JP7257086B2 - Comprehensive Construction Method for Low Overburden Sections of Tunnels - Google Patents
Comprehensive Construction Method for Low Overburden Sections of Tunnels Download PDFInfo
- Publication number
- JP7257086B2 JP7257086B2 JP2022540937A JP2022540937A JP7257086B2 JP 7257086 B2 JP7257086 B2 JP 7257086B2 JP 2022540937 A JP2022540937 A JP 2022540937A JP 2022540937 A JP2022540937 A JP 2022540937A JP 7257086 B2 JP7257086 B2 JP 7257086B2
- Authority
- JP
- Japan
- Prior art keywords
- tunnel
- centering
- steel
- construction method
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title claims description 48
- 229910000831 Steel Inorganic materials 0.000 claims description 65
- 239000010959 steel Substances 0.000 claims description 65
- 238000009412 basement excavation Methods 0.000 claims description 38
- 239000004567 concrete Substances 0.000 claims description 22
- 239000011440 grout Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 18
- 239000011435 rock Substances 0.000 claims description 12
- 238000005553 drilling Methods 0.000 claims description 10
- 239000002352 surface water Substances 0.000 claims description 8
- 230000003014 reinforcing effect Effects 0.000 claims description 7
- 238000005507 spraying Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 230000008595 infiltration Effects 0.000 claims description 4
- 238000001764 infiltration Methods 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 4
- 238000005304 joining Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims 1
- 239000002002 slurry Substances 0.000 description 10
- 239000004568 cement Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000011378 shotcrete Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/003—Linings or provisions thereon, specially adapted for traffic tunnels, e.g. with built-in cleaning devices
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/04—Lining with building materials
- E21D11/10—Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/001—Improving soil or rock, e.g. by freezing; Injections
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Soil Sciences (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Lining And Supports For Tunnels (AREA)
Description
本発明は、トンネル工事の施工技術分野に関し、特に、トンネルの低土被り区間の総合的な工法に関する。 TECHNICAL FIELD The present invention relates to the field of construction technology for tunnel construction, and more particularly to a comprehensive construction method for low-overburden sections of tunnels .
現在、我が国のトンネル工事の施工中において、プロセス・技術・工法の全てが成熟して完璧になっているが、一部トンネル工事の施工過程で安全関連の事故が時々発生し、主な原因はトンネル工事の地層岩相、地質構造、地下水分布などの様々要因の不確実性、予測不可能性により施工過程中に特殊な地質、地貌に遭遇した時参照できる施工経験がないことである。 At present, during the construction of tunnel construction in our country, the process, technology and construction methods are all mature and perfect. Due to the uncertainty and unpredictability of various factors such as stratum lithology, geological structure, and groundwater distribution during tunnel construction, there is no construction experience that can be referred to when encountering special geology and topography during the construction process.
特に、低土被り区間の施工過程中において、現場の実際の最小土被りが浅く、周囲岩盤が強風化凝灰岩で、設計はVグレード周辺岩盤として評価され、表層が3~4mの砕石混じりシルト質粘土覆層で、雨季の地表水が比較的豊富であるため、落盤等の問題が起きやすく、トンネル低土被り区間の施工の安全性を保証できていなかった。 In particular, during the construction process of the low overburden section, the actual minimum overburden at the site is shallow, the surrounding rock is strongly weathered tuff, the design is evaluated as V grade surrounding rock, and the surface layer is silty mixed with crushed stone with a thickness of 3 to 4 m. Due to the clay covering layer and relatively abundant surface water during the rainy season, problems such as rock collapses were likely to occur, and the safety of construction work in the low overburden section of the tunnel could not be guaranteed.
本発明の目的は、上記従来技術における上述の問題点の克服を意図しており、地表水が豊富で、周辺岩盤の性質が劣る低土被り区間のトンネル施工に適する方法を提供することである。 An object of the present invention is to overcome the above-mentioned problems in the prior art, and to provide a method suitable for tunnel construction in low-overburden sections with abundant surface water and poor surrounding rock properties. .
本発明は、上記目的を達成するために、次の技術的手段を提示した。 The present invention presents the following technical means in order to achieve the above object.
