JP7239556B2 - カルボジイミド化合物の製造方法 - Google Patents

カルボジイミド化合物の製造方法 Download PDF

Info

Publication number
JP7239556B2
JP7239556B2 JP2020506545A JP2020506545A JP7239556B2 JP 7239556 B2 JP7239556 B2 JP 7239556B2 JP 2020506545 A JP2020506545 A JP 2020506545A JP 2020506545 A JP2020506545 A JP 2020506545A JP 7239556 B2 JP7239556 B2 JP 7239556B2
Authority
JP
Japan
Prior art keywords
compound
carbodiimide
producing
wavelength
isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020506545A
Other languages
English (en)
Other versions
JPWO2019176919A1 (ja
Inventor
展幸 松本
健一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Chemical Inc
Original Assignee
Nisshinbo Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Chemical Inc filed Critical Nisshinbo Chemical Inc
Publication of JPWO2019176919A1 publication Critical patent/JPWO2019176919A1/ja
Priority to JP2023031332A priority Critical patent/JP2023060066A/ja
Application granted granted Critical
Publication of JP7239556B2 publication Critical patent/JP7239556B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C267/00Carbodiimides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/02Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from isocyanates with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/025Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing carbodiimide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/095Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to carbodiimide or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0252Nitrogen containing compounds with a metal-nitrogen link, e.g. metal amides, metal guanidides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、カルボジイミド化合物の製造方法に係り、詳しくはイソシアネートからカルボジイミド化合物を製造する方法に関する。また、本発明は、ポリウレタンの製造方法、カルボジイミド化合物の使用、カルボジイミド組成物、安定剤、及びエステル系樹脂組成物に関する。
カルボジイミド化合物は、熱可塑性樹脂等の各種樹脂の安定剤、加水分解阻止剤等、種々の用途に有用である。
イソシアネートからカルボジイミド化合物を製造する際に、カルボジイミド化触媒として有機リン系触媒を用いることは公知である。
例えば、特許文献1には、リン含有触媒の存在下でポリイソシアネートを反応させて、ポリイソシアネートカルボジイミドを形成することが記載されている。
また、特許文献2には、カルボジイミド形成触媒として、1-フェニル-2-ホスホレン1-オキサイド、3-メチル-1-フェニル-2-ホスホレン1-オキサイド、1-フェニル-2-ホスホレン1-サルファイド、1-エチル-2-ホスホレン1-オキサイド、1-エチル-3-メチル-2-ホスホレン1-オキサイド、及び相当する異性体3-ホスホレン類が挙げられている。
また、イソシアネートをイソシアヌレート変性する際に、イソシアヌレート化触媒として有機金属化合物を用いることは公知である。
例えば、特許文献3には、イソシアネートの三量体化反応(イソシアヌレート化反応)を助成する触媒として、カルボン酸のアルカリ金属塩及び第3級アミンを用いることが記載されている。同号公報では、当該カルボン酸のアルカリ金属塩として、酢酸ナトリウム、酢酸カリウム、カリウム2-エチルヘキソエート、アジピン酸カリウム、安息香酸ナトリウム等のカルボン酸のアルカリ金属塩が挙げられている。また、同号公報では、当該第3級アミンとして、N-アルキルエチレンイミン、N-(2-ジメチルアミノエチル)-N‘-メチルピペラジン及びトリス-3-ジメチルアミノプロピルヘキサヒドロ-s-トリアジンが挙げられている。
特開昭51-37996号公報 特開昭51-61599号公報 特開昭50-159593号公報
特許文献1及び2においてカルボジイミド化触媒として用いられている有機リン系化合物は、非常に高価な化合物である。
また、当該有機リン系化合物を用いてカルボジイミド化合物を製造した場合、得られたカルボジイミド化合物中に残存した有機リン系化合物が相手材料に干渉して使用が困難になるという問題がある。この問題を解決すべく、カルボジイミド化合物の合成中又は合成後に減圧下で触媒を減圧留去する方法が公知であるが、工程が煩雑になるという問題がある。
本発明は、上記課題を解決するためになされたものであり、カルボジイミド化触媒として有機リン系化合物を実質的に用いない場合であっても、イソシアネート化合物からカルボジイミド化合物を高収率にて製造する方法、ポリウレタンの製造方法、カルボジイミド化合物の使用、カルボジイミド組成物、安定剤、及びエステル系樹脂組成物を提供することを目的とするものである。
本発明者らは鋭意検討した結果、従来イソシアヌレート触媒として利用されている有機金属化合物のうちの有機アルカリ金属化合物が、特定のイソシアネートに対しては、カルボジイミド化触媒として有用であり、さらに必要に応じて該触媒を除去する場合、簡易な方法で除去できることを見出した。
すなわち、本発明は、以下の[1]~[10]を提供する。
[1]脂肪族第3級イソシアネート化合物(A)を、ルイス塩基性を有する有機アルカリ金属化合物(B)の存在下で反応させるカルボジイミド生成工程を有する、カルボジイミド化合物の製造方法。
[2]前記ルイス塩基性を有する有機アルカリ金属化合物(B)が、金属アルコキシド、金属アミド、及び金属カルボン酸塩の少なくとも1種である、上記[1]に記載のカルボジイミド化合物の製造方法。
[3]前記脂肪族第3級イソシアネート化合物(A)が、イソシアネート基が結合している第3級炭素原子に少なくとも一つの芳香族環が結合しているものである、上記[1]又は[2]に記載のカルボジイミド化合物の製造方法。
[4]前記脂肪族第3級イソシアネート化合物(A)が、テトラメチルキシリレンジイソシアネート及び3-イソプロペニル-α,α-ジメチルベンジルイソシアネートの少なくとも1種である、上記[1]~[3]のいずれかに記載のカルボジイミド化合物の製造方法。
[5]前記カルボジイミド生成工程において、前記脂肪族第3級イソシアネート化合物(A)を、前記ルイス塩基性を有する有機アルカリ金属化合物(B)及び相間移動触媒(C)の存在下で反応させる、上記[1]~[4]のいずれかに記載のカルボジイミド化合物の製造方法。
[6]前記相間移動触媒(C)が、クラウンエーテル、第4級アンモニウム塩、及び下記一般式(1)で表される化合物の少なくとも1種である、上記[5]に記載のカルボジイミド化合物の製造方法。
Figure 0007239556000001
(式(1)において、X及びYは、それぞれ独立して、メチル基、エチル基、プロピル基、ブチル基、又はフェニル基である。Rは、炭素数2~3のアルキレン基である。mは、2~500の整数である。)
[7]前記カルボジイミド生成工程よりも前、生成工程途中、及び生成工程後の3つの時点のうちの少なくとも1つの時点に、前記脂肪族第3級イソシアネート化合物(A)におけるイソシアネート基の一部を末端封止剤で封止する封止工程を有し、前記末端封止剤は、下記一般式(2-1)で表される化合物(D-1)である、上記[1]~[6]のいずれかに記載のカルボジイミド化合物の製造方法。
Figure 0007239556000002
(式(2-1)において、Zは、メチル基、エチル基、プロピル基、ブチル基、又はフェニル基である。Rは、炭素数2~3のアルキレン基である。nは、2~500の整数である。)
[8]前記カルボジイミド生成工程よりも前、生成工程途中、及び生成工程後の3つの時点のうちの少なくとも1つの時点に、前記脂肪族第3級イソシアネート化合物(A)におけるイソシアネート基の一部を鎖延長剤と反応させる鎖延長工程を有し、前記鎖延長剤は、下記一般式(2-2)で表される化合物(D-2)である、上記[1]~[7]のいずれかに記載のカルボジイミド化合物の製造方法。
Figure 0007239556000003
(式(2-2)において、Rは、炭素数2~3のアルキレン基である。pは、2~500の整数である。)
[9]前記カルボジイミド生成工程の後に、吸着剤(E)を使用して、前記ルイス塩基性を有する有機アルカリ金属化合物(B)を吸着除去する吸着除去工程を有する、上記[1]~[8]のいずれかに記載のカルボジイミド化合物の製造方法。
[10]前記吸着剤(E)は、合成ケイ酸アルミニウム系吸着剤、合成ケイ酸マグネシウム、酸性陽イオン交換樹脂、塩基性陰イオン交換樹脂、アルミナ、シリカゲル系吸着剤、ゼオライト系吸着剤、ハイドロタルサイト類、酸化マグネシウム-酸化アルミニウム系固溶体、水酸化アルミニウム、酸化マグネシウム、及び水酸化アルミニウム-炭酸水素ナトリウム共沈物(ドーソナイト)の少なくとも1種である、上記[9]に記載のカルボジイミド化合物の製造方法。
[11]純度が90質量%以上であり、フォスフォレンオキシド類を含有しないか又はフォスフォレンオキシド類の含有量が1質量ppm以下である安定剤を製造するための、上記[1]~[10]のいずれか1項に記載の製造方法を含む、製造方法。
[12]安定剤の存在下に、ポリオールとジイソシアネートとを反応させることにより、ポリウレタン好ましくは熱可塑性ポリウレタンを得る、ポリウレタンの製造方法であり、
前記安定剤は、脂肪族第3級イソシアネート化合物に由来する脂肪族第3級カルボジイミドを含有し、アルカリ金属の含有量が2000質量ppm未満である、ポリウレタンの製造方法。
[13]前記ポリオールと前記ジイソシアネートの総量100質量部に対する、前記脂肪族第3級イソシアネート化合物に由来する脂肪族第3級カルボジイミドの配合量が、0.1~2質量部、好ましくは0.5~1質量部である、上記[12]に記載のポリウレタンの製造方法。
[14]前記脂肪族第3級イソシアネート化合物に由来する脂肪族第3級カルボジイミドが、好ましくは20~50℃、特に好ましくは25~35℃の温度で、液体の形態で、連続式又はバッチ式で計量仕込みされることを特徴とする、上記[12]又は[13]に記載のポリウレタンの製造方法。
[15]安定剤の存在下に、ポリオールとジイソシアネートとを反応させることにより、ポリウレタン好ましくは熱可塑性ポリウレタンを得る、ポリウレタンの製造方法であり、
前記安定剤が、上記[1]~[10]のいずれか1項に記載のカルボジイミド化合物の製造方法によって製造されたカルボジイミド化合物である、ポリウレタンの製造方法。
[16]加水分解を防止するための、上記[1]~[10]のいずれか1項に記載のカルボジイミド化合物の使用。
[17]脂肪族第3級イソシアネート化合物(A)を構成単位とするカルボジイミド化合物と、アルカリ金属を含有し、フォスフォレンオキシド類を含有しないか又はフォスフォレンオキシド類の含有量が1質量ppm以下である、カルボジイミド組成物。
[18]
さらに相関移動触媒(C)を含有する、上記[17]に記載のカルボジイミド組成物。
[19]脂肪族第3級イソシアネート化合物(A)を構成単位とするカルボジイミド化合物と、アルカリ金属とを含有し、フォスフォレンオキシド類を含有しないか又はフォスフォレンオキシド類の含有量が1質量ppm以下である、安定剤。
[20]さらに相関移動触媒(C)を含有する、上記[19]に記載の安定剤。
[21]上記[17]又は「18」に記載のカルボジイミド組成物、及びエステル系樹脂を含む、エステル系樹脂組成物。
[22]前記カルボジイミド組成物の含有量が、前記エステル系樹脂100質量部に対して、0.2~5.0質量部である、上記[21]に記載のエステル系樹脂組成物。
[23]上記[19]又は[20]に記載の安定剤、及びエステル系樹脂を含む、エステル系樹脂組成物。
本発明によると、カルボジイミド化触媒として有機リン系化合物を実質的に用いない場合であっても、脂肪族第3級イソシアネート化合物を反応させてカルボジイミド化合物を高収率にて製造することができる。
以下、本発明を、実施の形態を用いて詳細に説明する。
1.カルボジイミド化合物の製造方法
本実施の形態に係るカルボジイミド化合物の製造方法は、脂肪族第3級イソシアネート化合物(A)を、ルイス塩基性を有する有機アルカリ金属化合物(B)の存在下で反応させるカルボジイミド生成工程を有する。
前述したとおり、有機アルカリ金属化合物は、通常はイソシアネートの三量体化反応(イソシアヌレート化反応)を助成する触媒として作用する。しかしながら、イソシアネートとして脂肪族第3級イソシアネート化合物(A)を反応させる場合にあっては、ルイス塩基性を有する有機アルカリ金属化合物(B)がカルボジイミド化触媒として作用する。これにより、二量体(ウレトジオン)、三量体(イソシアヌレート)、その他の多量体の生成が抑制又は防止され、カルボジイミド化合物を高収率にて得ることができる。
なお、本実施の形態に係るカルボジイミド化合物の製造方法においては、有機リン系化合物を実質的に用いないことが好ましく、全く用いないことがより好ましい。有機リン系化合物を用いない場合には、カルボジイミドの製造後に触媒の除去工程を行うことを省略することができる。ただし、有機リン系化合物を用いない場合であっても、他の触媒の除去工程を行ってもよい。
本実施の形態に係るカルボジイミド化合物の製造方法は、上記カルボジイミド生成工程の他に、他の工程を有していてもよい。例えば、分子量を制御する目的で、当該カルボジイミド生成工程よりも前、生成工程途中、及び生成工程後の3つの時点のうちの少なくとも1つの時点に、前記脂肪族第3級イソシアネート化合物(A)に由来するイソシアネート基の一部を、イソシアネートと反応する官能基を有する化合物により末端を封止する封止工程やイソシアネート同士をつなげる鎖延長工程を有してもよい。
例えば、生成工程前に封止工程を実施する場合には、脂肪族第3級イソシアネート化合物(A)のイソシアネート基の一部を封止するのが好ましい。生成工程中に封止工程を実施する場合には、前記脂肪族第3級イソシアネート化合物(A)のカルボジイミド化反応により生成したポリカルボジイミドの末端イソシアネート基の一部、および反応前の脂肪族第3級イソシアネート化合物(A)のイソシアネート基の一部を封止するのが好ましい。ポリカルボジイミド生成後に封止工程を実施する場合には、生成したポリカルボジイミド化合物の末端イソシアネート基の全部を封止するのが好ましい。
また、生成工程前に鎖延長工程を実施する場合には、脂肪族第3級イソシアネート化合物(A)のイソシアネート基の一部に鎖延長剤を付与するのが好ましい。生成工程中に鎖延長工程を実施する場合には、前記脂肪族第3級イソシアネート化合物(A)のカルボジイミド化反応により生成したポリカルボジイミドの末端イソシアネート基の一部、および反応前の脂肪族第3級イソシアネート化合物(A)のイソシアネート基の一部に鎖延長剤を付与するのが好ましい。ポリカルボジイミド生成後に鎖延長工程を実施する場合には、生成したポリカルボジイミド化合物の末端イソシアネート基の一部又は全部に鎖延長剤を付与するのが好ましい。
