JP7254960B2 - 絶縁層を備えるオプトエレクトロニクス半導体構成素子、およびオプトエレクトロニクス半導体構成素子を製造するための方法 - Google Patents

絶縁層を備えるオプトエレクトロニクス半導体構成素子、およびオプトエレクトロニクス半導体構成素子を製造するための方法 Download PDF

Info

Publication number
JP7254960B2
JP7254960B2 JP2021556680A JP2021556680A JP7254960B2 JP 7254960 B2 JP7254960 B2 JP 7254960B2 JP 2021556680 A JP2021556680 A JP 2021556680A JP 2021556680 A JP2021556680 A JP 2021556680A JP 7254960 B2 JP7254960 B2 JP 7254960B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
insulating layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021556680A
Other languages
English (en)
Other versions
JP2022525959A (ja
Inventor
トングリング イヴァール
フーバー ミヒャエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Ams Osram International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ams Osram International GmbH filed Critical Ams Osram International GmbH
Publication of JP2022525959A publication Critical patent/JP2022525959A/ja
Application granted granted Critical
Publication of JP7254960B2 publication Critical patent/JP7254960B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0075Processes relating to semiconductor body packages relating to heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

本願は、独国特許出願公開第102019106938号明細書の優先権を主張し、その開示内容を参照により本明細書に援用するものとする。
発光ダイオード(LED)は、半導体材料をベースにした発光デバイスである。例えば、LEDは、pn接合を含む。例えば、対応する電圧が印加されたために電子と正孔とがpn接合の領域において互いに再結合すると、電磁放射が生成される。
LEDの動作時における問題は、熱の発生である。LEDの効率を高めるために、発生した熱を改善された手法で排出することができるコンセプトが求められている。
本発明の基礎となる課題は、改善されたオプトエレクトロニクス半導体構成素子と、オプトエレクトロニクス半導体構成素子を製造するための改善された方法とを提供することである。
本発明によれば、上記の課題は、独立請求項の対象および方法によって解決される。有利な発展形態は、従属請求項において規定されている。
オプトエレクトロニクス半導体構成素子は、第1の導電型の第1の半導体層と、第2の導電型の第2の半導体層であって、第1の半導体層と第2の半導体層とが互いに上下に積み重ねられて半導体層スタックを形成している、第2の半導体層とを含む。当該オプトエレクトロニクス半導体構成素子は、第1の半導体層と直接的にコンタクトするように配置されていて、かつ導電性である第1のコンタクト層と、第1の半導体層上および第2の半導体層上に形成された第1の絶縁層と、第2の半導体層に電気的に接続された第2の電流拡散構造体とをさらに含む。第2の半導体層の最大横方向範囲は、第1の半導体層の最大横方向範囲よりも大きくなっていて、これにより階段状構造体が形成されている。第1の絶縁層は、第1の半導体層の階段状構造体上および第2の半導体層の階段状構造体の上のコンフォーマル層として形成されている。当該オプトエレクトロニクス半導体構成素子は、第1のコンタクト層の水平方向の表面と、第2の電流拡散構造体との間に第2の絶縁層をさらに有し、第2の絶縁層の層厚さは、階段状構造体上の第1の絶縁層の最小層厚さよりも薄い。
実施形態によれば、当該オプトエレクトロニクス半導体構成素子は、第1の電流拡散層をさらに有し、第1の電流拡散層は、第1のコンタクト層の、第1の半導体層とは反対側を向いた側に、第1のコンタクト層と直接的にコンタクトするように配置されている。
例えば、第1の電流拡散層の横方向範囲は、コンタクト層の横方向範囲よりも小さい。
電流拡散層は、コンタクト層の少なくとも2つの側面に隣接することができる。
当該オプトエレクトロニクス半導体構成素子は、階段状構造体の露出した領域に隣接するパッシベーション層をさらに含む。パッシベーション層は、電流拡散層の水平方向の表面から除去可能である。
さらなる実施形態によれば、オプトエレクトロニクス半導体構成素子は、第1の導電型の第1の半導体層と、第2の導電型の第2の半導体層であって、第1の半導体層と第2の半導体層とが互いに上下に積み重ねられて半導体層スタックを形成している、第2の半導体層とを含む。当該オプトエレクトロニクス半導体構成素子は、第1の半導体層と直接的にコンタクトするように配置されていて、かつ導電性である第1のコンタクト層をさらに有する。当該オプトエレクトロニクス半導体構成素子は、パッシベーション層と、第1の半導体層上および第2の半導体層上に形成された第1の絶縁層と、第2の半導体層に電気的に接続された第2の電流拡散構造体とをさらに含む。第2の半導体層の横方向範囲は、第1の半導体層の横方向範囲よりも大きくなっていて、これにより階段状構造体が形成されており、パッシベーション層は、コンタクト層の側面上のコンフォーマル層として形成されている。当該オプトエレクトロニクス半導体構成素子は、第1のコンタクト層の水平方向の表面と、第2の電流拡散構造体との間に第2の絶縁層をさらに有し、第2の絶縁層の層厚さは、階段状構造体上の第1の絶縁層の最小層厚さよりも薄い。