トンネルの低土被り区間の総合的な工法であって、トンネルの低土被り区間に地表へのグラウト注入を行い、地表へのグラウト注入が完了した後、グラウト注入範囲内にEVA止水板を敷設し、止水板の表面にコンクリートを打ち込んで閉塞し、地表水の浸透を遮断するステップS1、設計図に従ってトンネルが削孔される地盤に複数の墨出し座標がトンネルを囲むアーチ状に並ぶように墨出しを行い、ドリルマシンで前記複数の墨出し座標においてトンネルの削孔方向に向かうに従いトンネルの外周面から漸次離間するように削孔し、削孔が完了した後孔内清掃を行い、パイプルーフを削孔穴に押し込むステップS2、パイプルーフにグラウトストップバルブを取り付け、固定剤で削孔穴及びその周辺の亀裂を閉塞し、グラウト注入機を介してパイプルーフにグラウチングし、パイプルーフ長は、10mに1サイクルで作製し、1サイクルのパイプルーフ接合の長さが3m以上で、パイプルーフに使用される各セクション鋼管の端部外側に事前に長さ50mmのねじを切り、連結鋼管は長さ300mm、外径95mmのシームレス鋼管を用い、連結鋼管全長内にねじを切るステップS3、及び、上段を掘削し、上段の掘削が完了した後、まず掘削部の周辺岩盤面にコンクリートを吹き付け、支持としてセンタリングを架設し、支保工が完了してから設計で規定された厚さまで再度吹付け、周辺岩盤のアーチ部は、アンカーボルトで定着され、両側の鉄骨を架設した後、仮インバートとして掘削地に仮設鉄骨を設置し、隣り合う鉄骨間を鉄筋でつながることと、中段を掘削し、トンネル断面の片側を掘削し、掘削時トンネル断面の両側を一定の距離を置いて掘削を進め、いずれかの側の掘削が完了した後、直ちに上段のセンタリングの脚部に対しセンタリングの継ぎ足しを行い、脚部の架設が完了した後にアンカーボルトを打設し、掘削部の両側に設計厚さまでコンクリートを再度吹き付け、両側の脚部の架設が完了した後、仮インバートとして掘削地に仮設鉄骨を設置し、設置が完了した後、コンクリートを吹き付けて閉塞することと、下段を掘削し、トンネル断面の片側を掘削し、掘削時トンネル断面の両側を一定の距離を置いて掘削を進め、どちらかの側の掘削が完了した後、直ちにセンタリングの脚部に対しセンタリングの継ぎ足しを行い、脚部の架設が完了した後にアンカーボルトを打設し、設計厚さまでコンクリートを再度吹き付けることとを含む仮インバートのある3段ベンチカット工法を用いてトンネルを掘削し、また掘削部に対し一次支保を施工するステップS4を含む、トンネルの低土被り区間の総合的な工法。 This is a comprehensive construction method for the low overburden section of the tunnel , in which grout is injected to the ground surface in the low overburden section of the tunnel. is laid, concrete is placed on the surface of the water stop plate to block the infiltration of surface water, step S1, in the ground where the tunnel is drilled according to the design drawing, a plurality of marked coordinates are formed in an arch shape surrounding the tunnel Marking is performed so as to line up , and drilling is performed by a drill machine so as to gradually separate from the outer peripheral surface of the tunnel as it goes in the drilling direction of the tunnel at the plurality of marking coordinates, and after completion of drilling, the inside of the hole is cleaned. Step S2 of pushing the pipe roof into the drilled hole, attaching a grout stop valve to the pipe roof, closing the cracks in the drilled hole and its surroundings with a fixing agent, grouting the pipe roof through a grout injector , and extending the length of the pipe roof is made in one cycle for 10 m, the length of the pipe roof joint in one cycle is 3 m or more, and the end of each section steel pipe used for the pipe roof is pre-cut to a length of 50 mm, and the connecting steel pipe uses seamless steel pipes with a length of 300 mm and an outer diameter of 95 mm, a step S3 in which threads are cut within the entire length of the connecting steel pipe, and the upper level is excavated. After spraying, centering is installed as a support, and after the shoring is completed, spraying is carried out again to the thickness specified in the design. Install a temporary steel frame at the excavation site, connect adjacent steel frames with reinforcing bars, excavate the middle stage, excavate one side of the tunnel cross section, and proceed with excavation while keeping a certain distance , Immediately after the excavation on either side is completed, the centering is added to the legs of the upper centering. Concrete is sprayed again, and after the erection of the legs on both sides is completed, a temporary steel frame is installed on the excavated site as a temporary invert. excavate one side of the tunnel section, keep a certain distance on both sides of the tunnel cross section during excavation, and after excavation on either side is completed, immediately add centering to the centering leg, and The tunnel will be excavated using a 3-stage bench cut method with temporary inverts, including placing anchor bolts after the erection is complete and concrete will be sprayed again to the design thickness, and the primary support will be installed for the excavation. A comprehensive construction method for a low-overburden section of a tunnel, including step S4.
トンネルの低土被り、周辺岩盤破砕の互層、地表水が豊富な特徴について、トンネルの坑内掘削は、仮インバートのある3段ベンチカット工法を用いて、掘進の安全性が大いに保障され、坑内のパイプルーフ支保工及びプレグラウト掘削補助工法を介して、安全な掘削を実現し、品質と効率を向上させ、トンネルの低土被り区間での施工安全性に関するハザードを解決し、トンネルの落盤事故の発生可能性を減らす。 Regarding the tunnel's low overburden, alternating layers of crushed rock around it, and abundant surface water, the underground excavation of the tunnel uses a three-step bench cut method with a temporary invert, which greatly guarantees the safety of excavation and Through pipe roof support and pre-grout excavation auxiliary construction method, we realize safe excavation, improve quality and efficiency, solve construction safety hazards in the low overburden section of the tunnel, and prevent tunnel collapse accidents. reduce the chances.
掘削過程中で仮インバートのある3段ベンチカット工法を用いることで、周辺岩盤のかく乱を大幅に減少し、仮インバート支保工構造を介して支保工システム全体をつながるようにさせることで、より安定する。 By using the 3-step bench cut method with temporary invert during the excavation process, the disturbance of the surrounding rock mass is greatly reduced, and the whole shoring system is connected through the temporary invert shoring structure, making it more stable. do.
本発明は、施工過程の安全性を保証するため、地域鉄道採鉱法によるトンネルの低土被り区間の総合的な工法を提供することにあり、地表水が豊富で、周辺岩盤の性質が劣る低土被り区間トンネル1の施工に用いられ、施工過程中の周辺岩盤に対するかく乱を大幅に減少する。
The purpose of the present invention is to provide a comprehensive construction method for the low overburden section of a tunnel by the regional railway mining method in order to guarantee the safety of the construction process. It is used in the construction of the
図1~図6を参照すると、本発明により提供される施工方法は、以下のステップを含む。 1 to 6, the construction method provided by the present invention includes the following steps.