なお、当該封止工程は、当該カルボジイミド生成工程よりも前、生成工程途中又は生成工程後のいずれかのみにおいて実施してもよい。また、当該鎖延長工程は、当該カルボジイミド生成工程よりも前、生成工程途中又は生成工程後のいずれかのみにおいて実施してもよい。
また、当該カルボジイミド生成工程の後に、吸着剤(E)を使用して、前記ルイス塩基性を有する有機アルカリ金属化合物(B)を吸着除去する吸着除去工程を有してもよい。
なお、本実施の形態に係るカルボジイミド化合物の製造方法においては、有機リン系化合物を実質的に用いず、好ましくは全く用いない。有機リン系化合物を用いない場合には、カルボジイミドの製造後に触媒の除去工程を行うことを省略することができる。ただし、有機リン系化合物を用いない場合であっても、他の触媒の除去工程を行ってもよい。
次に、各工程について説明する。
[カルボジイミド生成工程]
本実施の形態に係るカルボジイミド化合物の製造方法は、脂肪族第3級イソシアネート化合物(A)を、ルイス塩基性を有する有機アルカリ金属化合物(B)の存在下で反応させるカルボジイミド生成工程を有する。
<脂肪族第3級イソシアネート化合物(A)>
本実施の形態において、脂肪族第3級イソシアネート化合物(A)とは、イソシアネート基が芳香族環以外の炭素原子に直結しており、かつ当該イソシアネート基が直結している炭素原子が第3級炭素原子である、イソシアネート化合物のことをいう。
例えば、イソシアネート基が鎖状構造を構成する炭化水素の第3級炭素原子に直結している化合物や、イソシアネート基が脂環構造を構成する第3級炭素原子に直結している化合物は、脂肪族第3級イソシアネート化合物(A)に該当する。また、分子中に芳香族環を有していても、イソシアネート基が当該芳香族環に直結しておらず、芳香族環以外の3級炭素原子に直結していれば、脂肪族第3級イソシアネート化合物(A)に該当する。
脂肪族第3級イソシアネート化合物(A)は、モノイソシアネート化合物、ジイソシアネート化合物、及び1分子中に3個以上のイソシアネート基が存在するイソシアネート化合物のいずれであってもよい。
1分子中に2個以上のイソシアネート基が存在する場合、少なくとも1個のイソシアネート基が、芳香族環以外の第3級炭素原子に直結していれば、脂肪族第3級イソシアネート化合物(A)に該当する。但し、1分子中の総てのイソシアネート基が、芳香族環以外の第3級炭素原子に直結していることが好ましい。
脂肪族第3級イソシアネート化合物(A)は、イソシアネート基を除いた炭化水素部分が、炭化水素基以外の置換基を有していても有していなくてもよく、炭化水素基以外の置換基を有しないことが好ましい。
脂肪族第3級イソシアネート化合物(A)は、鎖状構造を有していても有していなくてもよく、脂環構造を有していても有していなくてもよく、また、芳香族環を有していても有していなくてもよい。
脂肪族第3級イソシアネート化合物(A)は、イソシアネート基が結合している第3級炭素原子に少なくとも一つの芳香族環が結合しているものであることが好ましい。芳香族環が結合している場合、理由は明確ではないがルイス塩基性を有する有機アルカリ金属(B)がイソシアネート基を攻撃して中間体を作る際に中間体が安定し、カルボジイミド化が進み易くなるものと考えられる。
なお、イソシアネート基が結合している第3級炭素原子が一分子中に複数個ある場合には、そのうちの少なくとも1つの第3級炭素原子に、少なくとも一つの芳香族環が結合していればよい。しかし、イソシアネート基が結合している第3級炭素原子が一分子中に複数個ある場合には、そのうちの総ての第3級炭素原子に、少なくとも一つの芳香族環が結合していることが好ましい。
脂肪族第3級イソシアネート化合物(A)は、下記一般式(3)で表される化合物であることが好ましい。
Figure 0007239556000004
式(3)中、R~Rはそれぞれ独立に任意の有機化合物の一価の残基(ただし、R~Rはそれぞれ独立に、R~R中の炭素原子が、式(3)中の炭素原子と結合している)であり、好ましくは置換又は無置換の炭化水素基であり、例えば置換又は無置換のアルキル基、アルケニル基、又は芳香族基であり、例えばイソシアネート基以外の基で置換されることのないアルキル基又は芳香族基、すなわち、イソシアネート基で置換されたもしくは無置換のアルキル基、又はイソシアネート基で置換されたもしくは無置換の芳香族基である。
~Rはそれぞれ独立に、1個又は2個以上のイソシアネート基を有してもよい。また、R~Rのうちの1個が1個又は2個以上のイソシアネート基を有していてもよく、R~Rはイソシアネート基を有しなくてもよい。
~Rには特に限定はなく、それぞれ独立に、炭素数が例えば1~20、例えば1~10であってもよく、また、より炭素数の大きいものであってもよい。
また、R~Rの少なくとも一つは、置換又は無置換の芳香族基であることが好ましい。置換又は無置換の芳香族基である場合、理由は明確ではないがルイス塩基性を有する有機アルカリ金属(B)がイソシアネート基を攻撃して中間体を作る際に中間体が安定し、カルボジイミド化が進み易くなるものと考えられる。
置換又は無置換の芳香族基は、好ましくは置換又は無置換の炭素数6~20のアリール基であり、より好ましくは置換又は無置換のフェニル基である。また、置換又は無置換の芳香族基における置換基は、好ましくは炭素数1~20のアルキル基又は炭素数2~20のアルケニル基、より好ましくは炭素数1~4のアルキル基又は炭素数2~4のアルケニル基である。
上記一般式(3)で表される化合物としては、3-イソプロペニル-α,α-ジメチルベンジルイソシアネート(TMI)等のモノイソシアネート;テトラメチルキシリレンジイソシアネート(TMXDI)等のジイソシアネートが挙げられる。
脂肪族第3級イソシアネート化合物(A)が、イソシアネート基が脂環構造を構成する炭化水素の第3級炭素原子に直結している化合物である場合、当該脂環構造は、アダマンタン構造、ノルボルナン構造、ノルボルナジエン構造、ビシクロウンデカン構造、デカヒドロナフタレン構造、キュバン構造、バスケタン構造、ハウサン構造等が挙げられる。当該脂環構造には、イソシアネート基以外の置換基が結合していても結合していなくてもよい。
脂肪族第3級イソシアネート化合物(A)は、好ましくはテトラメチルキシリレンジイソシアネート(TMXDI)及び3-イソプロペニル-α,α-ジメチルベンジルイソシアネート(TMI)の少なくとも1種であり、より好ましくはTMXDI又はTMIであり、更に好ましくはTMXDIである。
脂肪族第3級イソシアネート化合物(A)がモノイソシアネート化合物である場合、本実施の形態に係るカルボジイミド化合物の製造方法により、2個のモノイソシアネート化合物のイソシアネート基の脱炭酸縮合反応を生じさせ、モノカルボジイミド化合物を生成することができる。
また、脂肪族第3級イソシアネート化合物(A)がポリイソシアネート化合物である場合、本実施の形態に係るカルボジイミド化合物の製造方法により、2個のポリイソシアネート化合物を重合させて、モノカルボジイミド化合物を生成することができると共に、3個以上のポリイソシアネート化合物を重合させて、ポリカルボジイミド化合物を生成することができる。
ここで、モノイソシアネート化合物とは、イソシアネート基を1個有する化合物を意味する。ポリイソシアネート化合物とは、イソシアネート基を2個以上有する化合物を意味する。また、イソシアネート化合物という語句は、モノイソシアネート化合物及びポリイソシアネート化合物を含む概念である。
また、モノカルボジイミド化合物とは、カルボジイミド基を1個有する化合物を意味する。ポリカルボジイミド化合物とは、カルボジイミド基を2個以上有する化合物を意味する。また、カルボジイミド化合物という語句は、モノカルボジイミド化合物及びポリカルボジイミド化合物を含む概念である。
また、本実施の形態において、カルボジイミド化合物の重合度がPであるとは、イソシアネート化合物の脱炭酸縮合反応によってカルボジイミド化合物が生成した場合における、当該カルボジイミド化合物の1分子中に生じたカルボジイミド基の個数Pを意味する。例えば、P+1個のジイソシアネート化合物が重合して、P個のカルボジイミド基を有するポリカルボジイミド化合物が生成した場合、得られたカルボジイミド化合物の重合度はPである。また、P-1個のジイソシアネート化合物と2個のモノイソシアネート化合物が重合して、末端封止されたP個のカルボジイミド基を有するポリカルボジイミド化合物が生成した場合でも、得られたカルボジイミド化合物の重合度はPである。
また、本実施の形態において、脂肪族第3級イソシアネート化合物(A)のカルボジイミド化反応によって生じたカルボジイミド化合物におけるNCO%とは、得られたカルボジイミド化合物中におけるイソシアネート基(NCO基)の含有量(質量%)を意味する。当該NCO%は、実施例に記載の方法によって測定することができる。
<ルイス塩基性を有する有機アルカリ金属化合物(B)>
本実施の形態に用いられるカルボジイミド化触媒は、ルイス塩基性を有する有機アルカリ金属化合物(B)である。なお、本実施の形態に用いられるルイス塩基性を有する有機アルカリ金属化合物(B)は、分子中にリン原子を含まない。これにより、得られたカルボジイミド化合物中に有機リン系化合物が残存し、添加剤として使用した時に相手材料に干渉して使用が困難になるという問題や、残存した有機リン系化合物を除去する手間が生じたりすることが回避される。
ルイス塩基性を有する有機アルカリ金属化合物(B)の添加量は、脂肪族第3級イソシアネート化合物(A)100質量部に対して、0.01質量部以上であればよく、特に上限はないが、0.01質量部以上5質量部以下であることが好ましい。0.01質量部以上であれば、カルボジイミド反応の促進効果に優れ、また、5質量部を超えると、それ以上添加してもカルボジイミド反応の促進効果が十分に向上しない。当該観点から、当該添加量は、より好ましくは0.05~3質量部、更に好ましくは0.1~1質量部である。
ルイス塩基性を有する有機アルカリ金属化合物(B)は、好ましくは金属アルコキシド、金属アミド、及び金属カルボン酸塩の少なくとも1種であり、一態様では金属アミドである。
≪金属アルコキシド≫
金属アルコキシドは、アルカリ金属アルコキシドである。
アルカリ金属アルコキシドとしては、下記一般式(5)で表される化合物であることが好ましい。
M-OR10 (5)
式(5)中、Mは、アルカリ金属であり、好ましくはリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、の少なくとも1種であり、より好ましくはリチウム(Li)、ナトリウム(Na)、セシウム(Cs)及びカリウム(K)の少なくとも1種であり、更に好ましくはリチウム(Li)、ナトリウム(Na)、及びカリウム(K)の少なくとも1種である。
式(5)中、R10は、好ましくは炭素数1~20のアルキル基又は炭素数6~20のアリール基、より好ましくは炭素数1~20のアルキル基、更に好ましくは炭素数1~10のアルキル基、より更に好ましくは炭素数1~6のアルキル基、より更に好ましくは炭素数1~4のアルキル基、より更に好ましくは炭素数2~4のアルキル基、より更に好ましくはエチル基及びtert-ブチル基の少なくとも1種である。
である。
アルカリ金属アルコキシドとしては、好ましくはカリウムtert-ブトキシド、ナトリウムtert-ブトキシド、カリウムエトキシド及びナトリウムエトキシドの少なくとも1種であり、より好ましくはカリウムtert-ブトキシド及びナトリウムエトキシドの少なくとも1種である。
≪金属アミド≫
金属アミドとしては、好ましくはリチウムアミド、ナトリウムアミド、カリウムアミド、セシウムアミド等のアルカリ金属アミドであり、より好ましくはリチウムアミドであり、更に好ましくはリチウムジイソプロピルアミド(LDA)である。
≪金属カルボン酸塩≫
金属カルボン酸塩としては、好ましくはアルカリ金属酢酸塩であり、より好ましくは酢酸カリウム及び酢酸セシウムの少なくとも一種である。
また、ルイス塩基性を有する有機アルカリ金属化合物(B)において、アルカリ金属の種類により、当該アルカリ金属に結合する有機化合物の好適な種類は異なる。
すなわち、当該アルカリ金属がリチウム、ナトリウム、又はカリウムである場合、ルイス塩基性を有する有機アルカリ金属化合物(B)は、取扱性及び安定性の観点から、好ましくは金属アルコキシド、金属アミド、及び金属カルボン酸塩の少なくとも1種であり、より好ましくは金属アルコキシド及び金属アミドの少なくとも一種である。
また、当該アルカリ金属がセシウムである場合、ルイス塩基性を有する有機アルカリ金属化合物(B)は、取扱性及び安定性の観点から、好ましくはセシウムアルコキシド、セシウムアミド及びカルボン酸セシウムの少なくとも1種であり、より好ましくはカルボン酸セシウムである。
<相間移動触媒(C)>
前記カルボジイミド生成工程において、前記脂肪族第3級イソシアネート化合物(A)を、前記ルイス塩基性を有する有機アルカリ金属化合物(B)及び相間移動触媒(C)の存在下で反応させてもよい。これにより、カルボジイミド化合物をより迅速に得ることができる。
本実施の形態において「相間移動触媒」とは、水に不溶の有機化合物と有機溶媒に不溶の化合物を反応させるために使用される試薬のことであり、詳しくは、第3級イソシアネート基含有化合物(A)と、ルイス塩基性を有する有機アルカリ金属化合物(B)とを効率よく反応させるために使用される試薬のことである。
相間移動触媒(C)の添加量は、脂肪族第3級イソシアネート化合物(A)100質量部に対して、0.01質量部以上であればよく、特に上限はない。0.01質量部以上であると、カルボジイミド反応の促進効果に優れ、また、300質量部以上であると、それ以上添加してもカルボジイミド反応の促進効果が十分に向上しない。当該観点から、当該添加量は、より好ましくは0.01~300、更に好ましくは0.05~200質量部、より更に好ましくは0.1~100質量部である。なお、相間移動触媒(C)の添加量を低減する場合において、10質量部以下、例えば5質量部以下であっても当該効果を奏し得る。
本実施の形態に用いられる相間移動触媒(C)には特に限定はないが、好ましくはクラウンエーテル、第4級アンモニウム塩、及びポリアルキレングリコールジアルキルエーテルの少なくとも1種であり、より好ましくはクラウンエーテル、第4級アンモニウム塩、及び後述する一般式(1)で表される化合物の少なくとも1種である。
これらの中で、反応速度の向上の観点からは、クラウンエーテルがより好ましく、経済性の観点からは、第4級アンモニウム塩及びポリアルキレングリコールジアルキルエーテルの少なくとも1種がより好ましい。
≪クラウンエーテル≫
クラウンエーテルには特に限定はなく、一般構造式(-CH-CH-O-)(nは整数)で表させる狭義のクラウンエーテルであってもよく、クラウンエーテルの環を構成する酸素原子の一部又は全部が硫黄原子に置換されたチアクラウンエーテルであってもよく、当該酸素の一部又は全部がNR(Rは置換基)等に置換されたアザクラウンエーテルであってもよい。また、これらクラウンエーテルは修飾されていてもよい。例えば、修飾されていない狭義のクラウンエーテルを用いてもよい。
