JP7244824B2 - 眼鏡用レンズの設計方法、設計装置、及びプログラム - Google Patents

眼鏡用レンズの設計方法、設計装置、及びプログラム Download PDF

Info

Publication number
JP7244824B2
JP7244824B2 JP2019007326A JP2019007326A JP7244824B2 JP 7244824 B2 JP7244824 B2 JP 7244824B2 JP 2019007326 A JP2019007326 A JP 2019007326A JP 2019007326 A JP2019007326 A JP 2019007326A JP 7244824 B2 JP7244824 B2 JP 7244824B2
Authority
JP
Japan
Prior art keywords
eyeball model
aspherical
aberration
lens
spectacle lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019007326A
Other languages
English (en)
Other versions
JP2020118731A (ja
Inventor
拓志 川守田
慎一 福井
一壽 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itoh Optical Industrial Co Ltd
Kitasato Institute
Original Assignee
Itoh Optical Industrial Co Ltd
Kitasato Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoh Optical Industrial Co Ltd, Kitasato Institute filed Critical Itoh Optical Industrial Co Ltd
Priority to JP2019007326A priority Critical patent/JP7244824B2/ja
Publication of JP2020118731A publication Critical patent/JP2020118731A/ja
Application granted granted Critical
Publication of JP7244824B2 publication Critical patent/JP7244824B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eyeglasses (AREA)

