JP7250027B2 - フロー反応支援装置及び方法、フロー反応設備及び方法 - Google Patents

フロー反応支援装置及び方法、フロー反応設備及び方法 Download PDF

Info

Publication number
JP7250027B2
JP7250027B2 JP2020546711A JP2020546711A JP7250027B2 JP 7250027 B2 JP7250027 B2 JP 7250027B2 JP 2020546711 A JP2020546711 A JP 2020546711A JP 2020546711 A JP2020546711 A JP 2020546711A JP 7250027 B2 JP7250027 B2 JP 7250027B2
Authority
JP
Japan
Prior art keywords
reaction
result
condition
prediction
reaction conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020546711A
Other languages
English (en)
Other versions
JPWO2020054183A1 (ja
Inventor
竜也 稲葉
昌孝 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2020054183A1 publication Critical patent/JPWO2020054183A1/ja
Application granted granted Critical
Publication of JP7250027B2 publication Critical patent/JP7250027B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0033Optimalisation processes, i.e. processes with adaptive control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/10Analysis or design of chemical reactions, syntheses or processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00182Controlling or regulating processes controlling the level of reactants in the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00243Mathematical modelling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Polymerisation Methods In General (AREA)

Description


本発明は、フロー反応支援装置及び方法、並びにフロー反応設備及び方法に関する。

反応物を含有する原料を反応させる手法には、原料を容器中に収容した状態で反応させるいわゆるバッチ式と、原料を流しながら反応させる連続式とがある。連続式の反応は、原料を流しながら反応させることからフロー反応と呼ばれる。

フロー反応処理は、反応を連続的に実施することから生成物が均一な性状で得られやすい。また、フロー反応処理は、生産性がバッチ式に比べて高いという利点がある。

ところで、化学反応処理に、例えばニューラルネットワークを用いた各種演算を利用する技術がある。例えば、特許文献1では、化学反応装置の各計測器の異常状態下におけるデータをプログラム中に予め学習記憶させたニューラルネットワークによって演算させている。そして、この演算値が設定された正常許容帯値と乖離した場合には、異常信号をニューロコントローラに出力し、化学反応装置の各部に是正制御信号を送ることにより異常反応を制御している。これにより、化学反応装置の異常状態を早急に検出して、迅速かつ的確な制御を行っている。

特許文献2には、化合物の物性予測の手法として、作成した予測モデルを未知サンプルに適用して予測項目を計算する技術が記載されている。この技術は、未知サンプルと個々の学習サンプルとについて取得した複数のパラメータ値に基づいて未知サンプルと個々の学習サンプルとの類似度を算出し、予め設定した閾値以上の類似度である学習サンプルを取り出してサブサンプルセットを構成している。そしてサブサンプルセットのデータ解析を行って予測モデルを作成し、この予測モデルを未知サンプルに適用して予測項目を計算している。また、特許文献3は、遺伝的アルゴリズムを用いてフロー反応を制御しており、これにより目的とする生成物を産生している。

特開2002-301359号公報 国際公開第2009/025045号 特表2015-520674号公報

フロー反応処理は、原料を流しながら反応させることから、最適な反応条件を見つけ出すことがバッチ式反応処理に比べて通常は難しい。流速あるいは流量など、フロー反応ならではの条件パラメータがフロー反応にはあるからである。

このように条件パラメータが多いフロー反応は、新たな反応処理を開始するまでに、条件設定に関して多くの試行及び時間を要し、特に新たな反応系での条件探索においては顕著である。また、なんらかの理由で例えば複数の条件パラメータのうちのひとつを変更せざるを得ない場合でも、他の条件パラメータのいずれをどう変更するかを決定することは簡単とはいえない。

そこで本発明は、条件設定を迅速に行うことでフロー反応処理を支援するフロー反応支援装置及び方法、ならびに条件設定が迅速であるフロー反応設備及び方法を提供することを目的とする。
本発明のフロー反応支援装置は、原料を流しながら反応させるフロー反応処理を支援するフロー反応支援装置であり、演算セクションと判定部とを備える。演算セクションは、反応結果が既知である反応条件と反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの反応条件毎に予測結果を算出することにより、反応条件と予測結果とを関連付けた予測データセットを生成する。演算セクションは、得られた複数の予測結果のうち、予め設定した目標結果に最も近い予測結果を特定し、特定した予測結果に関連付けられた反応条件を抽出反応条件として抽出する。判定部は、抽出反応条件で反応させた場合の反応結果と、抽出反応条件に関連付けられた予測結果との相違度が予め設定した許容範囲であるか否かを判定する。判定部は、相違度が許容範囲でない場合には、抽出反応条件と抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を実測データに加える。判定部は、相違度が許容範囲である場合には、抽出反応条件をフロー反応処理に用いる決定反応条件とする。記憶部に決定反応条件、及び予測データセットの反応条件群である反応データセットを記憶する。判定部は、目標結果が、予め設定した値とは異なる値である第2目標結果に変更された場合、記憶部に記憶された反応データセットから第2目標結果に最も近い第2予測結果を特定し、目標結果と第2目標結果の差異を求め、差異が一定範囲内である場合は、第2予測結果と関連付けられた反応条件を決定反応条件としてフロー反応処理に用い、差異が一定範囲内でない場合は、第2予測結果と関連付けられた反応条件を抽出反応条件として用いる。

上記反応条件は、原料の流量と、原料の流速と、原料における反応物の濃度と、原料の温度と、反応の設定温度と、反応時間とのいずれかであることが好ましい。

上記反応結果は、生成物の収率と、副生成物の収率と、生成物の分子量と、生成物の分子量分散度と、生成物のモル濃度とのいずれかであることが好ましい。

演算セクションは、実測データを学習データとして用いることにより条件データセットの反応条件毎に予測結果を算出することが好ましい。
演算セクションは、実測データ中の反応条件を説明変数とし、かつ、実測データ中の反応結果を目的変数として構築されたニューラルネットワークを有することが好ましい
本発明のフロー反応支援方法は、原料を流しながら反応させるフロー反応処理を支援するフロー反応支援方法であり、演算工程と、判定工程とを有する。演算工程は、反応結果が既知である反応条件と反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの反応条件毎に予測結果を算出することにより、反応条件と予測結果とを関連付けた予測データセットを生成する。演算工程は、得られた複数の予測結果のうち、予め設定した目標結果に最も近い予測結果を特定し、特定した予測結果に関連付けられた反応条件を抽出反応条件として抽出する。判定工程は、抽出反応条件で反応させた場合の反応結果と、抽出反応条件に関連付けられた予測結果との相違度が予め設定した許容範囲であるか否かを判定する。判定工程は、相違度が許容範囲でない場合には、抽出反応条件と抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を実測データに加える。判定工程は、相違度が許容範囲である場合には、抽出反応条件をフロー反応処理での決定反応条件にし、記憶部に決定反応条件、及び予測データセットの反応条件群である反応データセットを記憶する。判定工程により実測データに反応情報を加えた場合には、演算工程と判定工程とを新たに繰り返す。判定工程は、目標結果が、予め設定した値とは異なる値である第2目標結果に変更された場合、記憶部に記憶された反応データセットから第2目標結果に最も近い第2予測結果を特定し、目標結果と第2目標結果の差異を求め、差異が一定範囲内である場合は、第2予測結果と関連付けられた反応条件を決定反応条件としてフロー反応処理に用い、差異が一定範囲内でない場合は、第2予測結果と関連付けられた反応条件を抽出反応条件として用いる。
本発明のフロー反応設備は、反応セクションと、演算セクションと、判定部と、システムコントローラとを備える。反応セクションは、原料を流しながら反応させる。演算セクションは、反応セクションでの反応結果が既知である反応条件と反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの反応条件毎に予測結果を算出することにより、反応条件と予測結果とを関連付けた予測データセットを生成する。演算セクションは、得られた複数の予測結果のうち、予め設定した目標結果に最も近い予測結果を特定し、特定した予測結果に関連付けられた反応条件を抽出反応条件として抽出する。判定部は、反応セクションにて抽出反応条件で反応させた場合の反応結果と、抽出反応条件に関連付けられた予測結果との相違度が予め設定した許容範囲であるか否かを判定する。判定部は、相違度が許容範囲でない場合には、抽出反応条件と抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を実測データに加える。判定部は、相違度が許容範囲である場合には、抽出反応条件を反応セクションにおける以降のフロー反応処理に用いる決定反応条件とする。決定反応条件、及び予測データセットの反応条件群である反応データセットを記憶する。システムコントローラは、決定反応条件により、反応セクションを制御する。判定部は、目標結果が、予め設定した値とは異なる値である第2目標結果に変更された場合、記憶された反応データセットから第2目標結果に最も近い第2予測結果を特定し、目標結果と第2目標結果の差異を求め、差異が一定範囲内である場合は、第2予測結果と関連付けられた反応条件を決定反応条件としてフロー反応処理に用い、差異が一定範囲内でない場合は、第2予測結果と関連付けられた反応条件を抽出反応条件として用いる。
本発明のフロー反応方法は、フロー反応工程と、演算工程と、判定工程とを有する。フロー反応工程は、原料を流しながら反応させる。演算工程は、反応結果が既知である反応条件と反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの反応条件毎に予測結果を算出することにより、反応条件と予測結果とを関連付けた予測データセットを生成する。演算工程は、得られた複数の予測結果のうち、予め設定した目標結果に最も近い予測結果を特定し、特定した予測結果に関連付けられた反応条件を抽出反応条件として抽出する。判定工程は、フロー反応工程において抽出反応条件で反応させた場合の反応結果と、抽出反応条件に関連付けられた予測結果との相違度が予め設定した許容範囲であるか否かを判定する。判定工程は、相違度が許容範囲でない場合には、抽出反応条件と抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を実測データに加える。判定工程は、相違度が許容範囲である場合には、抽出反応条件を、以降のフロー反応工程での決定反応条件とし、記憶部に決定反応条件、及び予測データセットの反応条件群である反応データセットを記憶する。判定工程により実測データに反応情報を加えた場合には、演算工程と判定工程とを新たに繰り返す。判定工程により実測データに反応情報を加えた場合には、以降のフロー反応工程は抽出反応条件で反応を行う。判定工程は、目標結果が、予め設定した値とは異なる値である第2目標結果に変更された場合、記憶部に記憶された反応データセットから第2目標結果に最も近い第2予測結果を特定し、目標結果と第2目標結果の差異を求め、差異が一定範囲内である場合は、第2予測結果と関連付けられた反応条件を決定反応条件としてフロー反応工程に用い、差異が一定範囲内でない場合は、第2予測結果と関連付けられた反応条件を抽出反応条件として用いる。