クラウンエーテルとしては、好ましくは4’-アセチルベンゾ-15-クラウン5-エーテル(4'-Acetylbenzo-15-crown 5-Ether)、4’-アセチルベンゾ-18-クラウン6-エーテル(4'-Acetylbenzo-18-crown 6-Ether)、4’-アミノベンゾ-15-クラウン5-エーテル(4'-Aminobenzo-15-crown 5-Ether)、1-アザ-12-クラウン4-エーテル(1-Aza-12-crown 4-Ether)、1-アザ-15-クラウン5-エーテル(1-Aza-15-crown 5-Ether)、1-アザ-18-クラウン6-エーテル(1-Aza-18-crown 6-Ether)、ベンゾ-12-クラウン4-エーテル(Benzo-12-crown 4-Ether)、ベンゾ-15-クラウン5-エーテル(Benzo-15-crown 5-Ether)、ベンゾ-18-クラウン6-エーテル(Benzo-18-crown 6-Ether)、ビス(1,4-フェニレン)-34-クラウン10-エーテル(Bis(1,4-phenylene)-34-crown 10-Ether)、4’-ブロモベンゾ-15-クラウン5-エーテル(4'-Bromobenzo-15-crown 5-Ether)、4’-ブロモベンゾ-18-クラウン6-エーテル(4'-Bromobenzo-18-crown 6-Ether)、4’-カルボキシベンゾ-15-クラウン5-エーテル(4'-Carboxybenzo-15-crown 5-Ether)、4’-カルボキシベンゾ-18-クラウン6-エーテル(4'-Carboxybenzo-18-crown 6-Ether)、15-クラウン4[4-(2,4-ジニトロフェニルアゾ)フェノール](15-Crown-4 [4-(2,4-Dinitrophenylazo)phenol] )、18-クラウン5[4-(2,4-ジニトロフェニルアゾ)フェノール](18-Crown-5 [4-(2,4-Dinitrophenylazo)phenol] )、12-クラウン4-エーテル(12-Crown 4-Ether)、15-クラウン5-エーテル(15-Crown 5-Ether)、18-クラウン6-エーテル(18-Crown 6-Ether)、24-クラウン8-エーテル(24-Crown 8-Ether)、4,10-ジアザ-12-クラウン4-エーテル(4,10-Diaza-12-crown 4-Ether)、4,10-ジアザ-15-クラウン5-エーテル(4,10-Diaza-15-crown 5-Ether)、4,13-ジアザ-18-クラウン6-エーテル(4,13-Diaza-18-crown 6-Ether)、ジベンゾ-15-クラウン5-エーテル(Dibenzo-15-crown 5-Ether)、ジベンゾ-18-クラウン6-エーテル(Dibenzo-18-crown 6-Ether)、ジベンゾ-21-クラウン7-エーテル(Dibenzo-21-crown 7-Ether)、ジベンゾ-24-クラウン8-エーテル(Dibenzo-24-crown 8-Ether)、ジベンゾ-30-クラウン10-エーテル(Dibenzo-30-crown 10-Ether)、N,N’-ジベンジル-4,13-ジアザ-18-クラウン6-エーテル(N,N'-Dibenzyl-4,13-diaza-18-crown 6-Ether)、ジシクロヘキサノ-18-クラウン6-エーテル(Dicyclohexano-18-crown 6-Ether)、4’-ホルミルベンゾ-15-クラウン5-エーテル(4'-Formylbenzo-15-crown 5-Ether)、4’-ホルミルベンゾ-18-クラウン6-エーテル(4'-Formylbenzo-18-crown 6-Ether)、1,4,7,10,13,16-ヘキサアザシクロオクタデカン(1,4,7,10,13,16-Hexaazacyclooctadecane)、1,4,7,10,13,16-ヘキサアザシクロオクタデカンヘキサヒドロクロライド(1,4,7,10,13,16-Hexaazacyclooctadecane Hexahydrochloride)、4,7,13,16,21,24-ヘキサオキサ-1,10-ジアザビシクロ[8.8.8]ヘキサコサン(4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)、2-(ヒドロキシメチル)-12-クラウン4-エーテル(2-(Hydroxymethyl)-12-crown 4-Ether)、2-(ヒドロキシメチル)-15-クラウン5-エーテル(2-(Hydroxymethyl)-15-crown 5-Ether)、2-(ヒドロキシメチル)-18-クラウン6-エーテル(2-(Hydroxymethyl)-18-crown 6-Ether)、4’-メトキシカルボニルベンゾ-15-クラウン5-エーテル(4'-Methoxycarbonylbenzo-15-crown 5-Ether)、4’-ニトロベンゾ-15-クラウン5-エーテル(4'-Nitrobenzo-15-crown 5-Ether)、4’-ニトロベンゾ-18-クラウン6-エーテル(4'-Nitrobenzo-18-crown 6-Ether)、N-フェニルアザ-15-クラウン5-エーテル(N-Phenylaza-15-crown 5-Ether)、1,4,7,10-テトラアザシクロドデカン(1,4,7,10-Tetraazacyclododecane)、1,4,7,10-テトラアザシクロドデカン-1,4,7,10-四酢酸(1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acid)、1,4,7,10-テトラアザシクロドデカン四塩酸塩(1,4,7,10-Tetraazacyclododecane Tetrahydrochloride)、1,4,8,12-テトラアザシクロペンタデカン(1,4,8,12-Tetraazacyclopentadecane)、1,4,8,11-テトラアザシクロテトラデカン(1,4,8,11-Tetraazacyclotetradecane)、1,4,7,10-テトラベンジル-1,4,7,10-テトラアザシクロドデカン(1,4,7,10-Tetrabenzyl-1,4,7,10-tetraazacyclododecane)、テトラエチル-1,4,8,11-テトラアザシクロテトラデカン-1,4,8,11-テトラアアセテート( Tetraethyl 1,4,8,11-Tetraazacyclotetradecane-1,4,8,11-tetraacetate)、1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカン(1,4,8,11-Tetramethyl-1,4,8,11-tetraazacyclotetradecane)、1,4,8,11-テトラチアシクロテトラデカン(1,4,8,11-Tetrathiacyclotetradecane)、1,5,9-トリアザシクロドデカン(1,5,9-Triazacyclododecane)、1,4,7-トリアザシクロノナン(1,4,7-Triazacyclononane)、1,4,7-トリアザシクロノナン三塩酸塩(1,4,7-Triazacyclononane Trihydrochloride)、トリ-tert-ブチル-1,4,7,10-テトラアザシクロドデカン-1,4,7,10-テトラアセテート(Tri-tert-butyl 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetate)、トリ-tert-ブチル-1,4,7,10-テトラアザシクロドデカン-1,4,7-トリアセテート(Tri-tert-butyl 1,4,7,10-Tetraazacyclododecane-1,4,7-triacetate)、1,4,7-トリメチル-1,4,7-トリアザシクロノナン(NaHCO安定化)(1,4,7-Trimethyl-1,4,7-triazacyclononane (stabilized with NaHCO3) )、1,4,7-トリチアシクロノナン(1,4,7-Trithiacyclononane)の少なくとも1種である。
これらの中で、より好ましくは12-クラウン4-エーテル、15-クラウン5-エーテル、18-クラウン6-エーテル、及び24-クラウン8-エーテルの少なくとも1種であり、更に好ましくは18-クラウン6-エーテル、15-クラウン5-エーテルである。
また、クラウンエーテルは、ルイス塩基性を有する有機アルカリ金属化合物(B)におけるカチオンの種類に応じて適宜選択することが好ましい。例えば、カチオンがカリウム(K)の場合には18-クラウン6-エーテルが好ましく、カチオンがナトリウム(Na)の場合には15-クラウン5-エーテルが好ましい。
≪第4級アンモニウム塩≫
第4級アンモニウム塩には特に限定はないが、好ましくはテトラブチルアンモニウムブロミド(Tetrabutylammonium Bromide)、テトラブチルアンモニウムヨージド(Tetrabutylammonium Iodide)、テトラブチルアンモニウム・2-エチルヘキサン酸塩(Tetrabutylammonium 2-ethylhexanoate)、テトラブチルアンモニウム・硫酸水素塩(Tetrabutylammonium Hydrogen Sulphate)、テトラブチルアンモニウムクロリド(Tetrabutylammonium Chloride)、テトラブチルアンモニウムフロライド三水和物(Tetrabutylammonium fluoride trihydrate)、テトラブチルアミニウム・硝酸塩(Tetrabutylammonium nitrate)テトラブチルアミニウム・亜硝酸(Tetrabutylammonium nitrite)、テトラブチルアンモニウムアセタート(Tetrabutylammonium Acetate)、テトラブチルアンモニウムトリヨージド(Tetrabutylammonium Triiodide)、テトラエチルアンモニウムブロミド(Tetraethylammonium Bromide)、テトラエチルアンモニウムクロリド(Tetraethylammonium Chloride)、テトラエチルアンモニウムフロライド二水和物(Tetraethylammonium fluoride dihydrate)、テトラプロピルアンモニウムブロミド(Tetrapropylammonium bromide)、テトラプロピルアンモニウムクロリド(Tetrapropylammonium Chloride)、テトラメチルアンモニウムクロリド(Tetramethylammonium Chloride)、ベンジルトリエチルアンモニウムクロリド(Benzyltriethylammonium chloride)、ベンジルトリエチルアンモニウムブロミド(Benzyltriethylammonium Bromide)、ベンジルトリメチルアンモニウムクロリド(Benzyltrimethylammonium Chloride)、ベンジルトリメチルアンモニウムブロミド(Benzyltrimethylammonium Bromide)、ジクロロよう素酸ベンジルトリメチルアンモニウム(Benzyltrimethylammonium Dichloroiodate)、ベンジルトリブチルアンモニウムクロリド(Benzyltributylammonium Chloride)、ベンジルトリブチルアンモニウムブロミド(Benzyltributylammonium Bromide)、メチルトリブチルアンモニウムクロリド(Methyltributylammonium Chloride)、メチルトリブチルアンモニウムブロミド(Methyltributylammonium Bromide)、メチルトリエチルアンモニウムクロリド(Methyltriethylammonium Chloride)、メチルトリエチルアンモニウムブロミド(Methyltriethylammonium Bromide)、フェニルトリメチルアンモニウムクロリド(Phenyltrimethylammonium chloride)、ベヘントリモニウムクロリド(Behentrimonium Chloride)、セチルトリメチルアンモニウムブロミド(Cetyltrimethylammonium Bromide)、セチルトリメチルアンモニウムクロリド(Cetyltrimethylammonium Chloride)、セチルトリメチルアンモニウム・硫酸水素塩(Cetyltrimethylammonium Hydrogen Sulphate)、セタルコニウムクロリド(Cetalkonium Chloride)、セタルコニウムブロミド(Cetalkonium Bromide)、ベンジルセチルジメチルアンモニウムクロリド(Cetyldimethylbenzylammonium Chloride)、セチルジメチルエチルアンモニウムブロミド(Cetyldimethylethylammonium Bromide)、セトリミド(Cetrimide)、ジデシルジメチルアンモニウムクロリド(Didecyldimethylammonium chloride)、ドデシルトリメチルアンモニウムクロリド(Dodecyltrimethylammonium Chloride)、ドデシルトリメチルアンモニウムブロミド(Dodecyltrimethylammonium Bromide)、ミリスチルトリメチルアンモニウムブロミド(Myristyltrimethylammonium Bromide)、メチルトリオクチルアンモニウムクロリド(Methyltrioctylammonium Chloride)、テトラ-n-オクチルアンモニウムブロミド(Tetra-n-octylammonium Bromide)、トリメチル-n-オクチルアンモニウムブロミド(Trimethyloctylammonium bromide)、及びトリオクチルメチルアンモニウムブロミド(Trioctyl methyl ammonium bromide)の少なくとも1種である。
これらの中で、入手容易性の観点から、好ましくはテトラブチルアンモニウム塩であり、例えばテトラブチルアンモニウム・2-エチルヘキサン酸塩(Tetrabutylammonium 2-ethylhexanoate)である。
≪ポリアルキレングリコールジアルキルエーテル≫
ポリアルキレングリコールジアルキルエーテルには特に限定はないが、好ましくは下記一般式(1)で表される化合物である。
Figure 0007239556000005
式(1)において、X及びYは、それぞれ独立して、メチル基、エチル基、プロピル基、ブチル基、又はフェニル基である。Rは、炭素数2~3のアルキレン基である。mは、2~500の整数であり、好ましくは3~300の整数であり、より好ましくは4~200の整数である。
式(1)で表される化合物は、好ましくはポリオキシエチレンジアルキルエーテル及びポリオキシプロピレンジアルキルエーテルの少なくとも1種である。
ポリオキシエチレンジアルキルエーテルとしては、好ましくはポリオキシエチレンジメチルエーテル、ポリオキシエチレンジエチルエーテル、ポリオキシエチレンジプロピルエーテル、ポリオキシエチレンジブチルエーテル、及びポリオキシエチレンジフェニルエーテルの少なくとも1種である。
また、ポリオキシプロピレンジアルキルエーテルとしては、好ましくはポリオキシプロピレンジメチルエーテル、ポリオキシプロピレンジエチルエーテル、ポリオキシプロピレンジプロピルエーテル、ポリオキシプロピレンジブチルエーテル、及びポリオキシプロピレンジフェニルエーテルの少なくとも1種である。
ポリアルキレングリコールジアルキルエーテルの数平均分子量は、第3級イソシアネート基含有化合物(A)のカルボジイミド化反応の反応速度向上の観点から、好ましくは100以上であり、また、取扱い性、溶解性の観点から、好ましくは5000以下である。同様の観点から、当該数平均分子量は、より好ましくは100~1000、更に好ましくは100~800、より更に好ましくは200~700、より更に好ましくは250~700、より更に好ましくは300~600である。
<その他の成分>
カルボジイミド生成工程において、上記以外の成分を添加してもよい。
例えば、有機溶媒を添加してもよい。有機溶媒としては、エチレングリコールモノメチルエーテルアセテート(118.13)、ジエチレングリコールジメチルエーテル(134.18)、ジプロピレングリコールジメチルエーテル(162.23)、ジエチレングリコールエチルメチルエーテル(148.20)、ジエチレングリコールイソプロピルメチルエーテル(162.23)、ジエチレングリコールジエチルエーテル(162.23)、ジエチレングリコールブチルメチルエーテル(176.26)、トリプロピレングリコールジメチルエーテル(206.28)、トリエチレングリコールジメチルエーテル(178.23)、ジエチレングリコールジブチルエーテル(218.34)、トリエチレングリコールブチルメチルエーテル(220.31)、テトラエチレングリコールジメチルエーテル(222.28)等の活性水素基を持たず、合成時の温度より沸点の高い有機溶媒が好ましい。これにより、カルボジイミド化反応の反応速度が向上する場合や、得られたポリカルボジイミドの粘度調整が容易となる。なお、カッコ内の数字は分子量を示す。
その他の成分の添加量は、第3級イソシアネート基含有化合物(A)100質量部に対して、好ましくは200質量部以下、より好ましくは100質量部以下、更に好ましくは10質量部以下である。
<反応条件>
カルボジイミド生成工程において、反応温度は、脂肪族第3級イソシアネート化合物(A)の種類に応じて適宜設定される。
当該反応温度は、好ましくは50℃以上、より好ましくは80℃以上、更に好ましくは100℃以上であり、また、脂肪族第3級イソシアネート化合物(A)の分解温度がX℃である場合、好ましくはX℃以下、より好ましくはX-5℃以下、更に好ましくはX-10℃以下である。