ステップS1:トンネル1の低土被り区間に地表へのグラウト注入を行い、地表グラウト注入工法で地表を補強し、グラウト注入範囲は、トンネル1の最小土被りからトンネル1方向に沿って前後に10mで、両側をトンネル1の断面幅範囲に従い地表を徐々に補強する。
Step S1: Inject grout to the ground surface in the low overburden section of
ステップS2:設計図に従って墨出しを行い、ドリルマシンで墨出し座標に削孔し、削孔が完了した後孔内清掃を行い、パイプルーフを削孔穴に押し込み;トンネル1内の掘削前、先にパイプルーフ2の施工を行い、測量員は設計図に従って墨出しを行い、各空きスペースに番号を付け、次に削孔作業者がダウンザホールドリルで削孔し、削孔完了後、高圧エアホースで孔内の残留物を清掃する。削孔穴の直径は、鋼管の直径より3~5mm大きく、パイプルーフ2には計46穴を削孔し、円周方向の管間隔が40cmで、削孔傾斜角の外角が12°以下で、具体的には実際の状況に応じて調整することができる。鋼管の施工誤差:半径方向が20cm以下で、隣り合う鋼管間の円周方向が10cm以下である。削孔穴の孔内清掃が完了した後、ハンマー又はダウンザホールドリルで押し込み、押し込みの長さは鋼管の長さの95%以上で、高圧エアホースで鋼管内の砂利を吹き飛ばす。
Step S2: Marking according to the design drawing, drilling according to the marking coordinates with a drill machine, cleaning the hole after drilling is completed, and pushing the pipe roof into the drilled hole; After the construction of the
ステップS3:パイプルーフ2にグラウトストップバルブを取り付け、固定剤で削孔穴及びその周辺の亀裂を閉塞し、グラウト注入機を介してパイプルーフ2にグラウチングし、パイプルーフ2を設置した後、固定剤で孔口及び周辺の亀裂を閉塞し、必要に応じてパイプルーフ2近傍及び切羽にコンクリートを吹付けて、切羽崩壊を防止し、グラウトストップバルブを取り付け、グラウトストップバルブのスムーズ性を確保する。
Step S3: Install a grout stop valve on the
ステップS4:仮インバートのある3段ベンチカット工法を用いてトンネル1を掘削し、また掘削部に対し一次支保を施工する。
Step S4: The
本出願の別の代替的実施例において、ステップS4において、仮インバートのある3段ベンチカット工法は、次のステップを含む。 In another alternative embodiment of the present application, in step S4, the triple bench cut construction method with temporary inversion includes the following steps.
上段1.1を掘削し、上段1.1の掘削が完了した後、まず掘削部の周辺岩盤面にコンクリートを吹き付け、支持としてセンタリング3を架設する。ベンチの掘削が完了した後、直ちに上段1.1に対応する坑体に対して一次支保を施し、まず掘削後の周辺岩盤面にc25コンクリートで一次吹付けコンクリートを吹付けることで、一次吹付けコンクリート層5を形成し、吹付けの厚さは4cmで、支保工が完了した後設計で規定された厚さまで再度吹き付け、吹付け工法は湿式吹付け工法であった。センタリング3を架設し、センタリング3は、支持としてI18形剛鉄骨を用い、センタリング3間の距離が0.6mである。センタリング3の架設配置は、図3~図5に示すように、センタリング3の各側の脚部がΦ42mm、L=4.0mのシームレス鋼管をロッキングアンカーパイプとして用い、各側に2本ずつセンタリング3に近づけ、アンカーパイプを打ち込んだ後鉄筋9をセンタリング3と緊密に溶接し、鉄筋の型番がΦ22Uタイプのねじ山で、隣り合う鉄骨間を鉄筋9でつながり、形剛鉄骨は厚さ4cmcの25コンクリートを一次吹付けた後で架設され、架設後設計厚さまでコンクリートを再度吹付けて、二次吹付けコンクリート層4を形成する。周辺岩盤のアーチ部は、アンカーボルト6で定着され、アンカーボルト6が長さ4m、Φ22の中空アンカーボルトを用いた。側壁は、長さ4mのΦ22モルタルアンカーボルトを用い、アンカーボルト6の間隔が外周縦方向1.2m×1.0mで、両側の鉄骨が架設した後、掘削地に間隔0.6mのI16仮設鉄骨を仮インバートとして設置し、設置が完了した後、底部に厚さ10cmのc25コンクリートを吹付けて閉塞する。
The upper stage 1.1 is excavated, and after the excavation of the upper stage 1.1 is completed, concrete is first sprayed on the surrounding rock surface of the excavated portion, and the
中段1.2を掘削し、トンネル1断面の片側を掘削し、掘削時トンネル1断面の両側を一定の距離を置いて掘削を進め、いずれかの側の掘削が完了した後、直ちに上段1.1のセンタリングの脚部に対しセンタリング継ぎ足し部3.1によってセンタリングの継ぎ足しを行い、脚部の架設が完了した後にアンカーボルト6を打設し、掘削部の両側に設計厚さまでコンクリートを再度吹き付け、両側の脚部の架設が完了した後、仮インバートとして掘削地に仮設鉄骨を設置し、設置が完了した後、コンクリートを吹き付けて閉塞する。ここで、両側の掘削距離は2~3m離れ、片側の掘削が完了した後、直ちに上段1.1の脚部をセンタリング継ぎ足し部3.1によってセンタリングの継ぎ足しを行い、両側のセンタリング3が完了した後、掘削地に間隔0.6mのI16仮設鉄骨を仮インバートとして設置し、仮設鉄骨がセンタリング3の主体に接続され、図6に示すように、設置が完了した後、底部に厚さ10cmのc25コンクリートを吹付けて閉塞する。
Excavate the middle section 1.2, excavate one side of the
下段1.3を掘削し、トンネル1断面の片側を掘削し、掘削時トンネル1断面の両側を一定の距離を置いて掘削を進め、どちらかの側の掘削が完了した後、直ちにセンタリング3の脚部に対しセンタリング継ぎ足し部3.1によってセンタリングの継ぎ足しを行い、脚部の架設が完了した後にアンカーボルトを打設し、設計厚さまでコンクリートを再度吹き付ける。
Excavate the lower stage 1.3, excavate one side of the
両側の掘削距離は2~3m離れ、片側の掘削が完了した後、直ちに上段1.1の脚部をセンタリング継ぎ足し部3.1によってセンタリングの継ぎ足しを行い、継手部は2枚の厚さ16mmの鋼板を突き合わせ、鋼板間に厚さ3mmのゴム製敷板を挟み、鋼板がM27ボルトナットセットで結合され、形剛鉄骨を鋼板にフル溶接する。鉄骨を架設した後アンカーボルト6を打設し、設計厚さまでc25コンクリートの吹付けコンクリートを再度吹付ける。 The excavation distance on both sides is 2 to 3m, and immediately after the excavation on one side is completed, the leg of the upper stage 1.1 is added to the centering by the centering addition part 3.1, and the joint part is two pieces of 16mm thickness. The steel plates are butted against each other, a 3mm-thick rubber floor plate is sandwiched between the steel plates, the steel plates are joined with M27 bolts and nuts, and the rigid steel frame is fully welded to the steel plates. After erecting the steel frame, anchor bolts 6 are placed, and shotcrete of c25 concrete is shot again to the design thickness.