Description

本発明は、眼球光学系における網膜黄斑部よりも外側の周辺部で増加する収差を低減させるのに好適な眼鏡用レンズの設計方法、設計装置、及びプログラムに関する。
従来の眼鏡用レンズの設計方法として、例えば特許文献1には、何れかの屈折面を非球面形状とするに際し、非球面の式を用いたシミュレーションを行い、目標とする光学特性及びレンズの厚みが得られるように非球面係数値を設定する方法が記載されている。
人は対象物を視認する際、網膜の中心部(黄斑部)で見る中心視だけでなく、黄斑部よりも外側の周辺部で見る周辺視も合わせて使用している。このため、周辺視における視認性が損なわれた場合には、視軸に対し所定角度で傾いて入射した光線は網膜周辺部でボケてしまい有効な視野が狭くなってしまう。
周辺視における視認性が損なわれる例として、眼球内に眼内レンズを挿入した場合が挙げられる。白内障の手術において、水晶体を摘出し、代わりに眼球内に眼内レンズを挿入配置する処置が行なわれた場合、眼内レンズが挿入された眼では、健常な眼と比較して周辺視での画質が劣化することが報告されている(例えば、非特許文献1を参照)。
また、健常な眼であっても、網膜の周辺部では必ずしも網膜上の1点で結像するわけではなく、黄斑部よりも外側の網膜周辺部では収差が増加している。このような網膜周辺部での収差(軸外収差)は、小児の近視進行の原因のひとつとされている。
特開2017-58632号公報
IOVS(Investigative Ophthalmology & Visual Science) May 2013 Vol.54 No.5 P3594-3599
しかしながら、上述の特許文献1に記載の設計方法は、網膜周辺部での収差低減を目的としたものではなく、網膜周辺部での収差を低減させることが可能な眼鏡用レンズを設計する方法については開示されていない。
本発明は、このような課題に鑑みてなされたものであって、網膜周辺部での収差を低減して、網膜上での結像状態を改善させることが可能な眼鏡用レンズの設計方法、設計装置、及びプログラムを提供する。
上記課題を解決するため、本発明は以下の手段を採用している。
本発明の第1の態様によれば、前面側の屈折面と後面側の屈折面との少なくとも何れか一面が非球面で構成された眼鏡用レンズの設計方法は、複数の光学要素それぞれのパラメータの値を決定して眼球モデルを構築する眼球モデル構築ステップと、前記眼球モデルの視軸に対し所定角度傾けて光線を入射させ、当該眼球モデルの網膜周辺部での周辺収差を光学シミュレーションにより求める収差取得ステップと、前記眼球モデルの前方に眼鏡用レンズを配置して前記光学シミュレーションを行い、前記周辺収差を低減させる方向に作用する非球面係数値を求める非球面係数値算出ステップと、前記非球面係数値に基づいて、前記眼鏡用レンズの非球面形状を決定する非球面形状決定ステップと、を有する。
このようにすることで、網膜周辺部での収差を低減して、網膜上での結像状態を改善させることが可能な眼鏡用レンズを設計することができる。
本発明の第2の態様によれば、第1の態様に係る眼鏡用レンズの設計方法は、前記眼球モデル構築ステップにおいて、前記光学要素の一つとして水晶体又は眼内レンズを選択してパラメータの値を決定する。
このようにすることで、装用者が眼内レンズを使用しているか否かに応じて、適切な眼球モデルを構築することができる。これにより、網膜周辺部での収差を更に精度よく低減することが可能な眼鏡用レンズを設計することができる。
本発明の第3の態様によれば、第2の態様に係る眼鏡用レンズの設計方法は、前記眼球モデル構築ステップにおいて、前記光学要素の一つとしてコンタクトレンズを更に選択してパラメータの値を決定する。
このようにすることで、装用者がコンタクトレンズを使用しているか否かに応じて、適切な眼球モデルを構築することができる。これにより、網膜周辺部での収差を更に精度よく低減することが可能な眼鏡用レンズを設計することができる。
本発明の第4の態様によれば、第1から第3の何れか一の態様に係る眼鏡用レンズの設計方法は、前記眼球モデル構築ステップにおいて、生体計測データからモデル化された模型眼の値を用いて複数の前記光学要素のパラメータを決定する。
このようにすることで、眼球モデルの構築を容易且つ迅速に行うことができる。
本発明の第5の態様によれば、第1から第4の何れか一の態様に係る眼鏡用レンズの設計方法は、前記眼球モデル構築ステップにおいて、装用者の眼球を測定して得られた値を用いて複数の前記光学要素のパラメータを決定する。
このようにすることで、装用者の眼球により近似した眼球モデルを構築することができる。これにより、網膜周辺部での収差を更に精度よく低減することが可能な眼鏡用レンズを設計することができる。
本発明の第6の態様によれば、前面側の屈折面と後面側の屈折面との少なくとも何れか一面が非球面で構成された眼鏡用レンズの設計装置は、複数の光学要素それぞれのパラメータの値を決定して眼球モデルを構築する眼球モデル構築部と、前記眼球モデルの視軸に対し所定角度傾けて光線を入射させ、当該眼球モデルの網膜周辺部での周辺収差を光学シミュレーションにより求める収差取得部と、前記眼球モデルの前方に眼鏡用レンズを配置して前記光学シミュレーションを行い、前記周辺収差を低減させる方向に作用する非球面係数値を求める非球面係数値算出部と、前記非球面係数値に基づいて、前記眼鏡用レンズの非球面形状を決定する非球面形状決定部と、を備える。
本発明の第7の態様によれば、プログラムは、前面側の屈折面と後面側の屈折面との少なくとも何れか一面が非球面で構成された眼鏡用レンズの設計装置のコンピュータに、複数の光学要素それぞれのパラメータの値を決定して眼球モデルを構築する眼球モデル構築ステップと、前記眼球モデルの視軸に対し所定角度傾けて光線を入射させ、当該眼球モデルの網膜周辺部での周辺収差を光学シミュレーションにより求める収差取得ステップと、前記眼球モデルの前方に眼鏡用レンズを配置して前記光学シミュレーションを行い、前記周辺収差を低減させる方向に作用する非球面係数値を求める非球面係数値算出ステップと、前記非球面係数値に基づいて、前記眼鏡用レンズの非球面形状を決定する非球面形状決定ステップと、を実行させる。
上述の少なくとも一の態様に係る眼鏡用レンズの設計方法、設計装置、及びプログラムによれば、網膜周辺部での収差を低減して、網膜上での結像状態を改善させることが可能な眼鏡用レンズを得ることができる。
本発明の一実施形態に係る設計方法により設計された眼鏡用レンズを模式的に示した図であり、(a)は正面図、(b)はY軸方向の断面図である。 本発明の一実施形態に係る設計方法における処理の一例を示すフローチャートである。 本発明の一実施形態に係る眼球モデル構築ステップにおける処理の一例を示すフローチャートである。 本発明の一実施形態に係る眼球モデルの構成の一例を示す図である。 本発明の一実施形態に係る眼球モデルのスポットダイヤグラムを示す図であり、(a)は網膜中心部における収差を求める場合の説明図、(b)は網膜周辺部における収差を求める場合の説明図である。 本発明の一実施形態に係る非球面係数値算出ステップの詳細を説明するための第1の図である。 本発明の一実施形態に係る非球面係数値算出ステップの詳細を説明するための第2の図であり、(a)は網膜中心部における収差を求める場合の説明図、(b)は網膜周辺部における収差を求める場合の説明図である。 本発明の実施例1に係る眼球モデルのスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。 本発明の実施例1に係る眼球モデルの前方に眼鏡用レンズを配置した場合のスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。 本発明の実施例2に係る眼球モデルの構成の一例を示す図である。 本発明の実施例2に係る眼球モデルのスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。 本発明の実施例2に係る眼球モデルの前方に眼鏡用レンズを配置した場合のスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。 本発明の実施例3に係る眼球モデルの構成の一例を示す図である。 本発明の実施例3に係る眼球モデルのスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。 本発明の実施例3に係る眼球モデルの前方に眼鏡用レンズを配置した場合のスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。 本発明の一実施形態に係る眼鏡用レンズの設計システムの全体構成を示す図である。