例えば、脂肪族第3級イソシアネート化合物(A)がテトラメチルキシリレンジイソシアネート、3-イソプロペニル-α,α-ジメチルベンジルイソシアネートの少なくとも1種である場合、反応温度は、好ましくは80~200℃、より好ましくは100~190℃、更に好ましくは130~180℃である。
反応雰囲気は、窒素ガス等の不活性ガス雰囲気であることが好ましい。不活性ガスの封入方法は、フロー方式でも液中に封入するバブリング方式でも良い。
[封止工程]
本実施の形態におけるカルボジイミドの製造方法は、前記カルボジイミド生成工程よりも前、生成工程途中及び生成工程後の3つの時点のうち少なくとも1つの時点に、前記脂肪族第3級イソシアネート化合物(A)におけるイソシアネート基の一部を封止剤と反応させる封止工程を有してもよい。
当該封止工程により、得られるカルボジイミド化合物の重合度を制御することができる。
封止剤としては、カルボジイミド化合物の末端イソシアネート基と反応する官能基を持つ有機化合物であれば何でもよい。イソシアネート基と反応する官能基を持つ有機化合物としては、アルコール、アミン、カルボン酸などの活性水素を有する化合物、モノイソシアネート基を有する化合物、後述する一般式(2-1)で表される化合物(D-1)が挙げられるが、好ましくは後述する一般式(2-1)で表される化合物(D-1)である。
なお、当該封止工程は、当該カルボジイミド生成工程よりも前、生成工程途中及び生成工程後の3つの時点のうち少なくとも1つの時点において実施すればよく、また、いずれか1つの時点のみにおいて実施してもよく、例えば生成工程前に実施してもよい。
当該封止工程において、脂肪族第3級イソシアネート化合物(A)の末端の一部が、封止剤によって封止される。このように、末端の一部が封止された脂肪族第3級イソシアネート化合物(A)をカルボジイミド生成工程に供することにより、末端が封止されたカルボジイミド化合物を製造することができる。また、得られるカルボジイミド化合物の重合度を制御することができる。なお、脂肪族第3級イソシアネート化合物(A)として、予め末端のイソシアネート基の一部が封止されている脂肪族第3級イソシアネート化合物(A)を用い、かつ封止工程を省略してもよい。
<一般式(2-1)で表される化合物(D-1)>
本実施の形態で用いられる化合物(D-1)は、下記一般式(2-1)で表される。
Figure 0007239556000006
式(2-1)において、Zは、メチル基、エチル基、プロピル基、ブチル基、又はフェニル基である。Rは、炭素数2~3のアルキレン基である。nは、2~500の整数であり、好ましくは3~300の整数であり、より好ましくは4~200の整数である。
式(2-1)で表される化合物(D-1)は、好ましくはポリオキシエチレンモノアルキルエーテル及びポリオキシプロピレンモノアルキルエーテルの少なくとも1種である。
ポリオキシエチレンモノアルキルエーテルとしては、好ましくはポリオキシエチレンモノメチルエーテル、ポリオキシエチレンモノエチルエーテル、ポリオキシエチレンモノプロピルエーテル、ポリオキシエチレンモノブチルエーテル、及びポリオキシエチレンモノフェニルエーテルの少なくとも1種である。
また、ポリオキシプロピレンモノアルキルエーテルとしては、好ましくはポリオキシプロピレンモノメチルエーテル、ポリオキシプロピレンモノエチルエーテル、ポリオキシプロピレンモノプロピルエーテル、ポリオキシプロピレンモノブチルエーテル、及びポリオキシプロピレンモノフェニルエーテルの少なくとも1種である。
末端封止剤として、当該化合物(D-1)を用いると、脂肪族第3級イソシアネート化合物(A)におけるイソシアネート基の一部と化合物(D-1)の水酸基とのウレタン化反応により、脂肪族第3級イソシアネート化合物(A)の末端の一部が封止される。このように脂肪族第3級イソシアネート化合物(A)の末端の一部を化合物(D-1)によって封止した後にカルボジイミド生成工程に供することにより、化合物(D-1)の残基が相間移動触媒と同様に働き、カルボジイミド化反応の反応速度が向上する。
この化合物(D-1)による脂肪族第3級イソシアネート化合物(A)の封止は、前述のカルボジイミド生成工程よりも前、生成工程途中及び生成工程後の3つの時点のうちの少なくとも1つの時点に行うことができるが、生成工程前に行うことが好ましい。
化合物(D-1)の数平均分子量は、第3級イソシアネート基含有化合物(A)のカルボジイミド化反応の反応速度向上の観点から、好ましくは100以上であり、また、取扱い性、溶解性の観点から、好ましくは5000以下である。同様の観点から、当該数平均分子量は、より好ましくは100~1000、更に好ましくは100~800、より更に好ましくは200~700、より更に好ましくは250~700、より更に好ましくは300~600である。
化合物(D-1)の添加量は、製造したいカルボジイミド化合物の重合度に応じて適宜選択することができる。
但し、化合物(D-1)の添加量は、カルボジイミド反応を促進させる観点からは、脂肪族第3級イソシアネート化合物(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上、更に好ましくは1.0質量部以上である。また、化合物(D-1)の添加量は、経済的な観点及びカルボジイミド濃度確保の観点からは、脂肪族第3級イソシアネート化合物(A)100質量部に対して、好ましくは200質量部以下、より好ましくは50質量部以下、更に好ましくは5.0質量部以下である。
<反応条件>
封止工程において、反応温度は、脂肪族第3級イソシアネート化合物(A)の種類に応じて適宜設定される。
当該反応温度は、好ましくは50℃以上、より好ましくは80℃以上、更に好ましくは100℃以上であり、また、脂肪族第3級イソシアネート化合物(A)の分解温度がX℃である場合、好ましくはX℃以下、より好ましくはX-5℃以下、更に好ましくはX-10℃以下である。
また、必要に応じてウレタン化触媒を使用し、さらに低い温度で反応させても良い。
例えば、脂肪族第3級イソシアネート化合物(A)がテトラメチルキシリレンジイソシアネート、3-イソプロペニル-α,α-ジメチルベンジルイソシアネートの少なくとも1種である場合、反応温度は、好ましくは80~200℃、より好ましくは100~190℃、更に好ましくは130~180℃である。
反応雰囲気は、窒素ガス等の不活性ガス雰囲気であることが好ましい。不活性ガスの封入方法は、フロー方式でも液中に封入するバブリング方式でも良い。
[鎖延長工程]
本実施の形態におけるカルボジイミドの製造方法は、前記カルボジイミド生成工程よりも前、生成工程途中、及び生成工程後の3つの時点のうちの少なくとも1つの時点に、前記脂肪族第3級イソシアネート化合物(A)の反応により得られたカルボジイミド化合物におけるイソシアネート基の一部を、鎖延長剤と反応させる鎖延長工程を有してもよい。ただし、当該鎖延長工程は行わなくてもよい。
鎖延長剤としては、カルボジイミド化合物の末端イソシアネート基と反応する官能基を2個以上持つ有機化合物であれば何でもよい。当該有機化合物としては、水酸基を2個以上有するポリオール又はアミノ基を2個以上有するポリアミンが好ましく、ジオール又はジアミンがより好ましく、後述する一般式(2-2)で表される化合物(D-2)が更に好ましい。
なお、当該鎖延長工程は、当該カルボジイミド生成工程よりも前、生成工程途中、及び生成工程後の3つの時点のうちの少なくとも1つの時点において実施すればよく、また、いずれか1つの時点のみにおいて実施してもよく、例えば生成工程後に実施してもよい。
当該鎖延長工程により、得られるカルボジイミド化合物の重合度を制御することができる。ただし、当該鎖延長工程は省略してもよい。
<一般式(2-2)で表される化合物(D-2)>
本実施の形態で用いられる化合物(D-2)は、下記一般式(2-2)で表される。
Figure 0007239556000007
式(2-2)において、Rは、炭素数2~3のアルキレン基である。pは、2~500の整数である。
鎖延長剤として、当該化合物(D-2)を用いると、脂肪族第3級イソシアネート化合物(A)におけるイソシアネート基の一部と鎖延長剤(D-2)の水酸基とのウレタン化反応により、脂肪族第3級イソシアネート化合物(A)の末端の一部が鎖延長される。このように末端の一部が鎖延長剤(D-2)で鎖延長された置換基含有脂肪族第3級イソシアネート化合物は、化合物(D-2)の残基が相間移動触媒として機能するため、カルボジイミド化反応の反応速度が向上する。
当該化合物(D-2)は、好ましくはポリオキシエチレン及びポリオキシプロピレンの少なくとも1種である。
この化合物(D-2)による鎖延長は、前述のカルボジイミド生成工程よりも前、生成工程途中及び生成工程後の3つの時点のうちの少なくとも1つの時点において実施すればよく、また、いずれか1つの時点のみにおいて実施してもよく、例えば生成工程後に実施してもよい。
化合物(D-2)の数平均分子量は、第3級イソシアネート基含有化合物(A)のカルボジイミド化反応の反応速度向上の観点から、好ましくは100以上であり、また、取扱い性、溶解性の観点から、好ましくは5000以下である。同様の観点から、当該数平均分子量は、より好ましくは100~1000、更に好ましくは100~800、より更に好ましくは200~700、より更に好ましくは250~700、より更に好ましくは300~600である。
化合物(D-2)の添加量は、製造したいカルボジイミド化合物の重合度に応じて適宜選択することができる。
但し、化合物(D-2)を添加する場合、その添加量は、カルボジイミド反応を促進させる観点からは、脂肪族第3級イソシアネート化合物(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上、更に好ましくは1.0質量部以上である。また、化合物(D-2)の添加量は、経済的な観点及びカルボジイミド濃度確保の観点からは、脂肪族第3級イソシアネート化合物(A)100質量部に対して、好ましくは200質量部以下、より好ましくは50質量部以下、更に好ましくは5.0質量部以下である。
<反応条件>
鎖延長工程において、反応温度は、脂肪族第3級イソシアネート化合物(A)の種類に応じて適宜設定される。反応条件の詳細は、封止工程の場合と同様である。
[吸着除去工程]
本実施の形態におけるカルボジイミドの製造方法は、前記カルボジイミド生成工程の途中又は後に、好ましくは前記カルボジイミド生成工程の後に、吸着剤(E)を使用して、前記ルイス塩基性を有する有機アルカリ金属化合物(B)を吸着除去する吸着除去工程を有してもよい。これにより、得られたカルボジイミド化合物から前記ルイス塩基性を有する有機アルカリ金属化合物(B)を十分に除去することができる。但し、当該吸着除去工程は省略してもよい。
有機アルカリ金属化合物(B)は、酸化防止剤と組み合わせて使用した場合、着色が生じることがあることから、有機アルカリ金属化合物(B)のカルボジイミド化合物中における含有量は、2000質量ppm以下が好ましく、より好ましくは1000質量ppm以下、さらに好ましくは200質量ppm以下である。
吸着方式として、吸着剤をカルボジイミド化合物に混和後、ろ過する撹拌混和法や、吸着剤を充てんしたろ過層にカルボジイミド化合物を流通させるろ過層法でも良く、吸着剤をカルボジイミド化合物に混和後、ろ過しなくても良い。
<吸着剤(E)>
本実施の形態で用いられる吸着剤(E)としては、特に限定はないが、好ましくは合成ケイ酸アルミニウム系吸着剤、合成ケイ酸マグネシウム、酸性陽イオン交換樹脂、塩基性陰イオン交換樹脂、アルミナ、シリカゲル系吸着剤、ゼオライト系吸着剤、ハイドロタルサイト類、酸化マグネシウム-酸化アルミニウム系固溶体、水酸化アルミニウム、酸化マグネシウム、及び水酸化アルミニウム-炭酸水素ナトリウム共沈物(ドーソナイト)の少なくとも1種であり、より好ましくは合成ケイ酸アルミニウム系吸着剤、合成ケイ酸マグネシウム系吸着剤、酸性陽イオン交換樹脂、塩基性陰イオン交換樹脂、アルミナ、シリカゲル系吸着剤、及びゼオライト系吸着剤の少なくとも1種である。
吸着剤(E)の配合量は、ルイス塩基性を有する有機アルカリ金属化合物(B)100質量部に対して、好ましくは50~5000質量部、より好ましくは100~1000質量部、更に好ましくは200~1000質量部、更に好ましくは400~800質量部である。
<カルボジイミド化合物>
本実施の形態に係るカルボジイミド化合物の製造方法によれば、カルボジイミド化触媒として有機リン系化合物を実質的に用いない場合にあっても、脂肪族第3級イソシアネート化合物を反応させてカルボジイミド化合物を高収率にて製造することができる。
本実施の形態に係るカルボジイミド化合物の製造方法によって得られるカルボジイミド化合物は、好ましくは、純度(含有量)が90質量%以上であり、フォスフォレンオキシド類を含有しないか又はフォスフォレンオキシド類の含有量が1質量ppm以下である。
ここで純度(含有量)とは、本実施の形態に係るカルボジイミド化合物の製造方法によって得られた生成物の有効成分中における、カルボジイミド化合物の含有量のことを意味する。ここで有効成分とは、当該生成物が溶媒を含む場合には溶媒を除く成分の総量を意味し、溶媒を含まない場合には当該生成物の総量を意味する。なお、後述する安定剤及びカルボジイミド組成物に関しても、同様である。
本実施の形態に係るカルボジイミド化合物は、樹脂の加水分解を防止するために好適に使用することができる。ここで、樹脂としては、熱可塑性ポリウレタン等が挙げられ、ウレタン樹脂の原料であるジイソシアネートにあらかじめ添加して保存しておくことが可能であり、ウレタン樹脂製造後に安定剤を添加するという工程を経ずに、安定剤を含むウレタン樹脂の製造に使用することができる。
2.安定剤
本実施の形態に係る安定剤は、脂肪族第3級イソシアネート化合物(A)を構成単位とするカルボジイミド化合物と、アルカリ金属(ルイス塩基性を有する有機アルカリ金属化合物(B)に由来するアルカリ金属)とを含有し、フォスフォレンオキシド類を含有しないか又はフォスフォレンオキシド類の含有量が1質量ppm以下である、安定剤である。
当該安定剤は、熱可塑性樹脂等の各種樹脂の安定剤、加水分解阻止等として有用である。また、ウレタン樹脂の原料であるジイソシアネートにあらかじめ添加して保存しておくことが可能であり、ウレタン樹脂に安定剤を添加するという工程を経ずに、安定剤を含むウレタン樹脂の製造に有用である。ここで、樹脂には特に限定が無いが、例えばポリウレタン、熱可塑性ポリウレタン等が挙げられる。
当該安定剤中に含有されるカルボジイミド化合物の構成単位である脂肪族第3級イソシアネート化合物(A)としては、前述の「1.カルボジイミド化合物の製造方法」において用いられたものと同様のものが好適である。
また、前述の「1.カルボジイミド化合物の製造方法」に記載されているとおり、カルボジイミド化合物は、封止剤によって封止されたものであってもよい。当該封止剤としては、前述の化合物(D-1)が好適である。
また、前述の「1.カルボジイミド化合物の製造方法」に記載されているとおり、カルボジイミド化合物は、鎖延長剤によって封止されたものであってもよい。当該鎖延長剤としては、前述の化合物(D-2)が好適である。
安定剤中における、脂肪族第3級イソシアネート化合物(A)を構成単位とするカルボジイミド化合物の含有量(すなわち、純度)は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、よりさらに好ましくは99質量%である。
当該安定剤中に含有されるアルカリ金属は、好ましくはリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、の少なくとも1種であり、より好ましくはリチウム(Li)、ナトリウム(Na)、セシウム(Cs)及びカリウム(K)の少なくとも1種であり、更に好ましくはリチウム(Li)、ナトリウム(Na)、及びカリウム(K)の少なくとも1種である。
安定剤中における、アルカリ金属の含有量は、好ましくは2000質量ppm未満である。2000質量ppm未満であると、相手材料に干渉して使用が困難になるという問題が防止される。
また、安定剤中における、アルカリ金属の含有量は、製造容易性の観点から、好ましくは10質量ppm以上であり、より好ましくは100質量ppm以上である。
安定剤は、フォスフォレンオキシド類を含有しないか又はフォスフォレンオキシド類の含有量が1質量ppm以下であることが好ましい。
これにより、フォスフォレンオキシド類が相手材料に干渉して使用が困難になるという問題が防止される。
当該安定剤は、さらに相関移動触媒(C)を含有していてもよい。
