JP7238228B1 - Combining rhamnolipids and earthworms to remediate dioxin-contaminated soil - Google Patents

Combining rhamnolipids and earthworms to remediate dioxin-contaminated soil Download PDF

Info

Publication number
JP7238228B1
JP7238228B1 JP2022146844A JP2022146844A JP7238228B1 JP 7238228 B1 JP7238228 B1 JP 7238228B1 JP 2022146844 A JP2022146844 A JP 2022146844A JP 2022146844 A JP2022146844 A JP 2022146844A JP 7238228 B1 JP7238228 B1 JP 7238228B1
Authority
JP
Japan
Prior art keywords
soil
rhamnolipid
days
contaminated soil
rhamnolipids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022146844A
Other languages
Japanese (ja)
Other versions
JP2024032630A (en
Inventor
応蓉蓉
張亜
夏氷
芦園園
馮艶紅
張暁雨
胡哲偉
趙彩衣
季文兵
尹愛経
陳紅楓
張斌
Original Assignee
生態環境部南京環境科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 生態環境部南京環境科学研究所 filed Critical 生態環境部南京環境科学研究所
Application granted granted Critical
Publication of JP7238228B1 publication Critical patent/JP7238228B1/en
Publication of JP2024032630A publication Critical patent/JP2024032630A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/385Pseudomonas aeruginosa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Soil Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

Figure 0007238228000001

【課題】高効率であり、グリーンで環境に優しく、低コスト、簡単なプロセス、操作しやすい利点を有する、ダイオキシン汚染土壌を修復する方法を提供する。
【解決手段】緑膿菌を利用してラムノリピッドを発酵および調製するステップと、ミミズ種を取得するステップと、汚染土壌を前処理するステップと、ラムノリピッドと脱イオン水を混合してラムノリピッド溶液を調製し土壌に投入するステップと、土壌に分水路と補助飼養基穴を設け補助飼養基穴に有機肥料を投入するステップと、ミミズ種を投入して土壌を処理及び修復するステップとを含む、ラムノリピッドとミミズを組み合わせてダイオキシン汚染土壌を修復する方法を提供する。
【選択図】図1

Figure 0007238228000001

A method for remediation of dioxin-contaminated soil is provided, which has the advantages of high efficiency, green, environmentally friendly, low cost, simple process and easy operation.
The methods include the steps of fermenting and preparing rhamnolipids using Pseudomonas aeruginosa, obtaining earthworm seeds, pretreating contaminated soil, and mixing rhamnolipids with deionized water to prepare a rhamnolipid solution. forming a diversion channel and a supplementary substrate hole in the soil and introducing organic fertilizer into the supplementary substrate hole; and introducing earthworm seeds to treat and remediate the soil. and earthworms to remediate dioxin-contaminated soil.
[Selection drawing] Fig. 1

Description

本発明は、汚染土壌修復の技術分野に関し、具体的には、ラムノリピッドとミミズを組み
合わせてダイオキシン汚染土壌を修復する方法に関する。
TECHNICAL FIELD The present invention relates to the technical field of remediation of contaminated soil, and more particularly to a method of remediating dioxin-contaminated soil by combining rhamnolipids and earthworms.

ダイオキシンは、環境中に広く存在する残留性有機汚染物であり、塩素を含む多くの化学
プロセスから無意識に副産物として発生するものである。ダイオキシン類の天然の貯蔵庫
として、土壌は乾湿の大気沈着、有機塩素系農薬の散布、下水汚泥の農業利用、廃棄物沈
着など、さまざまな経路で土壌環境に入り込む。
Dioxins are persistent organic pollutants that are ubiquitous in the environment and are inadvertently generated as by-products from many chemical processes involving chlorine. As a natural reservoir of dioxins, soil enters the soil environment through various routes, such as dry and wet atmospheric deposition, application of organochlorine pesticides, agricultural use of sewage sludge, and waste deposition.

土壌中のダイオキシン類は極めて安定で、自然環境下では非常にゆっくりと分解され、難
分解性である。土壌中のダイオキシン類を処理する既存技術としては、光分解、化学分解
、物理分解、バイオレメディエーションが一般的である。しかし、バイオレメディエーシ
ョンは、消費量が少なく、高効率で環境に優しいことから、近年広く注目されている土壌
浄化手段である。より効率的な分解株の単離と分解条件の探索により、バイオレメディエ
ーションは土壌ダイオキシン汚染の処理に重要な役割を果たすと思われている。
Dioxins in soil are extremely stable, decompose very slowly in the natural environment, and are persistent. Photodegradation, chemical decomposition, physical decomposition, and bioremediation are common as existing techniques for treating dioxins in soil. However, bioremediation is a soil remediation method that has received widespread attention in recent years because of its low consumption, high efficiency, and environmental friendliness. By isolating more efficient degrading strains and searching for degrading conditions, bioremediation is believed to play an important role in the treatment of soil dioxin contamination.

