JP7238894B2 - 組成物、接合材料、焼結体、接合体及び接合体の製造方法 - Google Patents

組成物、接合材料、焼結体、接合体及び接合体の製造方法 Download PDF

Info

Publication number
JP7238894B2
JP7238894B2 JP2020530875A JP2020530875A JP7238894B2 JP 7238894 B2 JP7238894 B2 JP 7238894B2 JP 2020530875 A JP2020530875 A JP 2020530875A JP 2020530875 A JP2020530875 A JP 2020530875A JP 7238894 B2 JP7238894 B2 JP 7238894B2
Authority
JP
Japan
Prior art keywords
metal particles
composition
metal
component
present disclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020530875A
Other languages
English (en)
Other versions
JPWO2020017065A1 (ja
Inventor
秀明 山岸
史貴 上野
晃一 斉藤
雅記 竹内
貴耶 山本
将太 梅崎
洋子 坂入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2020017065A1 publication Critical patent/JPWO2020017065A1/ja
Application granted granted Critical
Publication of JP7238894B2 publication Critical patent/JP7238894B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、組成物、接合材料、焼結体、接合体及び接合体の製造方法に関する。
半導体装置を製造する際に半導体素子と支持部材とを接合する手段としては、鉛を含有する合金(はんだ)が従来より使用されている。近年、環境及び生体に対する影響を考慮し、鉛を含有しないか鉛含有率を低減した鉛フリーはんだへの切り替えが進められている。
鉛フリーはんだとしては種々の合金組成が検討されているが、主流であるSn(錫)、Ag(銀)及びCu(銅)を含むものは鉛を含有するはんだに比べて融点が高い、接合後に融点以上の環境下におかれると再溶融する、等の性質を有するために取り扱い上の制約が大きい。また、半導体素子の高速化、高集積化等が進むに伴い、半導体装置の高温耐性の向上が求められている。このため、低温での接合性と高温での接続信頼性にすぐれる接合材料の開発が求められている。
低温での接合性と高温での接続信頼性にすぐれる(低温で焼結し、かつ焼結後の融点が高い)接合材料としては、遷移的液相焼結型金属接着剤と称される接合材料が提案されている(例えば、特許文献1、非特許文献1及び非特許文献2参照)。
特許第6203493号
菅沼克昭 監修、「次世代パワー半導体実装の要素技術と信頼性」、シーエムシー出版、2016年5月31日、p.29-30 朗 豊群、他3名、第26回エレクトロニクス実装学会春季講演大会講演論文集、一般社団法人エレクトロニクス実装学会、2014年7月17日、p.295-296
上述したように、半導体素子の高速化、高集積化等が進むに伴い、半導体素子が高温にさらされる場合への対応が求められている。半導体素子に用いている接合材料の熱伝導性が不充分であると、これを用いた半導体装置の温度が過度に上昇して故障、劣化等を引き起こすおそれがある。
本発明の一態様は、上記事情に鑑みてなされたものであり、熱伝導性と接合強度に優れる焼結体を遷移的液相焼結法により形成可能な組成物及びこの組成物を含有する接合材料、並びにこの組成物を用いた焼結体、接合体及びその製造方法を提供することを目的とする。
前記課題を達成するための具体的手段は以下の通りである。
<1>遷移的液相焼結が可能な金属成分を含有し、前記金属成分は融点が300℃より高い金属粒子Aと、融点が300℃以下の金属粒子Bとを含み、金属粒子Aの空隙体積X(cm)、金属粒子Bの密度Y(g/cm)及び金属粒子Bの量Z(g)が下記式を満たす組成物。
0.8≦Z/XY≦1.2
<2>金属粒子Aの空隙体積Xが金属粒子Aの見かけの体積の50体積%以下である、<1>に記載の組成物。
<3>金属粒子AがCuを含む、<1>又は<2>に記載の組成物。
<4>金属粒子BがSnを含む、<1>~<3>のいずれか1項に記載の組成物。
<5><1>~<4>のいずれか1項に記載の組成物を含有する接合材料。
<6><1>~<5>のいずれか1項に記載の組成物の焼結体。