安定剤中における、相関移動触媒(C)の含有量は、カルボジイミド化合物100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.3~5質量部、更に好ましくは0.5~2質量部である。10質量部以下であると、各種樹脂の安定剤として使用した際に、相関移動触媒のブリードアウトによる外観不良、使用時のべたつきなどの不具合が発生することが防止され、0.1質量部以上であると、目的とする反応促進効果が良好である。
当該安定剤は、前述の「1.カルボジイミド化合物の製造方法」を含む製造方法により、好適に製造される。
すなわち、当該安定剤は、前述の「1.カルボジイミド化合物の製造方法」のみによって製造されてもよく、その後に、他の添加剤を添加する等の他工程を経て製造されてもよい。
3.カルボジイミド組成物
本実施の形態に係るカルボジイミド組成物は、脂肪族第3級イソシアネート化合物(A)を構成単位とするカルボジイミド化合物と、アルカリ金属(ルイス塩基性を有する有機アルカリ金属化合物(B)に由来するアルカリ金属)を含有し、フォスフォレンオキシド類を含有しないか又はフォスフォレンオキシド類の含有量が1質量ppm以下である、カルボジイミド組成物である。
カルボジイミド組成物中における各成分は、前述の安定剤と同様である。
4.ポリウレタンの製造方法
本実施の形態に係るポリウレタンの製造方法は、安定剤の存在下に、ポリオールとジイソシアネートとを反応させることにより、ポリウレタン好ましくは熱可塑性ポリウレタンを得る、ポリウレタンの製造方法であり、前記安定剤は、脂肪族第3級イソシアネート化合物に由来する脂肪族第3級カルボジイミドを含有し、アルカリ金属の含有量が2000質量ppm未満である、ポリウレタンの製造方法である。
前記ポリオールと前記ジイソシアネートの総量100質量部に対する、前記脂肪族第3級イソシアネート化合物に由来する脂肪族第3級カルボジイミドの配合量は、好ましくは0.1~2質量部であり、より好ましくは0.5~1質量部である。
また、前記脂肪族第3級イソシアネート化合物に由来する脂肪族第3級カルボジイミドは、好ましくは20~50℃、特に好ましくは25~35℃の温度で、液体の形態で、連続式又はバッチ式で計量仕込みされることが好ましい。
安定剤としては、前述の「2.安定剤」に記載されているものが好適に用いられる。
本実施の別の形態に係るポリウレタンの製造方法は、安定剤の存在下に、ポリオールとジイソシアネートとを反応させることにより、ポリウレタン好ましくは熱可塑性ポリウレタンを得る、ポリウレタンの製造方法であり、前記安定剤が、前述の本実施の形態に係るカルボジイミド化合物の製造方法によって製造されたカルボジイミド化合物である、ポリウレタンの製造方法である。
5.エステル系樹脂組成物
本実施の形態に係るエステル系樹脂組成物は、前述のカルボジイミド組成物、及びエステル系樹脂を含む、エステル系樹脂組成物である。
エステル系樹脂組成物中における、カルボジイミド組成物の含有量は、前記エステル系樹脂100質量部に対して、0.2~5.0質量部である。
また、本実施の別の形態に係るエステル系樹脂組成物は、前述の安定剤、及びエステル系樹脂を含む、エステル系樹脂組成物である。 エステル系樹脂組成物中における、安定剤の含有量は、前記エステル系樹脂100質量部に対して、0.2~5.0質量部であることが好ましい。
以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。
また、以下の実施例における各評価は、次に示す方法に従って行った。
(1)赤外吸収(IR)スペクトル測定
FTIR-8200PC(株式会社島津製作所製)を使用した。
(2)GPC
RI検出器:RID-6A(株式会社島津製作所製)
カラム:KF-806、KF-804L、KF-804L(昭和電工株式会社製)
展開溶媒:テトラヒドロフラン(THF) 1ml/min.
ポリスチレン換算により数平均分子量(Mn)を算出した。
(3)NCO%
平沼自動滴定装置COM-900(平沼産業株式会社製)、タイトステーション K-900(平沼産業株式会社製)を使用し、既知濃度のジブチルアミン/トルエン溶液を加え、塩酸水溶液で電位差滴定により算出した。
(4)カルボジイミド化触媒存在有無の確認
ジフェニルメタンジイソシアネート10gと得られたポリカルボジイミド1gとを混合し、撹拌しながら100℃で1時間加熱した後、赤外吸収(IR)スペクトル測定により混合直後と混合加熱後の吸収ピークを確認し、ジフェニルメタンジイソシアネートのヌレート化合物に由来する(波長1710cm-1前後及び波長1411cm-1前後)ピーク発生有無、カルボジイミド化合物に由来する(波長2138cm-1前後および波長2112cm-1前後)ピーク発生有無により、カルボジイミド化触媒の存在有無を確認した。
(アルカリ金属定量)
カルボジイミド化合物および安定剤中に含有するアルカリ金属の定量は、高周波誘導結合プラズマ(ICP)発光分光分析法により下記の操作により定量した。
カルボジイミド化合物または安定剤1.00gと超純水19.00gを混合し24時間静置後、混合水溶液を0.1μmのメンブレンフィルタを用いてろ過した。このようにして得られたろ液の元素分析を、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析装置(製品名:ICPS-8100、(株)島津製作所)を用いて行った。得られた元素分析の結果および超純水のみの測定結果から算出される差に基づき、各アルカリ金属の検量線よりカルボジイミド化合物または安定剤中の各アルカリ金属原子の含有率を求めた。
実施例1
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属(カリウムtert-ブトキシド)0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果が3.74%となるまで反応を行った。合成時間(カルボジイミド化に要する時間)は26時間であった。
なお、当該NCO%の値が3.74%とは、11個のテトラメチルキシリレンジイソシアネートが脱炭酸縮合して重合度10のカルボジイミド化合物(両末端がNCO基)を生成した場合を想定した場合における、カルボジイミド化合物中におけるNCO基の含有量(質量%)である。当該値3.74%を目標値とし、NCO%の測定値が当該目標値に達するまで上記反応を実施した。
得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。
イソシアネート三量体であるイソシアヌレートによる吸収波長である、波長1710cm-1前後及び波長1411cm-1前後の吸収ピーク、イソシアネート二量体であるウレトジオンによる吸収波長である、波長1765cm-1前後及び波長1410cm-1前後の吸収ピーク、並びにその他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1891であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
なお、原料の配合及び合成条件を表1に示し、評価結果を表2に示す。なお、以下の実施例及び比較例も同様である。
実施例2
3-イソプロペニル-α,α-ジメチルベンジルイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属(カリウムtert-ブトキシド)0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、赤外吸収(IR)スペクトル測定により波長2200~2300cm-1のイソシアネート基の吸収が消失するまで(NCO%が0%になるまで)反応を行った。合成時間は45時間であった。得られたジ(3-イソプロペニル-α,α-ジメチルベンジル)モノカルボジイミドを分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、並びにその他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は145であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例3
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(ナトリウムエトキシド)0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となるまで反応を行った。合成時間は21時間であった。得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を得て分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、並びにその他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1886であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例4
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属(リチウムジイソプロピルアミド)0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となるまで反応を行った。合成時間は10時間であった。得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1899であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例5
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属(酢酸セシウム)0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となるまで反応を行った。合成時間は21時間であった。得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1904であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例6
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(酢酸カリウム)0.5gと相間移動触媒(18-クラウン6-エーテル)1.0gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となるまで反応を行った。合成時間は33時間であった。得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認出来なかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1955であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例7
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gと相間移動触媒(テトラブチルアンモニウム・2-エチルヘキサン酸塩)1.0gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となるまで反応を行った。合成時間は20時間であった。得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1910であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例8
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gと相間移動触媒(18-クラウン6-エーテル)1.0gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となるまで反応を行った。合成時間は2時間であった。得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1889であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例9
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(ナトリウムエトキシド)0.5gと相間移動触媒(15-クラウン5-エーテル)1.0gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となるまで反応を行った。合成時間は2時間であった。得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1897であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例10
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gと相間移動触媒(末端封止ポリエチレングリコール:ポリオキシエチレンジメチルエーテル 数平均分子量550)1.0gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となる時点まで反応を行った。合成時間は11時間であった。イソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を得た。赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1922であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例11
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(酢酸セシウム)0.5gと相間移動触媒(末端封止ポリエチレングリコール:ポリオキシエチレンジメチルエーテル 数平均分子量550)1.0gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となる時点まで反応を行った。合成時間は10時間であった。イソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を得た。赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1931であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例12
テトラメチルキシリレンジイソシアネート100gと相間移動触媒様の機能を有する数平均分子量550のポリオキシエチレンモノメチルエーテル1.0gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で1時間撹拌しポリオキシエチレンモノメチルエーテルの末端基である水酸基とテトラメチルキシリレンジイソシアネートをウレタン化反応により反応させた後、カルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gを入れ、NCO%測定の結果3.66%となる時点まで反応を行った。合成時間は11時間であった。
得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を得た(ただし、当該カルボジイミドの末端の一部はポリオキシエチレンモノメチルエーテルにて封止)。赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1924であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例13
テトラメチルキシリレンジイソシアネート100gと相間移動触媒様の機能を有するポリオキシエチレンモノメチルエーテル(平均分子量550)41gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で1時間撹拌しポリオキシエチレンモノメチルエーテルの末端基である水酸基とテトラメチルキシリレンジイソシアネートをウレタン化反応により反応させた。(テトラメチルキシリレンジイソシアネートとポリオキシエチレンモノメチルエーテルのmol比は11:2。)続いて、カルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gを入れ撹拌し、赤外吸収(IR)スペクトル測定により波長2200~2300cm-1のイソシアネート基の吸収が消失するまで反応を行った。合成時間は8時間であった。得られた、ポリオキシエチレンモノメチルエーテル末端ポリカルボジイミド(平均重合度10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は2320であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例14