ラムノリピッドとミミズを組み合わせてダイオキシン汚染土壌を修復する方法は、
S1、ラムノリピッドを調製するステップと、
緑膿菌を利用してラムノリピッドを発酵および調製して用意し、
S2、ミミズ種を取得するステップと、
S3、土壌を前処理するステップと、
修復する汚染土壌をほぐし、雑物を除去した後表面をかき混ぜて処理層を形成し、ここで
、ほぐし深さが30~50cmであり、
S4、土壌を修復処理するステップと、
S4-1、ラムノリピッド溶液の投入
ラムノリピッドと脱イオン水を混合して濃度300~1000mg/Lのラムノリピッド
溶液を調製した後、S3で形成された処理層に2~3L/mの施用量でラムノリピッド
溶液を施用し、再び土壌をほぐしてラムノリピッド溶液と土壌を均一に混合し、
S4-2、土壌再処理
S4-1処理後の処理層に、3~5m間隔で深さ20~30cm、頂部幅10~15cm
、底部幅5~8cmの縦断面二等辺三角形構造の分水路(1)を設け、前記分水路(1)
に8~10m間隔で内径30~50cm、深さ30~50cmの補助飼養基穴(2)を設
け、前記補助飼養基穴(2)に補助飼養基穴(2)の容積の40~60%を占める有機肥
料を投入し、
S4-3、ミミズ種の投入
30~80本/mの投入密度でミミズ種を汚染土壌に投入し、
S4-4、土壌の処理修復
前記分水路(1)によって汚染土壌の含水率を40~50%に保持し、この含水量を保持
した条件下で継続的に12日修復した後、自然条件下で21~30日修復する、を含む。
説明すると、分水路の設置により、土壌修復処理の前期に汚染土壌の含水量を保持し、補
助飼養基穴を設けて有機肥料を投入することにより、分水路の補水過程に伴い土壌への有
機肥料の浸透を促進することができる。
本発明の一側面として、前記ステップS1では、前記ラムノリピッドを発酵および調製す
る方法は、
S1-11、発酵培養
活性化後の緑膿菌を第1液体発酵培地に投入して温度35~37℃、振動回転数230~
250r/minの条件下で4~7日発酵培養して、発酵液を得ること、
S1-12、ラムノリピッド抽出
発酵液を7000~7500r/minの条件下で20~25min遠心分離処理して菌
体を除去して上澄み液を取り、次に抽出法でラムノリピッドを抽出することを含む。
本発明の一側面として、前記ステップS1-11では、前記第1液体発酵培地の成分には
、グリセロール40~50g/L、イーストペースト0.2g/L、NaNO6.5g
/L、KHPO1.0g/L、NaCl0.5g/L、NaHPO 12H
1.0g/L、FeSO 7HO0.3g/L、MgSO 7HO0.1g/L
、脱イオン水1000mlが含まれ、pH=6.5~7.0である。
本発明の一側面として、前記ステップS1-12では、前記抽出法としては、濃度98%
の硫酸を用いて上澄み液のpHを1~1.5に調節し、4~8℃の条件下で10~12h
静置した後、体積比2:1のクロロホルム-メタノール混合液で等量の上澄み液を抽出し
、静置・層別した後下層を取り、次に中層をクロロホルム-メタノール混合液で二次抽出
し、静置・層別した後下層を取り、2回の抽出液を合わせて溶媒を蒸発させてラムノリピ
ッドを得る。
本発明の別の側面として、前記ステップS1では、前記ラムノリピッドを発酵および調製
する方法は、
S1-21、発酵培養
活性化後の緑膿菌を第2液体発酵培地に投入して温度28~32℃、振動回転数280~
300r/minの条件下で8~10日発酵培養して、発酵液を得ること、
S1-22、ラムノリピッド抽出
発酵液を5000~5500r/minの条件下で25~30min遠心分離処理して菌
体を除去して上澄み液を取り、次に膜分離法でラムノリピッドを抽出することを含む。
ここで、前記ステップS1-21では、前記第2液体発酵培地の成分には、大豆油100
~120g/L、イーストペースト0.2g/L、NaNO6.5g/L、KHPO
1.0g/L、NaCl0.5g/L、NaHPO 12HO1.0g/L、F
eSO0.1g/L、MgSO0.3g/L、脱イオン水1000mlが含まれ、p
H=6.0~6.5である。
ここで、前記ステップS1-22では、前記膜分離法としては、二重蒸留水を用いて発酵
液を5~20倍希釈した後、分画分子量10000の濾過膜を用いて25℃、0.5Mp
a、200~300L/hの条件下で限外濾過処理し、次に分画分子量300の濾過膜を
用いて限外濾過液を25℃、1.0Mpa条件下でナノ濾過処理し、溶媒を蒸発させてラ
ムノリピッドを得る。
本発明の一側面として、前記有機肥料は、照質量%で40~50%の家畜糞便、15~2
5%ストロー、5~10%おがくずおよび残部の落ち葉を発酵および調製して得られるも
のである。
説明すると、家畜糞便は、具体的に、豚、牛、羊、鶏、鴨などの1つまたは複数の飼養家
畜の糞便であり、ストローは具体的に、小麦、トウモロコシ、米、大豆などの1つまたは
複数の成熟作物のストローであり、おがくず、落ち葉は特に限定されなく、家畜糞便、ス
トロー、おがくず、落ち葉は地域に応じて現地調達して輸送コストを低減する。
本発明の一側面として、前記発酵方法としては、前記割合でストロー、落ち葉、おがくず
を混合し粉砕した後家畜糞便と混合して、混合マトリクスを得、混合マトリクスに発酵剤
を加え混合マトリクスの含水量が40~50%になるまで水を添加し、1~3日堆積発酵
した後反転させ、プラスチックフィルムで覆って21~30日継続的に発酵し、ここで、
継続的に発酵する過程中3~5日ごとに反転させる。
説明すると、ミミズの生命活動は、土壌中の汚染物の移動および変質を直接的または間接
的に影響を与え、この発酵方法で調製された有機肥料は、ミミズの活動を効果的に促進し
、その生命活動をより活発させることができ、ここで、発酵剤は市販されている有機肥料
発酵剤であり、具体的な使用量は実際の製品のガイド基準に準じて使用する。
The method of remediation of dioxin-contaminated soil by combining rhamnolipids and earthworms is
S1, preparing a rhamnolipid;
fermenting and preparing rhamnolipids using Pseudomonas aeruginosa;
S2, obtaining earthworm species;
S3, pre-treating the soil;
After loosening the contaminated soil to be remedied and removing impurities, the surface is stirred to form a treatment layer, where the loosening depth is 30 to 50 cm,
S4, remediation of the soil;
S4-1, adding rhamnolipid solution Rhamnolipid was mixed with deionized water to prepare a rhamnolipid solution with a concentration of 300 to 1000 mg/L, and then rhamnolipid was applied to the treatment layer formed in S3 at an application rate of 2 to 3 L/m 2 . applying the solution and loosening the soil again to uniformly mix the rhamnolipid solution and the soil;
S4-2, Soil retreatment S4-1 In the treatment layer after S4-1 treatment, the depth is 20-30 cm and the top width is 10-15 cm at intervals of 3-5 m.
, a diversion channel (1) having a vertical cross-sectional isosceles triangular structure with a bottom width of 5 to 8 cm is provided, and the diversion channel (1)
Auxiliary feeding base holes (2) with an inner diameter of 30 to 50 cm and a depth of 30 to 50 cm are provided at intervals of 8 to 10 m, and the auxiliary feeding base holes (2) have a volume of 40 to 60% of the volume of the auxiliary feeding base holes (2). by introducing organic fertilizer that occupies
S4-3, throwing earthworm seeds into contaminated soil at an injection density of 30 to 80/m 2 ,
S4-4, treatment and remediation of soil The moisture content of the contaminated soil is maintained at 40-50% by the diversion channel (1). including 21-30 days repair at.
To explain, by installing a diversion channel, the water content of the contaminated soil is maintained in the early stage of the soil remediation treatment, and by providing supplemental feeding base holes and adding organic fertilizer, organic fertilizers are added to the soil during the water replenishment process of the diversion channel. Fertilizer penetration can be promoted.
As one aspect of the present invention, in step S1, the method of fermenting and preparing the rhamnolipid comprises:
S1-11, Pseudomonas aeruginosa after fermentation culture activation is put into the first liquid fermentation medium, the temperature is 35 to 37 ° C., and the vibration rotation speed is 230 to
Obtaining a fermentation liquid by fermenting and culturing for 4 to 7 days under the condition of 250 r / min;
S1-12, extracting rhamnolipids This includes centrifuging the fermented liquid under the condition of 7000-7500 r/min for 20-25 minutes to remove the fungus, taking the supernatant, and then extracting the rhamnolipids by an extraction method.
As one aspect of the present invention, in step S1-11, the components of the first liquid fermentation medium include 40 to 50 g/L of glycerol, 0.2 g/L of yeast paste, and 6.5 g of NaNO 3 .
/L , KH2PO4 1.0 g /L, NaCl 0.5 g /L, Na2HPO4.12H2O
1.0g / L , FeSO4.7H2O0.3g /L, MgSO4.7H2O0.1g / L
, containing 1000 ml of deionized water, pH=6.5-7.0.
As one aspect of the present invention, in step S1-12, as the extraction method, concentration 98%
Adjust the pH of the supernatant to 1 to 1.5 with sulfuric acid, and incubate at 4 to 8°C for 10 to 12 hours.
After allowing to stand still, extract an equal amount of the supernatant liquid with a chloroform-methanol mixture at a volume ratio of 2:1. Then, after standing and layer separation, the lower layer is taken, and the two extracts are combined and the solvent is evaporated to obtain rhamnolipid.
As another aspect of the present invention, in step S1, the method of fermenting and preparing the rhamnolipid comprises:
S1-21, Pseudomonas aeruginosa after activation of the fermentation culture is put into the second liquid fermentation medium, and the temperature is 28 to 32 ° C. and the number of vibration revolutions is 280 to
Obtaining a fermentation liquid by fermenting and culturing for 8 to 10 days under the condition of 300 r / min;
S1-22, rhamnolipid extraction involves centrifuging the fermented liquid for 25 to 30 minutes under the conditions of 5000 to 5500 r/min to remove the bacterial cells, taking the supernatant, and then extracting the rhamnolipids by membrane separation. .
Here, in step S1-21, the components of the second liquid fermentation medium include 100 soybean oil
~120g/L, yeast paste 0.2g/L, NaNO3 6.5g/L, KH2PO
4 1.0 g/L, NaCl 0.5 g/L, Na 2 HPO 4.12H 2 O 1.0 g/L, F
eSO 4 0.1 g/L, MgSO 4 0.3 g/L, deionized water 1000 ml, p
H=6.0-6.5.
Here, in step S1-22, as the membrane separation method, after diluting the fermentation broth 5 to 20 times using double distilled water, it is filtered at 25° C. with a filtration membrane having a molecular weight cutoff of 10,000 at 0.5°C. 5Mp
a, ultrafiltration under conditions of 200 to 300 L / h, then using a filtration membrane with a cutoff molecular weight of 300, the ultrafiltrate is subjected to nanofiltration under conditions of 25 ° C. and 1.0 MPa, and the solvent is Evaporate to obtain the rhamnolipid.
As one aspect of the present invention, the organic fertilizer is 40-50% livestock manure in terms of illumination mass %, 15-2
It is obtained by fermentation and preparation of 5% straw, 5-10% sawdust and the rest fallen leaves.
By way of explanation, livestock manure is specifically the manure of one or more domesticated livestock such as pigs, cattle, sheep, chickens, ducks, etc., and straw is specifically one of wheat, corn, rice, soybeans, etc. Sawdust and fallen leaves are not particularly limited, and livestock feces, straws, sawdust and fallen leaves are locally procured according to the region to reduce transportation costs.
As one aspect of the present invention, the fermentation method includes mixing straws, fallen leaves, and sawdust in the above proportions, pulverizing them, and then mixing them with livestock feces to obtain a mixed matrix; Add water until the water content reaches 40-50%, pile fermentation for 1-3 days, then turn over, cover with a plastic film and ferment continuously for 21-30 days, where:
Turn over every 3-5 days during the continuous fermentation process.
To explain, the vital activity of earthworms directly or indirectly affects the movement and alteration of contaminants in the soil, and the organic fertilizer prepared by this fermentation method effectively promotes the activity of earthworms, In this case, the fermenting agent is a commercially available organic fertilizer fermenting agent, and the specific amount used is according to the actual product guide standard.