本実施例において、上段1.1の掘削1サイクル当たり掘進長の支保工の間隔は、1つのセンタリング3の間隔を超えないこと。中段1.2の掘削1サイクル当たり掘進長の支保工の間隔は、2つのセンタリング3の間隔を超えないこと。下段1.3の掘削1サイクル当たり掘進長の支保工の間隔は、2つのセンタリング3の間隔を超えないこと。各センタリング3の間隔は、0.6mである。
In this example, the spacing of the shorings of the excavation length per excavation cycle of the upper stage 1.1 should not exceed the spacing of one centering 3. The spacing of the shoring of the excavation length per excavation cycle of the middle stage 1.2 should not exceed the spacing of the two
本出願の別の代替的実施例において、脚部をセンタリング継ぎ足し部3.1によってセンタリングの継ぎ足しを行った継手部は、2枚の厚さ16mmの鋼板を突き合わせ、鋼板がM27ボルトナットセットで結合され、センタリング3を鋼板にフル溶接し、鋼板間に厚さ3mmのゴム製敷板を挟む。鋼板を介してセンタリング3と連結し、同時に緩衝のため、ゴム製敷板を利用し、掘削過程中の周辺岩盤へのかく乱を軽減する。 In another alternative embodiment of the present application, the joint where the leg is centered by the centering joint 3.1 consists of two 16 mm thick steel plates butted together, the steel plates being joined with an M27 bolt nut set. Then, the centering 3 is fully welded to the steel plates, and a 3 mm thick rubber floor plate is sandwiched between the steel plates. It is connected with the centering 3 via steel plates, and at the same time uses rubber soles for cushioning, reducing disturbance to the surrounding rock during the excavation process.
本出願の別の代替的実施例において、センタリング3の両側にロッキングアンカーパイプ7が設けられ、各側に2本以上ずつセンタリング3に近づけ、ロッキングアンカーパイプを打ち込んだ後鉄筋9をセンタリング3と緊密に溶接し、隣り合うセンタリング3間を縦方向鉄筋9でつながり、鉄筋9の円周方向の間隔は1.0mである。
In another alternative embodiment of the present application, locking anchor pipes 7 are provided on both sides of the centering 3, two or more on each side approaching the centering 3, and the rebars 9 are tightly attached to the centering 3 after driving the locking anchor pipes. The
本出願の別の代替的実施例において、ステップS2において、墨出しを施す時、孔の位置に番号を付け、ここで奇数番号の孔に鋼花管を押し込んでパイプルーフ2とし、偶数番号の孔にシームレス鋼管を押し込んでパイプルーフ2とする。
In another alternative embodiment of the present application, in step S2, the hole locations are numbered when marking is applied, where steel flower tubes are pressed into the odd-numbered holes to form the
パイプルーフ2は、外径89mm、肉厚5mmの熱間圧延シームレス鋼管を用いた。パイプルーフ2に使用される各セクション鋼管の端部外側に事前に長さ150mmのねじを切り、連結鋼管は長さ300mm、外径95mmのシームレス鋼管を用い、連結鋼管全長内にねじを切り、同じ断面内の継手の数は鋼管総数の50%を超えてはならない。鋼花管の上に間隔150mm、孔径10~16mm、梅の花の形で配置されるグラウト材注入孔を穿孔し、尾部に長150mmの孔のないグラウトストップセクションを残しておき、パイプルーフ2長は、10mに1サイクルで作製し、1サイクルのパイプルーフ2接合の長さが3m以上で、奇数番号の孔は鋼花管を用い、偶数番号の孔がシームレス鋼管を用いる。
A hot-rolled seamless steel pipe having an outer diameter of 89 mm and a wall thickness of 5 mm was used for the
施工時、まず鋼花管を打設してグラウト材を注入し、次にシームレス鋼管を対応する削孔穴に打設し、シームレス鋼管のグラウト注入孔の穿孔時、穿孔の圧力及びずり出し状況に応じて鋼花管のグラウトの品質を検査する。 During construction, the steel flower tube is first cast to inject grout material, and then the seamless steel pipe is cast into the corresponding drilling hole. Inspect the quality of steel tube grout accordingly.