以下、本発明の一実施形態に係る眼鏡用レンズの設計方法及び設計装置について、図を参照しながら説明する。
(眼鏡用レンズの構成)
次に、本実施形態に係る眼鏡用レンズ1(以下、単に「レンズ1」とも記載する。)について、図1を参照しながら説明する。なお、以下の説明において、レンズ1を用いた眼鏡を装用した装用者にとっての前後、左右、及び上下を、それぞれ当該レンズ1における前後、左右、及び上下とする。
図1は、本発明の一実施形態に係る設計方法により設計された眼鏡用レンズを模式的に示した図であり、(a)は正面図、(b)はy軸方向の断面図である。
図1において、レンズ1は、装用者の網膜周辺部での収差を低減可能な単焦点レンズである。図1(b)に示すように、レンズ1は、後面2と前面3とを有している。レンズ1は、後面2が以下の式(1)で定義される凹面とされ、前面3が以下の式(2)で定義される凸面とされる。なお、レンズ1の光学中心(後面2では基点O、前面3では基点O)を通る前後方向の軸をz軸とし、レンズ1の後方に向かう方向をz軸の正方向とする。また、z軸はレンズ1の光軸Pに一致する。
z=r/(R+(R -Kr1/2)+ΣA …(1)
z=r/(R+(R -Kr1/2) …(2)
上述の式(1)及び(2)において、rはz軸からの距離である。すなわち、後面2では基点O、前面3では基点Oを中心として、z軸に直交する左右方向の軸をx軸、上下方向の軸をy軸とする直交座標系を考えたとき、r=(x+y1/2である。R、Rは面の頂点における曲率半径であり、定数Kは1である。したがって、レンズ1の前面3は球面、後面2は非球面となる。なお、R、Rは処方度数によって決定される。本実施形態では、処方度数はS度数である例について説明する。
式(1)に示すように、後面2は、処方度数に基づいて次の式(3)で定義される屈折面のz座標値に、ΣAで表される非球面成分が付加されたものである。
z=r/(R+(R -Kr1/2) …(3)
式(1)の第2項であるΣAは、装用者の網膜周辺部での収差を低減させる方向に働く非球面成分である。Aはn次のrに対する非球面係数(nは正の整数)を表す。この第2項は、例えばA+A+A1010+A1212と表すことができる。この場合、6次、8次、10次、12次以外の非球面係数値はゼロである。即ち、レンズ1の後面2側の屈折面は、処方度数を実現するための度数成分と、非球面成分とが合成されて形成されている。
また、後面2の屈折面は上述の式(1)に換えて、以下の式(4)を用いて定義することも可能である。
Az-2Bz+C=0 …(4)
ただし、
A=K′/R
B=1+ΣU2n
C=s/R+ΣV2n+2
=r+zである。
式(4)は、式(1)では形状を表すことが困難なレンズ形状にも対応することができる。なお、式(4)において、コーニック定数K′は、式(1)における定数Kと、K′=K-1の関係にある。また、U及びVは非球面係数である(nは正の整数)。Uは2n次のsに対する非球面係数、Vは2n+2次のsに対する非球面係数を表す。
例えば、式(4)のB及びCは、以下の式(5)及び(6)のように表すことができる。なお、この場合、n=1,2,3以外の非球面係数値はゼロである。
B=1+U+U+U …(5)
C=s/R+V+V+V …(6)
(眼鏡用レンズの設計方法)
次に、眼鏡用レンズ1の設計方法について、図2を参照しながら詳細に説明する。
図2は、本発明の一実施形態に係る設計方法における処理の一例を示すフローチャートである。
図2に示すように、まず、装用者の処方度数に基づいて、レンズ1の前面3の屈折面、及び後面2の屈折面を決定する「屈折面決定ステップ」を実行する(ステップS1)。なお、この屈折面を決定する方法は周知であるため、詳細な説明を省略する。
次に、装用者の眼球に近似する眼球モデルを構築する「眼球モデル構築ステップ」を実行する(ステップS2)。
図3は、本発明の一実施形態に係る眼球モデル構築ステップにおける処理の一例を示すフローチャートである。
ここで、図3を参照しながら眼球モデル構築ステップにおける具体的な処理の流れについて説明する。
眼球モデルは、眼球(眼球モデル)内に入射した光線の網膜上での結像状態に影響を及ぼす複数の光学要素で構成される。具体的には、光学要素として、角膜、瞳孔、水晶体(若しくは眼内レンズ)、網膜、房水、硝子体等を備えている。本実施形態に係る眼球モデル構築ステップでは、装用者の眼球の構成に近似するように、装用者の眼球に眼内レンズが挿入されているか否かに応じて、光学要素の一つとして水晶体又は眼内レンズを選択する(ステップS21)。
また、眼球モデルの光学要素としてコンタクトレンズを含んでもよい。このため、眼球モデル構築ステップでは、コンタクトレンズの有無(眼球モデルを構成する学要素の一つとしてコンタクトレンズを含めるか否か)を更に選択する(ステップS22)。
次に、眼球モデル構築ステップでは、複数の光学要素それぞれのパラメータの値を決定する(ステップS23)。
眼球モデルの構築にあたっては、複数の光学要素それぞれの形状、屈折率、及び各要素間の距離等のパラメータの値を決定する必要がある。例えば、これらパラメータの値として、生体計測データからモデル化された模型眼の値を用いることができる。この模型眼は、例えば、公知の模型眼である、Gullstrand模型眼、Liou-Brennan模型眼、LeGrand模型眼、Walker模型眼、Kooijman模型眼、Navarro模型眼等である。これら模型眼で用いられる光学要素及び各種パラメータの値は、Handbook of Optical Systems, Vol. 4: Survey of Optical Instruments等で参照することができる。
また、パラメータの値として、装用者の眼球の各部を実際に測定して得られた値を用いることができる。例えば、光干渉断層計(OCT;Optical Coherence Tomography)などの眼部断層撮影装置による撮影データから得た角膜、水晶体、網膜の形状を測定した値を用いることも可能である。また、光学方式または超音波方式を利用した光学式眼軸長測定装置、超音波計測・診断システム等の装置で計測された角膜形状、瞳孔径、前房深度、水晶体形状、視軸長等の測定データを用いることも可能である。なお、光学式の測定装置は透明性が要求されるため、装用者が白内障等を有している場合は超音波式の測定装置が有用である。
なお、眼球モデル構築ステップでは、模型眼の値と、装用者の眼球の各部の測定値とを組み合わせて、各光学要素のパラメータの値を決定してもよい。
図4は、本発明の一実施形態に係る眼球モデルの構成の一例を示す図である。
図4では、図中の上側が装用者の耳側であり、下側が鼻側である。
図4で示す眼球モデル10は、角膜12、瞳孔14、眼内レンズ16、網膜18で構成されている。各要素は、その光学中心が視軸20上に位置するように、視軸20に沿って図中の前後方向にそれぞれ所定の距離、離間して配置されている。同図において、Lは図示を省略する物体面から角膜12の前面12aまでの距離である。Lは角膜12の前面12aと後面12bとの距離である。Lは角膜12の後面12bと瞳孔14との距離である。Lは瞳孔14と眼内レンズ16の前面16aとの距離である。Lは眼内レンズ16の前面16aと後面16bとの距離である。Lは眼内レンズ16の後面16bと網膜18との距離である。
角膜12については、その前面12a及び後面12bにおける、曲率半径、屈折率、平面視での大きさ(半径)、コーニック定数をパラメータとして決定する。
瞳孔14については、屈折率、瞳孔の半径、コーニック定数をパラメータとして決定する。
眼内レンズ16については、その前面16a及び後面16bにおける、曲率半径、屈折率、平面視での大きさ(半径)、コーニック定数をパラメータとして決定する。なお、図3のステップS21において、光学要素として水晶体が選択された場合、眼内レンズ16と同様に、水晶体の前面及び後面における曲率半径、屈折率、平面視での大きさ(半径)、コーニック定数をパラメータとして決定する。
網膜18については、曲率半径、平面視での大きさ(半径)、コーニック定数をパラメータとして決定する。
次に、図2に戻り、眼球モデル10(図4)の網膜18上での収差を光学シミュレーションにより求める「収差取得ステップ」を実行する(ステップS3)。
図5は、本発明の一実施形態に係る眼球モデルのスポットダイヤグラムを示す図であり、(a)は網膜中心部における収差を求める場合の説明図、(b)は網膜周辺部における収差を求める場合の説明図である。