従来技術と比較すると、本発明は以下の有益な効果を有する。本発明はプロセス全体が合
理的であり、ラムノリピッドとミミズを組み合わせてダイオキシン汚染土壌を修復し、土
壌中の微生物の代謝経路を効果的に変更でき、生物活性剤としてのラムノリピッドの添加
により、ダイオキシンなどの汚染物の生物学的利用度を向上させ、微生物の応答を刺激し
、ミミズの活動によって生成された酵素や優勢菌は汚染物を効果的に分解し、高効率、グ
リーンで環境に優しく、低コストなどの利点を有し、添加した有機肥料はミミズの成長に
栄養を与え、ミミズの活動を促進し、本発明のプロセスは、簡単なプロセス、操作しやす
い利点を有し、幅広い普及に適している。
Compared with the prior art, the present invention has the following beneficial effects. The whole process of the present invention is rational, combining rhamnolipids and earthworms can remediate dioxin-contaminated soil, effectively alter the metabolic pathways of microorganisms in the soil, and the addition of rhamnolipids as bioactive agents can reduce dioxins, etc. improve the bioavailability of pollutants, stimulate microbial response, the enzymes and dominant bacteria produced by earthworm activity can effectively decompose pollutants, high efficiency, green and environmentally friendly, It has advantages such as low cost, the added organic fertilizer nourishes the growth of earthworms and promotes the activity of earthworms, and the process of the present invention has the advantages of simple process and easy operation, so it can be widely used. Are suitable.

本発明のプロセスのフローチャートである。4 is a flow chart of the process of the present invention; 本発明の処理層内の分水路と補助飼養基穴の局所的な構造の概略図である。FIG. 4 is a schematic diagram of the local structure of diversion channels and supplementary feeding holes in the treatment layer of the present invention; 本発明の処理層内の分水路と補助飼養基穴の局所上面図である。FIG. 4 is a local top view of the diversion channel and supplemental feeding hole in the treatment layer of the present invention; 本発明の処理層内の分水路と補助飼養基穴の局所断面図である。FIG. 4 is a local cross-sectional view of a diversion channel and supplementary feeding hole in the treatment layer of the present invention;

[符号の説明]
1 分水路
2 補助飼養基穴
[Description of symbols]
1 diversion channel 2 supplementary feeding base hole

実施例1
図1に示すラムノリピッドとミミズを組み合わせてダイオキシン汚染土壌を修復する方法
は以下のステップを含む。
S1、ラムノリピッドの調製
S1-11、発酵培養
活性化後の緑膿菌を第1液体発酵培地に投入して温度35℃、振動回転数230r/mi
nの条件下で4日発酵培養して、発酵液を得、ここで、第1液体発酵培地の成分には、グ
リセロール40g/L、イーストペースト0.2g/L、NaNO6.5g/L、KH
PO1.0g/L、NaCl0.5g/L、NaHPO 12HO1.0g/
L、FeSO 7HO0.3g/L、MgSO 7HO0.1g/L、脱イオン
水1000mlが含まれ、pH=6.5であり、
S1-12、ラムノリピッド抽出
発酵液を7000r/minの条件下で20min遠心分離処理して菌体を除去し上澄み
液を取り、次に抽出法でラムノリピッドを抽出し、ここで、抽出法として、濃度98%の
硫酸で上澄み液のpHを1に調節し、4℃条件下で10h静置し、体積比2:1のクロロ
ホルム-メタノール混合液を用いて等量の上澄み液を抽出し、静置・層別した後下層を取
り、次に中層をクロロホルム-メタノール混合液で二次抽出し、静置・層別した後下層を
取り、2回の抽出液を合わせて溶媒を蒸発させてラムノリピッドを得、
S2、ミミズ種の取得
病気や傷がなく、はっきりとしたリング形状を持ち、体重3.0±0.5gの成熟したウ
イリアムズリングワームを得、
S3、土壌前処理
修復する汚染土壌をほぐし、雑物を除去した後表面をかき混ぜて、処理層を形成し、ここ
で、ほぐし深さが30cmであり、
S4、土壌修復処理
S4-1、ラムノリピッド溶液の投入
ラムノリピッドと脱イオン水を混合し調製して濃度300mg/Lのラムノリピッド溶液
を得た後、S3で形成された処理層を2L/mの施用量でラムノリピッド溶液を施用し
、再び土壌をほぐしてラムノリピッド溶液と土壌を均一に混合し、
S4-2、土壌再処理
図2、3、4に示すように、S4-1処理後の処理層内で3m間隔で深さ20cm、頂部
幅10cm、底部幅5cmの縦断面二等辺三角形構造の分水路1を設け、分水路1に8m
間隔で内径30cm、深さ30cmの補助飼養基穴2を設け、補助飼養基穴2に補助飼養
基穴2の容積40%の有機肥料を投入し、有機肥料は、質量%で40%の家畜糞便、15
%ストロー、5%おがくずおよび残部の落ち葉を発酵および調製して得られたものであり
、ここで、発酵方法として、割合でストロー、落ち葉、おがくずを混合し粉砕した後家畜
糞便と混合して、混合マトリクスを得、混合マトリクスに発酵剤を加えて、混合マトリク
スの含水量が40%になるまで水を添加し、1日堆積発酵した後反転させ、プラスチック
フィルムで覆って21日継続的に発酵し、ここで、継続的に発酵する過程中3日ごとに反
転させ、発酵剤は市販されている有機肥料発酵剤であり、具体的な使用量は実際の製品の
ガイド基準に準じて使用することができ、
S4-3、ミミズ種の投入
30本/mの投入密度でミミズ種を汚染土壌に投入し、
S4-4、土壌の処理修復
分水路1で汚染土壌の含水率を40%に保持し、この含水量を保持した条件下で12日継
続的に修復した後、自然条件下で21日修復する。
Example 1
The method for remediation of dioxin-contaminated soil by combining rhamnolipids and earthworms shown in FIG. 1 includes the following steps.
S1, Preparation of rhamnolipid S1-11, Pseudomonas aeruginosa after activation of the fermentation culture was put into the first liquid fermentation medium, and the temperature was 35° C. and the vibration speed was 230 r/mi.
fermented culture for 4 days under the conditions of n to obtain a fermented liquid, wherein the components of the first liquid fermentation medium include glycerol 40 g/L, yeast paste 0.2 g/L, NaNO 3 6.5 g/L , KH
2PO4 1.0 g / L , NaCl 0.5 g/L, Na2HPO4.12H2O 1.0 g/L
L, FeSO4.7H2O 0.3 g /L, MgSO4.7H2O 0.1 g /L, deionized water 1000 ml, pH=6.5,
S1-12, Rhamnolipid Extraction Fermented broth is centrifuged for 20 minutes under the condition of 7000 r/min to remove the fungus and the supernatant is taken. Adjust the pH of the supernatant to 1 with 98% sulfuric acid, leave at 4°C for 10 hours, extract an equal volume of the supernatant with a chloroform-methanol mixture at a volume ratio of 2:1, and leave at rest.・After stratification, take the lower layer, then extract the middle layer with a mixture of chloroform and methanol for a second time, leave it to stand and stratify, take the lower layer, combine the two extracts, and evaporate the solvent to remove the rhamnolipid. get,
S2, Acquisition of earthworm species Obtained mature Williams ringworms, free from disease and blemishes, with a well-defined ring shape and weighing 3.0±0.5 g,
S3, loosen the contaminated soil to be remedied before soil treatment, stir the surface after removing impurities, and form a treatment layer, where the loosening depth is 30 cm;
S4, soil remediation treatment S4-1, addition of rhamnolipid solution Rhamnolipid and deionized water were mixed and prepared to obtain a rhamnolipid solution with a concentration of 300 mg/L. applying the rhamnolipid solution in doses and loosening the soil again to evenly mix the rhamnolipid solution and the soil;
S4-2, Soil Retreatment As shown in Figures 2, 3 and 4, an isosceles triangular structure with a vertical cross-section of 20 cm depth, 10 cm top width and 5 cm bottom width was formed at intervals of 3 m in the treatment layer after S4-1 treatment. Diversion channel 1 is provided, and 8 m
Auxiliary feeding base holes 2 with an inner diameter of 30 cm and a depth of 30 cm are provided at intervals, and organic fertilizer having a volume of 40% of the auxiliary feeding base holes 2 is put into the auxiliary feeding base holes 2. The organic fertilizer is 40% by mass of the livestock. faeces, 15
% straw, 5% sawdust and the rest of fallen leaves are fermented and prepared, wherein the fermentation method is to mix straw, fallen leaves and sawdust in proportions, crush and then mix with livestock feces, Obtain a mixed matrix, add the fermenting agent to the mixed matrix, add water until the moisture content of the mixed matrix is 40%, turn over after 1 day of pile fermentation, cover with a plastic film and continuously ferment for 21 days Here, during the continuous fermentation process, it is turned over every 3 days, and the fermenting agent is a commercially available organic fertilizer fermenting agent, and the specific amount used is according to the actual product guide standards. It is possible,
S4-3, throwing earthworm seeds into contaminated soil at an injection density of 30 earthworm seeds/m 2 ;
S4-4: The water content of the contaminated soil is maintained at 40% in the soil treatment and restoration diversion channel 1, and after 12 days of continuous restoration under conditions where this water content is maintained, restoration is performed for 21 days under natural conditions. .