以下のステップを通じてパイプルーフ2にグラウト材を注入し、すなわち、
1)パイプルーフ2のグラウト材は、セメントスラリーを用い、水セメント比が1:1(重量比)であり;
2)グラウト圧は、1.0MPaで、実際の状況に応じて調整し;
3)奇数番号の孔は鋼花管を用い、偶数番号の孔がシームレス鋼管を用い、鋼花管のグラウトの品質を検査するため、施工時先に鋼花管を打設して、グラウト材を注入し、次にシームレス鋼管を打設し;
4)グラウト注入の前に水押し試験を行い、機械設備が正常であるかどうか、ホースの接続が正しいかどうかを確認し;
5)セメントスラリーは、攪拌用バケットで配合し、セメントスラリーの配合時、異物混入を防止し、撹拌したスラリーをろ過してから使用でき;
6)配合したスラリーは、規定する時間内に注入を完了させ、配合するとすぐ使用し;
7)グラウト注入順序は下から上へ、グラウト注入量は、先に大量で次に少量で、グラウト圧が小さいものから大きいものへとし;
8)グラウト注入量が設計注入量に達した時、又はグラウト圧が設計最終圧力に達した時にグラウト注入を終了することができ;
9)グラウト注入過程中で、グラウト圧及びグラウトポンプの吐出量の変化を随時観察し、グラウト注入状況を分析し、パイプの詰まり、グラウト逸走、グラウト漏出を防止する。またグラウト効果を分析するために、グラウト記録を作成し;
10)串漿が発生した時、スラリーセパレーターで複数孔の注入又は串漿孔を塞いで1つの注入孔を置き注入するグラウト圧が急激に上昇した場合、機械を停止して原因を究明する。セメントスラリーの注入量が大きく、圧力が変わらない場合、スラリー濃度と配合比を調整して、凝固時間を短縮させ、小流量で低圧のグラウト又は断続グラウトを用いる。
The
1) The grouting material of the
2) The grouting pressure is 1.0 MPa, adjusted according to the actual situation;
3) Steel flower tubes are used for odd-numbered holes, and seamless steel tubes are used for even-numbered holes. and then cast a seamless steel pipe;
4) Before grouting, perform a water push test to check whether the mechanical equipment is in order and whether the hose connection is correct;
5) Cement slurry is blended with a stirring bucket to prevent contamination of foreign matter when blending cement slurry, and the stirred slurry can be filtered before use;
6) the blended slurry should be poured to completion within the specified time and used immediately upon blending;
7) The order of grouting is from bottom to top, the amount of grouting is large first and then small, and the grouting pressure is from low to high;
8) grouting can be terminated when the grouting volume reaches the design volume or when the grouting pressure reaches the design final pressure;
9) During the grouting process, constantly observe changes in the grouting pressure and grouting pump discharge rate, analyze the grouting situation, and prevent pipe clogging, grout escape, and grout leakage. and making a grouting record to analyze grouting effectiveness;
10) When grouting occurs, if grout pressure rises sharply by filling multiple holes with a slurry separator or filling one injection hole with a slurry separator and grouting holes, stop the machine and investigate the cause. If the cement slurry injection volume is large and the pressure is unchanged, the slurry concentration and blending ratio should be adjusted to shorten the solidification time, and low flow rate and low pressure grouting or intermittent grouting should be used.
本出願の別の代替的実施例では、ステップS1において、地表で割り当てられたグラウト注入範囲内にグラウト注入箇所を配置し、注入管で注入する。地表で割り当てられたグラウト注入範囲内にグラウト注入箇所を1メートル間隔で梅の花の形に配置し、直径42mmの鋼花管を用いた注入管で注入し、グラウト材はセメントスラリー(1:1)を用い、グラウト圧が0.8MPaである。地表へのグラウト注入が完了した後、グラウト注入範囲内にEVA止水板を敷設し、止水板の表面に厚さ10cmのC20コンクリートを打ち込んで閉塞し、地表水の浸透を遮断する。パイプルーフ2は、10mに1サイクルで作製し、1サイクルのパイプルーフ2接合の長さが3m以上である。以上の描写が単なる例示であり、本出願の実施例はこれを限定しないことを理解すべきである。
In another alternative embodiment of the present application, in step S1, a grouting point is located within an allotted grouting area on the ground surface and injected with a grouting tube. The grouting points are arranged in the shape of a plum blossom at intervals of 1 meter within the grouting range allocated on the ground surface, and the grouting material is cement slurry (1: 1) is used and the grout pressure is 0.8 MPa. After the grouting to the ground surface is completed, an EVA waterstop is laid within the grouting area, and C20 concrete with a thickness of 10 cm is placed on the surface of the waterstop to block the infiltration of surface water. The
上記をまとめ、本発明は、地域鉄道採鉱法によるトンネルの低土被り区間の総合的な工法を提供し、パイプルーフ2を介してトンネル1のグラウト注入を行うことで、トンネル1の周辺岩盤の性質を高める。また、トンネル1の地表で割り当てられたグラウト注入範囲内にグラウト注入箇所を1メートル間隔で梅の花の形に配置し、直径42mmの鋼花管を用いた注入管で注入し、グラウト注入が完了した後、止水処理を行うことで、地表水の浸透を低下し、施工の安全性を向上する。本発明は、地表水が豊富で、周辺岩盤の性質が劣る低土被り区間のトンネル施工について、施工過程中の周辺岩盤へのかく乱を軽減して、施工過程の安全性を確保できることが経験から証明されている。
Summarizing the above, the present invention provides a comprehensive construction method for the low overburden section of the tunnel by the regional railway mining method, and grouting the
1 トンネル
1.1 上段
1.2 中段
1.3 下段
2 パイプルーフ
3 センタリング
3.1 センタリングの継ぎ足し部
4 二次吹付けコンクリート層
5 一次吹付けコンクリート層
6 アンカーボルト
7 ロッキングアンカーパイプ
8 インバート
9 鉄筋
1 tunnel 1.1 upper stage 1.2 middle stage 1.3
Claims (9)
トンネルの低土被り区間に地表へのグラウト注入を行い、前記地表へのグラウト注入が完了した後、グラウト注入範囲内にEVA止水板を敷設し、前記止水板の表面にコンクリートを打ち込んで閉塞し、地表水の浸透を遮断するステップS1と、