実施形態によれば、当該オプトエレクトロニクス半導体構成素子は、第1の電流拡散層をさらに有し、第1の電流拡散層は、第1のコンタクト層の、第1の半導体層とは反対側を向いた側に、第1のコンタクト層と直接的にコンタクトするように配置されており、第1の電流拡散層は、コンタクト層の側面に隣接している。
例えば、電流拡散層の横方向範囲は、コンタクト層の横方向範囲よりも小さい。
例えば、電流拡散層は、コンタクト層の少なくとも2つの側面に隣接することができる。
実施形態によれば、パッシベーション層は、第1の電流拡散層の水平方向の表面から除去されている。
例えば、第2の絶縁層の層厚さは、階段状構造体上の第1の絶縁層の最小層厚さの半分未満である。さらなる実施形態によれば、第2の絶縁層の層厚さは、階段状構造体上の第1の絶縁層の最小層厚さの3分の1未満である。
例えば、第2の電流拡散構造体は、少なくとも部分的に、第1のコンタクト層の水平方向の表面の、第1の半導体層とは反対側を向いた側に配置されている。
オプトエレクトロニクス半導体構成素子を製造するための方法は、第1の導電型の第1の半導体層と、第2の導電型の第2の半導体層とを含む層スタックを形成することと、第1の半導体層と直接的にコンタクトする導電性の第1のコンタクト層を形成することであって、第2の半導体層の最大横方向範囲は、第1の半導体層の最大横方向範囲よりも大きくなっていて、これにより階段状構造体を有する未完成製品が形成される、ことと、第1の半導体層および第2の半導体層の階段状構造体上に、第1の絶縁層をコンフォーマルに形成することとを含む。当該方法は、第1のコンタクト層の水平方向の表面上に第2の絶縁層を形成することであって、第2の絶縁層の層厚さは、階段状構造体上の第1の絶縁層の最小層厚さよりも薄い、ことと、第2の絶縁層上に第2の電流拡散構造体を形成することであって、第2のコンタクト構造体は、第2の半導体層に電気的に接続される、こととをさらに含む。
当該方法は、コンタクト層を形成した後に、第1の電流拡散層を形成することをさらに含むことができる。
例えば、当該方法は、第1の絶縁層を形成する前に、犠牲金属層を形成することをさらに含むことができる。当該方法は、第1の絶縁層を形成する前に、パッシベーション層を形成することをさらに含むことができる。
実施形態によれば、第1の絶縁層は、コンタクト層の水平方向の領域上に形成され、当該方法は、次いで、第2の絶縁層を被着させる前に、未完成製品の水平方向の領域から第1の絶縁層を除去することを含む。
さらなる実施形態によれば、オプトエレクトロニクス半導体構成素子を製造するための方法は、第1の導電型の第1の半導体層と、第2の導電型の第2の半導体層とを含む層スタックを形成することと、第1の半導体層と直接的にコンタクトする導電性の第1のコンタクト層を形成することであって、第2の半導体層の最大横方向範囲は、第1の半導体層の最大横方向範囲よりも大きくなっていて、これにより階段状構造体を有する未完成製品が形成される、ことと、第1のコンタクト層の側面上に、パッシベーション層をコンフォーマルに形成することとを含む。当該方法は、結果的に得られた未完成製品上に第1の絶縁層を形成することと、未完成製品の水平方向の表面から第1の絶縁層の一部を除去することと、第1のコンタクト層の水平方向の表面上に第2の絶縁層を形成することであって、第2の絶縁層の層厚さは、階段状構造体上の第1の絶縁層の最小層厚さよりも薄い、ことと、第2の絶縁層上に第2の電流拡散構造体を形成することであって、第1のコンタクト層は、第2の半導体層に電気的に接続されている、こととをさらに含む。
例えば、第1の絶縁層を形成することは、第1の絶縁層の水平方向の表面から第2の半導体層の第1の主表面までの最小距離が、パッシベーション層の第1の主表面と第2の半導体層の第1の主表面との間の最大距離よりも大きくなるように、第1の絶縁層を形成することを含むことができる。
実施形態によれば、オプトエレクトロニクス半導体デバイスは、上述したようなオプトエレクトロニクス半導体構成素子を含む。
添付図面は、本発明の実施例を理解するために使用される。図面は、実施例を例示し、明細書とともに実施例を説明するために使用される。さらなる実施例および企図された多数の利点は、以下の詳細な説明から直接的に得られる。図面に図示されている要素および構造は、必ずしも相互に縮尺通りに図示されているわけではない。同一の参照記号は、同一のまたは相互に対応する要素および構造を指す。
実施形態によるオプトエレクトロニクス半導体構成素子の概略断面図である。 さらなる実施形態によるオプトエレクトロニクス半導体構成素子の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態による方法を実施する際における未完成製品の概略断面図である。 実施形態によるオプトエレクトロニクス半導体構成素子の概略水平断面図である。 実施形態による方法を説明するためのフローチャートである。 実施形態による方法を説明するためのフローチャートである。 実施形態によるオプトエレクトロニクスデバイスを示す図である。
以下の詳細な説明では、本開示の一部を構成している添付図面が参照され、これらの添付図面には、例示する目的で特定の実施例が示されている。これに関連して、「上側」、「底部」、「前側」、「後側」、「上方」、「上」、「前方」、「後方」、「前」、「後ろ」のような方向指示語は、今から説明する図面の方向性に関連して使用される。実施例のコンポーネントは、種々の向きで配置可能であるので、これらの方向指示語は、説明する目的でのみ使用され、決して限定するものではない。
その他の実施例も存在し、特許請求の範囲によって規定される範囲から逸脱することなく構造体的または論理的な変更を加えることもできるので、実施例の説明は、限定するものではない。とりわけ、以下で説明する実施例の要素は、文脈から別段の指示がない限り、記載されている他の実施例の要素と組み合わせ可能である。
本明細書の文脈で言及される半導体材料は、とりわけ、直接的な半導体材料に基づくことができる。電磁放射を生成するために特に適した半導体材料に関する例には、とりわけ、例えばGaN、InGaN、AlN、AlGaN、AlGaInN、AlGaInBNのような紫外光、青色光、または長波光を生成することができる窒化物半導体化合物と、例えばGaAsP、AlGaInP、GaP、AlGaPのような緑色光または長波光を生成することができるリン化物半導体化合物と、例えばGaAs、AlGaAs、InGaAs、AlInGaAs、SiC、ZnSe、ZnO、Ga、ダイヤモンド、六方晶窒化ホウ素のようなさらなる半導体材料と、上記の材料の組み合わせとが含まれる。化合物半導体材料の化学量論比は、変更可能である。半導体材料に関するさらなる例には、シリコン、シリコンゲルマニウム、およびゲルマニウムが含まれ得る。本明細書の文脈における「半導体」という用語は、有機半導体材料も含む。