実施例2
図1に示すラムノリピッドとミミズを組み合わせてダイオキシン汚染土壌を修復する方法
は以下のステップを含む。
S1、ラムノリピッドの調製
S1-11、発酵培養
活性化後の緑膿菌を第1液体発酵培地に投入して温度36℃、振動回転数240r/mi
nの条件下で4~7日発酵培養して、発酵液を得、ここで、第1液体発酵培地の成分には
、グリセロール45g/L、イーストペースト0.2g/L、NaNO6.5g/L、
KHPO1.0g/L、NaCl0.5g/L、NaHPO 12HO1.0
g/L、FeSO 7HO0.3g/L、MgSO 7HO0.1g/L、脱イ
オン水1000mlが含まれ、pH=6.8であり、
S1-12、ラムノリピッド抽出
発酵液を7300r/minの条件下で22min遠心分離処理して菌体を除去し上澄み
液を取り、次に抽出法でラムノリピッドを抽出し、ここで、抽出法として、濃度98%の
硫酸を用いて上澄み液のpHを1.3に調節し、5℃条件下で11h静置した後、体積比
2:1のクロロホルム-メタノール混合液で等量の上澄み液を抽出し、静置・層別した後
下層を取り、次に中層をクロロホルム-メタノール混合液で二次抽出し、静置・層別した
後下層を取り、2回の抽出液を合わせて溶媒を蒸発させてラムノリピッドを得、
S2、ミミズ種取得
病気や傷がなく、はっきりとしたリング形状を持ち、体重3.0±0.5gの成熟したウ
イリアムズリングワームを得、
S3、土壌前処理
修復する汚染土壌をほぐし、雑物を除去した後表面をかき混ぜて、処理層を形成し、ここ
で、ほぐし深さが40cmであり、
S4、土壌修復処理
S4-1、ラムノリピッド溶液の投入
ラムノリピッドと脱イオン水を混合し調製して濃度500mg/Lのラムノリピッド溶液
を得た後、S3で形成された処理層を2.5L/mの施用量でラムノリピッド溶液を施
用し、再び土壌をほぐしてラムノリピッド溶液と土壌を均一に混合し、
S4-2、土壌再処理
図2、3、4に示すように、S4-1処理後の処理層内で4.5m間隔で深さ25cm、
頂部幅12cm、底部幅6cmの縦断面二等辺三角形構造の分水路1を設け、分水路1に
9m間隔で内径40cm、深さ40cmの補助飼養基穴2を設け、補助飼養基穴2に補助
飼養基穴2の容積50%の有機肥料を投入し、有機肥料は質量%で45%の家畜糞便、2
0%ストロー、8%おがくずおよび残部の落ち葉を発酵および調製して得られたものであ
り、ここで、発酵方法として、割合でストロー、落ち葉、おがくずを混合し粉砕した後家
畜糞便と混合して、混合マトリクスを得、混合マトリクスに発酵剤を加え混合マトリクス
の含水量が45%になるまで水を添加し、2日堆積発酵した後反転させ、プラスチックフ
ィルムで覆って28日継続的に発酵し、ここで、継続的に発酵する過程中4日間隔で反転
させ、発酵剤は市販されている有機肥料発酵剤であり、具体的な使用量は実際の製品のガ
イド基準に準じて使用することができ、
S4-3、ミミズ種の投入
60本/mの投入密度でミミズ種を汚染土壌に投入し、
S4-4、土壌の処理修復
分水路1によって汚染土壌の含水率を45%に保持し、この含水量を保持した条件下で1
2日継続的に修復した後、自然条件下で28日修復する。
Example 2
The method for remediation of dioxin-contaminated soil by combining rhamnolipids and earthworms shown in FIG. 1 includes the following steps.
S1, preparation of rhamnolipid S1-11, Pseudomonas aeruginosa after activation of the fermentation culture was put into the first liquid fermentation medium, and the temperature was 36° C. and the vibration speed was 240 r/mi.
Fermentation culture is performed for 4 to 7 days under the conditions of n to obtain a fermentation broth, wherein the components of the first liquid fermentation medium include 45 g/L of glycerol, 0.2 g/L of yeast paste, and 6.5 g of NaNO 3 . /L,
KH2PO4 1.0 g / L, NaCl 0.5 g /L, Na2HPO4.12H2O 1.0
g/L, 0.3 g /L FeSO4.7H2O , 0.1 g /L MgSO4.7H2O , 1000 ml deionized water, pH=6.8,
S1-12, rhamnolipid extraction Fermented liquid was centrifuged for 22 minutes under the condition of 7300 r/min to remove the microbial cells, and the supernatant was taken. The pH of the supernatant was adjusted to 1.3 using 98% sulfuric acid, and after standing at 5°C for 11 hours, an equal volume of the supernatant was extracted with a chloroform-methanol mixture at a volume ratio of 2:1. , Leave to stand and separate layers, then take the lower layer, then extract the middle layer with a mixture of chloroform and methanol for a second time, leave to stand and separate layers, take the lower layer, combine the two extracts, and evaporate the solvent. to obtain rhamnolipids,
S2, Acquisition of earthworm species Obtained mature Williams ringworms, free of disease and wounds, with a well-defined ring shape and weighing 3.0±0.5 g,
S3, loosen the contaminated soil to be remedied before soil treatment, stir the surface after removing impurities, and form a treatment layer, where the loosening depth is 40 cm;
S4, Soil Remediation Treatment S4-1, Rhamnolipid Solution Input Rhamnolipid and deionized water were mixed and prepared to obtain a rhamnolipid solution with a concentration of 500 mg/L . Apply the rhamnolipid solution at an application rate of , loosen the soil again to uniformly mix the rhamnolipid solution and the soil,
S4-2, soil retreatment As shown in Figs.
A diversion channel 1 having an isosceles triangular vertical cross-section with a top width of 12 cm and a bottom width of 6 cm is provided. 50% of the volume of the feeding base hole 2 is fed with organic fertilizer, and the organic fertilizer is 45% by mass of livestock feces.
It is obtained by fermenting and preparing 0% straw, 8% sawdust and the rest of fallen leaves, wherein the fermentation method is to mix straw, fallen leaves and sawdust in proportions, crush and then mix with livestock feces. , to obtain a mixed matrix, add the fermenting agent to the mixed matrix, add water until the moisture content of the mixed matrix is 45%, turn over after 2 days of pile fermentation, cover with plastic film and continue to ferment for 28 days. , where it is turned over every 4 days during the continuous fermentation process, the fermenting agent is a commercially available organic fertilizer fermenting agent, and the specific amount used is according to the actual product guide standards. can be
S4-3, throwing earthworm seeds into the contaminated soil at an injection density of 60 earthworm seeds/m 2 ,
S4-4, the water content of the contaminated soil is maintained at 45% by the treatment and restoration of the soil diversion channel 1, and under the condition that this water content is maintained, 1
After 2 days of continuous repair, 28 days of repair under natural conditions.

