部材100を得ることができる。これにより、例えば3Dプリンタを用いる方法に比べて、より容易かつ短時間で非熱膨張部材100を得ることができる。また、3Dプリンタでは難しいとされる複数種類の材料を用いた造形を容易に行うことができる。さらに、例えば第一板材51同士を、予め形成された梁21によって順次接続する方法に比べて、より容易かつ正確に非熱膨張部材100を得ることができる。
さらに、上記製造方法によれば、複数の梁21によって三次元トラス構造2が形成される。ここで、三次元トラス構造2とは、複数の梁21によって形成された四角錐を連続的に組み合わせた構造を指す。三次元トラス構造2では、外力が加わった場合、それぞれの梁21には自身の延びる方向における圧縮又は引っ張りのみが作用することが知られている。したがって、このように構成された非熱膨張部材100では、第一板材51に熱膨張が生じた場合に梁21に生じる力の方向が梁21の軸方向に限定されていることから、発現する線膨張係数をより容易に調節することができる。具体的には、第一板材51や梁21の太さ(延びる方向における断面積)を変えることで、非熱膨張部材100の線膨張係数を容易に変更することができる。これにより、非熱膨張部材100の特性を高い自由度のもとで決定することができる。さらに、三次元トラス構造2を形成する四角錐は、第二板材52の面内で直交する二方向から貫通加工を施すことのみによって容易に形成することができる。
加えて、上記製造方法によれば、第二板材52の面内方向に含まれる互いに交差する二方向から貫通加工を施すことのみによって、容易かつ正確に非熱膨張部材100を得ることができる。したがって、非熱膨張部材100をより低コストで製造することができる。さらに、このような貫通加工を施すことによって、三次元梁構造2を形成する四角錐を含め、種々の立体構造を容易に形成することもできる。
以上、本発明の第一実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成や方法に種々の変更や改修を施すことが可能である。例えば、上記第一実施形態では、面内加工工程S2において、互いに直交するA方向、及びA´方向から貫通加工を施す例について説明した。しかしながら、目的とする非熱膨張部材100の特性によっては、必ずしも互いに直交する二方向から貫通加工を施す必要はなく、90°未満の交差角度で二方向から貫通加工を施すことや、2以外の数の方向から貫通加工を施すことも可能である。
[第二実施形態]
次に、本発明の第二実施形態について、図8から図10を参照して説明する。なお、上記第一実施形態と同様の構成や工程については同一の符号を付し、詳細な説明を省略する。
図8に示すように、本実施形態に係る非熱膨張部材200は、ベース板201と、三次元梁構造202と、を有し、ベース板201の形状が第一実施形態のベース板1とは異なっている。具体的には、ベース板201には、上述した複数(4つ)の第一支持点31を頂点とする四角形の孔(ベース板孔部6)が形成されている。これにより、ベース板201は、各第一支持点31同士を接続する格子状をなしている。
さらに、格子状をなすベース板201の交差部の角には、ベース板201の面内方向に突出する突起(突出部7)が設けられている。詳しくは後述するが、この突出部7は、貫通加工を施す際に、第二板材52の一部を加工方向から保護して梁21を形成するために設けられている。即ち、この突出部7は、最終的に得られる梁21と同一の幅(面内方向において突出方向に直交する方向の寸法)を有している。
図9は、図8におけるベース板201の法線方向に対して当該ベース板201の辺を基準として斜め上方の方向(以下、B方向とする)から非熱膨張部材200を見た図である。B方向は、詳しくはベクトルとして、(0,1,-1)と表現され、y軸及びz軸の単位長さが等しい場合、斜め45°の方向に相当する。同図に示すように、B方向から見た場合、3つの第一支持点31を頂点とする二等辺三角形をなす貫通孔42が形成されている。さらに、隣接する貫通孔42の間には、積層方向を含む面内に位置する一対の第一支持点31同士を接続する1つの梁21が位置している。
また、図10に示すように、図8における上述のA方向(ベクトルとして(-1,1,0))から非熱膨張部材200を見た場合、即ち、梁21同士が互いに重なる方向から見た場合、一対の梁21とベース板201との間には、二等辺三角形を断面形状として当該A方向に貫通する貫通孔43が形成されている。言い換えれば、このA方向から見た場合、貫通孔43は、A方向の全域にわたって同一の断面積と断面形状(二等辺三角形)を有している。
次に、本実施形態に係る非熱膨張部材200の製造方法について、図11から図24を参照して説明する。図11に示すように、この製造方法は、準備工程S11と、斜め加工工程S12と、面内加工工程S13と、を含む。
準備工程S11では、上述の第一実施形態と同様に、積層体5を準備する。積層体5は、それぞれ板状をなす第一板材51、及び第二板材52が交互に複数積層されることで形成されている(図12参照)。第一板材51の線膨張係数は、第二板材52の線膨張係数よりも大きく設定されている。また、第一板材51の厚さ寸法(積層方向における寸法)は、第二板材52の厚さ寸法よりも通常、小さく設定されている。このような積層体5の具体例としては、クラッド鋼(圧着鋼)や、肉盛溶接による積層材が挙げられる。
準備工程S11の後で、斜め加工工程S12を実行する。斜め加工工程S12では、積層体5に対して、積層方向及び面内方向に対して傾斜する複数方向(四方向)から貫通加工が施される。この斜め加工工程S12についてさらに詳しく説明する。斜め加工工程S12は、第一加工工程S121と、第二加工工程S122と、第三加工工程S123と、第四加工工程S124と、を含む。第一加工工程S121では、図13に示すように、まずB1方向から積層体5に対して貫通加工が施される。B1方向とは、ベクトル表記で(-1,0,-1)の方向である。この貫通加工では、二等辺三角形を断面形状としてB1方向に延びる貫通孔44が形成されるとともに、後続の工程で梁21となる部分(梁中間体21p)が残される(図14参照)。梁中間体21pは、xz平面内に広がる板状をなしている。梁中間体21pは、第一板材51によって形成される部分と、第二板材52によって形成される部分とを含んでいる。