本発明によれば、フロー反応処理の条件設定が迅速に行える。

フロー反応処理設備の概略図である。 別のフロー反応装置の概略図である。 フロー反応支援装置の構成を示すブロック図である。 ニューラルネットワークの層構造の概念図である。 第1回目の実測データの説明図である。 第1回目の条件データセットの説明図である。 第1回目の予測データセットの説明図である。 第1回目の対比データの説明図である。 フロー反応処理を行うフロー図である。 第2回目の実測データの説明図である。 第2回目の対比データの説明図である。 第7回目の対比データの説明図である。 別のフロー反応装置の概略図である。 第1回目の実測データの説明図である。 第1回目の条件データセットの説明図である。 第1回目の予測データセットの説明図である。 第1回目の対比データの説明図である。 第2回目の実測データの説明図である。 第2回目の対比データの説明図である。 第5回目の対比データの説明図である。

本発明の一実施形態であるフロー反応設備10は、図1に示すように、フロー反応装置11と、フロー反応支援装置(以下、単に「支援装置」と称する)12と、システムコントローラ15と、設定部16と、検出部17等を備える。フロー反応装置11は、フロー反応処理を行い、生成物を得るための装置である。

フロー反応装置11で行うフロー反応は、例えばモノマーである化合物を合成する合成反応、モノマー同士を反応させることにより重合体を生成させる重合反応の他、例えばアニオン重合反応等の開始反応及び停止反応などの素反応であってもよい。したがって、フロー反応の対象となる反応物は、例えば停止反応の対象となる生長(成長)段階の化合物であってもよい。本例では、ポリスチリルリチウムの生長(成長)をメタノールで停止させる停止反応をフロー反応で行っている。

フロー反応装置11は、第1供給部21と、第2供給部22と、反応セクション23と、回収セクション26とを備える。第1供給部21及び第2供給部22はそれぞれ反応セクション23の上流側端部に配管で接続しており、回収セクション26は反応セクション23の下流側端部に配管で接続している。

第1供給部21は、フロー反応の第1原料を、反応セクション23へ供給するためのものである。本例の第1原料はポリスチリルリチウムを溶媒に溶解した第1液であり、ポリスチリルリチウムはフロー反応処理の反応物の一例である。第1供給部21はこの例では、ポルスチリルリチウムを溶媒に溶解した第1液を、反応セクション23へ供給している。溶媒にはテトラヒドロフラン(以下、THFと称する)を用いており、トルエン及びヘキサンが第1溶液には少量混じっている。このようにフロー反応の原料は反応物と他の物質との混合物であってもよいし、あるいは反応物のみで構成されていてもよい。第1供給部21は、ポンプ(図示無し)を備えており、ポンプの回転数を調節することにより、反応セクション23への第1原料の流量が調節される。

第2供給部22は、フロー反応の第2原料を、反応セクション23へ供給するためのものである。本例の第2原料はメタノールと水との混合物、すなわちメタノール水溶液であり、メタノールを停止反応の停止剤として用いている。第2供給部22も第1供給部21と同様にポンプ(図示無し)を備えており、ポンプの回転数を調節することにより、反応セクション23へのメタノールの流量が調節される。第1供給部21と第2供給部22とは本例では液体を反応セクション23へ供給しているが、供給物は液体に限定されず、固体または気体であってもよい。

反応セクション23は、フロー反応としての停止反応を行うためのものであり、合流部31と、反応部32と、温調部33とを備える。合流部31はT字に分岐した管、すなわちT字管である。合流部31の第1管部31aは第1供給部21に、第2管部31bは第2供給部22に、第3管部31cは反応部32に、それぞれ接続している。これにより、案内されてきた第1原料と第2原料とが合流し、混合した状態で反応部32へ送られる。

反応部32は、複数の管状部材を長さ方向に繋げた状態の管である。管状部材の本数及び/または用いる個々の管状部材の長さを変えることにより、反応部32の長さL32は変更される。また、管状部材を内径が異なる他の管状部材に変えることにより、反応部32の内径D32は変更される。

反応部32は内部が第1原料と第2原料との混合物(以下、混合原料と称する)の流路とされ、管内の中空部を反応の場として画定している。混合原料は、反応部32を通過しながらアニオン重合の停止反応が進められ、ポリスチレンが生成する。合流部31の第3管部31cにおいても反応が若干は進むが、反応部32の長さL32(本例では8m)に対して合流部31の第3管部31cの長さは非常に短く、本例の第3管部31cの長さは概ね0.03mとしている。そのため、第3管部31cの長さは無視し、反応部32の長さL32を、フロー反応を行う場の長さ(以下、反応路長と称する)と見なしている。以下、反応路長に符号L32を用いる。同様に、反応部32の内径D32を、フロー反応を行う場の径(以下、反応路径と称する)と見なし、反応路径に符号D32を用いる。

温調部33は、フロー反応の温度(以下、反応温度と称する)を調節するためのものである。温調部33は、合流部31及び反応部32を介して、これらの中を流れる混合原料の温度(反応温度)を調節する。設定部16によって設定した反応温度(以下、設定温度と称する)と、温調部33によって温調された混合原料の温度とが同じである場合には、設定温度を反応温度とみなしてよく、本例でもそのようにしている。なお、設定温度と、混合原料の温度との差が大きい場合などには、例えば反応部32内なのに温度を検出する温度検出器を設け、この温度検出器の検出結果を反応温度とすればよい。

回収セクション26は、フロー反応の生成物であるポリスチレンを回収するためのものである。回収セクション26は、析出部(図示無し)と、採取部(図示無し)と、乾燥部(図示無し)等で構成されている。析出部は、生成物であるポリスチレンを析出させるためのものである。この例では、攪拌機を備えた容器を析出部として用いている。容器にメタノールを収容し、攪拌されているメタノール中に、反応セクションから案内されてきたポリスチレン溶液を入れることにより、ポリスチレンを析出させている。

採取部は、析出したポリスチレンをメタノールとTHF等との混合液から採取するためのものである。本例ではろ過器を採取部として用いている。

乾燥部は、採取されたポリスチレンを乾燥するためのものである。本例では、乾燥部として、減圧機能をもつ恒温槽を用いている。恒温槽内部を減圧状態にした状態で加熱することによりポリスチレンが得られる。

反応セクション及び回収セクションは、上記の例に限られず、フロー反応の種類及び/または生成物の種類等に応じて適宜変更される。例えば、回収セクション26の代わりに、容器を設け、この容器に、反応セクション23から案内されてきたポリスチレン溶液を一旦貯留してもよい。この場合には、例えば、貯留したポリスチレン溶液を、回収セクション26に案内し、析出、採取、及び乾燥させることによりポリスチレンを得る。

検出部17は回収セクション26及び支援装置12と接続しており、フロー反応の処理結果である反応結果を検出し、支援装置12の判定部56(図3A参照)へ出力する。反応結果となるパラメータ(以下、結果パラメータと称する)としては、生成物の純度、分子量、あるいは分子量分散度(以下、単に分散度と称する)などの生成物の性状の他、収率などが挙げられる。また、回収セクション26において生成物が例えば溶媒に溶けている溶液状態で得られる場合には、溶液における生成物の濃度(モル濃度など)も結果パラメータとして検出してよい。なお、検出部17は、生成物のこれら各種性状に加えて、副生成物の収率あるいは純度などの各種性状を結果パラメータとして検出してもよい。反応結果を構成する結果パラメータは複数であってもよい。

本例では、回収セクション26で得られたポリスチレンの分子量と分散度とを検出部17により検出している。すなわち、本例での結果パラメータは分子量と分散度との2つである。検出している分子量は数平均分子量(Mn)である。分子量及び分散度は、ポリスチレンをTHFに溶解することによりポリスチレン溶液をつくり、このポリスチレン溶液を用いてゲルパーミエーションクロマトグラフィ(以下、GPCと称する,GPCはGel Permeation Chromatographyの略)により求めている。なお、分散度は、重量平均分子量(Mw)を数平均分子量で除したMw/Mnである。結果パラメータの検出は、GPCに限られない。例えば、赤外分光法(IR,infrared spectroscopy)、核磁気共鳴分光法(NMR,Nuclear Magnetic Resonance spectroscopy)、高速液体クロマトグラフィ(HPLC,High Performance Liquid Chromatography)、またはガスクロマトグラフィ(GC,Gas Chromatography)等、各種の手法で検出してもよい。

GPCは、下記の条件で測定している。

装置:HLC-8220GPC(東ソー(株)製)

検出器:示差屈折計(RI(Refractive Index)検出器)

プレカラム:TSKGUARDCOLUMN HXL-L 6mm×40mm(東ソー(株)製)

サンプル側カラム:以下(1)~(3)の3本を順に直結(全て東ソー(株)製)

(1)TSK-GEL GMHXL 7.8mm×300mm

(2)TSK-GEL G4000HXL 7.8mm×300mm

(3)TSK-GEL G2000HXL 7.8mm×300mm

リファレンス側カラム:TSK-GEL G1000HXL 7.8mm×300mm

恒温槽温度:40℃

移動層:THF

サンプル側移動層流量:1.0mL/分

リファレンス側移動層流量:1.0mL/分

試料濃度:0.1質量%

試料注入量:100μL

データ採取時間:試料注入後5分~45分

サンプリングピッチ:300msec

システムコントローラ15は、フロー反応装置11を統括的に制御するためのものである。システムコントローラ15は、第1供給部21及び第2供給部22の前述の各ポンプと、温調部33とのそれぞれと接続している。システムコントローラ15は、第1供給部21と第2供給部22との各ポンプの回転数を調節することにより第1原料と第2原料とのそれぞれの流量を調節し、これにより、反応セクション23へ向かう第1原料と第2原料との各流速を制御する。なお、第1原料の流速は、第1供給部21から反応セクション23へ送り出す第1原料の流量をX1(単位はm/秒)とし、第1供給部21と反応セクション23との間の配管の断面積をX2(単位はm)とするときに、X1/X2で求められる。第2原料の流速も同様に、第2供給部22から反応セクション23へ送り出す第2原料の流量をX1(単位はm/秒)とし、第2供給部22と反応セクション23との間の配管の断面積をX2(単位はm)とし、X1/X2で求められる。なお、第1原料と第2原料との各流量は本例では市販品である各ポンプのカタログデータに基づいて回転数から求めている。また、システムコントローラ15は、温調部33の調節により、混合原料の温度を制御する。このように、システムコントローラ15はフロー反応装置11の各部を調節することにより、フロー反応装置11を統括的に制御する。