実施例3
図1に示すラムノリピッドとミミズを組み合わせてダイオキシン汚染土壌を修復する方法
は以下のステップを含む。
S1、ラムノリピッドの調製
S1-11、発酵培養
活性化後の緑膿菌を第1液体発酵培地に投入して温度37℃、振動回転数250r/mi
nの条件下で7日発酵培養して、発酵液を得、ここで、第1液体発酵培地の成分には、グ
リセロール50g/L、イーストペースト0.2g/L、NaNO6.5g/L、KH
PO1.0g/L、NaCl0.5g/L、NaHPO 12HO1.0g/
L、FeSO 7HO0.3g/L、MgSO 7HO0.1g/L、脱イオン
水1000mlが含まれ、pH=7.0であり、
S1-12、ラムノリピッド抽出
発酵液を7500r/minの条件下で25min遠心分離処理して菌体を除去し上澄み
液を取り、次に抽出法でラムノリピッドを抽出し、ここで、抽出法として、濃度98%の
硫酸を用いて上澄み液のpHを1.5に調節し、8℃条件下で12h静置した後、体積比
2:1のクロロホルム-メタノール混合液で等量の上澄み液を抽出し、静置・層別した後
下層を取り、次に中層をクロロホルム-メタノール混合液で二次抽出し、静置・層別した
後下層を取り、2回の抽出液を合わせて溶媒を蒸発させてラムノリピッドを得、
S2、ミミズ種取得
病気や傷がなく、はっきりとしたリング形状を持ち、体重3.0±0.5gの成熟したウ
イリアムズリングワームを得、
S3、土壌前処理
修復する汚染土壌をほぐし、雑物を除去した後表面をかき混ぜて、処理層を形成し、ここ
で、ほぐし深さが50cmであり、
S4、土壌修復処理
S4-1、ラムノリピッド溶液の投入
ラムノリピッドと脱イオン水を混合し調製して濃度1000mg/Lのラムノリピッド溶
液を得た後、S3で形成された処理層を3L/mの施用量でラムノリピッド溶液を施用
し、再び土壌をほぐしてラムノリピッド溶液と土壌を均一に混合し、
S4-2、土壌再処理
図2、3、4に示すように、S4-1処理後の処理層内に5m間隔で深さ30cm、頂部
幅15cm、底部幅8cmの縦断面二等辺三角形構造の分水路1を設け、分水路1に8~
10m間隔で内径50cm、深さ50cmの補助飼養基穴2を設け、補助飼養基穴2に補
助飼養基穴2の容積60%の有機肥料を投入し、有機肥料は質量%で50%の家畜糞便、
25%ストロー、10%おがくずおよび残部の落ち葉を発酵および調製して得られたもの
であり、ここで、発酵方法として、割合でストロー、落ち葉、おがくずを混合し粉砕した
後家畜糞便と混合し、混合マトリクスを得、混合マトリクスに発酵剤を加え混合マトリク
スの含水量が50%になるまで水を添加し、3日堆積発酵した後反転させ、プラスチック
フィルムで覆って30日継続的に発酵し、ここで、継続的に発酵する過程中5日ごとに反
転させ、発酵剤は市販されている有機肥料発酵剤であり、具体的な使用量は実際の製品の
ガイド基準に準じて使用することができ、
S4-3、ミミズ種の投入
80本/mの投入密度でミミズ種を汚染土壌に投入し、
S4-4、土壌の処理修復
分水路1によって汚染土壌の含水率を50%に保持し、この含水量を保持した条件下で1
2日継続的に修復した後、自然条件下で30日修復する。
Example 3
The method for remediation of dioxin-contaminated soil by combining rhamnolipids and earthworms shown in FIG. 1 includes the following steps.
S1, preparation of rhamnolipid S1-11, Pseudomonas aeruginosa after activation of the fermentation culture was added to the first liquid fermentation medium, and the temperature was 37° C. and the vibration speed was 250 r/mi.
fermented culture for 7 days under the condition of n to obtain a fermented liquid, wherein the components of the first liquid fermentation medium include glycerol 50 g/L, yeast paste 0.2 g/L, NaNO 3 6.5 g/L , KH
2PO4 1.0 g / L , NaCl 0.5 g/L, Na2HPO4.12H2O 1.0 g/L
L, FeSO4.7H2O 0.3 g /L, MgSO4.7H2O 0.1 g /L, deionized water 1000 ml, pH=7.0,
S1-12, Rhamnolipid Extraction Fermented liquid was centrifuged for 25 minutes under the condition of 7500 r/min to remove the fungus and the supernatant was taken. The pH of the supernatant was adjusted to 1.5 using 98% sulfuric acid, and after standing at 8°C for 12 hours, an equal amount of the supernatant was extracted with a chloroform-methanol mixture at a volume ratio of 2:1. , Leave to stand and separate layers, then take the lower layer, then extract the middle layer with a mixture of chloroform and methanol for a second time, leave to stand and separate layers, take the lower layer, combine the two extracts, and evaporate the solvent. to obtain rhamnolipids,
S2, Acquisition of earthworm species Obtained mature Williams ringworms, free of disease and wounds, with a well-defined ring shape and weighing 3.0±0.5 g,
S3, loosen the contaminated soil to be remedied before soil treatment, stir the surface after removing impurities, and form a treatment layer, where the loosening depth is 50 cm;
S4, Soil Remediation Treatment S4-1, Rhamnolipid Solution Input Rhamnolipid and deionized water were mixed and prepared to obtain a rhamnolipid solution with a concentration of 1000 mg/L. applying the rhamnolipid solution in doses and loosening the soil again to evenly mix the rhamnolipid solution and the soil;
S4-2, Soil Retreatment As shown in Figs. 2, 3 and 4, an isosceles triangular structure with a vertical cross-section of 30 cm depth, 15 cm top width and 8 cm bottom width was placed at intervals of 5 m in the treatment layer after S4-1 treatment. Diversion channel 1 is provided, and 8 to 8
An auxiliary feeding base hole 2 having an inner diameter of 50 cm and a depth of 50 cm is provided at intervals of 10 m, and organic fertilizer having a volume of 60% of the auxiliary feeding base hole 2 is put into the auxiliary feeding base hole 2. The organic fertilizer is 50% by mass of livestock. feces,
It is obtained by fermentation and preparation of 25% straw, 10% sawdust and the rest of fallen leaves, wherein the fermentation method is to mix straw, fallen leaves and sawdust in proportions, crush and then mix with livestock feces, Obtaining a mixed matrix, adding a fermenting agent to the mixed matrix, adding water until the moisture content of the mixed matrix is 50%, inverting after pile fermentation for 3 days, covered with a plastic film and continuously fermenting for 30 days, Here, it is turned over every 5 days during the continuous fermentation process, and the fermenting agent is a commercially available organic fertilizer fermenting agent. can
S4-3, throwing earthworm seeds into contaminated soil at an injection density of 80 earthworm seeds/m 2 ;
S4-4, the water content of the contaminated soil is maintained at 50% by the soil treatment and restoration diversion channel 1, and under the condition that this water content is maintained, 1
After 2 days of continuous repair, 30 days of repair under natural conditions.