テトラメチルキシリレンジイソシアネート100gと相間移動触媒様の機能を有するポリオキシエチレンモノメチルエーテル(平均分子量550)41gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で1時間撹拌しポリオキシエチレンモノメチルエーテルの末端基である水酸基とテトラメチルキシリレンジイソシアネートをウレタン化反応により反応させた。(テトラメチルキシリレンジイソシアネートとポリオキシエチレンモノメチルエーテルのmol比は11:2。)続いて、カルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gと相間移動触媒(テトラブチルアンモニウム・2-エチルヘキサン酸塩)1.0gとを入れ撹拌し、赤外吸収(IR)スペクトル測定により波長2200~2300cm-1のイソシアネート基の吸収が消失するまで反応を行った。合成時間は4.5時間であった。得られたポリオキシエチレンモノメチルエーテル末端ポリカルボジイミド(平均重合度10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は2350であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例15
テトラメチルキシリレンジイソシアネート100gと相間移動触媒様の機能を有するポリオキシエチレンモノメチルエーテル(平均分子量550)41gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で1時間撹拌しポリオキシエチレンモノメチルエーテルの末端基である水酸基とテトラメチルキシリレンジイソシアネートをウレタン化反応により反応させた。(テトラメチルキシリレンジイソシアネートとポリオキシエチレンモノメチルエーテルのmol比は11:2。)続いて、カルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gと相間移動触媒(18-クラウン6-エーテル)1.0gとを入れ撹拌し、赤外吸収(IR)スペクトル測定により波長2200~2300cm-1のイソシアネート基の吸収が消失するまで反応を行った。合成時間は4.5時間であった。得られたポリオキシエチレンモノメチルエーテル末端ポリカルボジイミド(平均重合度10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は2385であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、ジフェニルメタンジイソシアネートのイソシアヌレートによる吸収波長、波長1710cm-1前後及び波長1411cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
実施例16
テトラメチルキシリレンジイソシアネート100gと相間移動触媒様の機能を有するポリオキシエチレンモノメチルエーテル(平均分子量550)41gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で1時間撹拌しポリオキシエチレンモノメチルエーテルの末端基である水酸基とテトラメチルキシリレンジイソシアネートをウレタン化反応により反応させた。(テトラメチルキシリレンジイソシアネートとポリオキシエチレンモノメチルエーテルのmol比は11:2。)続いて、カルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gと相間移動触媒(テトラブチルアンモニウム・2-エチルヘキサン酸塩)1.0gとを入れ撹拌し、赤外吸収(IR)スペクトル測定により波長2200~2300cm-1のイソシアネート基の吸収が消失するまで反応を行った。合成時間は4.5時間であった。その後、合成ケイ酸マグネシウム系吸着剤として「キョーワード600S」(協和化学社製:2MgO・6SiO・mHO)2.5gを反応容器に入れ、窒素気流下150℃で2時間撹拌した。次いで、ガラス製吸引濾過器を用いて吸引濾過を行い、触媒吸着後のポリオキシエチレンモノメチルエーテル末端ポリカルボジイミド(平均重合度10)を得た。得られたポリオキシエチレンモノメチルエーテル末端ポリカルボジイミド(平均重合度10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は2360であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、混合直後と混合加熱後の吸収ピークに変化がないことを確認し、触媒が十分に除去されていることを確認した。
参考例1
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてリン系化合物である3-メチル-1-フェニル-2-フォスフォレン-1-オキシド0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌し、NCO%測定の結果3.74%となるまで反応を行った。合成時間は26時間であった。得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1896であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、加熱中にジフェニルメタンジイソシアネートのカルボジイミド化による脱炭酸が観察され、赤外吸収(IR)スペクトル測定により吸収波長2138cm-1前後および波長2112cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
参考例2
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてリン系化合物である3-メチル-1-フェニル-2-フォスフォレン-1-オキシド0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下195℃で撹拌し、NCO%測定の結果3.74%となる時点まで反応を行った。合成時間は12時間であった。得られたイソシアネート末端ポリテトラメチルキシリレンカルボジイミド(平均重合度=10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は1020であったことから、高温下でイソシアネート自身が分解し、カルボジイミド化反応が円滑に進行していないことを確認した。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、加熱中にジフェニルメタンジイソシアネートのカルボジイミド化による脱炭酸が観察され、赤外吸収(IR)スペクトル測定により吸収波長2138cm-1前後および波長2112cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
比較例1
ヘキサメチレンジイソシアネート(一級イソシアネート)100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌したが、3時間経過した時点で内容物がゲル化した。得られた反応物を赤外吸収(IR)スペクトル測定により分析した結果、波長2125cm-1前後のカルボジイミド基による吸収ピークと波長1710cm-1前後、波長1411cm-1前後のイソシアヌレート基による吸収ピークを確認した。GPC測定に関しては得られた物質がゲル化していた為、測定不能であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認に関しても得られた物質がゲル化していた為、測定不能であった。
比較例2
4,4’-ジシクロヘキシルメタンジイソシアネート(二級イソシアネート)100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で撹拌したが、3時間経過した時点で内容物がゲル化した。得られた反応物を赤外吸収(IR)スペクトル測定により分析した結果、波長2120cm-1前後のカルボジイミド基による吸収ピークと波長1710cm-1前後、波長1411cm-1前後のイソシアヌレート基による吸収ピークを確認した。GPC測定に関しては得られた物質がゲル化していた為、測定不能であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認に関しても得られた物質がゲル化していた為、測定不能であった。
比較例3
フェニルイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有する有機アルカリ金属化合物(カリウムtert-ブトキシド)0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下120℃で撹拌し、赤外吸収(IR)スペクトル測定により波長2200~2300cm-1のイソシアネート基の吸収が消失するまで反応を行った。合成時間は0.5時間であった。得られた反応物を赤外吸収(IR)スペクトル測定により分析した結果、波長2121cm-1前後および波長2102cm-1前後のカルボジイミド基による吸収ピークは確認できず、波長1710cm-1前後、波長1411cm-1前後のイソシアヌレート基による吸収ピークを確認した。得られた物質はTHF溶媒に不要であり、GPCによる分子量測定は不能であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認に関しても得られた物質がジフェニルメタンジイソシアネートに不溶だった為、測定不能であった。
参考例3
テトラメチルキシリレンジイソシアネート100gとポリオキシエチレンモノメチルエーテル(平均分子量550)41gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で1時間撹拌しポリオキシエチレンモノメチルエーテルの末端基である水酸基とテトラメチルキシリレンジイソシアネートをウレタン化反応により反応させた。(テトラメチルキシリレンジイソシアネートとポリオキシエチレンモノメチルエーテルのmol比は11:2。)続いて、カルボジイミド化触媒としてリン系化合物である3-メチル-1-フェニル-2-フォスフォレン-1-オキシド0.5gを入れ撹拌し、赤外吸収(IR)スペクトル測定により波長2200~2300cm-1のイソシアネート基の吸収が消失するまで反応を行った。合成時間は52時間であった。得られたポリオキシエチレンモノメチルエーテル末端ポリカルボジイミド(平均重合度10)を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークを確認した。イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークは確認できなかった。さらに、GPCの測定を行ったところ、ポリスチレン換算数平均分子量は2377であった。
カルボジイミド化触媒(アルカリ金属)存在有無の確認を行ったところ、加熱中にジフェニルメタンジイソシアネートのカルボジイミド化による脱炭酸が観察され、赤外吸収(IR)スペクトル測定により吸収波長2138cm-1前後および波長2112cm-1前後の吸収ピークが観察されたため、触媒は残存していることを確認した。
比較例4
テトラメチルキシリレンジイソシアネート100gとカルボジイミド化触媒としてルイス塩基性を有するアルカリ土類金属化合物(マグネシウムエトキシド)0.5gとを、還流管および撹拌機付き300ml反応容器に入れ、窒素気流下175℃で26時間撹拌しNCO%を測定したところ34.20%であった。
得られた内容物を分析した結果、赤外吸収(IR)スペクトル測定により波長2118cm-1前後のカルボジイミド基による吸収ピークは確認できなかった。また、イソシアヌレートによる吸収波長、波長1710cm-1前後、波長1411cm-1前後の吸収ピーク、ウレトジオンによる吸収波長、波長1765cm-1前後、波長1410cm-1前後の吸収ピーク、その他副生成物にもとづく吸収ピークも確認できなかった。
ガスクロマトグラフ質量分析(GC-MS)
実施例、比較例及び参考例により得られたカルボジイミド化合物について、以下の条件でガスクロマトグラフ質量分析(GC-MS)により定量分析を実施した。その結果を表2に示す。
[GC-MSの測定条件]
カラム:HP―5(Agilent社製、内径0.32mm、膜厚0.25μm、長さ30m)
キャリアガス:ヘリウム、1.0mL/min
注入条件:250℃、スプリット比1/50
検出条件:FID方式、220℃
カラム温度条件:40℃で5分保持後、10℃/分で350℃まで昇温
イオン化モード:EI
イオン源温度:230℃
インターフェース温度:350℃
Figure 0007239556000008
表1中の記号は、次のとおりである。
TMXDI:テトラメチルキシリレンジイソシアネート
TMI:3-イソプロペニル-α,α-ジメチルベンジルイソシアネート
HDI:ヘキサメチレンジイソシアネート
HMDI:4,4’-ジシクロヘキシルメタンジイソシアネート
Ph-Iso:フェニルイソシアネート
PTB:カリウムtert-ブトキシド
EtONa:ナトリウムエトキシド
LDA:リチウムジイソプロピルアミド
sAc:酢酸セシウム
EtOMg:マグネシウムエトキシド
KAc:酢酸カリウム
MPO:3-メチル-1-フェニル-2-フォスフォレン-1-オキシド
18-クラウン:18-クラウン6-エーテル
15-クラウン:15-クラウン5-エーテル
18X:テトラブチルアンモニウム・2-エチルヘキサン酸塩
PEG末端封止:ポリオキシエチレンジメチルエーテル(数平均分子量550)
MP550:数平均分子量550のポリオキシエチレンモノメチルエーテル
600S:2MgO・6SiO・mH
Figure 0007239556000009
実施例1~16によって、カルボジイミド化合物を得ることができ、実施例6~16において、相関移動触媒(C)又は封止剤(D-1)を使用することで、カルボジイミド化に要する時間が短くなった。
また、得られたカルボジイミド化合物からは、二量体及び三量体が検出されなかった。
一方、比較例1~2によると、脂肪族第3級イソシアネート化合物(A)に代えて他のイソシアネート化合物を配合したため、ゲル化した。
比較例3によると、脂肪族第3級イソシアネート化合物(A)に代えて他のイソシアネート化合物を配合したため、カルボジイミド化合物を得ることができなかった。
比較例4によると、有機アルカリ金属化合物(B)に代えてマグネシウムエトキシドを配合したため、カルボジイミド化合物を得ることができなかった。
また、実施例16の通り、簡易な操作で触媒を除去することができた。
実施例17~26
ポリエステル系ポリウレタン樹脂(エラストランXNY585N-10(BASF製))をDMF/THFの混合溶液に溶解させたものに、表3に示すカルボジイミド化合物を、固形分(有効成分)換算で表3に示す配合比となるように添加して、ポリエステル系ポリウレタン樹脂組成物(溶液)を得た。
この溶液をコントロールコーターIMC-7013型にて離形処理されたPETフィルム上に塗工し、80℃にて5時間乾燥させて、100μmの樹脂シートを得た。この樹脂シートを幅10mm、長さ70mmの短冊シートを作製した。
この短冊シートの引張強度を、引張試験機(「3365」、インストロン社製)にて測定した。
また、前記短冊シートを、高度加速寿命試験装置(「PH-2KT-E」、エスペック株式会社製、恒温恒湿器;温度80℃、相対湿度95%)にセットして15日間湿熱処理を行った。湿熱処理後の短冊シートの引張強度を引張試験機にて測定した。
湿熱処理の前及び後のそれぞれの短冊シート各5枚の引張強度の平均値を算出し、処理前の引張強度の平均値に対する処理後の引張強度の平均値を強度保持率として算出した。
その結果を表3に示す。
比較例5
ポリエステル系ポリウレタン樹脂(エラストランXNY585N-10(BASF製))をDMF/THFの混合溶液に溶解させたものに、カルボジイミド化合物を添加しなかったこと以外は実施例17と同様にして、短冊シートを作製し、実施例17と同様の試験に供した。
その結果を表3に示す。
Figure 0007239556000010
表3から明らかなとおり、カルボジイミド化合物が配合されたポリエステル系ポリウレタン樹脂組成物を用いて得られた樹脂シートは、耐加水分解性に優れていた。