設定部16は、フロー反応装置11におけるフロー反応処理の処理条件(以下、反応条件と称する)を設定するためのものである。反応条件は、複数の条件パラメータの組み合わせである。設定部16は、操作部(図示無し)を有し、操作部からの操作信号の入力によって反応条件を設定し、これによりシステムコントローラ15を介してフロー反応装置11を所定の反応条件に制御する。例えば、操作部のマウスでのクリックあるいは選択、及び/またはキーボードでの文字の入力などにより反応条件が設定される。設定部16は支援装置12と接続しており、上記の操作部からの操作信号に加えて、または代わりに、支援装置12の後述の第3記憶部51cから読み出した後述の決定反応条件CSに反応条件を設定し、これによりシステムコントローラ15を介してフロー反応装置11を所定の反応条件に制御する。なお、この例の設定部16は、支援装置12に対しても後述のように入力信号を与えることができる。

設定部16で設定する条件パラメータは、実施するフロー反応処理の種類によって決定すればよく、特に限定されない。例えば、第1原料及び第2原料などの原料の流量及び/または流速と、反応セクション23へ送り込む原料の温度と、反応温度と、反応時間などが挙げられる。本例では、第1原料及び第2原料の各流速と、合流部の形状と、反応路径D32と、反応路長L32と、反応温度としている。

フロー反応処理の条件パラメータには、予め決定した一定の値に固定する条件パラメータ(以下、固定パラメータと称する)があってもよい。本例の固定パラメータは、第1原料及び第2原料における反応物の濃度と、反応路長L32とである。第1原料及び第2原料における反応物の濃度と、反応路長L32とは、本例では予め決定しており、システムコントローラ15を介した制御(例えば、濃度をより高く変更する、より低く変更するなどの制御)は行っていない。このように、フロー反応には、システムコントローラ15による制御を行わず、例えば原料の調製工程及び/フロー反応装置11の組み立て工程等において変更を行う条件パラメータがあってもよい。

支援装置12は、フロー反応装置11によって行うフロー反応処理について、反応条件となる複数の条件パラメータを迅速に決定するための支援を行う。支援装置12の詳細は、別の図面を用いて後述する。

フロー反応設備10において、フロー反応装置11を他のフロー反応装置に置き換えることができる。例えば本例では、図2に示すフロー反応装置41も、フロー反応設備10に用いている。フロー反応装置41は、合流部31を合流部42に置き換えた反応セクション43を備える。なお、図2において、図1と同じ部材については図1と同じ符号を付し、説明を略す。

合流部42は、十字(cross)に分岐した管、すなわち十字管(cross tube)である。合流部42の第1管部42aは第2供給部22に、第1管部42aと交差する第2管部42b及び第3管部42cは第1供給部21に、残る第4管部42dは反応部32に、それぞれ接続している。これにより、案内されてきた第1原料と第2原料とが合流し、混合した状態で反応部32へ送られる。

支援装置12は、図3Aに示すように、演算セクション50と、第1記憶部51a~第3記憶部51cと、判定部56等から構成されている。この例では第1記憶部51a~第3記憶部51cは、演算セクション50とは別に構成されているが、演算セクション50の一部として構成されていてもよい。

第1記憶部51aは、フロー反応装置11において既に実施された複数の反応情報が入力され、これら複数の反応情報が実測データとして記憶されている。個々の反応情報は、反応条件と既知の反応結果とが関連付け(紐付け)られたひとまとまりの反応データである(図4参照)。したがって、ひとつの反応条件にひとつの既知の反応結果が関連付けられてある。ただし、第1記憶部51aは、反応情報のうち反応条件のみで読み込み可能な状態に記憶する。例えば第1記憶部51aは、反応条件と既知の反応結果とを互いに異なるフィールドに記憶し、かつ反応条件と既知の反応結果との関連付け情報とを記憶する。または、反応条件と既知の反応結果とをともに記憶しておくフィールドと反応条件のみを記憶しておくフィールドとを設けてもよい。

これら複数の反応情報で構成された実測データは、演算セクション50において学習データとされる。実測データを構成する反応情報の数は、後述の判定部56の判定結果により変化する。この例では、第1記憶部51aに対する第1回目の入力は、反応情報a~反応情報jの10個の反応情報としており、それによって第1記憶部51aにはまず10個の反応情報で構成された実測データが記憶される。

演算セクション50は、学習モードと算出モードとを有し、モード毎に、目的とする演算処理を行う。演算セクション50は、第1演算部61~第3演算部63を備え、第1演算部61は、学習モードで演算処理を行い、算出モードでは後述のように演算を休止した休止状態と第1記憶部51aを読み込む状態とを繰り返している。第2演算部62と第3演算部63とは、学習モードでは休止状態となっており、算出モードでは演算処理を行う。

第1演算部61は、第1記憶部51aに記憶されている実測データを読みだし(取り出し)、読み出した実測データを学習データ(教師データ)として用いて反応条件と反応結果との関連性を学習する。そして、第1演算部61は、学習により、反応条件と反応結果とを関連づけた関数を生成し、生成した関数を第2記憶部51bに書き込む。反応条件を構成する複数の条件パラメータと反応結果を構成する結果パラメータとのそれぞれは関数における変数であり、条件パラメータ及び結果パラメータを既に決めてある場合には、関数の生成とは、関数における係数の生成を意味する。

本例では、第1演算部61は、反応条件の各条件パラメータを説明変数とし、反応結果の結果パラメータを目的変数として学習し、1回目の学習を終えた学習済みのニューラルネットワーク(以下、NNと称する)を構築する。なお、説明変数は入力変数に相当し、目的変数は出力変数に相当する。第1演算部61において構築されたNNによって、本例では例えば以下の関数(1A)及び(1B)が生成される。

y1=wu1y1/[1+exp{-(wx1u1×x1+wx2u1×x2+・・・+wx5u1×x5)}]

+wu2y1/[1+exp{-(wx1u2×x1+wx2u2×x2+・・・+wx5u2×x5)}]

+・・・ +wu20y1/[1+exp{-(wx1u20×x1+wx2u20×x2+・・・+wx5u20×x5)}]

・・・(1A)

y2=wu1y2/[1+exp{-(wx1u1×x1+wx2u1×x2+・・・+wx5u1×x5)}]

+wu2y2/[1+exp{-(wx1u2×x1+wx2u2×x2+・・・+wx5u2×x5)}]

+・・・ +wu20y2/[1+exp{-(wx1u20×x1+wx2u20×x2+・・・+wx5u20×x5)}]

・・・(1B)

上記(1A)及び(1B)において、xi(iは自然数)は条件パラメータの値であり、iの最大値は、条件パラメータの個数である。したがって、本例ではiは1以上8以下の自然数である。ym(mは自然数)は結果パラメータの値であり、mの最大値は、結果パラメータの個数である。したがって、本例ではmは1と2とである。ul(lは自然数)は後述の中間層L2のユニット値であり、lの最大値は、ユニットの個数である。本例ではlは1以上20以下の自然数である。wxiul、wulymは重み係数である。具体的には以下である。なお、下記の流速に関し、1ml/minは、1×10-6×(1/60)m/秒として換算できる。

y1;ポリスチレンの分子量

y2;ポリスチレンの分散度

x1(単位はmol/L);第1原料におけるポリスチリルリチウムの濃度であり、ポリスチリルリチウムの物質量(単位はmol(モル))をA1,THFの体積(単位はL(リットル))をB1とするときに、A1/B1の算出式で求める

x2(単位はml/min);第1原料の流速

x3(単位はmol/L);第2原料におけるメタノールの濃度であり、メタノールの物質量(単位はmol(モル))をA2,水の体積(単位はL(リットル))をB2とするときに、A2/B2の算出式で求める

x4(無次元の値である);合流部の形状がT字の場合を「1」、十字の場合を「2」

と定義

x5(単位はml/min);第2原料の流速

x6(単位はmm);反応路径

x7(単位はm);反応路長

x8(単位は℃);反応温度

ul;ユニット値

xiul;xiとulとの間の重み係数

ym;結果パラメータの値

ulym;ulとymとの間の重み係数

NNは、市販のニューラルネットワークフィッティングアプリケーションを用いて構築できる。例えば本例では、MathWorks社製のMatlab Neural Fitting toolを用いてNNを構築している。ニューラルネットワークフィッティングアプリケーションは、上記に限定されず、例えばR言語上で動作可能なRStudio社製のkerasパッケージ等を用いることもできる。

NNは、入力層L1と中間層(隠れ層)L2と出力層L3との層構造を有し、図3Bには本例で実現される層構造を示している。入力層L1は、説明変数である条件パラメータの値xiで構成される。中間層L2は、ユニット値ulで構成され、本例では1層となっている。ユニット値ulのそれぞれは、x1~x8をx1~x8の各々に対応する重み係数Wxiulで重み付けした値の総和である。出力層L3は目的変数である結果パラメータの値ymで構成される。結果パラメータの値ymのそれぞれは、ユニット値u1~u20を用いて、ユニット値u1~u20の各々に対応する重み係数wulymで重み付けし、求めた値である。なお、図3Bにおける黒丸「●」は、重み係数Wxiul,wulymを示している。ただし、NNの層構造は本例に限定されない。

演算セクション50は、第1演算部61によって第2記憶部51bに関数が書き込まれた場合には、学習モードを算出モードに切り替える。第2演算部62は、算出モードにおいて、第1記憶部51aから実測データの反応条件を読み出し、読み出した反応条件に基づいて、反応結果が未知である複数の反応条件を含む条件データセットを生成し、第2記憶部51bに書き込む。条件データセットは、読み出した反応結果が既知である反応条件を含んでいてもよく、本例でもそのようにしている。

第2演算部62は、反応条件を成す複数の条件パラメータのうち、少なくともひとつの条件パラメータの値を振り、反応結果が未知の反応条件を生成することにより、条件データセットを生成する。例えば、複数の条件パラメータのうち第1原料の流速について、読み出した反応条件内の第1原料の流速が1ml/min,10ml/min,11ml/min,20ml/min,100ml/minである場合には、例えば2ml/min,5ml/min,6ml/min等の値である場合の反応結果は未知であるから、これらの値にした反応条件を生成する。