次いで、第二加工工程S122を実行する。第二加工工程S122では、積層体5の積層方向に対して上記のB1方向と軸対称であるB2方向から貫通加工が施される(図15)。B2方向とは、ベクトル表記で(1,0,-1)の方向である。この第二加工工程S122を経て、B2方向から見て、積層体5は図16に示すような形状となる。即ち、二等辺三角形を断面形状としてB2方向に延びる貫通孔45が形成される。
次に、第三加工工程S123を実行する。第三加工工程S123では、積層体5の積層方向に対して上記のB1方向を90°回転した方向であるB3方向から貫通加工が施される(図17)。なお、このB3方向は、上述したB方向と同一の方向であり、ベクトル表記では(0,1,-1)となる。この第三加工工程S123を経て、積層体5は、B3方向から見て図18に示すような形状となる。即ち、二等辺三角形を断面形状としてB3方向に延びる貫通孔42が形成されるとともに、梁中間体21pの一部が除去されて、上述の突出部7が形成される。
さらに、第三加工工程S123の後に、第四加工工程S124を実行する。第四加工工程S124では、積層体5の積層方向に対して上記のB3方向と軸対称であるB4方向から貫通加工が施される(図19)。このB4方向は、ベクトル表記では(0,-1,-1)となる。この第四加工工程S124を経て、積層体5は、B4方向から見て図20に示すような形状となる。即ち、二等辺三角形を断面形状としてB4方向に延びる貫通孔46が形成される(図20)。以上により、斜め加工工程S12が完了する。このように、斜め加工工程S12では、積層方向から見て互いに交差する(直交する)四方向から積層体5に対して貫通加工が施される。この斜め加工工程S12を経て、積層体5の第一板材51は、上記のベース板201を形成し、第二板材52は、中間構造物としての孔空き構造体2pを形成する。
斜め加工工程S12の次に、上記の孔空き構造体2pに対して、上記第一実施形態と同様の面内加工が施される(面内加工工程S13)。面内加工工程S13では、まず上述したA方向から孔空き構造体2pのみに対して貫通加工を施す(図21)。これにより、A方向から見た場合の孔空き構造体2pは、図22に示すような形状となる。さらに、A方向における貫通加工が完了した後で、第二板材52の面内において当該A方向に交差する(直交する)A´方向に、同様の貫通加工が施される(図23)。これにより、一対のベース板201同士の間に、複数の梁21からなる三次元梁構造2が形成された非熱膨張部材200が完成する。このとき、A´方向から見ると、非熱膨張部材200は、図24に示すような形状となっている。以上により、本実施形態に係る非熱膨張部材200の製造方法の全工程が完了する。
以上、説明したように、上記の製造方法によれば、斜め加工工程S12を実行することによって、第二板材52のみならず、積層方向に隣接する第一板材51に対しても貫通加工を施すことができる。第一板材51は、格子状のベース板1に形成されることで、例えば第二板材52のみに加工が施されている場合に比べて、より高い自由度のもとで非熱膨張部材100の特性を変えることができる。即ち、上記の製造方法によれば、特性が異なる多様な非熱膨張部材100を得ることができる。
上記製造方法によれば、斜め加工工程S12において、積層方向から見て互いに交差する四方向から貫通加工を施すことによって、積層方向に直交する面内方向における非熱膨張部材100の特性を均一化することができる。即ち、面内方向に熱膨張の方向性に偏りのない非熱膨張部材100を、貫通加工を行うことのみによって得ることができる。さらに、面内方向における貫通加工と組み合わせることで、梁21をより一層細く形成することも可能となる。これにより、非熱膨張部材100の特性をさらに精緻に調整することができる。
さらに、上記製造方法によれば、加工方向において突出部7と重なる孔空き構造体2pの一部を残しながら貫通加工を施すことで、当該残された孔空き構造体2pの一部が工具やレーザ、ウォータージェット等の切削範囲から保護され、これにより梁21を形成することができる。言い換えると、突出部7が形成されていることによって、貫通加工で必要とされる貫通形状をより単純化することができる。これにより、低コストかつ容易に非熱膨張部材100を製造することができる。
以上、本発明の第二実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成や方法に種々の変更や改修を施すことが可能である。例えば、上記第二実施形態では、斜め加工工程S12において、互いに直交するB1方向、B2方向、B3方向、及びB4方向から貫通加工を施す例について説明した。しかしながら、目的とする非熱膨張部材100の特性によっては、これらの四方向が必ずしも互いに直交している必要はなく、90°未満、又は90°よりも大きい交差角度で四方向から貫通加工を施すことや、4以外の数の方向から貫通加工を施すことも可能である。
1,1a,201…ベース板
2,202…三次元梁構造又は三次元トラス構造
5…積層体
6…ベース板孔部
7…突出部
21,21a…梁
31,31a…第一支持点
32,32a…第二支持点
41,42,43,44,45,46…貫通孔
51…第一板材
52…第二板材
100,200…非熱膨張部材
21p…梁中間体
2p…孔空き構造体
S1,S11…準備工程
S12…斜め加工工程
S121…第一加工工程
S122…第二加工工程
S123…第三加工工程
S124…第四加工工程
S2,S13…面内加工工程
A,A´,B,B1,B2,B3,B4,Da,Db…方向