実施例4
実施例1と以下の点で異なり、
ステップS1では、ラムノリピッドを発酵および調製する方法は以下のステップを含む。
S1-21、発酵培養
活性化後の緑膿菌を第2液体発酵培地に投入して温度28℃、振動回転数280r/mi
nの条件下で8日発酵培養させ、発酵液を得、ここで、第2液体発酵培地の成分には、大
豆油100g/L、イーストペースト0.2g/L、NaNO6.5g/L、KH
1.0g/L、NaCl0.5g/L、NaHPO 12HO1.0g/L、
FeSO0.1g/L、MgSO0.3g/L、脱イオン水1000mlが含まれ、
pH=6.0であり、
S1-22、ラムノリピッド抽出
発酵液を5000r/minの条件下で25min遠心分離処理して菌体を除去し上澄み
液を取り、次に膜分離法でラムノリピッドを抽出し、ここで、膜分離法として、二重蒸留
水を用いて発酵液を5倍希釈した後、分画分子量10000の濾過膜を用いて25℃、0
.5Mpa、200L/hの条件下で限外濾過処理した後、分画分子量300の濾過膜を
用いて限外濾過液を25℃、1.0Mpa条件下でナノ濾過処理し、溶媒を蒸発させてラ
ムノリピッドを得る。
Example 4
Different from Example 1 in the following points,
In step S1, the method of fermenting and preparing rhamnolipids includes the following steps.
S1-21, the Pseudomonas aeruginosa after activation of the fermentation culture is put into the second liquid fermentation medium, and the temperature is 28° C. and the vibration speed is 280 r/mi.
Fermentation culture is performed for 8 days under the conditions of n to obtain a fermented liquid, wherein the components of the second liquid fermentation medium include 100 g/L of soybean oil, 0.2 g/L of yeast paste, and 6.5 g/L of NaNO3. , KH2P
O4 1.0 g /L, NaCl 0.5 g/L, Na2HPO4.12H2O 1.0 g/L,
FeSO 4 0.1 g/L, MgSO 4 0.3 g/L, 1000 ml deionized water,
pH = 6.0,
S1-22, rhamnolipid extraction Fermented liquid was centrifuged for 25 minutes under the condition of 5000 r/min to remove the bacterial cells and the supernatant was taken, and then the rhamnolipids were extracted by the membrane separation method. , After diluting the fermented liquid 5 times with double distilled water, use a filtration membrane with a molecular weight cut off of 10000 at 25 ° C., 0
. After ultrafiltration treatment under conditions of 5 Mpa and 200 L/h, the ultrafiltrate was subjected to nanofiltration treatment under conditions of 25 ° C. and 1.0 Mpa using a filtration membrane with a cutoff molecular weight of 300, and the solvent was evaporated. Obtain rhamnolipid.

実施例5
実施例2とは以下の点で異なり、
ステップS1では、ラムノリピッドを発酵および調製する方法は以下のステップを含む。
S1-21、発酵培養
活性化後の緑膿菌を第2液体発酵培地に投入して温度30℃、振動回転数290r/mi
nの条件下で9日発酵培養し、発酵液を得、ここで、第2液体発酵培地の成分には、大豆
油110g/L、イーストペースト0.2g/L、NaNO6.5g/L、KHPO
1.0g/L、NaCl0.5g/L、NaHPO 12HO1.0g/L、F
eSO0.1g/L、MgSO0.3g/L、脱イオン水1000mlが含まれ、p
H=6.3であり、
S1-22、ラムノリピッド抽出
発酵液を5200r/minの条件下で28min遠心分離処理して菌体を除去し上澄み
液を取り、次に膜分離法でラムノリピッドを抽出し、ここで、膜分離法として、二重蒸留
水を用いて発酵液を15倍希釈した後、分画分子量10000の濾過膜を用いて25℃、
0.5Mpa、250L/hの条件下で限外濾過処理した後、分画分子量300の濾過膜
で限外濾過液を25℃、1.0Mpa条件下でナノ濾過処理し、溶媒を蒸発させてラムノ
リピッドを得る。
実施例6
実施例3とは以下の点で異なり、
ステップS1では、ラムノリピッドを発酵および調製する方法は以下のステップを含む。
S1-21、発酵培養
活性化後の緑膿菌を第2液体発酵培地に投入して温度32℃、振動回転数280~300
r/minの条件下で10日発酵培養し、発酵液を得、ここで、第2液体発酵培地の成分
には、大豆油120g/L、イーストペースト0.2g/L、NaNO6.5g/L、
KHPO1.0g/L、NaCl0.5g/L、NaHPO 12HO1.0
g/L、FeSO0.1g/L、MgSO0.3g/L、脱イオン水1000mlが
含まれ、pH=6.5であり、
S1-22、ラムノリピッド抽出
発酵液を5500r/minの条件下で30min遠心分離処理して菌体を除去し上澄み
液を取り、次に膜分離法でラムノリピッドを抽出し、ここで、膜分離法として、二重蒸留
水を用いて発酵液を20倍希釈した後、分画分子量10000の濾過膜を用いて25℃、
0.5Mpa、300L/hの条件下で限外濾過処理した後、分画分子量300の濾過膜
を用いて限外濾過液を25℃、1.0Mpa条件下でナノ濾過処理し、溶媒を蒸発させて
ラムノリピッドを得る。
Example 5
Different from Example 2 in the following points,
In step S1, the method of fermenting and preparing rhamnolipids includes the following steps.
S1-21, the Pseudomonas aeruginosa after activation of the fermentation culture is put into the second liquid fermentation medium, and the temperature is 30° C. and the vibration speed is 290 r/mi.
Fermentation culture is performed for 9 days under the conditions of n to obtain a fermented liquid, wherein the components of the second liquid fermentation medium include 110 g/L of soybean oil, 0.2 g/L of yeast paste, and 6.5 g/L of NaNO3 . , KH2PO
4 1.0 g/L, NaCl 0.5 g/L, Na 2 HPO 4.12H 2 O 1.0 g/L, F
eSO 4 0.1 g/L, MgSO 4 0.3 g/L, deionized water 1000 ml, p
H = 6.3,
S1-22, rhamnolipid extraction Fermented liquid was centrifuged for 28 minutes under the condition of 5200 r/min to remove the bacterial cells and the supernatant was taken, then the rhamnolipids were extracted by the membrane separation method. , After diluting the fermentation liquid 15 times with double distilled water, use a filtration membrane with a molecular weight cut off of 10000 at 25 ° C.,
After ultrafiltration treatment under conditions of 0.5 Mpa and 250 L/h, the ultrafiltrate was subjected to nanofiltration treatment under conditions of 25 ° C. and 1.0 Mpa with a filtration membrane with a cutoff molecular weight of 300, and the solvent was evaporated. Obtain rhamnolipid.
Example 6
Different from Example 3 in the following points,
In step S1, the method of fermenting and preparing rhamnolipids includes the following steps.
S1-21, Pseudomonas aeruginosa after activation of the fermentation culture is put into the second liquid fermentation medium, the temperature is 32 ° C., and the number of vibration revolutions is 280 to 300.
Fermented culture was performed for 10 days under the condition of r/min to obtain a fermented liquid, wherein the components of the second liquid fermentation medium were 120 g/L of soybean oil, 0.2 g/L of yeast paste, and 6.5 g of NaNO3 . /L,
KH2PO4 1.0 g / L, NaCl 0.5 g /L, Na2HPO4.12H2O 1.0
g/L, FeSO4 0.1 g/L, MgSO4 0.3 g/L, 1000 ml deionized water, pH=6.5,
S1-22, the rhamnolipid extraction fermentation liquid is centrifuged for 30 minutes under the condition of 5500 r/min to remove the bacterial cells and the supernatant is taken, and then the rhamnolipids are extracted by the membrane separation method. , After diluting the fermentation broth 20 times with double distilled water, use a filtration membrane with a molecular weight cut off of 10000 at 25 ° C.,
After ultrafiltration under conditions of 0.5 Mpa and 300 L/h, the ultrafiltrate was subjected to nanofiltration under conditions of 25°C and 1.0 Mpa using a filtration membrane with a cutoff molecular weight of 300, and the solvent was evaporated. to obtain rhamnolipids.