本明細書で使用されているような「横方向」および「水平方向」という用語は、基板または半導体本体の第1の表面に対して実質的に平行に延在する向きまたは方向性を説明することを意図している。この第1の表面は、例えば、ウェハまたはチップ(ダイ)の表面であり得る。
水平方向は、例えば、層が成長する際の成長方向に対して垂直な平面内に位置することができる。
本明細書で使用されているような「垂直方向」という用語は、基板または半導体本体の第1の表面に対して実質的に垂直に延在する向きを説明することを意図している。垂直方向は、例えば、層が成長する際の成長方向に相当することができる。
「備える」、「含有する」、「含む」、「有する」などの用語が使用されている場合には、これらの用語は、記載された要素または特徴の存在を示唆しているが、さらなる要素または特徴の存在を除外しているわけではないオープン・タームである。不定冠詞および定冠詞は、文脈から明確に別段の指示がない限り、複数形および単数形の両方を含む。
本明細書の文脈における「電気的に接続された」という用語は、接続された要素同士の間の低オームの電気的な接続を意味する。電気的に接続された要素同士は、必ずしも互いに直接的に接続されていなくてもよい。電気的に接続された要素同士の間にさらなる要素を配置してもよい。
「電気的に接続された」という用語は、接続された要素同士の間のトンネル接触も含む。
図1Aは、実施形態によるオプトエレクトロニクス半導体構成素子の垂直断面図を示す。オプトエレクトロニクス半導体構成素子10は、第1の導電型、例えばp導電型の第1の半導体層110と、第2の導電型、例えばn導電型の第2の半導体層120とを含む。第1の半導体層110と第2の半導体層120とは、互いに上下に積み重ねられて半導体層スタックを形成している。第1の半導体層110と第2の半導体層120との間には、活性ゾーン115を配置することができる。例えば、活性ゾーンは、電磁放射20を生成または受信するために適当であり得る。例えば、生成された電磁放射20は、オプトエレクトロニクス半導体構成素子10の第1の主表面25を介して出力可能である。さらに、入射してきた電磁放射は、オプトエレクトロニクス半導体構成素子10の主表面25を介して半導体層スタックに侵入可能である。例えば、出射効率を高めるためにオプトエレクトロニクス半導体構成素子10の第1の主表面25を構造化することができる。
活性ゾーンは、例えば、放射を生成するためにpn接合、ダブルヘテロ構造、単一量子井戸構造(SQW:single quantum well)、または多重量子井戸構造(MQW:multi quantum well)を有することができる。「量子井戸構造」という用語は、本明細書では量子化の次元に関する意味を含まない。したがって、「量子井戸構造」という用語には、とりわけ量子井戸、量子細線、量子ドット、およびこれらの層の任意の組み合わせが含まれる。
第1の半導体層110に直接的に隣接して第1のコンタクト層130が形成されている。例えば、第1のコンタクト層130は、銀のような高反射性材料を含有することができる。実施形態によれば、第1のコンタクト層130は、複数の部分層、例えば、第1の半導体層110の側の透明な部分層と、高反射性材料を含有する部分層とを含むことができる。透明な部分層は、例えば、酸化亜鉛または酸化インジウムスズ(ITO)を含有することができる。実施形態によればさらに、コンタクト層130の、第1の半導体層110とは反対側を向いた第1の主表面131上に、第1の電流拡散層132を配置することができる。
第2の半導体層120の横方向範囲d2は、第1の半導体層110の横方向範囲d1よりも大きい。さらに、第1の半導体層110の横方向範囲d1は、コンタクト層130の横方向範囲d3よりも大きい。したがって、第2の半導体層120と、第1の半導体層110と、第1のコンタクト層130とによって階段状構造体が形成される。さらに、第1の電流拡散層132の横方向範囲d4を、第1のコンタクト層130の横方向範囲d3よりも小さくすることができる。したがって、この場合における階段状構造体は、第1の電流拡散層132も含む。さらなる実施形態によれば、第1の電流拡散層132は、第1のコンタクト層130を成形被覆することもできる。この場合には、例えば、第1の電流拡散層132の一部が、第1のコンタクト層130の側壁129に隣接して配置され、それによって第1のコンタクト層130をカプセル化する。このことは、図3A~図3Dを参照してより詳細に示されている。例えば、第1の電流拡散層132の材料は、Au、Cu、Al、Ti、Pt、またはPdを含むことができる。
結果的に得られた層構造体の側面には、第1の絶縁層125が配置されていて、階段状構造体を覆っている。オプトエレクトロニクス半導体構成素子10は、第2の電流拡散構造体135をさらに含み、第2の電流拡散構造体135は、第2の半導体層120に導電的に接続されている。第2の電流拡散構造体135は、第1のコンタクト層130または第1の電流拡散層132の、第1の半導体層とは反対側を向いた側に配置されている。第2の電流拡散構造体135の材料は、例えばアルミニウムを含むことができる。
第1のコンタクト層130の水平方向の表面131と、第2の電流拡散構造体135との間には、第2の絶縁層127が配置されている。例えば、第2の絶縁層127は、第1の電流拡散層132の水平方向の表面133に隣接することができる。第2の絶縁層127の層厚さは、階段状構造体上の第1の絶縁層125の最小層厚さよりも薄い。
例えば、第2の絶縁層127の材料は、第1の絶縁層125の材料と同一であってよい。さらなる実施形態によれば、第2の絶縁層127の材料は、第1の絶縁層125の材料と異なっていてもよい。例えば、第1の絶縁層125は、酸化ケイ素、窒化ケイ素、またはこれらの材料の組み合わせが含まれる層スタックを含むことができる。
実施形態によれば、階段状構造体の少なくとも一部の上にパッシベーション層123を形成することができる。例えば、パッシベーション層123は、絶縁性材料、例えば酸化アルミニウムを含有することができる。例えば、パッシベーション層123は、第1のコンタクト層130の側面129と、隣接する第1の半導体層110の露出した水平方向の領域とを覆うことができる。とりわけ、パッシベーション層は、第1のコンタクト層130の露出した表面領域上に配置可能である。パッシベーション層123はさらに、第1の電流拡散層132の水平方向の表面133を覆うことができる。パッシベーション層123は、例えばALD(「原子層堆積」)法によって、例えばコンフォーマル層として形成可能であり、これにより、第1のコンタクト層130がパッシベーション層によってカプセル化され、銀イオンの移動が抑制または阻止される。パッシベーション層123は、腐食性ガスに対する化学的なバリアとなるために適当であり得る。さらに、パッシベーション層123は、環境影響に対する保護層でもある。