Claims (7)

  1. 第一材料と、前記第一材料よりも線膨張係数が小さい第二材料とを用いて、非熱膨張部材を製造する方法であって、
    前記第一材料からなる第一板材と、前記第二材料からなる第二板材とが、交互に複数積層された積層体を準備する準備工程と、
    前記第一板材と前記第二板材との積層方向に直交する平面を含む面内方向の複数方向から前記第二板材に対して貫通加工を施す面内加工工程と、
    を含み
    前記面内加工工程では、前記貫通加工を施すことで、前記第一板材同士を接続するように前記積層方向及び前記面内方向に対して傾斜して延びる複数の部材が前記第二板材により形成される非熱膨張部材の製造方法。
  2. 前記面内加工工程において、複数の前記部材からなる三次元トラス構造を形成するように前記第二板材が加工される請求項1に記載の非熱膨張部材の製造方法。
  3. 第一材料と、前記第一材料よりも線膨張係数が小さい第二材料とを用いて、非熱膨張部材を製造する方法であって、
    前記第一材料からなる第一板材と、前記第二材料からなる第二板材とが、交互に複数積層された積層体を準備する準備工程と、
    前記第一板材と前記第二板材との積層方向に直交する平面を含む面内方向の複数方向から前記第二板材に対して貫通加工を施す面内加工工程と、
    を含み、
    前記面内加工工程では、前記貫通加工を施すことで、前記第一板材同士を接続する複数の部材が前記第二板材により形成され、
    前記面内加工工程において、複数の前記部材からなる三次元トラス構造を形成するように前記第二板材が加工される非熱膨張部材の製造方法。
  4. 前記面内加工工程において、
    前記第二板材に対して前記面内方向に含まれる互いに交差する二方向から貫通加工が施される請求項1から3のいずれか一項に記載の非熱膨張部材の製造方法。
  5. 第一材料と、前記第一材料よりも線膨張係数が小さい第二材料とを用いて、非熱膨張部材を製造する方法であって、
    前記第一材料からなる第一板材と、前記第二材料からなる第二板材とが、交互に複数積層された積層体を準備する準備工程と、
    前記第一板材と前記第二板材との積層方向に直交する平面を含む面内方向の複数方向から前記第二板材に対して貫通加工を施す面内加工工程と、
    を含み、
    前記積層体に対して前記積層方向及び前記面内方向に対して傾斜する複数方向から貫通加工を施すことで、前記第一板材を格子板状のベース板に形成しつつ、前記第二板材を孔空き構造体に形成する斜め加工工程をさらに含む非熱膨張部材の製造方法。
  6. 前記斜め加工工程は、前記積層方向から見て互いに交差する四方向から貫通加工を施す請求項5に記載の非熱膨張部材の製造方法。
  7. 前記斜め加工工程は、
    前記格子状をなす第一板材の交差部の角から前記面内方向に突出する突出部を残しながら、かつ、加工方向から見て前記突出部と重なる前記孔空き構造体の一部を残しながら貫通加工を施す請求項6に記載の非熱膨張部材の製造方法。
JP2019069023A 2019-03-29 2019-03-29 非熱膨張部材の製造方法 Active JP7257221B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019069023A JP7257221B2 (ja) 2019-03-29 2019-03-29 非熱膨張部材の製造方法
PCT/JP2019/043037 WO2020202623A1 (ja) 2019-03-29 2019-11-01 非熱膨張部材の製造方法
CN201980092934.3A CN113498463A (zh) 2019-03-29 2019-11-01 负热膨胀部件的制造方法
DE112019007116.5T DE112019007116T5 (de) 2019-03-29 2019-11-01 Verfahren zur Herstellung von Element mit negativer Wärmeausdehnung oder Wärmeausdehnung nahe Null
US17/411,407 US20210379883A1 (en) 2019-03-29 2021-08-25 Method for producing negative or near-zero thermal expansion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069023A JP7257221B2 (ja) 2019-03-29 2019-03-29 非熱膨張部材の製造方法