設計図に従ってトンネルが削孔される地盤に複数の墨出し座標がトンネルを囲むアーチ状に並ぶように墨出しを行い、ドリルマシンで前記複数の墨出し座標においてトンネルの削孔方向に向かうに従いトンネルの外周面から漸次離間するように削孔し、削孔が完了した後孔内清掃を行い、パイプルーフを削孔穴に押し込むステップS2と、
前記パイプルーフにグラウトストップバルブを取り付け、固定剤で前記削孔穴及びその周辺の亀裂を閉塞し、グラウト注入機を介して前記パイプルーフにグラウチングするステップS3であって、
前記パイプルーフの長さは、10mに1サイクルで作製し、1サイクルの前記パイプルーフ接合の長さが3m以上で、前記パイプルーフに使用される各セクション鋼管の端部外側に事前に長さ150mmのねじを切り、連結鋼管は長さ300mm、外径95mmのシームレス鋼管を用い、前記連結鋼管全長内にねじを切る、ステップS3と、
仮インバートのある3段ベンチカット工法を用いて前記トンネルを掘削し、かつ、前記掘削部に対し一次支保を施工するステップS4と、を含み、
前記仮インバートのある3段ベンチカット工法は、
上段を掘削し、前記上段の掘削が完了した後、まず掘削部の周辺岩盤面にコンクリートを吹き付け、支持としてセンタリングを架設し、支保工が完了してから設計で規定された厚さまで再度吹付け、周辺岩盤のアーチ部は、アンカーボルトで定着され、両側の鉄骨を架設した後、仮インバートとして掘削地に仮設鉄骨を設置し、隣り合う鉄骨間を鉄筋でつながることと、
中段を掘削し、トンネル断面の片側を掘削し、掘削時前記トンネル断面の両側を一定の距離を置いて掘削を進め、いずれかの側の掘削が完了した後、直ちに前記上段のセンタリングの脚部に対し前記センタリングの継ぎ足しを行い、前記脚部の架設が完了した後にアンカーボルトを打設し、掘削部の両側に設計厚さまでコンクリートを再度吹き付け、両側の前記脚部の架設が完了した後、仮インバートとして掘削地に仮設鉄骨を設置し、設置が完了した後、コンクリートを吹き付けて閉塞することと、
下段を掘削し、前記トンネル断面の片側を掘削し、掘削時前記トンネル断面の両側を一定の距離を置いて掘削を進め、どちらかの側の掘削が完了した後、直ちに前記センタリングの脚部に対し前記センタリングの継ぎ足しを行い、前記脚部の架設が完了した後にアンカーボルトを打設し、設計厚さまでコンクリートを再度吹き付けることと、を含む、
ことを特徴とする、トンネルの低土被り区間の総合的な工法。 A comprehensive construction method for a low overburden section of a tunnel ,
After grouting to the ground surface in the low overburden section of the tunnel, and completing the grouting to the ground surface, an EVA waterstop is laid within the grouting area, and concrete is poured into the surface of the waterstop. a step S1 of occlusion to block surface water infiltration;
According to the design drawing, marking is performed on the ground where the tunnel is to be drilled so that a plurality of marking coordinates are arranged in an arch shape surrounding the tunnel, and the tunnel is drilled in the drilling direction of the tunnel at the plurality of marking coordinates by a drill machine. a step S2 in which the pipe roof is drilled so as to gradually separate from the outer peripheral surface of the pipe roof , the inside of the hole is cleaned after the drilling is completed, and the pipe roof is pushed into the drilled hole;
A step S3 of attaching a grout stop valve to the pipe roof, closing the drill hole and cracks around it with a fixing agent, and grouting the pipe roof via a grout injector,
The length of the pipe roof is made in one cycle in 10m, the length of the pipe roof joint in one cycle is not less than 3m, and the end of each section steel pipe used for the pipe roof is preliminarily lengthened. 150 mm threads are cut, connecting steel pipes are seamless steel pipes having a length of 300 mm and an outer diameter of 95 mm, and threads are cut within the entire length of the connecting steel pipes;
A step S4 of excavating the tunnel using a three-stage bench cut construction method with temporary invert and constructing primary support for the excavated portion,
The three-stage bench cut method with the temporary invert is
After excavating the upper level and completing the excavation of the upper level, concrete is first sprayed on the surrounding rock surface of the excavated part, the centering is erected as support, and after the completion of the shoring, the concrete is sprayed again to the thickness specified in the design. , The arch part of the surrounding bedrock is fixed with anchor bolts, and after erecting the steel frames on both sides, a temporary steel frame is installed at the excavated site as a temporary invert, and the adjacent steel frames are connected with reinforcing bars;
Excavate the middle section, excavate one side of the tunnel section, keep a certain distance between both sides of the tunnel section when excavating, and immediately after the excavation of one side is completed, the centering leg of the upper section After the centering is added, the anchor bolts are driven after the erection of the legs is completed, concrete is sprayed again to the design thickness on both sides of the excavated part, and after the erection of the legs on both sides is completed, Installing a temporary steel frame as a temporary invert on the excavated site, and after the installation is completed, spraying concrete to block it;
Excavate the lower stage, excavate one side of the tunnel section, keep a certain distance on both sides of the tunnel section when excavating, and immediately after excavation on either side is completed, immediately place the centering leg. After the centering is added, the anchor bolts are placed after the leg construction is completed, and concrete is sprayed again to the design thickness.