実験例
上海のあるバイオテクノロジー有限公司から番号ATCC15442の緑膿菌の株を購入
し、実施例1のステップS1で調製されたラムノリピッドを調製し、脱イオン水と混合し
て濃度300mg/Lのラムノリピッド溶液を調製し、
江蘇淮安市のあるミミズ養殖公司からミミズを購入し、実施例1のステップS2によって
ミミズ種を入手し、
原始土壌を安徽省合肥市のある廃ガス製鉄所から採集し:5点サンプリング法により5~
20cm深さの位置で採集し、乾燥後2mmの篩にかけて原始土壌を得、HRGC/HR
MS超微量分析法により原始土壌中のダイオキシン濃度4.61ng/kgを検出し、
有機肥料は、40%の牛糞、15%の麦わら、5%おがくずおよび残部の松葉を発酵およ
び調製して得られたものであり、ここで、発酵剤は飼料承認番号/登録証番号豫飼添(2
015)2335の市販されている発酵剤であり、
5組の処理実験が設定され:
第1実験組、5000g原始土壌、
第2実験組、5000g原始土壌+5本ミミズ種、
第3実験組、5000g原始土壌+10mlラムノリピッド溶液、
第4実験組、5000g原始土壌+5本ミミズ種+3mlラムノリピッド溶液、
第5実験組、5000g原始土壌+5本ミミズ種+3mlラムノリピッド溶液+2g有機
肥料、
各組の実験は、汚染土壌の含水率を40%保持した条件下で12日継続的に修復した後、
自然条件下で21日修復し、3日ごとに5gの土壌サンプルを採集して生物量分析を行っ
て表1に示す結果を得、

表1:5組の処理実験の21日間土壌サンプルの生物量分析結果


Figure 0007238228000002
Experimental Example A strain of Pseudomonas aeruginosa with number ATCC15442 was purchased from a Shanghai Biotechnology Co., Ltd., rhamnolipid prepared in step S1 of Example 1 was prepared, and mixed with deionized water to give a rhamnolipid concentration of 300 mg/L. prepare a solution,
Purchasing earthworms from an earthworm farming company in Huai'an, Jiangsu, obtaining earthworm seeds according to step S2 of Example 1,
Primitive soil was collected from a waste gas steelworks in Hefei City, Anhui Province.
Collected at a depth of 20 cm, dried and passed through a 2 mm sieve to obtain primitive soil, HRGC/HR
Detecting a dioxin concentration of 4.61 ng / kg in primitive soil by MS ultratrace analysis,
The organic fertilizer was obtained by fermenting and preparing 40% cow dung, 15% wheat straw, 5% sawdust and the balance pine needles, where the fermenting agent is Feed Approval No./Registration No. (2
015) 2335 commercially available fermentation agents,
Five sets of treatment experiments were set up:
1st experimental group, 5000g primitive soil,
2nd experimental group, 5000g primitive soil + 5 earthworm seeds,
3rd set of experiments, 5000g pristine soil + 10ml rhamnolipid solution,
4th experimental set, 5000g pristine soil + 5 earthworm seeds + 3ml rhamnolipid solution,
5th experimental group, 5000g pristine soil + 5 earthworm seeds + 3ml rhamnolipid solution + 2g organic fertilizer,
In each set of experiments, after 12 days of continuous remediation under the condition that the water content of the contaminated soil was kept at 40%,
21 days of remediation under natural conditions, taking 5 g soil samples every 3 days for biomass analysis with the results shown in Table 1;

Table 1: Biomass analysis results of 21-day soil samples from five sets of treatment experiments.


Figure 0007238228000002

結論:第1実験組の21日間土壌サンプルの生物量分析結果から分かるように、最初の1
2日間で土壌の最大保水能力の40%を保持したことにより土壌中のダイオキシンを希釈
して土壌サンプル中のダイオキシン濃度が原始土壌中のダイオキシン濃度よりもわずか低
く、
第1実験組、第2実験組、第3実験組、第4実験組、第5実験組から分かるように、第4
実験組と第5実験組は土壌中のダイオキシンに対して比較的に効果的な分解効果を発揮し
、ここで、第5実験組の分解率は90.6%であり、WHOの土壌中ダイオキシンの管理
標準0.60ng/kgを満たし、
第1実験組、第2実験組、第3実験組から分かるように、ラムノリピッドとミミズの2つ
の要因により、ミミズはダイオキシンの分解に比較的大きい影響を与え、
第2実験組、第4実験組、第5実験組から分かるように、ラムノリピッド溶液は、ミミズ
による土壌中のダイオキシンの分解効率を効果的に促進でき、
第4実験組、第5実験組から分かるように、有機肥料の添加により、ダイオキシンの分解
効果を促進し、これは、有機肥料がミミズの活動を効果的に促進することからであると思
われている。
Conclusion: As can be seen from the biomass analysis results of the 21-day soil samples of the first experimental set, the first
By retaining 40% of the maximum water holding capacity of the soil for 2 days, the dioxin in the soil was diluted so that the dioxin concentration in the soil sample was slightly lower than the dioxin concentration in the pristine soil,
As can be seen from the first experimental group, the second experimental group, the third experimental group, the fourth experimental group, and the fifth experimental group, the fourth
The experimental group and the fifth experimental group exhibited a relatively effective decomposition effect on dioxin in the soil, where the decomposition rate of the fifth experimental group was 90.6%, which is the WHO soil dioxin meets the control standard of 0.60 ng/kg of
As can be seen from the 1st, 2nd and 3rd experimental groups, rhamnolipids and earthworms have a relatively large effect on the decomposition of dioxin.
As can be seen from the second, fourth and fifth experimental groups, the rhamnolipid solution can effectively promote the decomposition efficiency of dioxins in the soil by earthworms.
As can be seen from the 4th and 5th experimental groups, the addition of organic fertilizer promotes the decomposition effect of dioxin, and this is thought to be because the organic fertilizer effectively promotes the activity of earthworms. ing.

Claims (3)

ステップS1、
緑膿菌を利用してラムノリピッドを発酵および調製して用意し、ラムノリピッドを調製
するステップと、
ステップS2、
ミミズ種を取得するステップと、
ステップS3、
修復する汚染土壌をほぐし、雑物を除去した後表面をかき混ぜて処理層を形成し、ここ
で、ほぐし深さが30~50cmである、土壌を前処理するステップと、
ステップS4、
ステップS4-1、ラムノリピッド溶液の投入
ラムノリピッドと脱イオン水を混合して濃度300~1000mg/Lのラムノリピッド
溶液を調製した後、S3で形成された処理層に2~3L/mの施用量でラムノリピッド
溶液を施用し、再び土壌をほぐしてラムノリピッド溶液と土壌を均一に混合し、
ステップS4-2、土壌再処理
ステップS4-1処理後の処理層に、3~5m間隔で深さ20~30cm、頂部幅10~
15cm、底部幅5~8cmの縦断面等脚台形構造の分水路(1)を設け、前記分水路(
1)に8~10m間隔で内径30~50cm、深さ30~50cmの補助飼養基穴(2)
を設け、前記補助飼養基穴(2)に補助飼養基穴(2)の容積の40~60%を占める有
機肥料を投入し、
ステップS4-3、ミミズ種の投入
30~80本/mの投入密度でミミズ種を汚染土壌に投入し、
ステップS4-4、土壌の処理修復
前記分水路(1)によって汚染土壌の含水率を40~50%に保持し、この含水量を保持
した条件下で継続的に12日修復した後、自然条件下で21~30日修復する、土壌を修
復処理するステップと、
を含むことを特徴とするラムノリピッドとミミズを組み合わせてダイオキシン汚染土壌
を修復する方法。
step S1,
fermenting and preparing a rhamnolipid using Pseudomonas aeruginosa to prepare the rhamnolipid;
step S2,
obtaining earthworm seeds;
step S3,
pretreating the contaminated soil to be remedied, loosening the contaminated soil, removing impurities and then agitating the surface to form a treatment layer, wherein the loosening depth is 30-50 cm;
step S4,
Step S4-1, adding rhamnolipid solution Rhamnolipid and deionized water were mixed to prepare a rhamnolipid solution with a concentration of 300 to 1000 mg/L, and then applied to the treatment layer formed in S3 at an application rate of 2 to 3 L/m 2 . Applying the rhamnolipid solution, loosening the soil again to uniformly mix the rhamnolipid solution and the soil,
Step S4-2, Soil Retreatment Step S4-1 In the treatment layer after the treatment, a depth of 20 to 30 cm and a top width of 10 to 3 m are applied at intervals of 3 to 5 m.
A diversion channel (1) having an isosceles trapezoid structure in vertical section with a width of 15 cm and a bottom width of 5 to 8 cm is provided, and the diversion channel (
In 1), supplementary feeding holes with an inner diameter of 30 to 50 cm and a depth of 30 to 50 cm are placed at intervals of 8 to 10 m (2).
is provided, and an organic fertilizer occupying 40 to 60% of the volume of the auxiliary feeding base hole (2) is put into the auxiliary feeding base hole (2),
step S4-3, throwing earthworm seeds into the contaminated soil at an injection density of 30 to 80/m 2 of earthworm seeds;
Step S4-4, treatment and remediation of the soil The moisture content of the contaminated soil is maintained at 40-50% by the diversion channel (1), and after continuous remediation for 12 days under the condition of maintaining this moisture content, natural conditions remediation of the soil under remediation for 21-30 days;
A method of remediating dioxin-contaminated soil by combining rhamnolipids and earthworms, comprising:
前記有機肥料は、質量%で40~50%の家畜糞便、15~25%ストロー、5~10%
おがくずおよび残部の落ち葉を発酵および調製して得られるものである、ことを特徴とす
る請求項1に記載の方法。
The organic fertilizer is 40-50% by mass of livestock feces, 15-25% straw, 5-10%
2. Process according to claim 1, characterized in that it is obtained by fermentation and preparation of sawdust and residual leaf litter.
前記発酵の方法としては、前記割合でストロー、落ち葉、おがくずを混合し粉砕した後家
畜糞便と混合して混合マトリクスを得て、混合マトリクスに発酵剤を加えて混合マトリク
スの含水量が40~50%になるまで水を添加し、1~3日堆積発酵した後反転させ、プ
ラスチックフィルムで覆って21~30日継続的に発酵し、継続的に発酵する過程中3~
5日ごとに反転させる、ことを特徴とする請求項2に記載の方法。
As the fermentation method, straws, fallen leaves, and sawdust are mixed in the above proportions, pulverized, and then mixed with livestock feces to obtain a mixed matrix. Add water to 1-3 days, turn over after 1-3 days, cover with plastic film and ferment continuously for 21-30 days, 3-3 during the continuous fermentation process
3. A method according to claim 2, characterized by inverting every 5 days.
JP2022146844A 2022-08-29 2022-09-15 Combining rhamnolipids and earthworms to remediate dioxin-contaminated soil Active JP7238228B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211040852.4 2022-08-29
CN202211040852.4A CN115446107A (en) 2022-08-29 2022-08-29 Method for repairing dioxin-polluted soil by combination of rhamnolipid and earthworms