<7>素子と支持部材とが請求項5に記載の焼結体を介して接合された接合体。
<8>支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、<1>~<4>のいずれか1項に記載の組成物を付与して組成物層を形成する工程と、前記組成物層を介して、前記支持部材と前記素子とを接触させる工程と、前記組成物層を加熱して焼結する工程と、を有する接合体の製造方法。
本発明の一態様によれば、熱伝導性と接合強度に優れる焼結体を遷移的液相焼結法により形成可能な組成物及びこの組成物を含有する接合材料、並びにこの組成物を用いた焼結体、接合体及びその製造方法が提供される。
実施例2で作製した焼結済みサンプルの電子顕微鏡写真である。 実施例2で作製した焼結済みサンプルの電子顕微鏡写真である。
以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
本開示において組成物中の各成分の粒径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<組成物>
本開示の組成物は、遷移的液相焼結が可能な金属成分を含有し、前記金属成分は融点が300℃より高い金属粒子Aと、融点が300℃以下の金属粒子Bとを含み、金属粒子Aの空隙体積X(cm)、金属粒子Bの密度Y(g/cm)及び金属粒子Bの量Z(g)が下記式を満たす。
0.8≦Z/XY≦1.2
本発明者らの検討の結果、上記条件を満たす組成物から得られる焼結体は接合強度と熱伝導性に優れていることがわかった。その理由は必ずしも明らかではないが、以下のように考えることができる。
組成物中に含まれる融点が300℃より高い金属粒子Aは、焼結工程で溶融せずに粒子の状態を維持する。一方、融点が300℃以下の金属粒子Bは、焼結工程で溶融して金属粒子Aの間の空隙を充填する。
金属粒子Aの空隙体積X(cm)に金属粒子Bの密度(g/cm)を乗じて得られる値XY(g)は、金属粒子Aの間の空隙を過不足なく充填する金属粒子Bの溶融物の量に相当する。
組成物中に含まれる金属粒子Bの量Z(g)をXY(g)で除した値Z/XYが0.8以上であることで、焼結体中の金属粒子Aの間の空隙が金属粒子Bの溶融物で充分に充填され、良好な接合強度が達成されると考えられる。一方、Z/XYが1.2以下であることで、焼結体中での金属粒子A同士の接触が充分に確保され、良好な熱伝導率が達成されると考えられる。
接合強度の観点からは、Z/XYの値は0.85以上であることが好ましく、0.9以上であることがより好ましい。
熱伝導率の観点からは、Z/XYの値は1.15以下であることが好ましく、1.1以下であることがより好ましい。
金属粒子Aの空隙体積X(cm)は、例えば、他の成分と混合する前の金属粒子Aの見かけの体積(金属粒子の実際の体積+金属粒子間の空隙体積)から金属粒子の実際の体積を差し引くことで求められる。具体的には、例えば、金属粒子Aのバルク体積(一定値)メスシリンダーを使用して測定した金属粒子Aのタップ体積(かさ体積)から差し引くことで求められる。金属粒子Aが2種以上の金属粒子を含む場合は、それぞれの金属粒子について求めた空隙体積を合計することで求められる。
熱伝導率の観点からは、金属粒子Aの空隙体積Xは、金属粒子Aの見かけの体積の50体積%以下であることが好ましく、30体積%以下であることがより好ましく、25体積%以下であることがさらに好ましい。
接合強度の観点からは、金属粒子Aの空隙体積Xは、金属粒子Aの見かけの体積の20体積%以上であることが好ましく、30体積%以上であることがより好ましく40体積%以上であることがさらに好ましい。
金属成分に占める金属粒子Aの割合は、上記式の条件を満たすのであれば特に制限されない。例えば、金属成分全体の50質量%以上であることが好ましく、60質量%以上であることがより好ましく、67質量%以上であることがさらに好ましい。
(金属成分)
本開示の組成物は、遷移的液相焼結が可能な金属成分を含有する。
本開示における「遷移的液相焼結」とは、Transient Liquid Phase Sintering(TLPS)とも称され、融点の異なる金属のうち相対的に融点の低い金属(低融点金属)の粒子界面における加熱による液相への転移と、相対的に融点の高い金属(高融点金属)の前記液相への反応拡散により両金属による金属化合物の生成(合金化)が進行する現象をいう。この現象を利用して、低温で焼結可能であり、かつ焼結後の融点が高い焼結体を得ることができる。
遷移的液相焼結が可能な金属成分としては、遷移的液相焼結が可能な融点の異なる金属の組み合わせ(低融点金属と高融点金属の組み合わせ)が挙げられる。遷移的液相焼結が可能な金属の組み合わせは特に限定されるものではなく、例えば、低融点金属と高融点金属がそれぞれSnとCuである組み合わせ、InとAuである組み合わせ、SnとCoである組み合わせ、及びSnとNiである組み合わせが挙げられる。遷移的液相焼結が可能な金属の組み合わせは2種の金属の組み合わせであっても、3種以上の金属の組み合わせであってもよい。