図1Aに示されているオプトエレクトロニクス半導体構成素子では、第2の絶縁層127は、第1の半導体層110に電気的に接続された導電層と、第2の電流拡散構造体135との間の電気絶縁のために使用される。第2の電流拡散構造体135と、第1の半導体層110に接続された導電層との間の電気的な絶縁破壊が回避されるように、第2の絶縁層127の層厚さs2を寸法設定することができる。例えば、第2の絶縁層127の層厚さs2は、300nm未満、例えば200nm未満または150nm未満であり得る。例えば、層の厚さs2が約100nmである場合には、最大約50Vの電圧における絶縁破壊に対する効果的な保護を阻止することができる。第1の半導体層および第2の半導体層の階段状構造体を覆っている第1の絶縁層125もまた、第2の電流拡散構造体135と、第1の半導体層110および第1の半導体層に接続された導電層との間の絶縁破壊を阻止する。この階段状構造体を最適に絶縁させるために、第1のコンタクト層130または第1の電流拡散層132の水平方向の主表面上に配置された第2の絶縁層127の層厚さs2よりも厚い層厚さs1が使用される。第1の絶縁層125は、コンフォーマル層として形成されている。すなわち、下地材料、つまり、第2の半導体層120と、第1の半導体層110と、第1のコンタクト層130と、場合により第1の電流拡散層132との階段状構造体にほぼ相当する階段状構造体が、第1の絶縁層125の形態で形成されている。例えば、第2の絶縁層127の厚さs2は、第1の絶縁層125の厚さs1の半分未満、または第1の絶縁層125の厚さs1の3分の1未満でさえあり得る。
以下に説明するように、例えば、第1の絶縁層125と第2の絶縁層127とをそれぞれ異なるプロセスによって製造することができる。したがって、第1の絶縁層125と第2の絶縁層127とをそれぞれの用途に応じて最適化することができる。第2の絶縁層127の層厚さが低減されていることに起因して、第1のコンタクト層130と第2の電流拡散構造体135との間の熱抵抗が大幅に低減される。例えば、第1の絶縁層125の最小層厚さs1は、約600nmであり得る。第2の絶縁層127の層厚さs2をこの値に対して上述したような値まで低減すると、絶縁層の熱抵抗を約80%低減することができる。例えば、第1の絶縁層125,126の熱抵抗は、0.6K/Wであり得る。第2の絶縁層127の熱抵抗は、0.1K/Wであり得る。
第2の絶縁層127は、内部で電磁放射が生成される活性ゾーン115とオーバーラップする。結果として、電磁放射が生成される領域における熱を直接的に排出することができる。結果として、オプトエレクトロニクス半導体構成素子が冷却され、オプトエレクトロニクス半導体構成素子の光出力性能、ひいては効率が向上する。さらに、熱抵抗が低減されていることにより、オプトエレクトロニクス半導体構成素子の第1の主表面25上の変換層も、改善された手法で冷却することができる。結果として、変換材料内およびパッケージ材料内のオプトエレクトロニクス半導体構成素子の温度が低減される。結果として、LEDの寿命の延長がもたらされる。
例えば、パッシベーション層123が、隣り合う各層の側面129および隣り合う水平方向の表面に隣接していることにより、第1のコンタクト層130の効率的なカプセル化をもたらすことができる。第1の絶縁層125の層厚さと、第2の絶縁層127の層厚さとを互いに独立して設定する場合には、第1の絶縁層125の層厚さを比較的厚く選択して、第2の絶縁層127の熱抵抗がこれにより増大しないようにすることができる。したがって、絶縁破壊または腐食性化学物質に対する構成素子のロバスト性が損なわれなくなる。第1の絶縁層125の層厚さが増加したさらなる結果として、第1の電流拡散層132の層厚さもさらに増加させることができる。例えば、第1の電流拡散層は、約400~600nm、例えば500nmの層厚さを有することができる。結果として、第1の半導体層110への電流拡散を改善することができ、より均一にすることができる。結果として、最大電流量を増加させることができ、それにより、オプトエレクトロニクス半導体構成素子からの放出量を増加させることができる。
オプトエレクトロニクス半導体構成素子10は、支持体100、例えばシリコン支持体をさらに含むことができる。例えば、シリコン支持体100は、適切な接続材料105、例えばはんだによって第2の電流拡散構造体135に接続可能である。
図1Bは、さらなる実施形態によるオプトエレクトロニクス半導体構成素子の垂直断面図を示す。図1Aに示されている構造とは異なり、ここでは、第1の絶縁層126は、階段状構造体上のコンフォーマル層として形成されていない。むしろ、第1の絶縁層126は、階段状構造体上の平坦化層として形成されている。図1Bに示されているように、パッシベーション層123は、第1のコンタクト層130の側面129に隣接して、隣接する第1の半導体層110の露出した水平方向の表面領域上に、かつ第1のコンタクト層130の第1の主表面131の露出した部分上に配置されている。さらに、パッシベーション層123は、第1の電流拡散層132の側面134に隣接して配置可能である。
実施形態によれば、パッシベーション層の一部を、第1の電流拡散層132の第1の主表面133に隣接して、または第1のコンタクト層130の第1の主表面131に隣接して配置することもできる。
図2A~図2Fは、実施形態によるオプトエレクトロニクス半導体構成素子を製造する際における未完成製品の垂直断面図を示す。第2の半導体層120が、エピタキシャル法によって成長基板(図2には図示せず)上に被着され、場合により、活性ゾーン(以降の図面には図示せず)と、第1の半導体層110とを形成するための層がこれに後続する。さらに、第1の半導体層110上に、第1のコンタクト層130と、場合により第1の電流拡散層132とが被着される。さらに、第1の電流拡散層132上に、犠牲金属層137を形成することができる。例えば、第1の電流拡散層132は、金を含有することができる。犠牲金属層137は、例えば金よりも硬い金属、例えばクロムまたはニッケルを含有することができる。犠牲金属層137の層厚さは、例えば最大200nm、例えば150nm未満であり得る。被着された層は、構造化されて、図2Aに示されているような階段状構造体を形成する。例えば、第2の半導体層120の表面の一部は、第1の半導体層110によって覆われていない。第1の半導体層110の表面の一部は、第1のコンタクト層130によって覆われていなくてもよい。第1のコンタクト層130の一部は、第1の電流拡散層132によって覆われていなくてもよい。