図5(a)は、網膜18の中心部における収差を求める場合の説明図である。光学シミュレーションでは、図示を省略した物体面からの光線24を、視軸20と平行に、眼球モデル10に入射させ、この光線24を光線追跡し、網膜18の略中心部での光線到達位置をプロットしスポットダイヤグラムを求める。ここでは光線24として、例えば、波長0.588μmの分割光線24aを用いる。部分拡大図Aで示すように、各分割光線24aは、径方向に等間隔とされた同心仮想円上において、周方向に等間隔に位置するように照射される。したがって、光線中心から径方向外方側に向かうほど、同心仮想円上に配置される分割光線24aの数が多くなる(図5の部分拡大図Aの例では、光線中心から6、12、18、24…と6の倍数の数の分割光線24aが各同心円上に位置する。)。
収差取得ステップでは、視軸20と平行に光線24を入射させたときのスポットダイヤグラムのRMS(Root Mean Square)半径の値により、網膜18の中心部における収差を求めることができる。RMS半径は光線24の広がりを示す指標であり、RMS半径の値が小さいほど収差が小さく、より良好な結像状態と考えられる。RMS半径の値が大きい場合には収差が大きく、網膜18上に形成されたビームスポットはぼやけたものとなる。
次に、収差取得ステップでは、図5(b)で示すように、光線24を眼球モデル10の視軸20に対し所定角度θ傾けて入射させることで、網膜18の周辺部でのスポットダイヤグラムを求める。そして、このときのスポットダイヤグラムのRMS半径の値により、網膜周辺部における収差(周辺収差)を求めることができる。なお、周辺収差を求めるにあたっては、光線24と視軸20との角度θを20度~40度の範囲に設定することが望ましい。
次に、図2に戻り、眼球モデル構築ステップにより構築された眼球モデル10における周辺収差を低減する方向に作用する非球面係数値を求める「非球面係数値算出ステップ」を実行する(ステップS4)。
図6は、本発明の一実施形態に係る非球面係数値算出ステップの詳細を説明するための第1の図である。
図7は、本発明の一実施形態に係る非球面係数値算出ステップの詳細を説明するための第2の図であり、(a)は網膜中心部における収差を求める場合の説明図、(b)は網膜周辺部における収差を求める場合の説明図である。
まず、図6に示すように、眼球モデル10の前方側(角膜12の前面12a)から所定距離だけ離間した位置にレンズ1を配置する。このとき、レンズ1の光軸Pが眼球モデル10の視軸20と一致するように、レンズ1を配置する。同図において、Lはレンズ1の前面3と後面2との距離(すなわちレンズ中心厚)、Lはレンズ1の後面2と眼球モデル10の角膜12の前面12aとの距離である。
このように配置されたレンズ1の後面2の屈折面は、上述の非球面の式(1)で定義される。非球面係数値算出ステップでは、式(1)の第2項で表されている非球面係数Aの値を変化させながら、上述の収差取得ステップ(ステップS3)と同様の光学シミュレーションを反復し、図7(a)で示す網膜中心部における収差と、図7(b)で示す網膜周辺部における収差(周辺収差)とを求める。そして、収差取得ステップ(ステップS3)において取得した周辺収差(レンズ1無しの周辺収差)よりも、周辺収差を低減することができる非球面係数Aの値を求める。
また、非球面係数値算出ステップでは、上述の式(1)に代えて、上述の式(4)を用いる場合、式(4)の非球面係数UおよびVの値を変化させながら、光学シミュレーションを反復する。そして、収差取得ステップ(ステップS3)において取得した周辺収差(レンズ1無しの周辺収差)よりも、周辺収差を低減することができる非球面係数U及びVの値を求める。
具体的には、非球面係数値算出ステップでは、複数の非球面係数Aのうち、周辺収差を所定値以上低減できる非球面係数Aの値を求める。例えば、光線24と視軸との角度θが20度以上である場合、周辺収差がRMS半径で1.5μm以上低減されることが望ましい。この場合、収差取得ステップ(ステップS3)において取得した周辺収差よりも、周辺収差を1.5μm以上低減することができる非球面係数Aの値(又は、非球面係数U、Vの値)を求める。なお、周辺収差を所定値以上低減できる非球面係数が複数ある場合、周辺収差を最も低減できる非球面係数の値を求めてもよい。
次に、図2に戻り、非球面係数値算出ステップにおいて求めた非球面係数Aの値(又は、非球面係数U、Vの値)に基づいて、レンズ1の後面2の屈折面の最終形状(非球面形状)を決定する「非球面形状決定ステップ」を実行する(ステップS5)。本実施形態では、上述の式(1)に示すように、レンズ1の後面2の屈折面の形状は、屈折面決定ステップ(ステップS1)において決定されたレンズ1の後面2の屈折面(処方度数に基づいて定義される屈折面のz座標値)に対し、非球面係数Aの値から得られる(ΣAで表される)非球面成分が付加されたものである。したがって、レンズ1の後面の屈折面の最終形状(非球面形状)は、非球面係数の値が決まれば一意に決定できるものとする。式(4)を使用したときも同様である。
以上のように、本実施形態に係る設計方法を用いて眼鏡用レンズ1を設計することにより、装用者の網膜周辺部での周辺収差を低減させることができ、網膜上での結像状態を改善させることができる。ここで、構築する眼球モデル10は、装用者の眼球に近似するものであることが望ましく、選択する光学要素およびそのパラメータの値は適宜変更可能である。またレンズの非球面を規定する式やその非球面係数値についても適宜変更可能である。
上述のように、周辺収差改善の効果は、眼球モデル10の視軸20に対し20度以上傾けて光線24を入射させた場合の周辺収差が、RMS半径で1.5μm以上低減されることが望ましい。その具体例を以下の実施例にて説明する。
[実施例1]
実施例1は、単焦点の眼内レンズ16を含む眼球モデル10を構築し、この眼球モデル10の有する周辺収差を低減することが可能な単焦点レンズ(眼鏡用レンズ1)を設計した例である。本実施例における眼球モデル10は、Liou-Brennan模型眼のデータに、装用者の瞳孔および眼内レンズ16に関するデータを測定して追加したものである。本実施例の眼球モデル10の構成は、図4に示す眼球モデル10と同じである。
また、本実施例では、上述の眼球モデル構築ステップ(図2のステップS2)により、下記表1に示す光学要素及びパラメータの値を用いて、眼球モデル10を構築した。なお、表1で示す「次の面までの距離」とは、一の光学要素の前面から後面までの距離、又は、一の光学要素の後面から後方に位置する他の光学要素の前面までの距離であり、図4で示されたL1~L6に相当する距離である。例えば、表中の「角膜前面」の「次の面までの距離0.50mm」は、次の面である「角膜後面」までの距離(図4で示されたL)が0.5mmであることを意味している。
Figure 0007244824000001
図8は、本発明の実施例1に係る眼球モデルのスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。
図8(a)及び図8(b)は、上述の収差取得ステップ(図2のステップS3)により、光学シミュレーションにより求めた眼球モデル10における網膜18の中心部及び周辺部におけるスポットダイヤグラムである。図8(b)の例では、光線24を眼球モデル10の視軸20に対し、31度傾けて入射させた場合に得られた網膜18の周辺部(中心部よりも耳側の周辺部)のスポットダイヤグラムの図である。図8(a)、及び図8(b)に示すように、RMS半径の値は、中心部が5.775μmであるのに対し、周辺部が42.814μmと大きく、眼球モデル10は周辺部での収差が特に大きいことが分かる。
なお、図中点線で示されているのは25μmピッチの格子である。また、図中の上下方向が装用者の上下方向を、左方向は鼻側、右方向は耳側を示している。これらの点は、以降の図9、図11、図12、図14、及び図15においても同様である。
次に、この眼球モデル10の角膜12の前方に配置した状態で、網膜周辺部での収差を低減することが可能なレンズ1を、本実施形態の設計方法に従って設計した。なお、本実施例で設計するレンズ1は、レンズ度数がS0.00Dで、後面2が非球面の屈折面で構成された単焦点レンズである。
眼球モデル10およびレンズ1のパラメータの値は、下記表2の通りである。表2で示す「眼鏡レンズ前面」の「次の面までの距離2.00mm」は、図6のLに相当する距離(レンズ1の前面3と後面2との距離)であり、また「眼鏡レンズ後面」で「次の面までの距離12.00mm」は、図6のLに相当する距離(レンズ1の後面2と眼球モデル10の角膜12の前面12aとの距離)である。
Figure 0007244824000002