反応結果が未知の反応条件となる状態に生成する条件パラメータの値は、第1記憶部51aから読み出した反応条件の条件パラメータにおける最小値と最大値との間の値とし、これらに加えて最小値及び最大値を含んでいてもよい。例えば上記の例においては第1原料の流速の最小値は1ml/min、最大値は100ml/minであるから、これら両値の間で条件パラメータの値を複数生成し、本例ではこれらに加えて最小値の1ml/minと最大値の100ml/minも含んでいる。さらに、最大値と最小値との間の複数の値は、最大値と最小値との間を等間隔に刻んだ値とすることが好ましく、本例では、上記の第1原料の流速については後述のように1ml/min間隔の値としている(図5参照)。

反応条件を成す複数の条件パラメータのうち、値を振る条件パラメータは、フロー反応装置11において変更してもよいと判断できる条件パラメータとする。したがって、固定パラメータについては、値を振らない。この例では、第1原料及び第2原料の各流速と、合流部のタイプ(合流部31と合流部42)と、反応路径D32と、反応温度とのそれぞれについて値を振った複数の反応条件を生成している(図5参照)。

第2記憶部51bは、第1演算部61から出力された関数と、第2演算部62から出力された条件データセットとを記憶する。なお、この例では、第2演算部62が条件データセットを生成しているが、条件データセットは他の演算機器、例えばパーソナルコンピュータ等を用いて生成してもよい。

第3演算部63は、第2記憶部51bから関数と条件データセットとを読み出し、予測データセットを生成し、生成した予測データセットを第3記憶部51cに書き込む。予測データセットは、複数の予測情報で構成される。予測情報は、条件データセットの反応条件毎に反応結果を予測し、求めた予測結果を反応条件に関連付けた予測データである。したがって、予測情報の数は、条件データセットにおける反応条件の数に等しい。予測は、読み出した関数を用いて行う演算処理である。

第3演算部63は、複数の予測情報の中から、最もよい予測結果を示す予測情報を特定し、抽出する。そして、第3演算部63は、抽出した予測情報の反応条件を抽出反応条件CPとして第3記憶部51cに書き込み、かつ、抽出した予測情報の予測結果RPを抽出反応条件CPに関連付けた状態に第3記憶部51cに書き込む。

第3演算部63には、目標とする反応結果(以下、目標結果と称する)RAが、例えば本例では設定部16の操作部での入力により操作信号で予め入力されている。第3演算部63は、目標結果RAと、予測データセットの各予測情報の予測結果とを対比し、複数の予測結果の中から目標結果RAに最も近い(目標結果RAとの差が最も小さい)予測結果を上記の「最もよい予測結果」として特定する。目標結果RAと同じ予測結果がある場合には、その予測結果を「最もよい予測結果」として特定する。

また、目標結果RAに最も近い予測結果が複数ある場合には、第1記憶部51aから実測データを読み出し、反応結果が最も目標結果RAに近い実測データの反応条件を参照し、以下のプロセスで「最もよい予測結果」を特定する。まず、予測データセットの各予測情報の条件パラメータをx1~x8とし、結果パラメータをy1とし、y1に対する寄与度をa1~a8とし、a1~a8を以下の式(1C)~(1J)で定義する。

a1=wx1u1×wu1y1+wx1u2×wu2y1+wx1u3×wu3y1+・・・+wx1ul×wuly1 ・・・(1C)

a2=wx2u1×wu1y1+wx2u2×wu2y1+wx2u3×wu3y1+・・・+wx2ul×wuly1 ・・・(1D)

a3=wx3u1×wu1y1+wx3u2×wu2y1+wx3u3×wu3y1+・・・+wx3ul×wuly1 ・・・(1E)

a4=wx4u1×wu1y1+wx4u2×wu2y1+wx4u3×wu3y1+・・・+wx4ul×wuly1 ・・・(1F)

a5=wx5u1×wu1y1+wx5u2×wu2y1+wx5u3×wu3y1+・・・+wx5ul×wuly1 ・・・(1G)

a6=wx6u1×wu1y1+wx6u2×wu2y1+wx6u3×wu3y1+・・・+wx6ul×wuly1 ・・・(1H)

a7=wx7u1×wu1y1+wx7u2×wu2y1+wx7u3×wu3y1+・・・+wx7ul×wuly1 ・・・(1I)

a8=wx8u1×wu1y1+wx8u2×wu2y1+wx8u3×wu3y1+・・・+wx8ul×wuly1 ・・・(1J)

ここでa1~a8をそれぞれ求めた場合の符号が正であれば予測結果に対して正の寄与度をもっており、符号が負であれば予測結果に対して負の寄与度をもっており、絶対値が大きいほど予測結果に対して寄与度が高いことを意味する。

つづいて、実測データの中から目標結果RAに最も近い反応結果と反応条件とを選択し、その反応結果をy1nとし、y1nと目標結果RAとの差の絶対値を式|RA-y1n|/RAの算出式で求める。次に、a1~a8の絶対値の大きさに着目する。例えばa1~a8の各絶対値の中でa1の絶対値が最も大きかった場合においては、以下の<A>~<D>の4つの場合分けで「最も良い予測結果」が特定される。

<A>y1nとRAとの差と、y1RA-y1n/y1RAとがともに正であり、かつ、a1が正であった場合

y1nを正方向に大きくした場合にy1nはRAに近づく。そのため、実測データの最も目標結果RAに近い反応条件のa1の条件パラメータの値よりも正方向に最も大きい値をもつ条件パラメータを有する予測結果を、「最も良い予測結果」として特定する。

<B>y1nとRAとの差と、y1RA-y1n/y1RAとがともに正であり、かつ、a1が負であった場合

y1nを正方向に大きくした場合にy1nはRAに近づく。そのため、実測データの最も目標結果RAに近い反応条件のa1の条件パラメータの値よりも負方向に最も大きい値をもつ条件パラメータを有する予測結果を、「最も良い予測結果」として特定する。

<C>y1nとRAとの差と、y1RA-y1n/y1RAとがともに負であり、かつ、a1が正であった場合

y1nを負方向に大きくした場合にy1nはRAに近づく。そのため、実測データの最も目標結果RAに近い反応条件のa1の条件パラメータの値よりも負方向に最も大きい値をもつ条件パラメータを有する予測結果を、「最も良い予測結果」として特定する。

<D>y1nとRAとの差と、y1RA-y1n/y1RAとがともに負であり、かつ、a1が負であった場合

y1nを負方向に大きくした場合にy1nはRAに近づく。そのため、実測データの最も目標結果RAに近い反応条件のa1の条件パラメータの値よりも正方向に最も大きい値をもつ条件パラメータを有する予測結果を、「最も良い予測結果」として特定する。

反応結果の結果パラメータが複数ある場合には、複数の結果パラメータに重み付けをした状態で目標結果RAが入力されており、第3演算部63は、重み付けに基づいて「最もよい予測結果」を特定する。重み付けに基づいた特定は、例えば、重み付けが最も大きい結果パラメータのみで特定する第1の手法でもよいし、重み付けが最も大きい結果パラメータで目標結果RAに最も近い予測結果から例えば複数の候補を絞りこみ、絞り込んだ予測結果の中から重み付けの順位が低い結果パラメータにおいて目標結果RAに最も近い予測結果を「最もよい予測結果」として特定する第2の手法でもよい。本例では第2の手法で特定している。なお、本例での目標結果RAは、分子量が25200であり、分散度が1.03以内としている。

第3記憶部51cは、第3演算部63から出力された予測データセットと、抽出反応条件CPと、抽出反応条件CPに関連付けられた予測結果RPとを記憶する。これらの予測データセットと抽出反応条件CPと予測結果RPとは、個別に読み出し可能な状態に記憶されている。

設定部16は、第3記憶部51cから抽出反応条件CPを読み出す。このように第3記憶部51cを介して演算セクション50の第3演算部63から入力された抽出反応条件CPを入力信号として、抽出反応条件CPをフロー反応装置11での反応条件として設定する。検出部17は、抽出反応条件CPで行ったフロー反応処理の反応結果(以下、実測結果と称する)RRを前述の通り判定部56へ出力する。

判定部56は、第3記憶部51cから、抽出反応条件CPに関連付けられた予測結果RPを読み出し、予測結果RPと検出部17から入力された実測結果RRとを対比し、予測結果RPと実測結果RRとの相違度DRを求める。本例では、|RP-RR|/RRの算出式により、相違度DRを求めているが、予測結果RPの確からしさの指標として用いることができる値が求められれば相違度DRの求め方は特に限定されない。

判定部56には、相違度の許容範囲DTが、例えば本例では設定部16の操作部での入力により操作信号として予め入力されている。判定部56は、相違度DRが許容範囲DTであるか否かを判定する。なお、本例では許容範囲DTを1%と設定しているが、許容範囲は結果パラメータの種類などに応じて適宜設定できる。許容範囲DT(単位は%)は、(|RP-RR|/RR)×100の算出式で求めることができる。

判定部56は、相違度DRが許容範囲DTであると判定した場合には、第3記憶部51cに記憶されている予測データセットの反応条件群のうち抽出反応条件CPを、フロー反応装置11で行う以降のフロー反応処理の反応条件(以下、決定反応条件と称する)CSにし、第3記憶部51に書き込む。抽出反応条件CPを決定反応条件CSとすることを含め、第3記憶部51cに記憶されている予測データセットの反応条件群をフロー反応装置11のフロー反応処理に用いる反応データセットとして第3記憶部51cに書き込んでもよく、本例でもそのようにしている。

判定部56は、本例では、第3記憶部51cに、反応データセットを反応条件毎に読み出し可能な状態に記憶させている。第3記憶部51cは、本例では予測データセットを記憶する領域と反応情報データセットを記憶する領域とをもつが、反応データセットにおいて反応条件毎に読み出し可能な状態で記憶させていれば、判定部56は予測データセットの反応条件群を反応データセットに書き換えてもよい。その場合には、第3演算部63は第3記憶部51cに、予測データセットを、予め、反応条件毎に読み出し可能な状態に記憶させる。また、この例では反応条件データセットを第3記憶部51cに記憶させているが、第4記憶部(図示無し)をさらに設け、この第4記憶部に記憶させてもよい。

判定部56は、相違度DRが許容範囲DRでないと判定した場合には、抽出反応条件CPを第3記憶部51cから読み出し、抽出反応条件CPと実測結果RRとを関連付けた反応情報を生成する。そして、生成した反応情報を、第1記憶部51aに実測データの一部として書き込む。この書き込みにより、第1記憶部51aの実測データは書き換えられ、実測データを構成する反応情報の数は前述の通り変化する。この例では、第1記憶部51aには前述の通り第1回目の入力によって10個の反応情報が記憶されており、判定部56の1回の書き込みによりひとつの反応情報が追加され、全11個の反応情報により構成された新たな実測データが第1記憶部51aに書き込まれる。