Claims (16)

  1. 脂肪族第3級イソシアネート化合物(A)を、ルイス塩基性を有する有機アルカリ金属化合物(B)の存在下で反応させるカルボジイミド生成工程を有する、カルボジイミド化合物の製造方法。
  2. 前記ルイス塩基性を有する有機アルカリ金属化合物(B)が、金属アルコキシド、金属アミド、及び金属カルボン酸塩の少なくとも1種である、請求項1に記載のカルボジイミド化合物の製造方法。
  3. 前記脂肪族第3級イソシアネート化合物(A)が、イソシアネート基が結合している第3級炭素原子に少なくとも一つの芳香族環が結合しているものである、請求項1又は2に記載のカルボジイミド化合物の製造方法。
  4. 前記脂肪族第3級イソシアネート化合物(A)が、テトラメチルキシリレンジイソシアネート及び3-イソプロペニル-α,α-ジメチルベンジルイソシアネートの少なくとも1種である、請求項1~3のいずれか1項に記載のカルボジイミド化合物の製造方法。
  5. 前記カルボジイミド生成工程において、前記脂肪族第3級イソシアネート化合物(A)を、前記ルイス塩基性を有する有機アルカリ金属化合物(B)及び相間移動触媒(C)の存在下で反応させる、請求項1~4のいずれか1項に記載のカルボジイミド化合物の製造方法。
  6. 前記相間移動触媒(C)が、クラウンエーテル、第4級アンモニウム塩、及び下記一般式(1)で表される化合物の少なくとも1種である、請求項5に記載のカルボジイミド化合物の製造方法。
    Figure 0007239556000011