表2および図6に示すように、上述の非球面係数値算出ステップ(図2のステップS4)により、眼球モデル10の前方にレンズ1を配置した状態で、光学シミュレーションを反復し、周辺収差を低減させる方向に作用するレンズの非球面係数A、A、A10、A12を以下の通り求めた。
:2.852E-08
:5.338E-11
10:-8.440E-13
12:1.574E-15
なお、上記非球面係数において、E及びEの右側の数字は、10を基数としEの右側の数字を指数とする累乗を表している。
また、上述の非球面形状決定ステップ(図2のステップS5)により、非球面係数A,A,A10,A12と、上述の式(1)とに基づいて、レンズ1の後面2の非球面形状を決定した。
図9は、本発明の実施例1に係る眼球モデルの前方に眼鏡用レンズを配置した場合のスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。
ここで、上述のように設計したレンズ1の有無によるスポットダイヤグラムのRMS半径を比較する。レンズ1が無い場合、図8(a)及び図8(b)に示すように、RMS半径は中心部が5.775μm、周辺部が42.814μmであった。これに対し、レンズ1を前方に配置した場合には、図9(a)及び図9(b)に示すように、RMS半径は中心部が5.821μm、周辺部が32.410μmであった。即ち、本実施例のレンズ1を配置することで、網膜18の周辺部の収差を、RMS半径で10.404μm低減することができた。人は0.2μm程度の収差の違いを見分けることができるとの報告もあることを考慮すれば、眼内レンズ16を含んで構成された眼球モデル10に対して、大きな改善効果があることが分かる。
[実施例2]
実施例2は、水晶体を含む眼球モデルを構築し、この眼球モデルの有する周辺収差を低減することが可能な単焦点レンズ(眼鏡用レンズ)を設計した例である。
図10は、本発明の実施例2に係る眼球モデルの構成の一例を示す図である。
図10に示すように、本実施例に係る眼球モデル10Bは、角膜12、瞳孔14、水晶体31、及び網膜18で構成されている。また、水晶体31は、水晶体前面31a、及び水晶体後面31bを有している。
この眼球モデル10Bは、Liou-Brennan模型眼のデータに、装用者の瞳孔に関するデータを測定して追加したものである。また、本実施例では、上述の眼球モデル構築ステップ(図2のステップS2)において、下記表3及び表4に示す光学要素及びパラメータの値を用いて、眼球モデル10Bを構築した。
Figure 0007244824000003
Figure 0007244824000004
表4は、以下の式(7)により水晶体31の屈折率分布を表すためのパラメータである。式(7)では、x、y、zの位置における水晶体31の屈折率nが表わされる。
n=n+nr2+nr4+nr6+nz1z+nz2+nz3 …(7)
ただし、r=x+yである。
水晶体31は内部で屈折率が変化しているため、眼球モデル10Bの場合、上述の収差取得ステップ及び非球面係数値算出ステップ(図2のステップS3、ステップS4)において、表4および式(7)により表された水晶体31内部の屈折率の分布に基づいて光学シミュレーションが行なわれる。
図11は、本発明の実施例2に係る眼球モデルのスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。
図11(a)及び図11(b)は、上述の収差取得ステップ(図2のステップS3)により、光学シミュレーションにより求めた眼球モデル10Bにおける網膜18の中心部及び周辺部におけるスポットダイヤグラムである。図11(b)の例では、光線24を眼球モデル10Bの視軸20に対し、31度傾けて入射させた場合に得られた網膜18の周辺部(中心部よりも耳側の周辺部)のスポットダイヤグラムの図である。図11(a)、及び図11(b)に示すように、RMS半径の値は、中心部が5.618μmであるのに対し、周辺部が26.155μmと大きく、水晶体31を備えた眼球モデル10Bであっても周辺部での収差が大きいことが分かる。
次に、この眼球モデル10Bの前方に配置した状態で、網膜周辺部での収差を低減する
ことが可能なレンズ1B(図示省略)を本実施形態の設計方法に従って設計した。なお、本実施例で設計するレンズ1Bは、レンズ度数がS0.00Dで後面2が非球面の屈折面で構成された単焦点レンズであり、上述の式(4)を用いて後面2の形状を定義している。眼球モデル10Bおよびレンズ1Bのパラメータの値は下記表5の通りである。
Figure 0007244824000005
上述の非球面係数値算出ステップ(図2のステップS4)により、眼球モデル10Bの前方にレンズ1Bを配置した状態で、光学シミュレーションを反復し、周辺収差を低減させる方向に作用するレンズ1Bの非球面係数U、U、V、Vを以下の通り求めた。
:-2.837E-05
:-3.883E-07
:-1.279E-07
:-3.962E-09
また、上述の非球面形状決定ステップ(図2のステップS5)により、非球面係数U、U、V、Vと、上述の式(4)とに基づいて、レンズ1Bの後面2の非球面形状を決定した。
図12は、本発明の実施例2に係る眼球モデルの前方に眼鏡用レンズを配置した場合のスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。
ここで、上述のように設計したレンズ1Bの有無によるスポットダイヤグラムのRMS半径を比較する。レンズ1Bが無い場合、図11(a)及び図11(b)に示すように、RMS半径は中心部が5.618μm、周辺部が26.115μmであった。これに対し、レンズ1Bを前方に配置した場合、図12(a)及び図12(b)に示すように、RMS半径は中心部が5.582μm、周辺部が21.526μmであった。即ち、本実施例の非球面のレンズ1Bを配置することで、網膜18の周辺部の収差を、RMS半径で4.589μm低減することができた。
[実施例3]
実施例3は、コンタクトレンズを含む眼球モデルを構築し、この眼球モデルの有する周辺収差を低減する単焦点レンズ(眼鏡用レンズ)を設計した例である。
図13は、本発明の実施例3に係る眼球モデルの構成の一例を示す図である。
図13に示すように、本実施例に係る眼球モデル10Cは、角膜12、瞳孔14、眼内レンズ16、網膜18に加え、更に角膜12の前面12a側にコンタクトレンズ33が配置されている。また、コンタクトレンズ33は、コンタクトレンズ前面33a、及びコンタクトレンズ後面33bを有している。
この眼球モデル10Cは、Navarro模型眼のデータに、装用者の瞳孔14、眼内レンズ16およびコンタクトレンズ33に関するデータを測定して追加したものである。また、本実施例では、上述の眼球モデル構築ステップ(図2のステップS2)において、下記表6に示す光学要素及びパラメータの値を用いて、眼球モデル10Cを構築した。
Figure 0007244824000006
図14は、本発明の実施例3に係る眼球モデルのスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。
図14(a)及び図14(b)は、上述の収差取得ステップ(図2のステップS3)により、光学シミュレーションにより求めた眼球モデル10Cにおける網膜18の中心部及び周辺部におけるスポットダイヤグラムである。図14(b)の例では、光線24を眼球モデル10Bの視軸20に対し、31度傾けて入射させた場合に得られた網膜18の周辺部(中心部よりも耳側の周辺部)のスポットダイヤグラムの図である。図14(a)、及び図14(b)に示すように、RMS半径の値は、中心部が5.421μmであるのに対し、周辺部が41.282μmと大きく、周辺部での収差が特に大きいことが分かる。
次に、この眼球モデル10Cの前方に配置した状態で、網膜周辺部での収差を低減する
ことが可能なレンズ1C(図示省略)を本実施形態の設計方法に従って設計した。なお設
計するレンズ1Cは、レンズ度数がS0.00Dで、後面2が上述の式(1)で表された非球面の屈折面で構成された単焦点レンズである。眼球モデル10Cおよびレンズ1Cのパラメータの値は下記表7の通りである。
Figure 0007244824000007
表7に示すように、上述の非球面係数値算出ステップ(図2のステップS4)により、眼球モデル10Cの前方にレンズ1Cを配置した状態で、光学シミュレーションを反復し、周辺収差を低減させる方向に作用するレンズの非球面係数A、A、A10、A12を以下の通り求めた。
:-8.396E-08
:3.356E-09
10:-3.356E-11
12:1.105E-13