第1演算部61は、この例では前述の通り、算出モードにおいては休止状態と第1記憶部51aの読み込みと繰り返している。具体的には、第1演算部61は予め設定した時間間隔で第1記憶部51aの実測データを読み込んでおり、前回読み込んだ実測データが新たな実測データに書き換えられているか否かを判定している。

第1演算部61が第1記憶部51aの実測データが書き換えられていないと判定した場合には、演算セクション50は算出モードを継続させる。書き換えられていると判定した場合には、演算セクション50は算出モードを学習モードに切り替え、第1演算部61は、新たな実測データを学習データとして用いて次回の学習を行い、新たな関数を生成し、第2記憶部51bに記憶されている関数を新たな関数に書き換える。なお、新たな関数の生成、及び新たな関数の書き換えとは、関数における新たな係数の生成、及び関数における係数の書き換えを意味する。例えば、前述の(1A)及び(1B)の関数は係数を書き換えられ、重み係数wxiulがw2xiulに書き換えられる。このようにして、下記(2A)及び(2B)の関数が生成する。

y1=w2u1y1/[1+exp{-(w2x1u1×x1+w2x2u1×x2+・・・+w2x5u1×x5)}]

+w2u2y1/[1+exp{-(w2x1u2×x1+w2x2u2×x2+・・・+w2x5u2×x5)}]

+・・・ +w2u20y1/[1+exp{-(w2x1u20×x1+w2x2u20×x2+・・・+w2x5u20×x5)}]

・・・(2A)

y2=w2u1y2/[1+exp{-(w2x1u1×x1+w2x2u1×x2+・・・+w2x5u1×x5)}]

+w2u2y2/[1+exp{-(w2x1u2×x1+w2x2u2×x2+・・・+w2x5u2×x5)}]

+・・・ +w2u20y2/[1+exp{-(w2x1u20×x1+w2x2u20×x2+・・・+w2x5u20×x5)}]

・・・(2B)

また、第2演算部62は、新たな実測データが生成された場合も同様に、条件データセットを新たに生成する。

図4には、第1回目の入力により記憶されている実測データを示しており、前述の通り、本例では反応情報a~反応情報jの10個の反応情報で構成している。図4に示すように、第1記憶部51aに記憶される実測データは、本例では複数の反応情報を表構造で記憶している。具体的には、反応情報の種別を縦欄に並んだ状態に配し、反応情報の種別と反応条件と反応結果とを横欄に並んだ状態に配してある。ただし、縦欄と横欄とは逆でもよい。

第1記憶部51aにおける実測データの記憶態様は表構造に限られず、反応条件と反応結果とが関連づけられていればよい。したがって、例えば反応条件と反応結果とのそれぞれのフィールドを設けて記憶すればよい。

図5に示すように、第2演算部62が生成する条件データセットも、本例では、表構造としており、したがって、第2記憶部51bには表構造の条件データセットが記憶されている。具体的には、異なる反応条件を縦欄に並んだ状態に配し、条件パラメータを横欄に並んだ状態に配してある。ただし、縦欄と横欄とは逆でもよい。また、条件データセットの態様も実測データの態様と同様に表構造に限られず、反応条件毎に個別に読み出し可能に生成し、第2記憶部51bに記憶させていればよい。

図5には、第1回目の実測データに基づいて生成した条件データセットを示している。条件データセットは、固定パラメータ以外の条件パラメータが、本例では、前述の通り、最大値、最小値、及び、最大値と最小値との間を等間隔に刻んだ値としている。例えば、第1原料の流速については最小値である1ml/minから最大値である100ml/minまでを1ml/min間隔で刻んだ値であり、第2原料の流速については最小値である0.6ml/minから最大値である55.0ml/minまでを0.1ml/min間隔で刻んだ値である。また、合流部については、合流部31と合流部42との2通りの形状にしている。反応路径D32については最小値である1mmから最大値である10mmまでを1mm間隔で刻んだ値であり、反応温度は最小値(最低値)である1℃から最大値(最高値)である10℃までを1℃間隔で刻んだ値としている。ただし、値を等間隔で刻む場合の間隔は、この例に限られない。

図6に示すように、第3演算部63が生成する予測データセットも、本例では、表構造としており、したがって、第3記憶部51cには表構造の予測データセットが記憶されている。具体的には、予測情報の種別を縦欄に並んだ状態に配し、反応条件の条件パラメータと予測結果である結果パラメータとを横欄に並んだ状態に配してある。ただし、縦欄と横欄とは逆でもよい。予測データセットの態様も実測データの態様と同様に表構造に限られず、反応条件と予測結果とが関連付けられており、かつ、少なくとも抽出反応条件CPが読み出し可能に生成し、第3記憶部51cに記憶させていればよい。

図6には、図5の条件データセットに基づき生成した予測データセットを示している。本例では2つの結果パラメータに前述の重み付けをしており、分子量の重み付けを分散度よりも大きくしている。この例では、図6に示すように、重み付けが大きい分子量について、予測情報番号(以下、予測情報No.と記載する)6050と予測情報No.8000との分子量が24870となっており、他の予測情報No.と比べてもっとも目標結果RAに近く、互いに同値となっている。そして、予測情報No.6050と予測情報No.8000とのうち、予測情報No.6050の方が、重み付けが分子量よりも低い分散度について目標結果RAに近い。したがって第3演算部63は、予測情報No.6050の予測結果を前述の「最もよい予測結果」として特定し、予測情報No.6050の反応条件を抽出反応条件CPとして特定する。そして、第3演算部63は、予測情報No.6050の反応条件に、抽出反応条件CPであることの記録をした状態(表6においては説明の便宜上、予測情報No.の横に「*」を付してある)で、抽出反応条件CPとこの抽出反応条件に関連付けた予測結果とを第3記憶部51cに記憶させている。

判定部56は、予測結果RPと実測結果RRとの対比演算行う場合に、対比データを生成している。そして、判定部56は対比データを記憶する対比データ記憶部(図示無し)を有している。図7には、1回目の対比演算を行う場合の対比データを示している。対比データは、予測結果RPの結果パラメータと実測結果RRとの結果パラメータとを並べた状態の表構造に生成している。この例では、予測結果RPと実測結果RRとを縦欄に並べた状態で、かつ、分散度と分子量との2つの結果パラメータを横欄に並べた状態にしているが、縦欄と横欄とは逆でもよい。また、実測結果RPと実測結果RRとの同じ結果パラメータ同士を読み出し可能な状態で対比データ記憶部に記憶していれば、記憶の態様は表構造でなくてもよい。

判定部56は、この対比データを用いて、分子量の相違度DRと、分散度の相違度DRとを前述の算出式によりそれぞれ求めている。例えば図7に示す対比データを用いた場合には、分子量の相違度DRは9.9891、分散度の相違度DRは、3.5107として算出される。

上記構成の作用を説明する。図8に示すように、まず、目標結果RAを設定する。この例の目標結果RAは、前述の通り、分散度≦1.03、分子量=25200としている。次に、実測データをつくる。なお、目標結果RAの設定と実測データの作製との順序は逆であってもよい。

実測データは、フロー反応装置11とフロー反応装置41とを用いてフロー反応処理を複数回行い、それぞれの反応結果を反応条件に関連付けることによりつくる。実測データをつくるためのフロー反応処理は、設定部16の操作部で条件パラメータを入力し、この入力信号に基づいてシステムコントローラ15が制御することにより、行う。作製された実測データは、本例では設定部16(図1~3参照)の操作部で入力しており、入力信号は第1記憶部51aに書き込まれる。この例では、前述のように第1回目の入力において10個の反応情報a~jを実測データ(1回目の実測データ)としている(図4参照)。

支援装置12は、学習モードにモード設定し、これにより第1演算部61は第1記憶部51aから1回目の実測データを読み出す。なお、第1記憶部51aを設けず(介在させず)に、設定部16から第1演算部61へ実測データを出力してもよい。このようにして1回目の実測データが入力された第1演算部61は、1回目の実測データを学習データとして用い、この学習データに基づいて反応条件と反応結果との関連性を学習する演算を行う。そして、第1演算部61は条件パラメータと結果パラメータとの関数を生成し、生成した関数を第2記憶部51bに書き込む。

関数が第2記憶部51bに書き込まれた後に、支援装置12は学習モードから算出モードにモード切り替えをし、これにより、第2演算部62は、第1記憶部51aから実測データを読み出す。第2演算部62は、実測データの反応条件に基づき、具体的には各条件パラメータの値に基づき、固定パラメータ以外の条件パラメータの値を振り、異なる複数の反応条件で構成された条件データセットを生成する(図5参照)。なお、第2演算部62は、実測データでのすべての反応情報で同じ内容となっている条件パラメータを、固定パラメータとみなしている。生成した条件データセットは、反応条件毎に読み出し可能な状態に、第2記憶部51bに書き込まれる。

この例では前述の通り、最大値、最小値、及び、最大値と最小値との間を等間隔に刻んだ値に刻んだ条件パラメータで条件データセットを生成している。第1原料の流速については100通り、第2原料の流速については545通り、合流部の形状は2通り、反応路径D32については10通り、反応温度は11通りであるから、条件データセットの反応条件の個数は、100×545×2×10×11の全11990000個である。

なお、支援装置12が、学習と算出とを併行することができる場合には、第1演算部61での学習と、第2演算部62での条件データセットの作製との両方の演算を同時に行ってもよい。

関数と条件データセットとが第2記憶部51bに書き込まれた後に、第3演算部63は第2記憶部51bからこれら関数と条件データセットを読み出す。なお、第2記憶部51bを設けず(介在させず)に、第1演算部61から第3演算部63へ関数を出力し、第2演算部62から第3演算部63へ条件データセットを出力してもよい。このようにして関数と条件データセットが入力された第3演算部63は、読み出した条件データセットの反応条件毎に、関数を用いて、予測結果を算出する。そして、反応条件と予測結果とを関連付けた複数の予測情報で構成された予測データセットを生成し、第3記憶部51cに書き込む(図6参照)。

予測結果は、条件データセットの反応条件毎に算出されるから、生成される予測データセットの予測情報の個数は条件データセットの反応条件の個数と同じく、本例では11990000個である。