遷移的液相焼結が可能な金属成分は、融点が300℃より高い金属粒子Aと、融点が300℃以下である金属粒子Bとを含む。
焼結後の接合強度の観点からは、金属粒子Aの融点は500℃以上であることがより好ましく、800℃以上であることがさらに好ましい。
焼結時の液相への転移を促進する観点からは、金属粒子Bの融点は250℃以下であることがより好ましい。
ある実施態様では、遷移的液相焼結が可能な金属成分は、金属粒子AとしてCu(融点:1085℃)を含んでいてもよく、金属粒子BとしてSn(融点:231.9℃)を含んでいてもよい。CuとSnを含む金属成分は、焼結によりCu-Sn金属間化合物(CuSn)を生成する。この生成反応は250℃付近で進行するため、リフロー炉等の一般的な設備による焼結が可能である。
金属成分が金属粒子Aと金属粒子Bとを含む場合の具体的な態様は、特に制限されない。例えば、金属粒子Aと金属粒子Bがそれぞれ金属の単体の状態であっても、金属粒子Aと金属粒子Bの一方又は両方が合金の状態であってもよい。また、金属粒子Aと金属粒子Bに同種の金属元素が含まれていてもよい。
ある実施態様では、金属粒子AとしてCuと、金属粒子BとしてSuを含む合金とを含んでもよい。Snが合金の状態である場合の例としては、Su、Ag及びCuからなる合金(SAC)、SnとBiからなる合金(SnBi)等が挙げられる。中でも、SACが好ましい。SACの組成は特に制限されず、例えばSn-3.0Ag-0.5Cuが挙げられる。本開示において、例えばSn-AX-BYで表される合金は、Snを含む合金の中に元素XがA質量%、元素YがB質量%含まれていることを示す。Sn-3.0Ag-0.5Cuで表される合金の融点(液相転移温度)は、約217℃である。
金属成分に含まれる金属粒子Aと金属粒子Bは、それぞれ1種の金属のみからなっていても、2種以上の金属からなっていてもよい。金属粒子A又は金属粒子Bが2種以上の金属からなる場合、当該金属粒子は2種以上の金属のそれぞれを含む金属粒子の組み合わせ(混合物)であっても、2種以上の金属が同じ金属粒子中に含まれていても、これらの組み合わせであってもよい。
同じ金属粒子中に2種以上の金属を含有する金属粒子の構成は、特に制限されない。例えば、2種以上の金属の合金からなる金属粒子であっても、2種以上の金属の単体から構成される金属粒子であってもよい。2種以上の金属の単体から構成される金属粒子は、例えば、一方の金属を含む金属粒子の表面に、めっき、蒸着等により他方の金属を含む層を形成することで得ることができる。また、一方の金属を含む金属粒子の表面に、高速気流中で衝撃力を主体とした力を用いて乾式で他方の金属を含む粒子を付与して両者を複合化する方法により、同じ金属粒子中に2種以上の金属を含有する金属粒子を得ることもできる。
金属粒子の平均粒径は、特に限定されるものではない。例えば、金属粒子の平均粒径は、0.5μm~80μmであることが好ましく、1μm~50μmであることがより好ましく、1μm~30μmであることがさらに好ましい。
金属粒子の平均粒径は、レーザー回折式粒度分布計(例えば、ベックマン・コールター株式会社、LS 13 320型レーザー散乱回折法粒度分布測定装置)によって測定される体積平均粒径をいう。具体的には、溶剤(テルピネオール)125gに、金属粒子を0.01質量%~0.3質量%の範囲内で添加し、分散液を調製する。この分散液の約100ml程度をセルに注入して25℃で測定する。粒度分布は溶媒の屈折率を1.48として測定する。
金属粒子Aと金属粒子Bの大きさの関係は、特に限定されるものではない。焼結時に金属粒子Aの間の空隙を溶融した金属粒子Bで充填する観点からは、例えば、金属粒子Aの平均粒径/金属粒子Bの平均粒径の値が1より大きいことが好ましく、2より大きいことがより好ましく、5より大きいことがさらに好ましい。金属粒子Aの平均粒径/金属粒子Bの平均粒径の値の上限は特に制限されないが、例えば、10以下であってもよい。
組成物中における金属成分の含有率は、特に限定されるものではない。例えば、組成物全体に占める金属成分の質量基準の割合は、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、88質量%以上であることがさらに好ましい。また、組成物全体に占める金属成分の質量基準の割合は、98質量%以下であってもよい。金属成分の質量基準の割合が98質量%以下であると、本開示の組成物をペーストとして使用した場合に、印刷性が損なわれにくい傾向にある。
(有機成分)
本開示の組成物は、有機成分をさらに含有してもよい。組成物が有機成分を含有することで、本開示の組成物をペーストとして使用した場合の印刷性の向上等の効果が得られる。