また、上述の非球面形状決定ステップ(図2のステップS5)により、非球面係数A,A,A10,A12と、上述の式(1)とに基づいて、レンズ1の後面2の非球面形状を決定した。
図15は、本発明の実施例3に係る眼球モデルの前方に眼鏡用レンズを配置した場合のスポットダイヤグラムを示す図であり、(a)は網膜中心部におけるスポットダイヤグラム、(b)は網膜周辺部におけるスポットダイヤグラムである。
ここで、上述のように設計したレンズ1Cの有無によるスポットダイヤグラムのRMS半径を比較する。レンズ1Cが無い場合、図14(a)及び図14(b)に示すように、RMS半径は中心部が5.421μm、周辺部が41.282μmであった。これに対し、レンズ1Cを前方に配置した場合には、図13(a)及び図13(b)に示すように、RMS半径は中心部が5.428μm、周辺部が27.458μmであった。即ち、本例の非球面のレンズ1Cを配置することで、網膜18の周辺部の収差を、RMS半径で13.824μm低減することができた。
(設計システムの全体構成)
また、上述の設計方法を利用した設計システム1000について説明する。
図16は、本発明の一実施形態に係る眼鏡用レンズの設計システムの全体構成を示す図である。
図16に示すように、設計システム1000は、設計装置100と、測定装置200とを備えている。
設計装置100は、眼鏡用レンズ1を設計するための装置である。図8に示すように、設計装置100は、CPU110と、メモリ120と、ストレージ130と、インターフェース140とを備えている。
CPU110は、設計装置100の動作全体を司るプロセッサであり、プログラムに基づいて動作することにより、眼球モデル構築部111、収差取得部112、非球面係数値算出部113、及び形状決定部114としての機能を発揮する。CPU110各部の機能の詳細については後述する。
メモリ120は、いわゆる主記憶装置であって、CPU110がプログラムに基づいて動作するための命令及びデータが展開される。
ストレージ130は、いわゆる補助記憶装置であって、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)等である。ストレージ130には、模型眼のパラメータの値、測定装置200から取得した装用者の処方度数等のデータが記憶される。
インターフェース140は、外部機器と通信するための通信インターフェースである。本実施形態では、インターフェース140は、測定装置200との間で通信を行う。
測定装置200は、眼鏡用レンズを装用する装用者の処方度数を測定するための装置である。また、測定装置200は、装用者の眼球の各部(角膜、瞳孔、水晶体、網膜、房水、硝子体等)の形状等を測定するための装置(例えば、上述の光干渉断層計(OCT;Optical Coherence Tomography)などの眼部断層撮影装置、光学方式または超音波方式を利用した光学式眼軸長測定装置や超音波計測・診断システム等の装置)を更に含んでいてもよい。測定装置200は、装用者の測定結果を設計装置100に出力する。
(設計装置の機能構成)
設計装置100のCPU110の各部は、上述の眼鏡用レンズ1の設計方法の各ステップを実行する。
眼球モデル構築部111は、上述の「眼球モデル構築ステップ」(図2のステップS2)を実行し、装用者の眼球に近似する眼球モデルを構築する。このとき、眼球モデル構築部111は、ストレージ130に予め記憶されている模型眼の値を、各光学要素のパラメータの値として使用してもよい。また、眼球モデル構築部111は、測定装置200により測定された装用者の眼球の測定結果を、各光学要素のパラメータの値として使用してもよい。
収差取得部112は、上述の「収差取得ステップ」(図2のステップS3)を実行し、装用者の眼球モデル10の網膜中心部の収差、及び、網膜周辺部の収差(周辺収差)を取得する。
非球面係数値算出部113は、上述の「非球面係数値算出ステップ」(図2のステップS4)を実行し、周辺収差を低減することができる非球面係数Aの値(又は、非球面係数U、Vの値)を求める。
形状決定部114は、上述の「屈折面決定ステップ」(図2のステップS1)を実行して装用者の処方度数に基づくレンズ1の後面2の屈折面の形状を決定する。また、形状決定部114は、上述の「非球面形状決定ステップ」(図2のステップS5)を実行し、レンズ1の後面2の屈折面の最終形状(非球面形状)を決定する。
なお、上述した設計装置100の各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体(ストレージ130)に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
上記プログラムは、上述した機能の一部を実現するためのものであってもよい。更に、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
(作用効果)
以上のように、本実施形態に係る眼鏡用レンズ1の設計方法によれば、複数の光学要素それぞれのパラメータの値を決定して眼球モデル10を構築する眼球モデル構築ステップと、眼球モデル10の視軸20に対し所定角度θ傾けて光線24を入射させ、当該眼球モデル10の網膜周辺部での周辺収差を光学シミュレーションにより求める収差取得ステップと、眼球モデル10の前方に眼鏡用レンズ1を配置して光学シミュレーションを行い、周辺収差を低減させる方向に作用する非球面係数値を求める非球面係数値算出ステップと、非球面係数値に基づいて、眼鏡用レンズ1の非球面形状を決定する非球面形状決定ステップと、を有する。
このようにすることで、網膜周辺部での収差を低減して、網膜上での結像状態を改善させることが可能な眼鏡用レンズを設計することができる。
また、眼球モデル構築ステップにおいて、光学要素の一つとして水晶体又は眼内レンズを選択してパラメータの値を決定する。
このようにすることで、装用者が眼内レンズを使用しているか否かに応じて、適切な眼球モデル10を構築することができる。これにより、網膜周辺部での収差を更に精度よく低減することが可能な眼鏡用レンズを設計することができる。
また、眼球モデル構築ステップにおいて、光学要素の一つとしてコンタクトレンズを更に選択してパラメータの値を決定する。
このようにすることで、装用者がコンタクトレンズを使用しているか否かに応じて、適切な眼球モデル10を構築することができる。これにより、網膜周辺部での収差を更に精度よく低減することが可能な眼鏡用レンズを設計することができる。
また、眼球モデル構築ステップにおいて、生体計測データからモデル化された模型眼の値を用いて複数の光学要素のパラメータを決定する。
このようにすることで、眼球モデル10の構築を容易且つ迅速に行うことができる。
また、眼球モデル構築ステップにおいて、装用者の眼球を測定して得られた値を用いて複数の光学要素のパラメータを決定する。
このようにすることで、装用者の眼球により近似した眼球モデル10を構築することができる。これにより、網膜周辺部での収差を更に精度よく低減することが可能な眼鏡用レンズを設計することができる。
また、眼球モデル構築ステップにおいて、模型眼の値と、装用者の眼球を測定して得られた値とを用いて複数の光学要素のパラメータの値を決定してもよい。
このようにすることで、装用者の個人差が大きく表れる光学要素については測定値を用いてパラメータの値を決定することができる。これにより、模型眼の値を利用して眼球モデル10の構築を簡易化しつつ、装用者の眼球により近似した眼球モデル10を構築することができる。
以上、本発明の実施形態について詳細に説明したが、本発明の技術的思想を逸脱しない限り、これらに限定されることはなく、多少の設計変更等も可能である。
例えば、上述の実施形態において、レンズ1の後面2の屈折面を決定する際、処方度数としてS度数を用いる態様を例として説明したが、これに限られることはない。他の実施形態では、処方度数として、C度数、乱視軸等を用いてもよい。
また、上述の実施形態において、網膜周辺部での収差を低減する非球面成分は、レンズ1の後面2の屈折面に付与する態様を例として説明したが、これに限られることはない。他の実施形態では、この非球面成分は、レンズ1の前面3の屈折面に付与してもよい。
1、1B、1C 眼鏡用レンズ(レンズ)
2 後面
3 前面
10、10B、10C 眼球モデル
12 角膜
14 瞳孔
16 眼内レンズ
18 網膜
31 水晶体
33 コンタクトレンズ
1000 設計システム
100 設計装置
110 CPU
111 眼球モデル構築部
112 収差取得部
113 非球面係数値算出部
114 形状決定部
120 メモリ
130 ストレージ
140 インターフェース
200 測定装置