第3演算部63は、予め入力されている目標結果RAと、予測データセットの各予測情報の予測結果との対比により「最もよい予測結果」を示す予測情報を特定する。特定された予測情報の反応条件は抽出反応条件CPとして抽出され(演算工程)、抽出反応条件CPと抽出反応条件に対応する予測結果RPとからなる予測情報は、予測データセットにおいて抽出反応条件CPと抽出反応条件に関連付けられた予測結果RPとして第3記憶部51cに書き込まれる。

抽出反応条件CPが第3記憶部51cに書き込まれた後に、設定部16は、第3記憶部51cから抽出反応条件CPを読み出す。なお、第3記憶部51cを設けず(介在させず)に、第3演算部63から設定部16へ抽出反応条件CPを出力してもよい。このようにして抽出反応条件CPが入力された設定部16は、抽出反応条件CPでのフロー反応処理をフロー反応装置11,41に試行させる。そして、試行の反応結果である実測結果RRが検出部17により判定部56へ出力される。

第3記憶部51cに書き込まれている抽出反応条件CPに関連付けられた予測結果RPは、判定部56により読み出される。なお、第3記憶部51cを介在させずに、第3演算部63から判定部56へ予測結果RPを出力してもよい。このようにして予測結果RPが入力された判定部56により、予測結果RPと実測結果RRとが対比され(1回目の対比)、相違度DRが求められる(図7参照)。

判定部56により、設定部16から予め入力されている相違度の許容範囲DT(本例では1%)に基づいて、相違度DRが許容範囲DTであるか否かが判定される。相違度DRが許容範囲DTであると判定された場合には、判定部56は抽出反応条件CPを決定反応条件CSとして、第3記憶部51に書き込み、本例の判定部56はさらに、第3記憶部51cに記憶されている予測データセットの反応条件群をフロー反応装置11のフロー反応処理に用いる反応データセットとして第3記憶部51cに書き込む。

抽出反応条件CPが決定反応条件CSとして書き込まれた後に、設定部16はフロー反応装置11での反応条件を決定反応条件CSに設定し、フロー反応装置11でフロー反応を行う。決定反応条件CSは、既に実測結果RRに極めて近い反応結果が得られると判定されている反応条件であるため、生成物は目的とする分子量及び分散度で得られる。また、決定反応条件CSは、本例での例えば11990000個という膨大な数の反応条件から演算を用いて求めており、フロー反応処理の試行及び時間が従来に比べて大きく短縮されている。

本例では、第1回目の対比データから求めた相違度DRが、図7に示すように、分子量では9.989142、分散度では2.906355となっており、許容範囲DRでないと判定される。このような場合には、判定部56は抽出反応条件CPを第3記憶部51cから読み出し、抽出反応条件CPと実測結果RRとを関連付けた反応情報を生成する。そして、生成した反応情報は、第1記憶部51aの実測データに加えられ(判定工程)、第1記憶部51aの実測データは第2回目の実測データとして新たな実測データに書き換えられる。この書き換えにより、第1記憶部51aには、新たに生成された第2回目の実測データが全11個の反応情報a~kにより構成された状態で記憶される(図9参照)。

第2回目の実測データが第1記憶部51aに記憶された場合には、演算セクション50は算出モードを学習モードに切り替え、第1演算部61によって、第2回目の学習が行われる。この学習により第2記憶部51bに記憶されている関数の係数が新たな係数に書き換えられ、第2回目の関数として新たな関数が第1記憶部51aに書き込まれる。

また、第2演算部62は、第2回目の実測データが生成された場合も同様に、条件データセットを新たに生成し、第2記憶部51bに書き込む。そして、第3演算部63は、第2記憶部51bに記憶されている第2回目の関数と第2回目の条件データセットとに元すいて、前回と同様に、予測データセットを新たに生成し、また、抽出反応条件CP及びその予測結果RPを新たに抽出する。その後、この抽出反応条件CPに基づいたフロー反応処理がフロー反応装置11,41で試行され、判定部56によって第1回目と同様に、新たな予測結果RPと新たな実測結果RRとが対比され(2回目の対比)、新たに相違度DRが求められる(図10参照)。

今回の相違度DRが許容範囲DTであると判定された場合には、第1回目と同様に、抽出反応条件CPを決定反応条件CSとし、この決定反応条件でのフロー反応処理が行われる。この決定反応条件CSは、既に実測結果RRに極めて近い反応結果が得られると判定されている反応条件であるため、生成物は目的とする分子量及び分散度で得られる。また、決定反応条件CSは、2回繰り返した演算工程及び判定工程とにより膨大な個数の反応条件の候補から求めており、フロー反応処理の試行及び時間が従来に比べて大きく短縮されている。

相違度DRが許容範囲DRでないと判定された場合には、第1回目と同様の演算処理を経て新たに生成した反応情報が第1記憶部51aの実測データ中に加えられ、第3回目の実測データが第1記憶部51a中に生成される。このようにして、判定工程において相違度DRが許容範囲DT内になるまで演算工程と判定工程とを繰り返し、許容範囲DT内になった後に、得られた決定反応条件CSでフロー反応処理を行う。

この例では、第7回目の判定工程で、相違度DRが許容範囲DT内になり(図11参照)、この第7回目での抽出反応条件で、フロー反応処理を行っている。この例では、第1回目の実測データを作製するためのフロー反応処理を含めた試行回数はわずか17回である。また、各回の演算工程と判定工程とに要する時間は、本例では1時間程度である。このように、条件パラメータが多く、その組み合わせが膨大にあるフロー反応処理の反応条件が、極めて迅速に求められている。

また、上記の例では、反応データセットを第3記憶部51cに記憶させている。反応データセットは、既に演算工程と判定工程とを経ることで得られた反応条件で構成されているから、条件パラメータのうち固定パラメータを変更または追加したり、あるいは目標結果RAを変更したりした場合であっても、決定反応条件CSをより迅速に見出すことができる。例えば、分子量の目標結果RAを、上記の例の値から他の値に変更した場合には、以下の方法で決定反応条件CSを見出すことができる。

まず、設定部16から判定部56に分子量の目標結果RAを判定部に入力する。また、例えば設定部16からの指示信号により、第3記憶部51cの反応データセットを判定部56に読み込ませ、読み出した反応データセットから目標結果RAに最も近い予測結果を特定する。

このように特定した予測結果に関連付けてある反応条件は、今回の目標結果RAが、上記の例、すなわち前回の目標結果RAに非常に近い場合には、決定反応条件CSとして用いることができる場合が多い。また、今回の目標結果RAが前回の目標結果RAと離れている場合には、特定した予測結果に関連付けてある反応条件を、前回の抽出反応条件CPと見なし、上記の例と同様に判定工程を行う。判定工程で相違度DRが許容範囲DT内ではないと判定された場合には、学習工程と判定工程とを繰り返し行うが、前回よりも決定反応条件CSを見出すまでのフロー反応処理の試行及び時間は短く済む。このように、例えば目標結果RAを変更する場合でも、決定反応条件CSを迅速に見つけることができ、フロー反応処理をより早期に実施することができる。

このように条件パラメータが多いフロー反応において条件設定が簡便に行えるから、反応処理をより迅速に開始できたり、なんらかの理由で複数の条件パラメータのうちのひとつを変更せざるを得ない場合でも迅速に新たな反応処理を行うことができる。

以上は、原料として第1原料と第2原料との2つを用いた例である。しかし原料の数はこれに限定されず、3種以上であってもよい。例えば図12に示すフロー反応装置71は、第1原料~第3原料の3種の原料でフロー反応処理を行う装置であり、図1のフロー反応設備10に用いることができる。なお、図12において、図1と同じ部材については図1と同じ符号を付し、説明を略す。

フロー反応装置71では、フロー反応装置11で行う場合と同様に、種々のフロー反応を行うことができる。ここでは、アニオン重合反応によってポリスチレンを生成する場合を例にして説明する。この例は、アニオン重合反応の開始反応、生長(成長)段階、及び停止反応までを含む。

フロー反応装置71は、フロー反応装置11の第1供給部21と反応セクション23との代わりに、第3供給部73と第4供給部74と反応セクション75とを備える。システムコントローラ15は、第2供給部22と、第3供給部73と、第4供給部74と、反応セクション75の温調部33とに接続している。

第3供給部73及び第4供給部74はそれぞれ反応セクション75の上流側端部に配管で接続している。回収セクション26は反応セクション75の下流側端部に配管で接続している。

第3供給部73は、第3原料としてのスチレンを、反応セクション75へ供給する。第3原料は、反応物としてのスチレンを溶媒に溶解した第3液である。溶媒にはTHFを用いている。第3供給部73は、ポンプ(図示無し)を備えており、ポンプの回転数を調節することにより、反応セクション75への第3原料の流量が調節される。

第4供給部74は、第4原料としてのn-ブチルリチウムを、反応セクション75へ供給する。第4原料は、n-ブチルリチウムを溶媒に溶解した第4液である。n-ブチルリチウムはアニオン重合開始剤として用いている。溶媒にはTHFを用いている。第4供給部74は、ポンプ(図示無し)を備えており、ポンプの回転数を調節することにより、反応セクション75への第4原料の流量が調節される。スチレンとn-ブチルリチウムとは、フロー反応装置11,41において第1原料の反応物として用いたポリスチリルリチウムの原料である。

反応セクション75は、反応セクション23の合流部31及び反応部32を2組直列に接続したものである。上流側の第1合流部と第1反応部とにはそれぞれ符号31Aと符号32Aとを付し、下流側の第2合流部と第2反応部とにはそれぞれ符号31Bと符号32Bとを付す。また、第1反応部31Aの長さL32Aと第2反応部31Bとの長さL32Bとをそれぞれ反応路長とみなす。

第1合流部31Aは、第3原料と第4原料とを合流し、第1反応部32Aは第3原料と第4原料との混合物である混合原料のフロー反応処理を行い、ポリスチリルリチウムを生成させる。生成したポリスチリルリチウムは、第2合流部31Bに案内され、第2原料と合流する。そして第2反応部32Bにおいて、図1のフロー反応と同様に、フロー反応が行われ、ポリスチレンが生成物として得られる。このように、第1合流部31A及び第1反応部32Aは、図1のフロー反応装置11における第1供給部21として機能している。

この例においても支援装置12(図3A参照)を同様に用いることにより、決定反応条件CSを迅速に見つけることができる。例えば、以下の通りである。まず、フロー反応装置71により、反応条件を変えてフロー反応処理を複数回行い、実測データをつくる。この例では、10通りのフロー反応処理を行い、図13に示すように、それぞれの反応条件と反応結果とを関連付けた10個の反応情報a~jで実測データ(第1回目の実測データ)をつくっている。