組成物中における有機成分の含有率は、特に限定されるものではない。例えば、組成物全体に占める有機成分の質量基準の割合は、20質量%未満であることが好ましく、15質量%未満であることがより好ましく、12質量%未満であることがさらに好ましい。また、組成物全体に占める有機成分の質量基準の割合は、2質量%超であってもよい。有機成分の質量基準の割合が2質量%超であると、本開示の組成物をペーストとして使用した場合に、印刷性が損なわれにくい傾向にある。
(樹脂成分)
本開示の組成物は、有機成分として樹脂成分を含有してもよい。組成物が樹脂成分を含むことで、焼結物中の金属成分間の空隙が樹脂成分で充填され、応力緩和性等が向上する傾向にある。
組成物に含まれる樹脂成分は熱可塑性樹脂であっても、熱硬化性樹脂であっても、これらの組み合わせであってもよい。また、樹脂成分は加熱により重合反応を生じうる官能基を有するモノマーの状態であってもすでに重合したポリマーの状態であってもよい。
耐熱性の観点からは、樹脂成分として熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、エポキシ基、アクリロイル基、メタクリロイル基、ヒドロキシ基、ビニル基、カルボキシ基、アミノ基、マレイミド基、酸無水物基、チオール基、チオニル基等の官能基を有する樹脂が挙げられる。
熱硬化性樹脂として具体的には、エポキシ樹脂、オキサジン樹脂、ビスマレイミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。これらの中でもエポキシ樹脂が好ましい。
エポキシ樹脂の具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂及び環式脂肪族エポキシ樹脂が挙げられる。樹脂成分は、1種類を単独で又は2種類以上を組み合わせて使用してもよい。
有機成分が樹脂成分を含む場合、有機成分全体に占める樹脂成分の割合は特に制限されない。例えば、有機成分全体の0.1質量%~50質量%であってよい。
(フラックス成分)
本開示の組成物は、有機成分としてフラックス成分を含有してもよい。本開示においてフラックス成分とは、フラックス作用(酸化膜の除去作用)を発揮しうる有機成分を意味し、その種類は特に制限されない。フラックス成分として具体的には、ロジン、活性剤、チキソ剤、酸化防止剤等が挙げられる。フラックス成分は、1種類を単独で又は2種類以上を組み合わせて使用してもよい。
ロジンとして具体的には、デヒドロアビエチン酸、ジヒドロアビエチン酸、ネオアビエチン酸、ジヒドロピマル酸、ピマル酸、イソピマル酸、テトラヒドロアビエチン酸、パラストリン酸等が挙げられる。
活性剤として具体的には、アミノデカン酸、ペンタン-1,5-ジカルボン酸、トリエタノールアミン、ジフェニル酢酸、セバシン酸、フタル酸、安息香酸、ジブロモサリチル酸、アニス酸、ヨードサリチル酸、ピコリン酸等が挙げられる。
チキソ剤として具体的には、12-ヒドロキシステアリン酸、12-ヒドロキシステアリン酸トリグリセリド、エチレンビスステアリン酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジステアリルアジピン酸アマイド等が挙げられる。
酸化防止剤として具体的には、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、ヒドロキシルアミン系酸化防止剤等が挙げられる。
有機成分がフラックス成分を含む場合、有機成分全体に占めるフラックス成分の割合は特に制限されない。例えば、有機成分全体の0.1質量%~50質量%であってよい。
(溶剤)
本開示の組成物は、有機成分として溶剤を含有してもよい。樹脂成分を充分に溶解する観点から、溶剤は極性溶媒が好ましく、組成物を付与する工程での組成物の乾燥を防ぐ観点から、200℃以上の沸点を有している溶剤であることが好ましく、焼結時のボイドの発生を抑制するために300℃以下の沸点を有している溶剤であることがより好ましい。
このような溶剤の例としては、テルピネオール、ステアリルアルコール、トリプロピレングリコールメチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル(エトキシエトキシエタノール)、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコール-n-プロピルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコール-n-ブチルエーテル、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコールフェニルエーテル、2-(2-ブトキシエトキシ)エタノール等のアルコール類;クエン酸トリブチル、4-メチル-1,3-ジオキソラン-2-オン、γ-ブチロラクトン、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、グリセリントリアセテート等のエステル類;イソホロン等のケトン;N-メチル-2-ピロリドン等のラクタム;フェニルアセトニトリル等のニトリル類などを挙げることができる。溶剤は、1種類を単独で又は2種類以上を組み合わせて使用してもよい。