次いで、例えばAlからなるパッシベーション層が、第1の半導体層110上と、第1のコンタクト層130の露出した領域上と、場合により第1の電流拡散層132上と、犠牲金属層137上とにコンフォーマルに被着される。こうしてコンフォーマル層が形成される。例えば、パッシベーション層123の層厚さは、20nm超、例えば約30~50nm、例えば40nmであり得る。パッシベーション層123の層厚さは、例えば100nm未満であり得る。その後、第1の絶縁層125が全面的に被着される。例えば、第1の絶縁層125の層厚さは、400nm超、例えば約600nmであり得る。第1の絶縁層125は、例えば、複数の層を有することができる。例えば、これらの層は、酸化ケイ素および窒化ケイ素を含有することができる。第1の絶縁層125は、階段状構造体上にコンフォーマルに形成可能である。第1の絶縁層125の一部は、第1の半導体層110および第2の半導体層120に直接的に隣接している。
図2Aは、結果的に得られた断面図の一例を示す。続いて、犠牲金属層137の表面が露出される。例えば、このことは、研磨法、例えばCMP法(「化学機械研磨」)によって実施可能である。この研磨ステップの終了は、例えば、抵抗の減少によって識別可能である。この研磨ステップの終了を、犠牲金属層137の表面に到達したことに基づいて識別してもよい。
図2Bは、結果的に得られた未完成製品の断面図を示す。図2Bに示されているように、第1のコンタクト層上の水平方向の表面は、露出しているか、または絶縁材料によって覆われていない。続いて、残っている犠牲金属層137を、例えば選択的エッチング法によって第1の電流拡散層132の表面から除去することができる。しかしながら、さらなる実施形態によれば、犠牲金属層137を残しておいてもよい。
図2Cは、結果的に得られた未完成製品の一例を示す。次いで、第2の絶縁層127が被着される。第2の絶縁層127は、第1の絶縁層125の垂直方向の最小層厚さs1よりも薄い層厚さs2を有する。階段状構造体では、垂直方向の最小層厚さs1は、階段状構造体の代わりに水平方向の表面が存在していたとしたら堆積されていたであろう層厚さに相当する。例えば、階段状構造体は、比較的大きな水平方向の領域を有することができ、この水平方向の領域上には、一定の最小層厚さs1を有する第1の絶縁層125が堆積されている。
図2Dは、結果的に得られた一例の断面図を示す。続いて、第1の絶縁層を、例えばフォトリソグラフィ法を使用してさらに構造化することができる。例えば、第1の絶縁層125のうち、第2の半導体層120の水平方向の領域上にある部分を除去することができる。
図2Eは、結果的に得られた未完成製品の断面図を示す。続いて、結果的に得られた表面上に、第2の電流拡散構造体135の導電性材料を形成することができる。
図2Fは、結果的に得られた未完成製品の断面図の一例を示す。第2の半導体層120の水平方向の領域から第1の絶縁層125が除去された場所で、第2の電流拡散構造体135が第2の半導体層120に電気的に接続されている。
図3A~図3Dは、第1の絶縁層126が、コンフォーマル層として堆積されるのではなく、平坦化法によって堆積されるか、または成形被覆されるべき層スタックよりも厚い層厚さで堆積される方法を示す。第1の絶縁層126が、成形被覆されるべきスタックの高さよりも厚い層厚さを有する場合には、成形被覆されるべき2つのスタックの間に生成される中間空間は、第1の絶縁層126によって完全に充填される。
図3Aは、図2Aと同様の方法で形成された層スタックを備える未完成製品を示す。コンフォーマルなパッシベーション層123が、第1の電流拡散層132の水平方向の表面133上と、層スタックの階段状構造体の側面上および露出した表面上との両方に形成されている。図3Aに示されているように、第1の絶縁層126は、成形被覆されるべき層スタックの高さよりも厚い層厚さで形成されている。実施形態によればさらに、第1の電流拡散層132の第1の主表面133上に、犠牲金属層(図3Aには図示せず)を形成することができる。まず始めに研磨法、例えばCMP法が実施され、これによって例えば、未完成製品の滑らかで凹凸のない水平方向の表面が得られる。例えば、この研磨法の終了時点は、摩擦力が最小になったことに基づいて識別可能である。
続いて、実施形態によれば、結果的に得られた表面上にフォトレジストマスク139を形成することができる。図3Bは、フォトレジストマスク139を備える、結果的に得られた未完成製品の一例の断面図を示す。
しかしながら、さらなる実施形態によれば、プロセス制御が適切である場合、フォトレジストマスク139を用いずにさらなる処理を実施することも可能である。
続いて、第1の電流拡散層132、または場合により犠牲金属層137の第1の主表面133を露出させるために、エッチング法が実施される。例えば、このエッチング法は、等方性エッチング法、例えばプラズマエッチング法も含むことができる。実施形態によれば、この方法は、犠牲金属層137上で停止することができる。
図3Cに、結果的に得られた未完成製品の一例を示す。オプションのフォトレジストマスク139が除去された後、結果的に得られた表面上に、薄い第2の絶縁層127が形成される。第2の絶縁層127の層厚さs2は、例えば、第1の電流拡散層132と、被着されるべき第2の電流拡散構造体との間の十分な絶縁が保証されるように選択可能である。例えば、第2の絶縁層127の層厚さs2を、第1の絶縁層126の層厚さs1よりも薄くすることができる。例えば、第1の絶縁層126の層厚さs1は、階段状構造体上の第1の絶縁層126の垂直方向の最小寸法に相当することができる。さらなる実施形態によれば、第2の絶縁層の層厚さs2は、第1の絶縁層126の層厚さs1の半分または3分の1未満であり得る。例えば、第2の絶縁層の層厚さs2は、200nm未満、例えば150nm未満、例えば約100nmであり得る。
図3Dは、結果的に得られた未完成製品の断面図を示す。未完成製品のさらなる処理は、図2E~図2Fを参照して説明したように実施可能である。
図3A~図3Dで説明されている実施形態の修正形態によれば、図3Aに示されている構造から出発して、第1の電流拡散層132または犠牲金属層137の表面が露わになるまで、研磨法を実施することもできる。その後、図3Cおよび図3Dを参照して説明したように、第2の絶縁層127を形成することができる。
以下の方法変形例では、第1の絶縁層125が再びコンフォーマル層として堆積され、次いで、マスクを用いたエッチングによって構造化される。