支援装置12は、学習モードにモード設定し、これにより第1演算部61は第1記憶部51aから1回目の実測データを読み出す。第1演算部61は、1回目の実測データを学習データとして学習処理を用い、条件パラメータと結果パラメータとの関数を生成し、生成した関数を第2記憶部51bに書き込む。

関数が第2記憶部51bに書き込まれた後に、支援装置12は学習モードから算出モードにモード切り替えをし、これにより、第2演算部62は、第1記憶部51aから実測データを読み出す。第2演算部62は、前述の例と同様に、固定パラメータ以外の条件パラメータの値を振り、異なる複数の反応条件で構成された条件データセットを生成する。

図14に示すように、第1原料~第3原料の各温度と、第1反応部及び第2反応部のそれぞれの反応路径と反応路長と、第2合流部の形状と、反応温度とは固定パラメータとしている。第1原料の流速は、4ml/minから80ml/minまでを1ml/min間隔で刻んでいる。第2原料の濃度は、0.018mol/lから0.250mol/lまでを0.001mol/l間隔で刻んでいる。第2原料の流速は、1.9ml/minから38.0ml/minまでを0.1ml/min間隔で刻んでいる。第3原料の流速は、1ml/minから20ml/minまでを1ml/min間隔で刻んでいる。第1合流部は図12に示すT字と、図2に示す十字の2通りの形状にしている。これにより、条件データセットの反応条件の個数は、全260000000個(77通り×233通り×362通り×20通り×2通りで求めている)である。

関数と条件データセットとが第2記憶部51bに書き込まれた後に、第3演算部63は第2記憶部51bからこれら関数と条件データセットを読み出す。第3演算部63は、読み出した条件データセットの反応条件毎に、関数を用いて、予測結果を算出する。そして、反応条件と予測結果とを関連付けた複数の予測情報で構成された予測データセット(第1回目の予測データセット)を生成し、第3記憶部51cに書き込む。

第1回目の予測データセットの予測情報の個数は条件データセットの反応条件の個数と同じく、本例では260000000個である。結果パラメータの目標結果RAは特に限られないが、本例では、分子量の目標結果RAを25200としており、分散度の目標結果RAを1.024以下と設定している。第3演算部63は、これら目標結果RAと、予測データセットの各予測情報の予測結果との対比により「最もよい予測結果」を示す予測情報を特定する。この例では、図15に示すように、予測情報No.280の予測結果が「最もよい予測結果」として特定されている。したがって、予測情報No.280の反応条件が抽出反応条件CPとして抽出される(演算工程)。抽出反応条件CPと抽出反応条件に対応する予測結果RPとからなる予測情報は、予測データセットにおいて抽出反応条件CPと抽出反応条件に関連付けられた予測結果RPとして第3記憶部51cに書き込まれる。

抽出反応条件CPが第3記憶部51cに書き込まれた後に、設定部16は、第3記憶部51cから抽出反応条件CPを読み出す。設定部16は抽出反応条件CPでのフロー反応処理をフロー反応装置11,41に試行させ、実測結果RRが検出部17により判定部56へ出力される。

判定部56により、前述の例と同様に予測結果RPと実測結果RRとが対比され(1回目の対比)、相違度DRが求められ(図16参照)、相違度DRが許容範囲DTであるか否かが判定される。相違度DRが許容範囲DTであると判定された場合には、判定部56は抽出反応条件CPを決定反応条件CSとし、フロー反応が実施される。

本例では、第1回目の対比データから求めた相違度DRが、図16に示すように、分子量では7.754534、分散度では4.04922となっており、許容範囲DR(=1%以内)でないと判定される。このように許容範囲でないと判定された場合には、判定部56は抽出反応条件CPを実測結果RRと関連付け、反応情報を生成する。生成した反応情報は、第1記憶部51aの実測データに加えられ(判定工程)、第1記憶部51aの実測データは第2回目の実測データとして新たな実測データに書き換えられる。この書き換えにより、第1記憶部51aには、新たに生成された第2回目の実測データが全11個の反応情報a~kにより構成された状態で記憶される(図17参照)。

第2回目の実測データが第1記憶部51aに記憶された場合には、演算セクション50は算出モードを学習モードに切り替え、第1演算部61によって、第2回目の学習が行われる。これにより関数の新たな係数が生成され、第2回目の関数が新たな関数として第1記憶部51aに書き込まれる。

前述の例と同様の演算処理を経て、判定部56によって第1回目と同様に、新たな予測結果RPと新たな実測結果RRとが対比され(2回目の対比)、新たに相違度DRが求められる(図18参照)。

今回の相違度DRが許容範囲DTであると判定された場合には、第1回目と同様に、抽出反応条件CPを決定反応条件CSとし、この決定反応条件でのフロー反応処理が行われる。この決定反応条件CSは、既に実測結果RRに極めて近い反応結果が得られると判定されている反応条件であるため、生成物は目的とする分子量及び分散度で得られる。また、決定反応条件CSは、2回繰り返した演算工程及び判定工程とにより膨大な個数の反応条件の候補から求めており、フロー反応処理の試行及び時間が従来に比べて大きく短縮されている。

この例では相違度DRが許容範囲DRでないと判定されており、第1回目と同様の演算処理を経て新たに生成した反応情報が第1記憶部51aの実測データ中に加えられ、第3回目の実測データが第1記憶部51a中に生成される。このようにして、判定工程において相違度DRが許容範囲DT内になるまで演算工程と判定工程とを繰り返し、許容範囲DT内になった後に、得られた決定反応条件CSでフロー反応処理を行う。

この例では、第5回目の判定工程で、相違度DRが許容範囲DT内になり(図11参照)、この第5回目での抽出反応条件で、フロー反応処理を行っている。この例では、第1回目の実測データを作製するためのフロー反応処理を含めた試行回数はわずか15回である。また、各回の演算工程と判定工程とに要する時間は、本例では1時間程度である。このように、条件パラメータが多く、その組み合わせが膨大にあるフロー反応処理の反応条件が、極めて迅速に求められている。

10 フロー反応設備

11,41,71 フロー反応装置

12 支援装置

15 システムコントローラ

16 設定部

17 検出部

21 第1供給部

22 第2供給部

23,43,75 反応セクション

26 回収セクション

31,42 合流部

31A,31B 第1合流部,第2合流部

31a~31c 第1管部~第3管部

32 反応部

32A,32B 第1反応部,第2反応部

33 温調部

50 演算セクション

51a~51c 第1記憶部~第3記憶部

56 判定部

61~63 第1演算部~第3演算部

73 第3供給部

74 第4供給部

CP 抽出反応条件

CS 決定反応条件

DT 許容範囲

DR 相違度

L1 入力層

L2 中間層

L3 出力層

xi,x1~x8 条件パラメータの値

ul、u1~u20 ユニット値

ym,y1~y2 結果パラメータの値

xiul,wx1u1~wx8u20,wulym,wu1y1~wu20y2 重み係数

RA 目標結果

RP 予測結果

RR 実測結果

Claims (8)