A comprehensive construction method for a low overburden section of a tunnel, characterized by:
前記中段の掘削1サイクル当たり掘進長の支保工の間隔は、2つのセンタリング3の間隔を超えず、
前記下段の掘削1サイクル当たり掘進長の支保工の間隔は、2つのセンタリング3の間隔を超えない、
ことを特徴とする、請求項1に記載のトンネルの低土被り区間の総合的な工法。 The interval of the shoring of the excavation length per excavation cycle of the upper stage does not exceed one centering interval,
The interval between the shorings of the excavation length per cycle of excavation in the middle stage does not exceed the interval between the two centerings 3,
The distance between the shorings of the excavation length per excavation cycle of the lower stage does not exceed the distance between the two centerings 3,
The comprehensive construction method for the low overburden section of the tunnel according to claim 1, characterized in that:
前記グラウト注入箇所は、1メートル間隔で梅の花の形に配置される、
ことを特徴とする、請求項1に記載のトンネルの低土被り区間の総合的な工法。 In the step S1, the grouting point is arranged within the grouting range assigned on the ground surface, and the grouting pipe is used to inject;
The grouting points are arranged in a plum blossom shape at 1 meter intervals.
The comprehensive construction method for the low overburden section of the tunnel according to claim 1, characterized in that:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110490807.8A CN112901208B (en) | 2021-05-06 | 2021-05-06 | Comprehensive construction method for shallow buried section of urban railway mining method tunnel |
CN202110490807.8 | 2021-05-06 | ||
PCT/CN2022/073505 WO2022122052A1 (en) | 2021-05-06 | 2022-01-24 | Comprehensive construction method for shallow buried section of tunnel using urban railway mine tunneling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023500745A JP2023500745A (en) | 2023-01-10 |
JP7257086B2 true JP7257086B2 (en) | 2023-04-13 |
Family
ID=76108935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022540937A Active JP7257086B2 (en) | 2021-05-06 | 2022-01-24 | Comprehensive Construction Method for Low Overburden Sections of Tunnels |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7257086B2 (en) |
CN (1) | CN112901208B (en) |
WO (1) | WO2022122052A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112901208B (en) * | 2021-05-06 | 2021-07-30 | 中铁九局集团第七工程有限公司 | Comprehensive construction method for shallow buried section of urban railway mining method tunnel |
CN113982603A (en) * | 2021-11-05 | 2022-01-28 | 广西路桥工程集团有限公司 | Tunnel outlet shallow-buried section slope collapse volume treatment method |
CN114645728A (en) * | 2022-02-23 | 2022-06-21 | 中铁工程设计咨询集团有限公司 | Method for solving water seepage and ice falling of tunnel vault |
CN115218736B (en) * | 2022-08-05 | 2023-10-20 | 浙江通衢工程管理有限公司 | Explosion low-energy overflow type road construction method |
CN115859430B (en) * | 2022-12-01 | 2024-05-07 | 中铁二十三局集团有限公司 | Reinforced design and construction method suitable for water-rich soft rock single-track railway tunnel |
CN116223782B (en) * | 2023-05-09 | 2023-07-28 | 广州市市政工程试验检测有限公司 | Device and method for detecting grouting quality of pore canal |
CN117291044B (en) * | 2023-10-10 | 2024-03-26 | 西南交通大学 | Mountain railway goaf tunnel drilling arrangement method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005009182A (en) | 2003-06-19 | 2005-01-13 | Shimizu Corp | Tunnel supporting structure |
JP2006097272A (en) | 2004-09-28 | 2006-04-13 | Ohbayashi Corp | Method of removing redundant portion of pipe bodies in natural ground reinforcing works |
JP2007321490A (en) | 2006-06-02 | 2007-12-13 | Shimizu Corp | Tunnel excavation method |
JP2011190643A (en) | 2010-03-16 | 2011-09-29 | Fujita Corp | Tunnel construction method for soft ground |
CN103277106A (en) | 2013-06-21 | 2013-09-04 | 云南云岭高速公路桥梁工程有限公司 | Highway tunnel three-step five-procedure excavation construction method |
JP2016142102A (en) | 2015-02-04 | 2016-08-08 | 大成建設株式会社 | Tunnel construction method and displacement measuring device |
JP2020045637A (en) | 2018-09-14 | 2020-03-26 | 株式会社大林組 | Drilling method of tunnel construction work by using forepoling steel pipes |
CN112682046A (en) | 2020-12-31 | 2021-04-20 | 中铁大桥局集团第五工程有限公司 | Construction method of small-clear-distance parallel tunnel group at rock surrounding rock inlet section |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100546998B1 (en) * | 2003-12-26 | 2006-01-31 | 김성수 | Construction method of temporary apparatus of thnnel for direct digging |
CN101725358A (en) * | 2008-10-31 | 2010-06-09 | 中铁四局集团有限公司 | Tunnel ultra-shallow buried uneven weathered stratum excavation construction method |
CN204492852U (en) * | 2015-01-27 | 2015-07-22 | 中交三公局第一工程有限公司 | A kind of tunnel excavation temporary support system |
CN104818991B (en) * | 2015-03-30 | 2016-09-21 | 中铁二十四局集团福建铁路建设有限公司 | A kind of construction method in Shallow-buried residual soil slope tunnel |
CN105443132B (en) * | 2015-12-02 | 2017-11-07 | 中建隧道建设有限公司 | Shallow buried covered excavation cross stull method for tunnel construction |