図4Aは、図2Aに示されているものと同様に形成された未完成製品を示す。場合により、第1の電流拡散層132の第1の主表面133上に、犠牲金属層137を形成してもよい。さらなる実施形態によれば、犠牲金属層137を省略することも可能である。第1の電流拡散層132の水平方向の表面133の大部分を露わになったままにするフォトマスク139が形成される。
図4Bは、結果的に得られた未完成製品の一例を示す。次いで、エッチング法が実施され、それにより、第1の電流拡散層132の水平方向の表面133が露出される。犠牲金属層137が存在する場合には、このステップにおいて犠牲金属層137の表面も露出される。
図4Cは、結果的に得られた未完成製品の一例を示す。フォトレジスト材料139が除去された後、結果的に得られた構造上に、薄い第2の絶縁層127が堆積される。
図4Dは、結果的に得られた未完成製品の一例を示す。次いで、図2Eおよび図2Fを参照して説明した方法と同様の方法を実施することができる。
本明細書に記載の実施形態によれば、第2の絶縁層127を、第1の絶縁層125,126とは異なる方法で堆積させてもよい。例えば、第2の絶縁層127を形成するためにスパッタリング法または蒸着法を実施することができる。これに対して、コンフォーマルな第1の絶縁層125は、例えば、階段状構造体の確実な成形被覆を保証するALD法によって形成される。
図5は、オプトエレクトロニクス半導体構成素子の水平断面図を示す。図5は、とりわけ第2の絶縁層127の面積割合を、第1の絶縁層125,126の面積割合との比較において示す。第2の絶縁層127は、第1の絶縁層125,126よりも格段により大きな面積割合を占めている。したがって、第2の絶縁層127の領域における熱抵抗を低減することにより、熱排出を格段に改善することができる。より正確に言えば、低減された層厚さを有する第2の絶縁層127の存在により、チップ表面の約90%の領域における熱抵抗を低減することができる。結果として、熱抵抗を約70~80%低減することができる。したがって、半導体構成素子の効率および寿命を大幅に向上させることができる。さらに、第2のコンタクト構造体135を介して熱を排出することができる。
図6Aは、実施形態による方法を要約している。オプトエレクトロニクス半導体構成素子を製造するための方法は、第1の導電型の第1の半導体層と、第2の導電型の第2の半導体層とを含む層スタックを形成すること(S100)と、第1の半導体層と直接的にコンタクトする導電性の第1のコンタクト層を形成することであって、第2の半導体層の横方向範囲は、第1の半導体層の横方向範囲よりも大きくなっていて、これにより階段状構造体を有する未完成製品が形成される、こと(S110)とを含む。当該方法は、第1の半導体層および第2の半導体層の階段状構造体上に第1の絶縁層をコンフォーマルに形成すること(S120)と、第1のコンタクト層の水平方向の表面上に第2の絶縁層を形成することであって、第2の絶縁層の層厚さは、階段状構造体上の第1の絶縁層の最小層厚さよりも薄い、こと(S130)と、第2の絶縁層上に第2の電流拡散構造体を形成することであって、第2のコンタクト構造体は、第2の半導体層に電気的に接続される、こと(S140)とさらに含む。
図6Bは、さらなる実施形態による方法を要約している。オプトエレクトロニクス半導体構成素子を製造するための方法は、第1の導電型の第1の半導体層と、第2の導電型の第2の半導体層とを含む層スタックを形成すること(S100)と、第1の半導体層と直接的にコンタクトする導電性の第1のコンタクト層を形成することであって、第2の半導体層の横方向範囲は、第1の半導体層の横方向範囲よりも大きくなっていて、これにより階段状構造体を有する未完成製品が形成される、こと(S110)とを含む。当該方法は、第1のコンタクト層の側面上にパッシベーション層をコンフォーマルに形成すること(S115)と、結果的に得られた未完成製品上に第1の絶縁層を形成すること(S125)とをさらに含む。当該方法は、未完成製品の水平方向の表面から第1の絶縁層の一部を除去すること(S127)と、第1のコンタクト層の水平方向の表面上に第2の絶縁層を形成することであって、第2の絶縁層の層厚さは、階段状構造体上の第1の絶縁層の最小層厚さよりも薄い、こと(S130)と、第2の絶縁層上に第2の電流拡散構造体を形成することであって、第1のコンタクト層は、第2の半導体層に電気的に接続されている、こと(S140)とさらに含む。
図7は、実施形態によるオプトエレクトロニクス半導体デバイス30を示す。オプトエレクトロニクス半導体デバイス30は、上述したオプトエレクトロニクス半導体構成素子10,15を含む。オプトエレクトロニクス半導体デバイス30は、例えば、自動車のヘッドライトであり得るか、または非常に強力な照明装置、例えばステージショーのためのスポットライトであり得る。改善された熱排出に基づき、オプトエレクトロニクス半導体デバイスの電力密度を増加させることができる。例えば、オプトエレクトロニクス半導体デバイスは、3~4ワット/mm超、例えば10ワット/mm超の電力密度で動作可能である。したがって、面積が同じである場合には、性能を向上させることが可能となる。さらに、-例えば、出力が同じである場合には-オプトエレクトロニクス半導体デバイスの面積を縮小することも可能である。これにより、オプトエレクトロニクス半導体デバイスのためにより小型の光学系を使用することも可能になる。結果として、スペースおよびコストを節約することが可能となる。
本明細書では、特定の実施形態について例示および説明してきたが、当業者は、これらの図示および説明された特定の実施形態を、本発明の保護範囲から逸脱することなく多数の代替形態および/または均等形態によって置き換えてもよいことを認識するであろう。本願は、本明細書で論じられている特定の実施形態の任意の適合形態または変形形態を網羅することを意図している。したがって、本発明は、特許請求の範囲およびそれらの均等物のみによって制限される。
10 オプトエレクトロニクス半導体構成素子
15 オプトエレクトロニクス半導体構成素子
20 電磁放射
25 オプトエレクトロニクス半導体構成素子の第1の主表面
30 オプトエレクトロニクス半導体デバイス
100 支持体
105 接続材料
110 第1の半導体層
115 活性ゾーン
120 第2の半導体層
123 パッシベーション層
125 第1の絶縁層
126 第1の絶縁層
127 第2の絶縁層
129 第1のコンタクト層の側面
130 第1のコンタクト層
131 第1のコンタクト層の水平方向の表面
132 第1の電流拡散層
133 第1の電流拡散層の水平方向の表面
134 第1の電流拡散層の側面
135 第2の電流拡散構造体
137 犠牲金属層
139 フォトレジストマスク