    (式(1)において、X及びYは、それぞれ独立して、メチル基、エチル基、プロピル基、ブチル基、又はフェニル基である。Rは、炭素数2~3のアルキレン基である。mは、2~500の整数である。)
  7. 前記カルボジイミド生成工程よりも前、生成工程途中、及び生成工程後の3つの時点のうちの少なくとも1つの時点に、前記脂肪族第3級イソシアネート化合物(A)におけるイソシアネート基の一部を末端封止剤で封止する封止工程を有し、前記末端封止剤は、下記一般式(2-1)で表される化合物(D-1)である、請求項1~6のいずれか1項に記載のカルボジイミド化合物の製造方法。
    Figure 0007239556000012

    (式(2-1)において、Zは、メチル基、エチル基、プロピル基、ブチル基、又はフェニル基である。Rは、炭素数2~3のアルキレン基である。nは、2~500の整数である。)
  8. 前記カルボジイミド生成工程よりも前、生成工程途中、及び生成工程後の3つの時点のうちの少なくとも1つの時点に、前記脂肪族第3級イソシアネート化合物(A)におけるイソシアネート基の一部を鎖延長剤と反応させる鎖延長工程を有し、前記鎖延長剤は、下記一般式(2-2)で表される化合物(D-2)である、請求項1~7のいずれか1項に記載のカルボジイミド化合物の製造方法。
    Figure 0007239556000013

    (式(2-2)において、Rは、炭素数2~3のアルキレン基である。pは、2~500の整数である。)
  9. 前記カルボジイミド生成工程の後に、吸着剤(E)を使用して、前記ルイス塩基性を有する有機アルカリ金属化合物(B)を吸着除去する吸着除去工程を有する、請求項1~8のいずれか1項に記載のカルボジイミド化合物の製造方法。
  10. 前記吸着剤(E)は、合成ケイ酸アルミニウム系吸着剤、合成ケイ酸マグネシウム、酸性陽イオン交換樹脂、塩基性陰イオン交換樹脂、アルミナ、シリカゲル系吸着剤、ゼオライト系吸着剤、ハイドロタルサイト類、酸化マグネシウム-酸化アルミニウム系固溶体、水酸化アルミニウム、酸化マグネシウム、及び水酸化アルミニウム-炭酸水素ナトリウム共沈物(ドーソナイト)の少なくとも1種である、請求項9に記載のカルボジイミド化合物の製造方法。
  11. 純度が90質量%以上であり、フォスフォレンオキシド類を含有しないか又はフォスフォレンオキシド類の含有量が1質量ppm以下である安定剤を製造するための、請求項1~10のいずれか1項に記載の製造方法を含む、製造方法。
  12. 請求項1~10のいずれか1項に記載のカルボジイミド化合物の製造方法によってカルボジイミド化合物を製造し、
    次いで、得られたカルボジイミド化合物を安定剤として用いて、安定剤の存在下に、ポリオールとジイソシアネートとを反応させることにより、ポリウレタンを得る、ポリウレタンの製造方法であり、
    前記安定剤は、脂肪族第3級イソシアネート化合物に由来する脂肪族第3級カルボジイミドを含有し、アルカリ金属の含有量が2000質量ppm未満である、ポリウレタンの製造方法。
  13. 前記ポリオールと前記ジイソシアネートの総量100質量部に対する、前記脂肪族第3級イソシアネート化合物に由来する脂肪族第3級カルボジイミドの配合量が、0.1~2質量部である、請求項12に記載のポリウレタンの製造方法。
  14. 前記脂肪族第3級イソシアネート化合物に由来する脂肪族第3級カルボジイミドが20~50℃の温度で、液体の形態で、連続式又はバッチ式で計量仕込みされることを特徴とする、請求項12又は13に記載のポリウレタンの製造方法。
  15. 求項1~10のいずれか1項に記載のカルボジイミド化合物の製造方法によってカルボジイミド化合物を製造し、
    次いで、得られたカルボジイミド化合物を安定剤として用いて、前記安定剤の存在下に、ポリオールとジイソシアネートとを反応させることにより、ポリウレタンを得る、ポリウレタンの製造方法。
  16. 求項1~10のいずれか1項に記載のカルボジイミド化合物の製造方法によってカルボジイミド化合物を製造し、
    次いで、得られたカルボジイミド化合物を加水分解を防止するために使用する、カルボジイミド化合物の使用。
JP2020506545A 2018-03-12 2019-03-12 カルボジイミド化合物の製造方法 Active JP7239556B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023031332A JP2023060066A (ja) 2018-03-12 2023-03-01 カルボジイミド化合物の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018044526 2018-03-12
JP2018044526 2018-03-12
PCT/JP2019/009934 WO2019176919A1 (ja) 2018-03-12 2019-03-12 カルボジイミド化合物の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023031332A Division JP2023060066A (ja) 2018-03-12 2023-03-01 カルボジイミド化合物の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019176919A1 JPWO2019176919A1 (ja) 2021-03-25
JP7239556B2 true JP7239556B2 (ja) 2023-03-14

Family

ID=67906761

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020506545A Active JP7239556B2 (ja) 2018-03-12 2019-03-12 カルボジイミド化合物の製造方法
JP2023031332A Pending JP2023060066A (ja) 2018-03-12 2023-03-01 カルボジイミド化合物の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023031332A Pending JP2023060066A (ja) 2018-03-12 2023-03-01 カルボジイミド化合物の製造方法

Country Status (7)

Country Link
US (2) US20210009512A1 (ja)
EP (1) EP3766863A4 (ja)
JP (2) JP7239556B2 (ja)
KR (1) KR20200130299A (ja)
CN (1) CN111836797A (ja)
TW (1) TW201940463A (ja)
WO (1) WO2019176919A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022219110A1 (en) 2021-04-16 2022-10-20 Basf Se Process for preparation of a carbodiimide and/or a polycarbodiimide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070208158A1 (en) 2004-05-13 2007-09-06 Basf Aktiengesellschaft Polyurethane Containing Carbodiimides
JP2017522279A (ja) 2014-06-04 2017-08-10 ライン・ケミー・ライノー・ゲーエムベーハー ビス[3−イソプロペニル−アルファ,アルファ−ジメチルベンジル]カルボジイミド、製造方法、および前記化合物の使用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3426025A (en) * 1961-11-28 1969-02-04 Du Pont Catalysts for preparing carbodiimides
NL299128A (ja) * 1962-10-13
US3345407A (en) * 1965-03-05 1967-10-03 Upjohn Co Catalysts for the preparation of bis-(2, 6-diethylphenyl) carbodiimide
GB1404822A (en) 1972-05-09 1975-09-03 Ici Ltd Foamed polymers
DE2436741A1 (de) 1974-07-30 1976-02-12 Bayer Ag Verfahren zur herstellung modifizierter polyisocyanate
US3929733A (en) 1974-10-02 1975-12-30 Upjohn Co Polycarbodiimides from 4,4{40 -methylenebis(phenyl isocyanate) and certain carbocyclic monoisocyanates
JP3629041B2 (ja) * 1994-06-10 2005-03-16 日清紡績株式会社 水性テトラメチルキシリレンカルボジイミド
JP3438957B2 (ja) * 1994-08-11 2003-08-18 日清紡績株式会社 補強材用の水性表面処理剤、該水性表面処理剤で処理された補強材及び補強材により強化された複合材
JPH09124582A (ja) * 1995-11-01 1997-05-13 Nisshinbo Ind Inc カルボジイミド化合物
JPH09136869A (ja) * 1995-11-15 1997-05-27 Nisshinbo Ind Inc 末端に二重結合を有するカルボジイミド化合物
US5821325A (en) * 1995-12-12 1998-10-13 Shin-Estu Chemical Co., Ltd. Polycarbodiimide derivatives and method for preparing the same
DE19961818C2 (de) * 1999-12-21 2002-12-05 Ems Chemie Ag Flüssiginitiator zur beschleunigten Durchführung der anionischen Lactampolymerisation, Verfahren zu dessen Herstellung und Verwendung
DE102007060791A1 (de) * 2007-12-18 2009-06-25 Bayer Materialscience Ag Verfahren zur Herstellung monomerenarmer organischer Polyisocyanate
NL2005163C2 (nl) * 2010-07-28 2012-01-31 Stahl Int Bv Werkwijze voor de bereiding van multifunctionele polycarbodiimides, welke gebruikt worden als vernettingsmiddel.
JP5935423B2 (ja) * 2012-03-19 2016-06-15 東洋インキScホールディングス株式会社 架橋剤とその製造方法
BR112017026700B1 (pt) * 2015-06-15 2021-02-17 Lanxess Deutschland Gmbh processo para a produção de carbodiimidas poliméricas com adição de sais de césio, carbodiimidas poliméricas e seu uso

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070208158A1 (en) 2004-05-13 2007-09-06 Basf Aktiengesellschaft Polyurethane Containing Carbodiimides
JP2017522279A (ja) 2014-06-04 2017-08-10 ライン・ケミー・ライノー・ゲーエムベーハー ビス[3−イソプロペニル−アルファ,アルファ−ジメチルベンジル]カルボジイミド、製造方法、および前記化合物の使用

Also Published As

Publication number Publication date
US20230106672A1 (en) 2023-04-06
KR20200130299A (ko) 2020-11-18
JP2023060066A (ja) 2023-04-27
JPWO2019176919A1 (ja) 2021-03-25
WO2019176919A1 (ja) 2019-09-19
EP3766863A1 (en) 2021-01-20
TW201940463A (zh) 2019-10-16
CN111836797A (zh) 2020-10-27
US20210009512A1 (en) 2021-01-14
EP3766863A4 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
US6784272B2 (en) Metal-free silane-terminated polyurethanes, a process for their preparation and their use
KR100216934B1 (ko) 카보디이미드 및/ 또는 우레톤 이민 그룹을 함유하는 액체 저장성 유기이소시아네이트의 제조방법 및 폴리우레탄 플라스틱을 제조하기 위한 이의 용도
JP6869290B2 (ja) ポリイソシアネート組成物及びイソシアネート重合体組成物
JP6666459B2 (ja) イソシアネート組成物、イソシアネート組成物の製造方法、及びイソシアネート重合体の製造方法
JP2023060066A (ja) カルボジイミド化合物の製造方法
JP7031824B2 (ja) ポリカルボジイミド共重合体
WO2006049182A1 (ja) ヒドロキシアルキル化ポリアルキレンポリアミン組成物、その製造方法及びそれを用いたポリウレタン樹脂の製造方法
EP0952146A2 (en) Hydrophilic Dicyclohexylmethanecarbodiimide
JP2019529393A (ja) カルボジイミドおよび/またはウレトンイミン基を有し、かつ低色数を有する液状、保存安定性の有機イソシアネートの製造方法
WO2008023690A1 (fr) Formule de diphénylméthane-isocyanate modifiée par uréthane
JP7028401B2 (ja) 水性カルボジイミド含有液の製造方法
JP7237928B2 (ja) カルボジイミド化合物の製造方法
JP2005194534A (ja) Ipdi−ppgプレポリマー組成物及びその調製方法
EP1371637A1 (en) Continuous process for the production of MDI allophanates
CN108137772B (zh) 用于制备具有低色度和色度稳定性的甲硅烷基化的聚合物的工艺
US20060084776A1 (en) Crystallization-stable MDI allophanates by a two-stage process
WO2024063100A1 (ja) 多価カルボジイミドbの製造方法
WO2021059835A1 (ja) 親水性基を有する変性ポリカルボジイミド化合物
US20220135730A1 (en) Polyether polyol
JP2022087935A (ja) アミン組成物及びその用途
JP2022071387A (ja) ブロックポリイソシアネート組成物、一液型コーティング組成物、塗膜及び塗装物品
JP2022512308A (ja) モノイソシアネートを尿素に変換するための方法
JP2000229935A (ja) ポリイソシアネート組成物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R150 Certificate of patent or registration of utility model

Ref document number: 7239556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150