有機成分が溶剤を含む場合、有機成分全体に占める溶剤の割合は特に制限されない。例えば、有機成分全体の0.1質量%~50質量%であってよい。
(組成物の製造方法)
本開示の組成物の製造方法は、特に限定されるものではない。本開示の組成物を構成する成分を混合し、さらに撹拌、溶融、分散等の処理をすることにより得ることができる。これらの混合、撹拌、分散等のための装置としては、特に限定されるものではなく、3本ロールミル、プラネタリーミキサ、遊星式ミキサ、自転公転型撹拌装置、らいかい機、二軸混練機、薄層せん断分散機等を使用することができる。また、これらの装置を適宜組み合わせて使用してもよい。上記処理の際、必要に応じて加熱してもよい。
処理後、ろ過により組成物の最大粒径を調整してもよい。ろ過は、ろ過装置を用いて行うことができる。ろ過用のフィルタとしては、例えば、金属メッシュ、メタルフィルター及びナイロンメッシュが挙げられる。
(組成物の用途)
本開示の組成物は、例えば、半導体装置、電子部品等を構成する素子と支持部材とを接合するための接合材料として用いられる。ただし、本開示の組成物の用途はこれらに限定されるものではない。
<接合材料>
本開示の接合材料は、本開示の組成物を含有する。本開示の組成物は、そのまま接合材料として用いることができるし、必要に応じてその他の成分を含有させて接合材料としてもよい。本開示の接合材料の好ましい態様は、上述の本開示の組成物の場合と同様である。
<焼結体>
本開示の焼結体は、本開示の組成物を焼結したものである。本開示の組成物を焼結する方法は特に限定されるものではない。
焼結体の電気抵抗率は、1×10-4Ω・cm以下であることが好ましい。
<接合体及びその製造方法>
本開示の接合体は、素子と支持部材とが本開示の焼結体を介して接合されたものである。
支持部材としては特に限定されるものではなく、素子の接合される箇所の材質が金属であるものが用いられる。素子の接合される箇所の材質である金属としては、金、銀、銅、ニッケル等が挙げられる。また、上記のうち複数の金属が基材上にパターニングされて支持部材が構成されていてもよい。
支持部材の具体例としては、リードフレーム、配線済みのテープキャリア、リジッド配線板、フレキシブル配線板、配線済みのガラス基板、配線済みのシリコンウエハ、ウエハーレベルCSP(Wafer Level Chip Size Package)で採用される再配線層等が挙げられる。
素子としては特に限定されるものではなく、半導体チップ、トランジスタ、ダイオード、発光ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などが挙げられる。
また、本開示の接合体としては、半導体装置、電子部品等が挙げられる。半導体装置の具体例としては、ダイオード、整流器、サイリスタ、MOS(Metal Oxide Semiconductor)ゲートドライバ、パワースイッチ、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)、ショットキーダイオード、ファーストリカバリダイオード等を備えるパワーモジュール、発信機、増幅器、LEDモジュールなどが挙げられる。
本開示の接合体の製造方法は、支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、本開示の組成物を付与して組成物層を形成する工程と、前記組成物層を介して、前記支持部材と前記素子とを接触させる工程と、前記組成物層を加熱して焼結する工程と、を有する。
組成物を付与して組成物層を形成する工程には、付与した組成物を乾燥する工程を含んでいてもよい。
本開示の組成物を支持部材における素子の接合される箇所及び素子における支持部材と接合される箇所の少なくとも一方に付与することで組成物層が形成される。
組成物の付与方法としては、例えば、塗布法及び印刷法が挙げられる。
組成物を塗布する塗布方法としては、例えば、ディッピング、スプレーコート、バーコート、ダイコート、コンマコート、スリットコート及びアプリケータによる塗布を用いることができる。組成物を印刷する印刷方法としては、例えば、ディスペンサー法、ステンシル印刷法、凹版印刷法、スクリーン印刷法、ニードルディスペンサ法及びジェットディスペンサ法を用いることができる。
組成物の付与により形成された組成物層は、加熱時における組成物の流動及びボイドの発生を抑制する観点から乾燥させることが好ましい。
組成物層の乾燥方法は、常温(例えば、25℃)放置による乾燥、加熱乾燥又は減圧乾燥を用いることができる。加熱乾燥又は減圧乾燥には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。
乾燥のための温度及び時間は、使用した溶剤の種類及び量に合わせて適宜調整することができ、例えば、50℃~180℃で、1分間~120分間乾燥させることが好ましい。
組成物層の形成後、素子と支持部材とを接触させることで、素子と支持部材とを組成物層を介して貼り合わせる。付与した組成物を乾燥する工程は、支持部材と素子とを接触させる工程の前及び後のいずれの段階で行ってもよい。
次いで、組成物層を加熱することにより焼結体を形成する。組成物層の焼結は、加熱処理で行ってもよいし、加熱加圧処理で行ってもよい。
加熱処理には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。
また、加熱加圧処理には、熱板プレス装置等を用いてもよいし、加圧しながら上述の加熱処理を行ってもよい。
組成物層の焼結における加熱温度は、組成物に含まれる成分の種類、含有率等に応じて選択できる。例えば、金属粒子Bの融点以上であることが好ましい。具体的には、180℃以上であることが好ましく、190℃以上であることがより好ましく、220℃以上であることがさらに好ましい。加熱温度の上限は、特に制限されないが、例えば、300℃以下であってもよい。
組成物層の焼結における加熱時間は、組成物に含まれる成分の種類、含有率等に応じて選択できる。例えば、5秒間~10時間であることが好ましく、1分~30分であることがより好ましく、3分~10分であることがさらに好ましい。
本開示の接合体の製造方法においては、組成物層の焼結は、低酸素濃度の雰囲気下で行うことが好ましい。低酸素濃度雰囲気下とは、酸素濃度が1000ppm以下の状態をいい、好ましくは500ppm以下である。
以下、実施例により本開示をさらに具体的に説明するが、本開示は以下の実施例に限定されるものではない。
(組成物の調製)
表1に示す各成分を表1に示す量(単位:g)で混合し、組成物を調製した。表1に示す成分の詳細は、下記のとおりである。
金属成分1…平均粒径3μmのCu粒子
金属成分2…平均粒径5μmのCu粒子
金属成分3…平均粒径25μmのCu粒子
金属成分4…平均粒径3μmのSAC粒子(Sn96.5質量%、Ag3.0質量%、Cu0.5質量%、密度:4.00g/cm
金属成分5…平均粒径25μmのSAC粒子(Sn96.5質量%、Ag3.0質量%、Cu0.5質量%、密度:5.88g/cm
金属成分6…平均粒径7μmのSnBi合金粒子(Sn42質量%、Bi58質量%、密度:5.56g/cm
有機成分としては、エポキシ樹脂(ビスフェノールA型エポキシ樹脂)0.69質量%、ロジン(デヒドロアビエチン酸)1.44質量%、チキソ剤(12-ヒドロキシステアリン酸)0.36質量%、活性剤(トリエタノールアミン)1.44質量%、酸化防止剤(BASF社「イルガノックス1010」0.08質量%、溶媒(2-(2-ヘキシルオキシエトキシ)エタノール2.00質量%の混合物を用いた。
(Z/XYの計算)
金属粒子A(Cu粒子)の空隙体積X(cm)を算出し、金属粒子B(SAC粒子)の密度Y(g/cm)を乗じて得られる値XY(g)を金属粒子Bの配合量Z(g)で除して、Z/XYの値を求めた。
(焼結済みサンプルの作製)
調製した組成物を、銅製のリードフレーム上に先のとがったピンセットを用いて塗布して組成物層を形成した。組成物層上に、2mm×2mmのサイズで被着面が金めっきされているSiチップを載せ、ピンセットで軽く押さえて組成物の焼結前サンプルとした。焼結前サンプルをホットプレート上において100℃で30分乾燥した後、窒素リフロー装置(株式会社タムラ製作所製:1ゾーン50cm、7ゾーン構成、窒素気流下)のコンベア上にセットし、酸素濃度200ppm以下で0.3m/分の速度で搬送した。この際、250℃以上にて1分以上加熱し、組成物の焼結済みサンプルを得た。
実施例2の組成物を焼結して得られた焼結済みサンプルの組成物層の表面を研磨して得られた面の電子顕微鏡写真を図1及び図2に示す。図1及び図2に示すように、焼結済みサンプルの組成物層には、相対的に明度の低い領域に相当するCu相1と、相対的に明度の高い領域に相当するCu-Sn金属間化合物相2とが存在していた。
(ダイシェア強度)
1kNのロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード500μm/s、測定高さ100μmで、焼結済みサンプル上のSiチップを水平方向に押し、組成物の焼結済みサンプルのダイシェア強度を測定した。9回の測定結果の平均をダイシェア強度とした。なお、ダイシェア強度が20MPa未満であると、接着不良であるといえる。結果を表1に示す。