Claims (15)

  1. オプトエレクトロニクス半導体構成素子(10)であって、当該オプトエレクトロニクス半導体構成素子(10)は、
    第1の導電型の第1の半導体層(110)と、
    第2の導電型の第2の半導体層(120)であって、前記第1の半導体層(110)と前記第2の半導体層(120)とが互いに上下に積み重ねられて半導体層スタックを形成している、第2の半導体層(120)と、
    前記第1の半導体層(110)と直接的にコンタクトするように配置されていて、かつ導電性である第1のコンタクト層(130)と、
    前記第1の半導体層(110)上および前記第2の半導体層(120)上に形成された第1の絶縁層(125)と、
    前記第2の半導体層(120)に電気的に接続された第2の電流拡散構造体(135)と
    を含み、
    前記第2の半導体層(120)の最大横方向範囲は、前記第1の半導体層(110)の最大横方向範囲よりも大きくなっていて、これにより階段状構造体が形成されており、前記第1の絶縁層(125)は、前記第1の半導体層の階段状構造体上および前記第2の半導体層の階段状構造体上のコンフォーマル層として形成されていて、それぞれ前記第1の半導体層(110)および前記第2の半導体層(120)に直接的に隣接しており、
    当該オプトエレクトロニクス半導体構成素子は、前記第1のコンタクト層(130)の水平方向の表面と、前記第2の電流拡散構造体(135)との間に第2の絶縁層(127)をさらに有し、前記第2の絶縁層(127)の層厚さは、前記階段状構造体上の前記第1の絶縁層(125)の最小層厚さよりも薄
    当該オプトエレクトロニクス半導体構成素子は、第1の電流拡散層(132)をさらに有し、
    前記第1の電流拡散層(132)は、前記第1のコンタクト層(130)の、前記第1の半導体層(110)とは反対側を向いた側に、前記第1のコンタクト層(130)と直接的にコンタクトするように配置されており、
    当該オプトエレクトロニクス半導体構成素子は、前記階段状構造体の露出した領域に隣接するパッシベーション層(123)をさらに備え、
    前記パッシベーション層(123)は、前記第1の電流拡散層(132)の水平方向の表面から完全に除去されている、
    オプトエレクトロニクス半導体構成素子(10)。
  2. 前記第1の電流拡散層(132)の横方向範囲は、前記コンタクト層(130)の横方向範囲よりも小さい、
    請求項記載のオプトエレクトロニクス半導体構成素子。
  3. 前記第1の電流拡散層(132)は、前記コンタクト層(130)の少なくとも2つの側面(129)に隣接している、
    請求項記載のオプトエレクトロニクス半導体構成素子。
  4. オプトエレクトロニクス半導体構成素子(15)であって、当該オプトエレクトロニクス半導体構成素子(15)は、
    第1の導電型の第1の半導体層(110)と、
    第2の導電型の第2の半導体層(120)であって、前記第1の半導体層(110)と前記第2の半導体層(120)とが互いに上下に積み重ねられて半導体層スタックを形成している、第2の半導体層(120)と、
    前記第1の半導体層(110)と直接的にコンタクトするように配置されていて、かつ導電性である第1のコンタクト層(130)と、
    パッシベーション層(123)と、
    前記第1の半導体層(110)上および前記第2の半導体層(120)上に形成された第1の絶縁層(126)と、
    前記第2の半導体層(120)に電気的に接続された第2の電流拡散構造体(135)と
    を含み、
    前記第2の半導体層(120)の横方向範囲は、前記第1の半導体層(110)の横方向範囲よりも大きくなっていて、これにより階段状構造体が形成されており、前記パッシベーション層(123)は、前記コンタクト層(130)の側面上のコンフォーマル層として形成されており、
    当該オプトエレクトロニクス半導体構成素子(15)は、第1の電流拡散層(132)をさらに有し、前記第1の電流拡散層(132)は、前記第1のコンタクト層(130)の、前記第1の半導体層(110)とは反対側を向いた側に、前記第1のコンタクト層(130)と直接的にコンタクトするように配置されており、前記パッシベーション層(129)は、前記コンタクト層(130)の側面(129)に隣接しており、前記パッシベーション層は、前記第1の電流拡散層(132)の水平方向の表面から完全に除去されており、さらに、当該オプトエレクトロニクス半導体構成素子(15)は、前記第1のコンタクト層(130)の水平方向の表面と、前記第2の電流拡散構造体(135)との間に第2の絶縁層(127)をさらに有し、前記第2の絶縁層(127)の層厚さは、前記階段状構造体上の前記第1の絶縁層(126)の最小層厚さよりも薄い、
    オプトエレクトロニクス半導体構成素子(15)。
  5. 前記第1の絶縁層(126)は、前記第1の半導体層(110)および前記第2の半導体層(120)に直接的に隣接している、
    請求項記載のオプトエレクトロニクス半導体構成素子(15)。
  6. 前記第1の電流拡散層(132)の横方向範囲は、前記コンタクト層(130)の横方向範囲よりも小さい、
    請求項記載のオプトエレクトロニクス半導体構成素子(15)。
  7. 前記第1の電流拡散層(132)は、前記コンタクト層(130)の少なくとも2つの側面(129)に隣接している、
    請求項記載のオプトエレクトロニクス半導体構成素子(15)。
  8. オプトエレクトロニクス半導体構成素子(10,15)を製造するための方法であって、当該方法は、
    第1の導電型の第1の半導体層(110)と、第2の導電型の第2の半導体層(120)とを含む層スタックを形成すること(S100)と、
    前記第1の半導体層(110)と直接的にコンタクトする導電性の第1のコンタクト層(130)を形成することであって、前記第2の半導体層(120)の最大横方向範囲は、前記第1の半導体層(110)の最大横方向範囲よりも大きくなっていて、これにより階段状構造体を有する未完成製品が形成される、こと(S110)と、
    前記第1の半導体層(110)および前記第2の半導体層(120)の前記階段状構造体上に、前記第1の半導体層(110)および前記第2の半導体層(120)の各々と直接的にコンタクトする第1の絶縁層(125)をコンフォーマルに形成すること(S120)と、
    前記第1のコンタクト層(130)の水平方向の表面(131)上に第2の絶縁層(127)を形成することであって、前記第2の絶縁層(127)の層厚さは、前記階段状構造体上の前記第1の絶縁層(125)の最小層厚さよりも薄い、こと(S130)と、
    前記第2の絶縁層(127)上に第2の電流拡散構造体(135)を形成することであって、前記第2の電流拡散構造体(135)は、前記第2の半導体層(120)に電気的に接続される、こと(S140)と
    前記第1の絶縁層(125)は、前記第1のコンタクト層(130)の水平方向の領域(131)上に形成され、
    当該方法は、
    次いで、前記第2の絶縁層(127)を被着させる前に、前記未完成製品の水平方向の領域から前記第1の絶縁層(125)を完全に除去すること
    を含む、方法。
  9. 当該方法は、
    前記コンタクト層(130)を形成した後に、第1の電流拡散層(132)を形成すること
    をさらに含む、請求項記載の方法。
  10. 当該方法は、
    前記第1の絶縁層(125)を形成する前に、犠牲金属層(137)を形成すること
    をさらに含む、請求項または記載の方法。
  11. 当該方法は、
    前記第1の絶縁層(125)を形成する前に、パッシベーション層(123)を形成すること
    をさらに含む、請求項から10までのいずれか1項記載の方法。
  12. オプトエレクトロニクス半導体構成素子を製造するための方法であって、当該方法は、
    第1の導電型の第1の半導体層(110)と、第2の導電型の第2の半導体層(120)とを含む層スタックを形成すること(S100)と、
    前記第1の半導体層(110)と直接的にコンタクトする導電性の第1のコンタクト層(130)を形成することであって、前記第2の半導体層(120)の最大横方向範囲は、前記第1の半導体層(110)の最大横方向範囲よりも大きくなっていて、これにより階段状構造体を有する未完成製品が形成される、こと(S110)と、
    前記第1のコンタクト層(130)の側面(129)上に、パッシベーション層(123)をコンフォーマルに形成すること(S115)と、
    結果的に得られた前記未完成製品上に第1の絶縁層(126)を形成すること(S125)と、
    前記未完成製品の水平方向の表面から前記第1の絶縁層(125)を完全に除去すること(S127)と、
    前記第1のコンタクト層(130)の水平方向の表面(131)上に第2の絶縁層(127)を形成することであって、前記第2の絶縁層(127)の層厚さは、前記階段状構造体上の前記第1の絶縁層(126)の最小層厚さよりも薄い、こと(S130)と、
    前記第2の絶縁層(127)上に第2の電流拡散構造体(135)を形成することであって、前記第2の電流拡散構造体(135)は、前記第2の半導体層(120)に電気的に接続されている、こと(S140)と
    を含む、方法。
  13. 前記第1の絶縁層(126)は、前記第1の半導体層(110)および前記第2の半導体層(120)と直接的にコンタクトするように形成される、
    請求項12記載の方法。
  14. 前記第1の絶縁層(126)を形成することは、
    前記第1の絶縁層の水平方向の表面から前記第2の半導体層(120)の第1の主表面までの最小距離が、前記パッシベーション層(123)の第1の主表面と前記第2の半導体層(120)の前記第1の主表面との間の最大距離よりも大きくなるように、前記第1の絶縁層(126)を形成すること
    を含む、請求項12または13記載の方法。
  15. 請求項1からまでのいずれか1項記載のオプトエレクトロニクス半導体構成素子(10,15)を含む、オプトエレクトロニクス半導体デバイス(30)。
JP2021556680A 2019-03-19 2020-03-16 絶縁層を備えるオプトエレクトロニクス半導体構成素子、およびオプトエレクトロニクス半導体構成素子を製造するための方法 Active JP7254960B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019106938.6 2019-03-19
DE102019106938.6A DE102019106938A1 (de) 2019-03-19 2019-03-19 Optoelektronisches Halbleiterbauelement mit isolierender Schicht und Verfahren zur Herstellung des optoelektronischen Halbleiterbauelements
PCT/EP2020/057033 WO2020187815A1 (de) 2019-03-19 2020-03-16 Optoelektronisches halbleiterbauelement mit isolierender schicht und verfahren zur herstellung des optoelektronischen halbleiterbauelements

Publications (2)

Publication Number Publication Date
JP2022525959A JP2022525959A (ja) 2022-05-20
JP7254960B2 true JP7254960B2 (ja) 2023-04-10

Family

ID=69846440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021556680A Active JP7254960B2 (ja) 2019-03-19 2020-03-16 絶縁層を備えるオプトエレクトロニクス半導体構成素子、およびオプトエレクトロニクス半導体構成素子を製造するための方法

Country Status (5)

Country Link
US (1) US20220158034A1 (ja)
JP (1) JP7254960B2 (ja)
CN (1) CN113614934A (ja)
DE (2) DE102019106938A1 (ja)
WO (1) WO2020187815A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527116A (ja) 2009-05-11 2012-11-01 クリー インコーポレイテッド 反射構造を有する半導体発光ダイオードおよびその製造方法
JP2013533644A (ja) 2010-08-12 2013-08-22 ソウル オプト デバイス カンパニー リミテッド 改善された光抽出効率を有する発光ダイオード
US20140209955A1 (en) 2013-01-29 2014-07-31 Samsung Electronics Co., Ltd. Semiconductor light-emitting device
WO2017060355A1 (de) 2015-10-08 2017-04-13 Osram Opto Semiconductors Gmbh Bauelement und verfahren zur herstellung eines bauelements
WO2017215910A1 (de) 2016-06-17 2017-12-21 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauelement
JP2018502461A (ja) 2015-01-15 2018-01-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス半導体素子およびオプトエレクトロニクス半導体素子の製造方法
DE102016124380A1 (de) 2016-12-14 2018-06-14 Osram Opto Semiconductors Gmbh Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements
US20180198047A1 (en) 2017-01-09 2018-07-12 Glo Ab Light emitting diodes with integrated reflector for a direct view display and method of making thereof
WO2019016482A1 (fr) 2017-07-21 2019-01-24 Aledia Dispositif optoelectronique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217533A1 (de) * 2012-09-27 2014-03-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements
JP6221926B2 (ja) * 2013-05-17 2017-11-01 日亜化学工業株式会社 半導体発光素子およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527116A (ja) 2009-05-11 2012-11-01 クリー インコーポレイテッド 反射構造を有する半導体発光ダイオードおよびその製造方法
JP2013533644A (ja) 2010-08-12 2013-08-22 ソウル オプト デバイス カンパニー リミテッド 改善された光抽出効率を有する発光ダイオード
US20140209955A1 (en) 2013-01-29 2014-07-31 Samsung Electronics Co., Ltd. Semiconductor light-emitting device
JP2018502461A (ja) 2015-01-15 2018-01-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス半導体素子およびオプトエレクトロニクス半導体素子の製造方法
WO2017060355A1 (de) 2015-10-08 2017-04-13 Osram Opto Semiconductors Gmbh Bauelement und verfahren zur herstellung eines bauelements
US20180248083A1 (en) 2015-10-08 2018-08-30 Osram Opto Semiconductors Gmbh Component and Method for Producing a Component
WO2017215910A1 (de) 2016-06-17 2017-12-21 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauelement
DE102016124380A1 (de) 2016-12-14 2018-06-14 Osram Opto Semiconductors Gmbh Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements
US20180198047A1 (en) 2017-01-09 2018-07-12 Glo Ab Light emitting diodes with integrated reflector for a direct view display and method of making thereof
WO2019016482A1 (fr) 2017-07-21 2019-01-24 Aledia Dispositif optoelectronique

Also Published As

Publication number Publication date
WO2020187815A1 (de) 2020-09-24
DE102019106938A1 (de) 2020-09-24
JP2022525959A (ja) 2022-05-20
US20220158034A1 (en) 2022-05-19
DE112020001324A5 (de) 2021-12-02
CN113614934A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
EP2221873B1 (en) Light emitting device
TWI524550B (zh) 用於製造光電半導體晶片之方法及光電半導體晶片
US7998761B2 (en) Light emitting diode with ITO layer and method for fabricating the same
US8236584B1 (en) Method of forming a light emitting diode emitter substrate with highly reflective metal bonding
US20120112233A1 (en) Semiconductor light emitting device
US10763392B2 (en) Light emitting device
US8188506B2 (en) Semiconductor light emitting device
EP2220692A2 (en) Wire bond free wafer level led
US20100096660A1 (en) Semiconductor light emitting device
KR20100035846A (ko) 발광 소자 및 그 제조방법
US20230044446A1 (en) Light emitting device
TW201312792A (zh) 發光二極體結構及其製造方法
TWI796658B (zh) 單體電子器件、測試基片及其形成與測試方法
US9306120B2 (en) High efficiency light emitting diode
CN111052409A (zh) 发光二极管装置及制造发光二极管装置的方法
US11949054B2 (en) Optoelectronic semiconductor component with contact elements and method for producing the same
JP7254960B2 (ja) 絶縁層を備えるオプトエレクトロニクス半導体構成素子、およびオプトエレクトロニクス半導体構成素子を製造するための方法
US20210391506A1 (en) Optoelectronic component having a dielectric reflective layer and production method for same
KR20160145413A (ko) 적색 발광소자, 적색 발광소자의 제조방법 및 발광소자 패키지
KR102463323B1 (ko) 발광소자 및 발광소자 패키지
KR102217128B1 (ko) 발광 다이오드 및 그 제조 방법
US20220190222A1 (en) Optoelectronic semiconductor device comprising a dielectric layer and a transparent conductive layer and method for manufacturing the optoelectronic semiconductor device
KR20110071396A (ko) 반도체 발광소자 및 그 제조방법
US20220045249A1 (en) Optoelectronic semiconductor component having a first and second metal layer and method for producing the optoelectronic semiconductor component
KR102336432B1 (ko) 발광소자 및 발광소자 패키지

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7254960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150