Claims (7)

  1. 前面側の屈折面と後面側の屈折面との少なくとも何れか一面が非球面で構成された眼鏡用レンズの設計方法であって、
    複数の光学要素それぞれのパラメータの値を決定して眼球モデルを構築する眼球モデル構築ステップと、
    前記眼球モデルの視軸に対し所定角度傾けて光線を入射させ、当該眼球モデルの網膜周辺部での補正前周辺収差を光学シミュレーションにより求める収差取得ステップと、
    前記眼球モデルの前方に眼鏡用レンズを配置して、前記前面側の屈折面又は前記後面側の屈折面に付加する非球面成分を示す非球面係数値を変えながら複数回の前記光学シミュレーションを行って補正後周辺収差を求め、前記補正前周辺収差よりも補正後周辺収差が所定値以上低減する非球面係数値を求める非球面係数値算出ステップと、
    前記補正前周辺収差よりも所定値以上低減する前記非球面係数値に基づいて、前記眼鏡用レンズの非球面形状を決定する非球面形状決定ステップと、
    を有する眼鏡用レンズの設計方法。
  2. 前記眼球モデル構築ステップにおいて、前記光学要素の一つとして水晶体又は眼内レンズを選択してパラメータの値を決定する、
    請求項1に記載の眼鏡用レンズの設計方法。
  3. 前記眼球モデル構築ステップにおいて、前記光学要素の一つとしてコンタクトレンズを更に選択してパラメータの値を決定する、
    請求項2に記載の眼鏡用レンズの設計方法。
  4. 前記眼球モデル構築ステップにおいて、生体計測データからモデル化された模型眼の値を用いて複数の前記光学要素のパラメータを決定する、
    請求項1から3の何れか一項に記載の眼鏡用レンズの設計方法。
  5. 前記眼球モデル構築ステップにおいて、装用者の眼球を測定して得られた値を用いて複数の前記光学要素のパラメータを決定する、
    請求項1から4の何れか一項に記載の眼鏡用レンズの設計方法。
  6. 前面側の屈折面と後面側の屈折面との少なくとも何れか一面が非球面で構成された眼鏡用レンズの設計装置であって、
    複数の光学要素それぞれのパラメータの値を決定して眼球モデルを構築する眼球モデル構築部と、
    前記眼球モデルの視軸に対し所定角度傾けて光線を入射させ、当該眼球モデルの網膜周辺部での補正前周辺収差を光学シミュレーションにより求める収差取得部と、
    前記眼球モデルの前方に眼鏡用レンズを配置して、前記前面側の屈折面又は前記後面側の屈折面に付加する非球面成分を示す非球面係数値を変えながら複数回の前記光学シミュレーションを行って補正後周辺収差を求め、前記補正前周辺収差よりも補正後周辺収差が所定値以上低減する非球面係数値を求める非球面係数値算出部と、
    前記補正前周辺収差よりも所定値以上低減する前記非球面係数値に基づいて、前記眼鏡用レンズの非球面形状を決定する非球面形状決定部と、
    を備える眼鏡用レンズの設計装置。
  7. 前面側の屈折面と後面側の屈折面との少なくとも何れか一面が非球面で構成された眼鏡用レンズの設計装置のコンピュータに、
    複数の光学要素それぞれのパラメータの値を決定して眼球モデルを構築する眼球モデル構築ステップと、
    前記眼球モデルの視軸に対し所定角度傾けて光線を入射させ、当該眼球モデルの網膜周辺部での補正前周辺収差を光学シミュレーションにより求める収差取得ステップと、
    前記眼球モデルの前方に眼鏡用レンズを配置して、前記前面側の屈折面又は前記後面側の屈折面に付加する非球面成分を示す非球面係数値を変えながら複数回の前記光学シミュレーションを行って補正後周辺収差を求め、前記補正前周辺収差よりも補正後周辺収差が所定値以上低減する非球面係数値を求める非球面係数値算出ステップと、
    前記補正前周辺収差よりも所定値以上低減する前記非球面係数値に基づいて、前記眼鏡用レンズの非球面形状を決定する非球面形状決定ステップと、
    を実行させるプログラム。
JP2019007326A 2019-01-18 2019-01-18 眼鏡用レンズの設計方法、設計装置、及びプログラム Active JP7244824B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019007326A JP7244824B2 (ja) 2019-01-18 2019-01-18 眼鏡用レンズの設計方法、設計装置、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007326A JP7244824B2 (ja) 2019-01-18 2019-01-18 眼鏡用レンズの設計方法、設計装置、及びプログラム