Publications (2)

Publication Number Publication Date
JP2020165523A JP2020165523A (ja) 2020-10-08
JP7257221B2 true JP7257221B2 (ja) 2023-04-13

Family

ID=72667983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069023A Active JP7257221B2 (ja) 2019-03-29 2019-03-29 非熱膨張部材の製造方法

Country Status (5)

Country Link
US (1) US20210379883A1 (ja)
JP (1) JP7257221B2 (ja)
CN (1) CN113498463A (ja)
DE (1) DE112019007116T5 (ja)
WO (1) WO2020202623A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210309001A1 (en) * 2018-07-25 2021-10-07 James Warren GERE Core and method for automated hollow door and panel assembly
US11680398B2 (en) * 2020-10-12 2023-06-20 Jacob Eisenberg Strata space frame
CN114962508B (zh) * 2022-06-14 2024-01-26 北京工业大学 一种具有负泊松比的减震板杆结构
CN115351298B (zh) * 2022-10-21 2023-01-03 沈阳铸造研究所有限公司 一种基于增材制造的近零膨胀点阵金属及制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005771U (ja) 1994-06-29 1995-01-10 淳 田中 軽量ブロック
JP2005037709A (ja) 2003-07-15 2005-02-10 Mitsubishi Electric Corp 反射鏡およびその製造方法
JP2010196463A (ja) 2009-02-02 2010-09-09 Ando Corp 耐震壁用プレキャストコンクリートブロック、耐震壁及び耐震壁構築工法
US20130243997A1 (en) 2011-09-07 2013-09-19 Lawrence Livermore National Security Lattice-structures and constructs with designed thermal expansion coefficients
US20150044084A1 (en) 2011-10-31 2015-02-12 California Institute Of Technology Methods for fabricating gradient alloy articles with multi-functional properties