  1. 原料を流しながら反応させるフロー反応処理を支援するフロー反応支援装置であり、
    反応結果が既知である反応条件と前記反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの前記反応条件毎に予測結果を算出することにより、反応条件と前記予測結果とを関連付けた予測データセットを生成し、得られた複数の前記予測結果のうち、予め設定した目標結果に最も近い前記予測結果を特定し、特定した前記予測結果に関連付けられた反応条件を抽出反応条件として抽出する演算セクションと、
    前記抽出反応条件で反応させた場合の反応結果と、前記抽出反応条件に関連付けられた前記予測結果との相違度が予め設定した許容範囲であるか否かを判定し、許容範囲でない場合には、前記抽出反応条件と前記抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を前記実測データに加え、許容範囲である場合には、前記抽出反応条件をフロー反応処理に用いる決定反応条件とする判定部と、
    前記決定反応条件、及び前記予測データセットの反応条件群である反応データセットを記憶する記憶部と、を備え、
    前記判定部は、前記目標結果が、予め設定した値とは異なる値である第2目標結果に変更された場合、前記記憶部に記憶された前記反応データセットから前記第2目標結果に最も近い第2予測結果を特定し、前記目標結果と前記第2目標結果の差異を求め、前記差異が一定範囲内である場合は、前記第2予測結果と関連付けられた反応条件を前記決定反応条件として前記フロー反応処理に用い、前記差異が一定範囲内でない場合は、前記第2予測結果と関連付けられた反応条件を前記抽出反応条件として用いるフロー反応支援装置。
  2. 前記反応条件は、前記原料の流量と、前記原料の流速と、前記原料における反応物の濃度と、前記原料の温度と、反応の設定温度と、反応時間とのいずれかである請求項1に記載のフロー反応支援装置。
  3. 前記反応結果は、生成物の収率と、副生成物の収率と、生成物の分子量と、生成物の分子量分散度と、生成物のモル濃度とのいずれかである請求項1または2に記載のフロー反応支援装置。
  4. 前記演算セクションは、前記実測データを学習データとして用いることにより前記条件データセットの反応条件毎に前記予測結果を算出する請求項1ないし3のいずれか1項に記載のフロー反応支援装置。
  5. 前記演算セクションは、前記実測データ中の前記反応条件を説明変数とし、かつ、前記実測データ中の前記反応結果を目的変数として構築されたニューラルネットワークを有する請求項1ないし4のいずれか1項に記載のフロー反応支援装置。
  6. 原料を流しながら反応させるフロー反応処理を支援するフロー反応支援方法であり、
    反応結果が既知である反応条件と前記反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの前記反応条件毎に予測結果を算出することにより、反応条件と前記予測結果とを関連付けた予測データセットを生成し、得られた複数の前記予測結果のうち、予め設定した目標結果に最も近い前記予測結果を特定し、特定した前記予測結果に関連付けられた反応条件を抽出反応条件として抽出する演算工程と、
    前記抽出反応条件で反応させた場合の反応結果と、前記抽出反応条件に関連付けられた前記予測結果との相違度が予め設定した許容範囲であるか否かを判定し、許容範囲でない場合には、前記抽出反応条件と前記抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を前記実測データに加え、許容範囲である場合には、前記抽出反応条件をフロー反応処理での決定反応条件にし、記憶部に前記決定反応条件、及び前記予測データセットの反応条件群である反応データセットを記憶する判定工程と、
    を有し、
    前記判定工程により前記実測データに前記反応情報を加えた場合には、前記演算工程と前記判定工程とを新たに繰り返し、
    前記判定工程は、前記目標結果が、予め設定した値とは異なる値である第2目標結果に変更された場合、前記記憶部に記憶された前記反応データセットから前記第2目標結果に最も近い第2予測結果を特定し、前記目標結果と前記第2目標結果の差異を求め、前記差異が一定範囲内である場合は、前記第2予測結果と関連付けられた反応条件を前記決定反応条件として前記フロー反応処理に用い、前記差異が一定範囲内でない場合は、前記第2予測結果と関連付けられた反応条件を前記抽出反応条件として用いるフロー反応支援方法。
  7. 原料を流しながら反応させる反応セクションと、
    前記反応セクションでの反応結果が既知である反応条件と前記反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの前記反応条件毎に予測結果を算出することにより、反応条件と前記予測結果とを関連付けた予測データセットを生成し、得られた複数の前記予測結果のうち、予め設定した目標結果に最も近い前記予測結果を特定し、特定した前記予測結果に関連付けられた反応条件を抽出反応条件として抽出する演算セクションと、
    前記反応セクションにて前記抽出反応条件で反応させた場合の反応結果と、前記抽出反応条件に関連付けられた前記予測結果との相違度が予め設定した許容範囲であるか否かを判定し、許容範囲でない場合には、前記抽出反応条件と前記抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を前記実測データに加え、許容範囲である場合には、前記抽出反応条件を前記反応セクションにおける以降のフロー反応処理に用いる決定反応条件とする判定部と、
    前記決定反応条件、及び前記予測データセットの反応条件群である反応データセットを記憶する記憶部と、
    前記決定反応条件により、前記反応セクションを制御するシステムコントローラと、
    を備え、
    前記判定部は、前記目標結果が、予め設定した値とは異なる値である第2目標結果に変更された場合、前記記憶部に記憶された前記反応データセットから前記第2目標結果に最も近い第2予測結果を特定し、前記目標結果と前記第2目標結果の差異を求め、前記差異が一定範囲内である場合は、前記第2予測結果と関連付けられた反応条件を前記決定反応条件として前記フロー反応処理に用い、前記差異が一定範囲内でない場合は、前記第2予測結果と関連付けられた反応条件を前記抽出反応条件として用いるフロー反応設備。
  8. 原料を流しながら反応させるフロー反応工程と、
    反応結果が既知である反応条件と前記反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの前記反応条件毎に予測結果を算出することにより、反応条件と前記予測結果とを関連付けた予測データセットを生成し、得られた複数の前記予測結果のうち、予め設定した目標結果に最も近い前記予測結果を特定し、特定した前記予測結果に関連付けられた反応条件を抽出反応条件として抽出する演算工程と、
    前記フロー反応工程において前記抽出反応条件で反応させた場合の反応結果と、前記抽出反応条件に関連付けられた前記予測結果との相違度が予め設定した許容範囲であるか否かを判定し、許容範囲でない場合には、前記抽出反応条件と前記抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を前記実測データに加え、許容範囲である場合には、前記抽出反応条件を、以降の前記フロー反応工程での決定反応条件とし、記憶部に前記決定反応条件、及び前記予測データセットの反応条件群である反応データセットを記憶する判定工程と、
    を有し、
    前記判定工程により前記実測データに前記反応情報を加えた場合には、前記演算工程と前記判定工程とを新たに繰り返し、
    前記判定工程により前記実測データに前記反応情報を加えた場合には、以降の前記フロー反応工程は前記抽出反応条件で反応を行い、
    前記判定工程は、前記目標結果が、予め設定した値とは異なる値である第2目標結果に変更された場合、前記記憶部に記憶された前記反応データセットから前記第2目標結果に最も近い第2予測結果を特定し、前記目標結果と前記第2目標結果の差異を求め、前記差異が一定範囲内である場合は、前記第2予測結果と関連付けられた反応条件を前記決定反応条件として前記フロー反応工程に用い、前記差異が一定範囲内でない場合は、前記第2予測結果と関連付けられた反応条件を前記抽出反応条件として用いるフロー反応方法。
JP2020546711A 2018-09-10 2019-07-01 フロー反応支援装置及び方法、フロー反応設備及び方法 Active JP7250027B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018168476 2018-09-10
JP2018168476 2018-09-10
PCT/JP2019/026006 WO2020054183A1 (ja) 2018-09-10 2019-07-01 フロー反応支援装置及び方法、フロー反応設備及び方法

Publications (2)

Publication Number Publication Date
JPWO2020054183A1 JPWO2020054183A1 (ja) 2021-09-30
JP7250027B2 true JP7250027B2 (ja) 2023-03-31

Family

ID=69777106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020546711A Active JP7250027B2 (ja) 2018-09-10 2019-07-01 フロー反応支援装置及び方法、フロー反応設備及び方法

Country Status (4)

Country Link
US (1) US20210162362A1 (ja)
EP (1) EP3851461A4 (ja)
JP (1) JP7250027B2 (ja)
WO (1) WO2020054183A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022013148A (ja) * 2020-07-03 2022-01-18 ダイキン工業株式会社 予測装置、演算装置、製造装置及び製造方法
JP2023000306A (ja) * 2021-06-17 2023-01-04 ダイキン工業株式会社 予測装置、製造装置及び予測方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106703A (ja) 1999-10-06 2001-04-17 Mitsubishi Rayon Co Ltd 品質予測反応制御システム
JP2008501837A (ja) 2004-06-09 2008-01-24 ストックハウゼン ゲーエムベーハー コンピュータ生成モデルを用いた親水性ポリマー及び親水性ポリマーを含む追加処理製品の製造方法
JP2010535894A (ja) 2007-08-07 2010-11-25 ダウ グローバル テクノロジーズ インコーポレイティド ポリマー特性の予測を改善する方法、および改善されたポリマー特性予測能を有するシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754410A (en) * 1986-02-06 1988-06-28 Westinghouse Electric Corp. Automated rule based process control method with feedback and apparatus therefor
JP3189332B2 (ja) * 1991-11-22 2001-07-16 三菱化学株式会社 ポリオレフィンを製造するための重合反応運転支援装置
JPH0628009A (ja) * 1992-07-07 1994-02-04 Asahi Chem Ind Co Ltd 重合プロセスの制御方法
JPH0632805A (ja) * 1992-07-17 1994-02-08 Asahi Chem Ind Co Ltd 連続重合プロセスの非定常運転時の制御方法
JPH06199904A (ja) * 1992-12-28 1994-07-19 Asahi Chem Ind Co Ltd 連続重合プロセスの連続運転条件変更方法
JP2001356803A (ja) * 2000-06-15 2001-12-26 Toyobo Co Ltd プロセスフィードバック制御のパラメータ設定方法、同設定装置および化学製品の製造方法、同製造装置ならびにプロセスフィードバック制御用プログラムを記録した記憶媒体
JP3612032B2 (ja) 2001-04-04 2005-01-19 轟産業株式会社 化学反応装置における異常反応の制御システム
JP5083320B2 (ja) * 2007-08-22 2012-11-28 富士通株式会社 化合物の物性予測装置、物性予測方法およびその方法を実施するためのプログラム
GB201209239D0 (en) 2012-05-25 2012-07-04 Univ Glasgow Methods of evolutionary synthesis including embodied chemical synthesis
WO2014004333A1 (en) * 2012-06-25 2014-01-03 Lubrizol Advanced Materials, Inc. Method for identifying bioabsorbable polymers
US10622098B2 (en) * 2017-09-12 2020-04-14 Massachusetts Institute Of Technology Systems and methods for predicting chemical reactions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106703A (ja) 1999-10-06 2001-04-17 Mitsubishi Rayon Co Ltd 品質予測反応制御システム
JP2008501837A (ja) 2004-06-09 2008-01-24 ストックハウゼン ゲーエムベーハー コンピュータ生成モデルを用いた親水性ポリマー及び親水性ポリマーを含む追加処理製品の製造方法
JP2010535894A (ja) 2007-08-07 2010-11-25 ダウ グローバル テクノロジーズ インコーポレイティド ポリマー特性の予測を改善する方法、および改善されたポリマー特性予測能を有するシステム

Also Published As

Publication number Publication date
JPWO2020054183A1 (ja) 2021-09-30
EP3851461A4 (en) 2021-11-17
WO2020054183A1 (ja) 2020-03-19
US20210162362A1 (en) 2021-06-03
EP3851461A1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
JP7098821B2 (ja) データ生成装置および方法、並びに学習装置および方法
Zrimec et al. Controlling gene expression with deep generative design of regulatory DNA
JP7250027B2 (ja) フロー反応支援装置及び方法、フロー反応設備及び方法
JP2021196710A (ja) 物性予測装置、物性予測方法及び製造方法
Zangooei et al. Protein secondary structure prediction using DWKF based on SVR-NSGAII
JP2023171765A (ja) フロー反応設備及び方法
Zangooei et al. PSSP with dynamic weighted kernel fusion based on SVM-PHGS
Peng et al. The accurate prediction and analysis of bed expansion characteristics in liquid–solid fluidized bed based on machine learning methods
Qiu et al. Prediction of protein–protein interaction sites using patch-based residue characterization
CN113268925A (zh) 基于差分进化算法时延估计的动态软测量方法
Lima et al. NCYPred: a bidirectional LSTM network with attention for Y RNA and short non-coding RNA classification
Curteanu et al. Neural networks and genetic algorithms used for modeling and optimization of the siloxane‐siloxane copolymers synthesis
Chen et al. Deep ranking in template-free protein structure prediction
JP7254950B2 (ja) 探索装置、探索方法、探索装置の作動プログラム、及びフロー反応設備
Zhang et al. Programming strategies of sequential incremental-scale subproblems for large scale data reconciliation and parameter estimation with multi-operational conditions
Kamath et al. An evolutionary-based approach for feature generation: Eukaryotic promoter recognition
Wu et al. Cluster analysis of dynamic parameters of gene expression
JP7506790B1 (ja) 予測方法、情報処理装置、コンピュータプログラム、物質の選別方法及び物質の製造方法
EP4270120A1 (en) Embedded model-based digital twin workflow for the accelerated optimization of bio-/ chemical processes
JP3954337B2 (ja) プロセス制御支援方法およびプロセス制御支援装置
JPWO2006126292A1 (ja) マイクロアレイデータ変換装置
Zeng Machine learning models for functional genomics and therapeutic design
Gao Deep Learning Methods for Mining Genomic Sequence Patterns
Zhenyue et al. Soft sensor modeling using SVR based on Genetic Algorithm and Akaike Information Criterion
Dong et al. Hybrid-modeling for PTFE polymerization reaction with deep learning-based reaction rate model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230125

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7250027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150