Publications (2)

Publication Number Publication Date
JP2020118731A JP2020118731A (ja) 2020-08-06
JP7244824B2 true JP7244824B2 (ja) 2023-03-23

Family

ID=71891939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007326A Active JP7244824B2 (ja) 2019-01-18 2019-01-18 眼鏡用レンズの設計方法、設計装置、及びプログラム

Country Status (1)

Country Link
JP (1) JP7244824B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466137B2 (ja) * 2019-09-26 2024-04-12 学校法人北里研究所 サーバ装置、発注システム、情報提供方法、およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501240A (ja) 2007-10-26 2011-01-06 ブリアン・ホールデン・ヴィジョン・インスティテュート 周辺視覚を向上させるための方法および装置
JP6201990B2 (ja) 2012-06-18 2017-09-27 ソニー株式会社 画像表示装置、画像表示プログラム及び画像表示方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050981A (en) * 1990-07-24 1991-09-24 Johnson & Johnson Vision Products, Inc. Lens design method and resulting aspheric lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501240A (ja) 2007-10-26 2011-01-06 ブリアン・ホールデン・ヴィジョン・インスティテュート 周辺視覚を向上させるための方法および装置
JP6201990B2 (ja) 2012-06-18 2017-09-27 ソニー株式会社 画像表示装置、画像表示プログラム及び画像表示方法

Also Published As

Publication number Publication date
JP2020118731A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
US11534291B2 (en) Intraocular lens that improves overall vision where there is a local loss of retinal function
JP5205604B2 (ja) 眼内レンズの高次収差の矯正
KR101773359B1 (ko) 근시 조절 안과용 렌즈의 설계
JP6209722B2 (ja) 個別的眼球モデルを用いた眼鏡レンズの最適化
ES2581227T3 (es) Dispositivo y procedimiento para la determinación de la corrección necesaria de la falta de visión de un ojo
JP6920287B2 (ja) 眼科用レンズの3次元性能を判定する方法と、これに関連する眼科用レンズの計算方法
JP6758295B2 (ja) 眼鏡フレームに枠入れされるための眼鏡眼用レンズ
US20230135330A1 (en) Population of an eye model using measurement data in order to optimize spectacle lenses
JP2021131574A (ja) 補助画像を出力するように構成された累進加入度眼用レンズの光学系を計算する方法
KR20030064862A (ko) 눈의 수차를 감소시키는 안과용 렌즈를 수득하는 방법
JP6043731B2 (ja) 目標光学関数の決定方法
JP2015506499A5 (ja)
JP5986985B2 (ja) 眼内レンズおよびその製造方法
JP2016540263A (ja) 装用者に、カスタマイズされた眼科用累進眼鏡レンズを提供する方法
JP2019523454A (ja) 眼の高次収差を考慮して累進レンズのための改善された設計を特定する方法
JP7244824B2 (ja) 眼鏡用レンズの設計方法、設計装置、及びプログラム
KR101063989B1 (ko) 정밀 유한 노안 모형안
ES2313837B1 (es) Diseño analitico de lentes intraoculares.
US20230314837A1 (en) Method for determining the adaptation of a myopia control optical lens
WO2021059660A1 (ja) 眼鏡用レンズの設計方法、設計装置、サーバ装置、端末装置、発注システム、情報提供方法、及びプログラム
WO2010064278A1 (ja) 眼用レンズ設計法および眼用レンズおよび屈折矯正手術装置
JP3870219B2 (ja) コンタクトレンズの組み合わせシリーズ
JP2021536028A (ja) 眼用レンズを決定するための方法
Brazil et al. Modeling and simulation of the human eye

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R150 Certificate of patent or registration of utility model

Ref document number: 7244824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150