(熱伝導率)
ダイシェア強度測定と同様にして作製した組成物の焼結物を、研磨紙で直径12mm、厚さ0.5mmのサイズに研磨し、熱伝導率測定用の試験片を作製した。その後、Xeフラッシュ法熱伝導測定装置(Nano Flash、LFA447、NETZCCH製)を用いて、Lamp Voltageは247.0V、パルス幅 は0.06mm、拡散モデルはCowanモデルの条件で、下記式Aから試験片の熱伝導率λ(W/(m・K))を測定した。結果を表1に示す。
λ=αρc・・・・・・・・・・式A
α:熱拡散率(m/s)
ρ:密度(kg/m
c:比熱容量(J/kg・K)
(連続印刷時間)
Auto Film Applicator(テスター産業株式会社製)上のアルミ板の上にアプリケータと金属ペースト150gを塗布した。速度:10mm/sec、膜厚(ギャップ):0.0mm、回数:6回/1時間の条件で金属ペーストを繰り返し印刷し、流動性を目視で観察した。また、金属ペーストは1時間毎に15g回収し、溶剤の揮発割合と粘度の確認を行った。上記試験の開始から粘度が250Pa・s以上となるまでの時間を表1に示す。
(信頼性試験)
ダイシェア強度の測定と同様にして組成物の焼結済みサンプルを作製した。組成物の焼結済みサンプルを熱衝撃試験機(ライフテック社製、6015型)にセットし、冷却及び加熱を繰り返す冷熱サイクル試験を行った。具体的には、まず室温(25℃)から毎分-10℃の速度で冷却して-65℃で30分間維持し、その後毎分+10℃の速度で加熱して175℃で30分維持し、その後毎分-10℃の速度で室温(25℃)まで冷却する操作を1サイクルとした。
冷熱サイクル試験の開始から500サイクル後、1000サイクル後、2000サイクル後、及び3000サイクル後のサンプルの断面SEM観察を行い、クラックが生じていないかを確認した。表1中「>3000」は3000サイクル後でもクラックが生じなかったことを意味し、「>2000」は2000サイクル後にはクラックが生じていなかったが3000サイクル後にクラックが生じていたことを意味し、「>1000」は1000サイクル後にはクラックが生じていなかったが2000サイクル後にクラックが生じていたことを意味する。
(表面焼結性)
ダイシェア強度の評価で得た焼結物の表面を目視で観察し、下記の評価基準によって評価した。
A…焼結物の表面の色がCu由来の赤茶色から、CuとSuによる金属化合物由来の灰色に変化した。
B…焼結物の表面の色がCu由来の赤茶色のままであった。
Figure 0007238894000001
表1に示すように、Z/XYの値が0.8~1.2の範囲内である実施例の組成物を用いて作成した焼結物は、ダイシェア強度が大きく接合強度に優れ、かつ熱伝導性にも優れていた。
国際特許出願PCT/JP2018-027384号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1. 遷移的液相焼結が可能な金属成分を含有し、前記金属成分は融点が300℃より高い金属粒子Aと、融点が300℃以下の金属粒子Bとを含み、金属粒子Aの空隙体積X(cm)、金属粒子Bの密度Y(g/cm)及び金属粒子Bの量Z(g)が下記式を満たす組成物。
    0.8≦Z/XY≦1.2
  2. 金属粒子Aの空隙体積Xが金属粒子Aの見かけの体積の50体積%以下である、請求項1に記載の組成物。
  3. 金属粒子AがCuを含む、請求項1又は請求項2に記載の組成物。
  4. 金属粒子BがSnを含む、請求項1~請求項3のいずれか1項に記載の組成物。
  5. 請求項1~請求項4のいずれか1項に記載の組成物を含有する接合材料。
  6. 支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、請求項1~請求項4のいずれか1項に記載の組成物を付与して組成物層を形成する工程と、
    前記組成物層を介して、前記支持部材と前記素子とを接触させる工程と、
    前記組成物層を加熱して焼結する工程と、を有する接合体の製造方法。
JP2020530875A 2018-07-20 2018-09-25 組成物、接合材料、焼結体、接合体及び接合体の製造方法 Active JP7238894B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/027384 2018-07-20
PCT/JP2018/027384 WO2020017050A1 (ja) 2018-07-20 2018-07-20 組成物、接合材料、焼結体、接合体及び接合体の製造方法
PCT/JP2018/035437 WO2020017065A1 (ja) 2018-07-20 2018-09-25 組成物、接合材料、焼結体、接合体及び接合体の製造方法