Publications (2)

Publication Number Publication Date
JP7238228B1 true JP7238228B1 (en) 2023-03-14
JP2024032630A JP2024032630A (en) 2024-03-12

Family

ID=84300054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022146844A Active JP7238228B1 (en) 2022-08-29 2022-09-15 Combining rhamnolipids and earthworms to remediate dioxin-contaminated soil

Country Status (2)

Country Link
JP (1) JP7238228B1 (en)
CN (1) CN115446107A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230872A (en) 2002-02-08 2003-08-19 Hidemoto Nagata Method of decomposing heavy metal, dioxins, and agricultural chemical
JP2004042023A (en) 2002-05-23 2004-02-12 Ehime Prefecture Dioxins degradation agent and soil cleaning method using the same
JP2006247546A (en) 2005-03-11 2006-09-21 Tokyo Univ Of Agriculture & Technology Method for facilitating purification of soil contaminated by heavy oil
JP2010269244A (en) 2009-05-21 2010-12-02 Ecocycle Corp Additive and method for cleaning medium contaminated with mineral oil
JP2018504140A (en) 2015-01-12 2018-02-15 ロゴス テクノロジーズ, エルエルシー.Logos Technologies, Llc. Production of rhamnolipid composition
JP2018514222A (en) 2015-05-05 2018-06-07 ロゴス テクノロジーズ, エルエルシー.Logos Technologies, Llc. Semi-continuous process for producing rhamnolipids with high yield and high titer
CN110756573A (en) 2019-10-09 2020-02-07 山西大学 Worm repairing and synergizing method for soil polluted by polycyclic aromatic hydrocarbon
CN111215438A (en) 2020-02-20 2020-06-02 广西博世科环保科技股份有限公司 System and method for treating soil polluted by medium and low concentration petroleum hydrocarbon
CN112680231A (en) 2020-12-08 2021-04-20 广西博世科环保科技股份有限公司 Repairing agent and repairing method for repairing aged petroleum polluted soil

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230872A (en) 2002-02-08 2003-08-19 Hidemoto Nagata Method of decomposing heavy metal, dioxins, and agricultural chemical
JP2004042023A (en) 2002-05-23 2004-02-12 Ehime Prefecture Dioxins degradation agent and soil cleaning method using the same
JP2006247546A (en) 2005-03-11 2006-09-21 Tokyo Univ Of Agriculture & Technology Method for facilitating purification of soil contaminated by heavy oil
JP2010269244A (en) 2009-05-21 2010-12-02 Ecocycle Corp Additive and method for cleaning medium contaminated with mineral oil
JP2018504140A (en) 2015-01-12 2018-02-15 ロゴス テクノロジーズ, エルエルシー.Logos Technologies, Llc. Production of rhamnolipid composition
JP2018514222A (en) 2015-05-05 2018-06-07 ロゴス テクノロジーズ, エルエルシー.Logos Technologies, Llc. Semi-continuous process for producing rhamnolipids with high yield and high titer
CN110756573A (en) 2019-10-09 2020-02-07 山西大学 Worm repairing and synergizing method for soil polluted by polycyclic aromatic hydrocarbon
CN111215438A (en) 2020-02-20 2020-06-02 广西博世科环保科技股份有限公司 System and method for treating soil polluted by medium and low concentration petroleum hydrocarbon
CN112680231A (en) 2020-12-08 2021-04-20 广西博世科环保科技股份有限公司 Repairing agent and repairing method for repairing aged petroleum polluted soil

Also Published As

Publication number Publication date
CN115446107A (en) 2022-12-09
JP2024032630A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
CN107376940B (en) Composite catalyst material for quickly and efficiently repairing organic contaminated soil and preparation method thereof
CN100387551C (en) Method of producing active nutritional fertilizer using old domostic garbage
CN109182193A (en) Microbial bacterial agent and its preparation method and application
CN102125929B (en) Biosurfactant and polycyclic aromatic hydrocarbon-degrading strain enhanced compositing treatment of contaminated soil
CN103484410B (en) Biological agent for compost treatment of livestock manure
CN112375720B (en) Bacillus subtilis and application thereof
RU2437864C1 (en) Method of microbiological processing of bird droppings
CN107879774A (en) A kind of preparation method of biological decomposing agent
CN112725213A (en) Arthrobacter and application thereof as decomposing agent for decomposing vegetable straws
CN108070540B (en) Surfactant-producing microorganism and application thereof in compost
CN106701628A (en) Rural household refuse fermentation microbial inoculum and using method and application thereof
WO2019237656A1 (en) Special fertilizer for medicinal plant growth and preparation method therefor
CN101215532A (en) Bacillus megaterium and its application and application method in ferment bacteria
CN107217017B (en) Acinetobacter and application thereof in petroleum degradation
JP7238228B1 (en) Combining rhamnolipids and earthworms to remediate dioxin-contaminated soil
CN107674844A (en) A kind of new Methylobacterium MR1 and its application
CN105347481B (en) The method that biofermentation coupling artificial wet land system purifies low ratio of carbon to ammonium sanitary sewage
CN108977365B (en) Penicillium oxalicum L5 and application thereof in degradation of lincomycin bacterial residues
CN1560230A (en) Quick puterfaction bacteria agent for organic waste and constracture method thereof
CN105483035A (en) Composite bacterium capable of quickly degrading 17Beta-estradiol and preparation method
CN112661370B (en) Method for biologically treating sludge
CN104498408A (en) Bacillus licheniformis UTM104 for producing pyrethroid hydrolase and application of bacillus licheniformis UTM104
CN114921356A (en) Household kitchen waste aerobic composting composite microbial agent and preparation method thereof
CN106588330A (en) Method for reusing garden wastes
CN110042063B (en) Gliocladium roseum (Clinostacchys rosea) strain YZC3 and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220915

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230201

R150 Certificate of patent or registration of utility model

Ref document number: 7238228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150