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183333A (ja) * 1986-02-07 1987-08-11 科学技術庁航空宇宙技術研究所長 広い温度範囲において主軸方向の熱膨張係数がほぼゼロに制御された積層複合材
JPH01154942A (ja) * 1987-12-11 1989-06-16 Nkk Corp 熱変形のない単位構造体及びこれを複数結合した構造体
US8717659B2 (en) * 2011-06-24 2014-05-06 University Of Southampton Tunable metamaterials and related devices
US10821505B2 (en) * 2015-11-10 2020-11-03 Ecole Polytechnique Federale De Lausanne (Epfl) Small-scale metal castings, small-scale metal/transparent composite structures, and process to produce the same
US20210020263A1 (en) * 2017-06-14 2021-01-21 The Royal Institution For The Advancement Of Learning/Mcgill University Lattice metamaterial having programed thermal expansion
JP2019069023A (ja) 2017-10-10 2019-05-09 株式会社三共 遊技機
US10808794B1 (en) * 2018-03-19 2020-10-20 National Technology & Engineering Solutions Of Sandia, Llc Topological damping materials and methods thereof
US11155031B2 (en) * 2018-03-30 2021-10-26 Mantis Composites Inc. 5-axis continuous carbon fiber 3D printing and meta-materials, parts, structures, systems, and design methods thereby enabled

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005771U (ja) 1994-06-29 1995-01-10 淳 田中 軽量ブロック
JP2005037709A (ja) 2003-07-15 2005-02-10 Mitsubishi Electric Corp 反射鏡およびその製造方法
JP2010196463A (ja) 2009-02-02 2010-09-09 Ando Corp 耐震壁用プレキャストコンクリートブロック、耐震壁及び耐震壁構築工法
US20130243997A1 (en) 2011-09-07 2013-09-19 Lawrence Livermore National Security Lattice-structures and constructs with designed thermal expansion coefficients
US20150044084A1 (en) 2011-10-31 2015-02-12 California Institute Of Technology Methods for fabricating gradient alloy articles with multi-functional properties

Also Published As

Publication number Publication date
WO2020202623A1 (ja) 2020-10-08
CN113498463A (zh) 2021-10-12
JP2020165523A (ja) 2020-10-08
DE112019007116T5 (de) 2021-12-16
US20210379883A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP7257221B2 (ja) 非熱膨張部材の製造方法
US11192322B2 (en) 3-D honeycomb foam structure
US8678771B2 (en) Process for manufacturing a component
US7810552B2 (en) Method of making a heat exchanger
JP2018012336A (ja) 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
KR101158088B1 (ko) 판재를 이용한 다면체형 트러스 구조체
WO2017163405A1 (ja) 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
JP2023523031A (ja) 凹部を基板中に生成するための方法
US9062883B2 (en) Turbomachine fuel-air mixer component including an additively manufactured portion joined to a non-additively manufactured portion and method
JP2020159273A (ja) メタマテリアル複合体、回転機械及びメタマテリアル複合体の製造方法
JP2006122959A (ja) プレスブレーキ用金型の作成方法及び金型
US11541633B2 (en) Hybrid parts including additive manufacturing
US11794284B2 (en) Methods of manufacturing a workpiece fixture for supporting a workpiece in a precision manufacturing process; method of generating a support blade machining pattern; and target material fixture
CN111396486A (zh) 一种三维双箭头负泊松比结构及其嵌锁组装工艺
KR101327889B1 (ko) 금속성 미세구조물 및 그의 가공 방법
JP2017207037A (ja) ラティス構造
JP2020165916A (ja) 非熱膨張部材の製造方法及び位置検出器
JP7472313B2 (ja) 付加製造用途で利用するオーセチック三次元構造物
JP6651068B2 (ja) 構造体の製造方法、構造体、及び熱交換体
JP6027381B2 (ja) 流体配管内蔵部品の製造方法及び流体配管の製造方法
KR101545842B1 (ko) 단위셀 구조의 제조방법, 단위셀 구조를 포함하는 샌드위치 판재 및 이의 제조방법
JP2008033528A (ja) 数値解析データ作成装置、数値解析データ作成方法およびその作成方法をコンピュータに実現させるためのプログラム
JP2007065795A (ja) 加工経路作成方法
Tran et al. A new approach to determining heating parameters suitable for hull plate forming by torch line heating
JP2023079296A (ja) 積層体の製造方法、熱交換器の製造方法、積層体、及び熱交換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230403

R150 Certificate of patent or registration of utility model

Ref document number: 7257221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150