Publications (2)

Publication Number Publication Date
JPWO2020017065A1 JPWO2020017065A1 (ja) 2021-09-30
JP7238894B2 true JP7238894B2 (ja) 2023-03-14

Family

ID=69163663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020530875A Active JP7238894B2 (ja) 2018-07-20 2018-09-25 組成物、接合材料、焼結体、接合体及び接合体の製造方法

Country Status (2)

Country Link
JP (1) JP7238894B2 (ja)
WO (2) WO2020017050A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022065418A1 (ja) * 2020-09-24 2022-03-31

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534454A (ja) 2000-05-22 2003-11-18 マサチューセッツ インスティテュート オブ テクノロジー 融点降下剤を使用する相似物質の粉末金属スケルトンの溶浸方法
JP2015004122A (ja) 2013-02-28 2015-01-08 株式会社豊田中央研究所 金属ナノ粒子ペースト、それを含有する接合材料、およびそれを用いた半導体装置
JP2017222930A (ja) 2009-11-05 2017-12-21 オーメット サーキッツ インク 冶金ネットワーク組成物の調製およびその使用方法
JP2018515348A (ja) 2015-04-28 2018-06-14 オルメット・サーキッツ・インコーポレイテッド 半導体ダイ接着用途のための高金属負荷量の焼結ペースト

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534454A (ja) 2000-05-22 2003-11-18 マサチューセッツ インスティテュート オブ テクノロジー 融点降下剤を使用する相似物質の粉末金属スケルトンの溶浸方法
JP2017222930A (ja) 2009-11-05 2017-12-21 オーメット サーキッツ インク 冶金ネットワーク組成物の調製およびその使用方法
JP2015004122A (ja) 2013-02-28 2015-01-08 株式会社豊田中央研究所 金属ナノ粒子ペースト、それを含有する接合材料、およびそれを用いた半導体装置
JP2018515348A (ja) 2015-04-28 2018-06-14 オルメット・サーキッツ・インコーポレイテッド 半導体ダイ接着用途のための高金属負荷量の焼結ペースト

Also Published As

Publication number Publication date
WO2020017050A1 (ja) 2020-01-23
JPWO2020017065A1 (ja) 2021-09-30
WO2020017065A1 (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
KR100615870B1 (ko) 기능성 합금 입자
JP6848549B2 (ja) 接合用銅ペースト及び半導体装置
JP7279639B2 (ja) 接合体の製造方法及び接合材
KR101940363B1 (ko) 접착제 조성물 및 그것을 사용한 반도체 장치
JPH06297185A (ja) 動的ハンダペースト組成物
JP7259219B2 (ja) 樹脂組成物及びその硬化物、並びに半導体装置の製造方法
WO2021019877A1 (ja) 電子部品装置を製造する方法、及び電子部品装置
JP7238894B2 (ja) 組成物、接合材料、焼結体、接合体及び接合体の製造方法
JP3752064B2 (ja) 半田材料及びそれを用いた電子部品
JP7210842B2 (ja) 接合体の製造方法、焼結銅ピラー形成用銅ペースト、及び接合用ピラー付部材
JP2013110403A (ja) リフローフィルム、はんだバンプ形成方法、はんだ接合の形成方法及び半導体装置
JP6239173B1 (ja) 金属製部材接合用シート、金属製部材の接合方法および金属製部材接合体
JP5077684B2 (ja) ピン転写用Au−Sn合金はんだペースト
WO2020017064A1 (ja) 組成物、接合材料、焼結体、接合体及び接合体の製造方法
JP2020175415A (ja) 金属組成物、接着剤、焼結体、接合構造、接合体及びその製造方法、並びに焼結体付き支持部材及びその製造方法
WO2021131620A1 (ja) 接続構造体及び接続構造体の製造方法
WO2020017063A1 (ja) 組成物、接合材料、焼結体、接合体及び接合体の製造方法
Li et al. Study on the properties of epoxy-based Sn58Bi solder joints
JP2021063262A (ja) 接合用金属ペースト、接合体の製造方法、及び接合体
CN114502685A (zh) 连接体的制备方法、各向异性导电接合材料及连接体
CN114340834A (zh) 焊膏和焊料接合体
JP7500943B2 (ja) 接合用金属ペースト、接合体の製造方法、及び接合体
JP2016056288A (ja) 接着剤組成物及びそれを用いた半導体装置
JP2015167193A (ja) 金属微粉末ペーストを用いた接合方法
JP4780466B2 (ja) Auメッキ処理基板用Sn−Au合金はんだペースト

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R151 Written notification of patent or utility model registration

Ref document number: 7238894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801