CN105909256A (en) * | 2016-05-19 | 2016-08-31 | 大连理工大学 | Large-span weak surrounding rock tunnel construction method adopting face pre-reinforcement core soil reserving three-step temporary inverted arch technology |
CN105951707B (en) * | 2016-06-23 | 2018-05-18 | 中铁四局集团有限公司 | Ultra-shallow buried collapsible loess tunnel foundation cement soil compaction pile reinforcing structure and construction method |
CN108278115A (en) * | 2017-10-31 | 2018-07-13 | 中南大学 | A kind of three step Rapid Construction of Tunnels method of big arch springing and structure based on pre-timbering with tubular prop |
CN110847939A (en) * | 2019-12-10 | 2020-02-28 | 中铁第四勘察设计院集团有限公司 | Steel arch frame joint |
CN112901208B (en) * | 2021-05-06 | 2021-07-30 | 中铁九局集团第七工程有限公司 | Comprehensive construction method for shallow buried section of urban railway mining method tunnel |
-
2021
- 2021-05-06 CN CN202110490807.8A patent/CN112901208B/en active Active
-
2022
- 2022-01-24 WO PCT/CN2022/073505 patent/WO2022122052A1/en active Application Filing
- 2022-01-24 JP JP2022540937A patent/JP7257086B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005009182A (en) | 2003-06-19 | 2005-01-13 | Shimizu Corp | Tunnel supporting structure |
JP2006097272A (en) | 2004-09-28 | 2006-04-13 | Ohbayashi Corp | Method of removing redundant portion of pipe bodies in natural ground reinforcing works |
JP2007321490A (en) | 2006-06-02 | 2007-12-13 | Shimizu Corp | Tunnel excavation method |
JP2011190643A (en) | 2010-03-16 | 2011-09-29 | Fujita Corp | Tunnel construction method for soft ground |
CN103277106A (en) | 2013-06-21 | 2013-09-04 | 云南云岭高速公路桥梁工程有限公司 | Highway tunnel three-step five-procedure excavation construction method |
JP2016142102A (en) | 2015-02-04 | 2016-08-08 | 大成建設株式会社 | Tunnel construction method and displacement measuring device |
JP2020045637A (en) | 2018-09-14 | 2020-03-26 | 株式会社大林組 | Drilling method of tunnel construction work by using forepoling steel pipes |
CN112682046A (en) | 2020-12-31 | 2021-04-20 | 中铁大桥局集团第五工程有限公司 | Construction method of small-clear-distance parallel tunnel group at rock surrounding rock inlet section |
Also Published As
Publication number | Publication date |
---|---|
CN112901208A (en) | 2021-06-04 |
WO2022122052A1 (en) | 2022-06-16 |
JP2023500745A (en) | 2023-01-10 |
CN112901208B (en) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7257086B2 (en) | Comprehensive Construction Method for Low Overburden Sections of Tunnels | |
CN109611102B (en) | Construction method for cold excavation underpass overpass | |
CN109723443B (en) | Tunnel construction method | |
CN109595004B (en) | Tunnel two-expansion four-expansion excavation method | |
CN111997624A (en) | Shallow-buried large-section underground excavation rectangular tunnel construction method | |
CN113153308B (en) | Construction method for collapse section of double-arch tunnel | |
CN108412519A (en) | The slight large deformation single-track tunnel suspension device of highlands soft rock and construction method | |
CN109538216B (en) | Tunnel construction process for crossing mining and subsidence areas | |
WO2020259059A1 (en) | Tbm parallel heading tunnel trunk construction method | |
CN111677520B (en) | Construction method for excavating station structure by tunnel-first station-later station pipe curtain hole-pile method | |
CN110195604B (en) | Construction method for tunnel main tunnel TBM (tunnel boring machine) tunneling section | |
CN112663625A (en) | Construction and protection method for shallow-buried bias-pressure weak surrounding rock tunnel portal in alpine region | |
CN112228082A (en) | Tunnel collapse treatment method by combined grouting of pipe shed and advanced small guide pipe | |
CN111287759A (en) | Shallow-buried close-connection underground excavation tunnel construction method | |
CN114382509A (en) | Section tunnel collapse construction method and support device | |
CN112942441B (en) | Pre-grouting water-stopping construction method for water-rich powder sand stratum | |
CN109578035A (en) | Steel pipe draining lock foot stake and construction method | |
CN211448697U (en) | Single-line tunnel supporting device for soft rock slight large deformation in plateau area | |
CN109854281B (en) | Supporting method for top pipe construction of stratum with upper soil and lower rock composite section | |
CN115012955B (en) | Construction method of multi-arch tunnel entrance big pipe shed | |
CN114086968B (en) | Construction method for undermining existing building undercut tunnel | |
CN115030731A (en) | Pilot tunnel construction method in cross tunnel engineering | |
CN208039234U (en) | Engineering pile in karst cave geology | |
CN108729938B (en) | Large-size restraint rod for enhancing stability of tunnel primary support structure | |
CN113685191A (en) | Method for treating collapse of carbonaceous slates in water during tunnel excavation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220630 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230327 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7257086 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |