JP7230928B2 - Carbon nanobrush antistatic paint - Google Patents

Carbon nanobrush antistatic paint Download PDF

Info

Publication number
JP7230928B2
JP7230928B2 JP2020566419A JP2020566419A JP7230928B2 JP 7230928 B2 JP7230928 B2 JP 7230928B2 JP 2020566419 A JP2020566419 A JP 2020566419A JP 2020566419 A JP2020566419 A JP 2020566419A JP 7230928 B2 JP7230928 B2 JP 7230928B2
Authority
JP
Japan
Prior art keywords
carbon nanohorn
coating film
nanohorn aggregates
mass
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020566419A
Other languages
Japanese (ja)
Other versions
JPWO2020149283A1 (en
Inventor
眞由美 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2020149283A1 publication Critical patent/JPWO2020149283A1/en
Application granted granted Critical
Publication of JP7230928B2 publication Critical patent/JP7230928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、繊維状カーボンナノホーン集合体を含む塗膜および帯電防止塗膜の製造方法に関する。 TECHNICAL FIELD The present invention relates to a coating film containing fibrous carbon nanohorn aggregates and a method for producing an antistatic coating film.

静電気の発生を防止する導電性塗料が開発されている。塗料に添加される導電成分として、カーボンナノチューブ等の導電性に優れる炭素材料が検討されている。例えば、特許文献1には、カーボンナノチューブを含有する塗料組成物が開示されている。 Conductive paints have been developed to prevent the generation of static electricity. Carbon materials with excellent conductivity such as carbon nanotubes are being studied as a conductive component to be added to paints. For example, Patent Document 1 discloses a coating composition containing carbon nanotubes.

国際公開第2012/060292号WO2012/060292

カーボンナノチューブは分散性に劣るため、十分な帯電防止性能を有する塗膜を形成できないという問題があった。本発明の目的は、高い帯電防止性能を有する塗膜を提供することにある。 Since carbon nanotubes are poor in dispersibility, there is a problem that a coating film having sufficient antistatic performance cannot be formed. An object of the present invention is to provide a coating film having high antistatic performance.

本発明の塗膜は、単層カーボンナノホーンが放射状に集合し、且つ、繊維状に繋がっている繊維状カーボンナノホーン集合体を含む導電成分を含むことを特徴とする。 The coating film of the present invention is characterized by containing a conductive component containing fibrous carbon nanohorn aggregates in which single-layer carbon nanohorns are radially aggregated and connected in a fibrous form.

本発明によれば、高い帯電防止性能を有する塗膜を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the coating film which has high antistatic performance can be provided.

<繊維状カーボンナノホーン集合体>
本実施形態に係る塗膜は、繊維状カーボンナノホーン集合体を含む。繊維状カーボンナノホーン集合体はカーボンナノブラシ(CNB)とも呼ばれ、単層カーボンナノホーンが放射状に集合し、且つ、繊維状に繋がった構造を有する。繊維状カーボンナノホーン集合体は、単に単層カーボンナノホーンが複数連なって繊維状に見えるものとは異なり、遠心分離や超音波分散等の操作を行っても繊維状の形状を維持できる。単層カーボンナノホーンはグラフェンシートが巻かれた構造の先端が先端角約20°の角(ホーン)状に尖った、直径1nm~5nm、長さが30nm~100nmの円錐型の形状の炭素構造体である。ここで、炭素構造体とは炭素を主に含む構造体であり、軽元素や触媒金属を含んでもよい。繊維状カーボンナノホーン集合体は、繊維状の炭素構造体であり、一般的に、直径が30nm~200nmであり、長さが1μm~100μm、例えば2μm~30μmである。繊維状カーボンナノホーン集合体のアスペクト比(長さ/直径)は、一般的に4~4000であり、例えば、5~3500である。繊維状カーボンナノホーン集合体の表面には、直径1nm~5nm、長さ30nm~100nmの単層カーボンナノホーンの突起を有している。導電性が高い単層カーボンナノホーンが繊維状に繋がり、長い導電性パスを持つ構造を特徴とするため、繊維状カーボンナノホーン集合体は高い導電性を有する。更に、繊維状カーボンナノホーン集合体は、高い分散性を併せ持っており、導電性付与の効果が高い。
<Fibrous carbon nanohorn aggregate>
The coating film according to this embodiment contains fibrous carbon nanohorn aggregates. A fibrous carbon nanohorn aggregate is also called a carbon nanobrush (CNB), and has a structure in which single-layer carbon nanohorns are radially aggregated and connected in a fibrous manner. A fibrous carbon nanohorn aggregate is different from a single-layered carbon nanohorn aggregate that looks fibrous, and can maintain its fibrous shape even after centrifugation, ultrasonic dispersion, or the like. A single-layer carbon nanohorn is a conical carbon structure with a diameter of 1 nm to 5 nm and a length of 30 nm to 100 nm. is. Here, the carbon structure is a structure mainly containing carbon, and may contain light elements and catalyst metals. A fibrous carbon nanohorn aggregate is a fibrous carbon structure generally having a diameter of 30 nm to 200 nm and a length of 1 μm to 100 μm, eg, 2 μm to 30 μm. The aspect ratio (length/diameter) of the fibrous carbon nanohorn aggregates is generally 4-4000, for example 5-3500. The surface of the fibrous carbon nanohorn aggregate has single-layer carbon nanohorn protrusions with a diameter of 1 nm to 5 nm and a length of 30 nm to 100 nm. Since single-layer carbon nanohorns with high conductivity are connected in a fibrous form and have a long conductive path, the fibrous carbon nanohorn aggregate has high conductivity. Furthermore, the fibrous carbon nanohorn aggregates also have high dispersibility and are highly effective in imparting electrical conductivity.

繊維状カーボンナノホーン集合体は、一般的には、種型、つぼみ型、ダリア型、ペタルダリア型、ペタル型(グラフェンシート構造)のカーボンナノホーン集合体が繋がって形成されている。すなわち、繊維状構造中に1種類または複数のこれらカーボンナノホーン集合体が含まれている。種型は集合体の表面に角状の突起がほとんどみられない、あるいは全くみられない形状、つぼみ型は集合体の表面に角状の突起が多少みられる形状、ダリア型は集合体の表面に角状の突起が多数みられる形状、ペタル型は集合体の表面に花びら状の突起がみられる形状である。ペタル構造は、幅は50nm~200nm、厚みは0.34nm~10nm、2枚~30枚のグラフェンシート構造である。ペタル-ダリア型はダリア型とペタル型の中間的な構造である。生成するカーボンナノホーン集合体は、ガスの種類や流量によってその形態および粒径が変わる。 The fibrous carbon nanohorn aggregates are generally formed by connecting seed-type, bud-type, dahlia-type, petal-dahlia-type, and petal-type (graphene sheet structures) carbon nanohorn aggregates. That is, one type or a plurality of these carbon nanohorn aggregates are contained in the fibrous structure. Seed type is a shape with few or no angular projections on the surface of the aggregate, bud type is a shape with some angular projections on the surface of the aggregate, dahlia type is the surface of the aggregate The petal type is a shape in which petal-like protrusions are seen on the surface of the aggregate. The petal structure has a width of 50 nm to 200 nm, a thickness of 0.34 nm to 10 nm, and 2 to 30 graphene sheets. The petal-dahlia type is an intermediate structure between the dahlia type and the petal type. The produced carbon nanohorn aggregates vary in shape and particle size depending on the type and flow rate of the gas.

繊維状カーボンナノホーン集合体は、国際公開第2016/147909号にも詳細に記載されている。国際公開第2016/147909号の図1および図2には繊維状カーボンナノホーン集合体の透過型顕微鏡写真が開示されている。この透過型顕微鏡写真で示される繊維状カーボンナノホーン集合体では、放射状に集合している単層カーボンナノホーン(カーボンナノホーン集合体)が、繊維状に繋がっている。国際公開第2016/147909号の開示の全てを引用によって本明細書に取り込む。 Fibrous carbon nanohorn aggregates are also described in detail in WO2016/147909. Transmission micrographs of fibrous carbon nanohorn aggregates are disclosed in FIGS. 1 and 2 of WO2016/147909. In the fibrous carbon nanohorn aggregate shown in this transmission micrograph, radially aggregated single-layer carbon nanohorns (carbon nanohorn aggregates) are connected in a fibrous manner. The entire disclosure of WO2016/147909 is incorporated herein by reference.

繊維状カーボンナノホーン集合体の作製方法では、触媒を含有した炭素をターゲット(触媒含有炭素ターゲットという)とし、触媒含有炭素ターゲットを配置した容器内でターゲットを回転させながら窒素雰囲気、不活性雰囲気、水素、二酸化炭素、または、混合雰囲気下でレーザーアブレーションによりターゲットを加熱し、ターゲットを蒸発させる。蒸発した炭素と触媒が冷える過程で、繊維状カーボンナノホーン集合体が得られる。また、上記レーザーアブレーション法以外にアーク放電法や抵抗加熱法を用いることができる。しかしながら、レーザーアブレーション法は、室温、大気圧中で連続生成できる観点からより好ましい。 In the method for producing fibrous carbon nanohorn aggregates, carbon containing a catalyst is used as a target (referred to as a catalyst-containing carbon target). , carbon dioxide, or a mixed atmosphere by laser ablation to heat the target to vaporize the target. Fibrous carbon nanohorn aggregates are obtained in the process of cooling the evaporated carbon and the catalyst. In addition to the laser ablation method described above, an arc discharge method or a resistance heating method can be used. However, the laser ablation method is more preferable from the viewpoint of continuous production at room temperature and atmospheric pressure.

本発明で適用するレーザーアブレーション法は、レーザー光をターゲットにパルス状または連続して照射して、照射強度が閾値以上になると、ターゲットがエネルギーを変換し、その結果、プルームが生成され、生成物をターゲットの下流に設けた基板上に堆積させる、或いは装置内の空間に生成させ、回収室で回収する方法である。 In the laser ablation method applied in the present invention, a target is irradiated with a laser beam in a pulsed or continuous manner, and when the irradiation intensity exceeds a threshold value, the target converts energy, as a result, a plume is generated, and a product is deposited on a substrate provided downstream of the target, or generated in a space within the apparatus, and recovered in a recovery chamber.

レーザーアブレーションには、COレーザー、YAGレーザー、エキシマレーザー、半導体レーザー等が使用可能で、高出力化が容易なCOレーザーが最も適当である。COレーザーは、1kW/cm~1000kW/cmの出力が使用可能であり、連続照射およびパルス照射で行うことが出来る。繊維状カーボンナノホーン集合体の生成には連続照射の方が望ましい。レーザー光をZnSeレンズ等により集光させ、照射させる。また、ターゲットを回転させることで連続的に合成することが出来る。ターゲット回転速度は任意に設定できるが、0.1rpm~6rpmが特に好ましい。0.1rpm以上であればグラファイト化を抑制でき、また、6rpm以下であればアモルファスカーボンの増加を抑制できる。この時、レーザー出力は15kW/cm以上が好ましく、30kW/cm~300kW/cmが最も効果的である。レーザー出力が15kW/cm以上であれば、ターゲットが適度に蒸発し、繊維状カーボンナノホーン集合体の生成が容易となる。またレーザー出力が300kW/cm以下であれば、アモルファスカーボンの増加を抑制できる。容器(チャンバー)内の圧力は、13332.2hPa(10000Torr)以下で使用することができるが、圧力が真空に近くなるほど、カーボンナノチューブが生成しやすくなり、繊維状カーボンナノホーン集合体が得られなくなる。容器(チャンバー)内の圧力は、好ましくは666.61hPa(500Torr)~1266.56hPa(950Torr)で、より好ましくは常圧(1013hPa(1atm≒760Torr))付近であることが大量合成や低コスト化のためにも適当である。また照射面積もレーザー出力とレンズでの集光の度合いにより制御でき、0.005cm~1cmが使用できる。 CO 2 laser, YAG laser, excimer laser, semiconductor laser, etc. can be used for laser ablation, and CO 2 laser, which can be easily increased in output, is most suitable. A CO 2 laser can be used with an output of 1 kW/cm 2 to 1000 kW/cm 2 , and can perform continuous irradiation and pulse irradiation. Continuous irradiation is preferable for the production of fibrous carbon nanohorn aggregates. A laser beam is condensed by a ZnSe lens or the like and irradiated. Also, by rotating the target, it is possible to synthesize continuously. Although the target rotation speed can be set arbitrarily, 0.1 rpm to 6 rpm is particularly preferable. If it is 0.1 rpm or more, graphitization can be suppressed, and if it is 6 rpm or less, an increase in amorphous carbon can be suppressed. At this time, the laser output is preferably 15 kW/cm 2 or more, and most effectively 30 kW/cm 2 to 300 kW/cm 2 . If the laser output is 15 kW/cm 2 or more, the target will evaporate appropriately and the fibrous carbon nanohorn aggregates will be easily produced. Also, if the laser output is 300 kW/cm 2 or less, an increase in amorphous carbon can be suppressed. The pressure in the container (chamber) can be used at 13332.2 hPa (10000 Torr) or less, but the closer the pressure is to vacuum, the more easily carbon nanotubes are generated, making it impossible to obtain fibrous carbon nanohorn aggregates. The pressure in the container (chamber) is preferably 666.61 hPa (500 Torr) to 1266.56 hPa (950 Torr), more preferably around normal pressure (1013 hPa (1 atm ≈ 760 Torr)) for mass synthesis and cost reduction. is also suitable for The irradiation area can also be controlled by the laser output and the degree of condensing by the lens, and 0.005 cm 2 to 1 cm 2 can be used.

触媒は、Fe、Ni、Coを単体で、または混合して使用することができる。触媒の濃度は適宜選択できるが、炭素に対して、0.1質量%~10質量%が好ましく、0.5質量%~5質量%がより好ましい。0.1質量%以上であると、繊維状カーボンナノホーン集合体の生成が確実となる。また、10質量%以下の場合は、ターゲットコストの増加を抑制できる。 As the catalyst, Fe, Ni, and Co can be used singly or in combination. Although the concentration of the catalyst can be selected as appropriate, it is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 5% by mass, relative to carbon. When it is 0.1% by mass or more, the production of fibrous carbon nanohorn aggregates is ensured. Moreover, in the case of 10% by mass or less, an increase in target cost can be suppressed.

容器内は任意の温度で使用でき、好ましくは、0℃~100℃であり、より好ましくは室温で使用することが大量合成や低コスト化のためにも適当である。 The inside of the container can be used at any temperature, preferably 0° C. to 100° C., more preferably room temperature, which is suitable for mass synthesis and cost reduction.

容器内には、窒素ガスや、不活性ガス、水素ガス、COガス等を単独でまたは混合して導入することで上記の雰囲気とする。コストの面からは、窒素ガス、Arガスが好ましい。これらのガスは反応容器内を流通し、生成する物質をこのガスの流れによって回収することが出来る。雰囲気ガス流量は、任意の量を使用できるが、好ましくは0.5L/min~100L/minの範囲が適当である。ターゲットが蒸発する過程ではガス流量を一定に制御する。Nitrogen gas, inert gas, hydrogen gas, CO2 gas, or the like is introduced into the container alone or in combination to create the above atmosphere. From the viewpoint of cost, nitrogen gas and Ar gas are preferable. These gases are circulated in the reaction vessel, and the substances produced can be recovered by this gas flow. Any amount can be used as the atmosphere gas flow rate, but a range of 0.5 L/min to 100 L/min is preferable. The gas flow rate is kept constant during the process of vaporizing the target.

以上のようにして得られる繊維状カーボンナノホーン集合体は、通常、球状カーボンナノホーン集合体と共に得られる。以下では、繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体の混合物を単にカーボンナノホーン集合体とも呼ぶ。球状カーボンナノホーン集合体は、単層カーボンナノホーンが放射状に集合した球状の炭素構造体である。球状カーボンナノホーン集合体は、直径が30nm~200nm程度でほぼ均一なサイズである。また、得られる繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体は、その炭素骨格の一部が触媒金属元素、窒素原子等で置換されていてもよい。繊維状カーボンナノホーン集合体を単離して用いてよい。繊維状カーボンナノホーン集合体を球状カーボンナノホーン集合体等のその他の炭素材料とともに用いてもよい。なお、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体とは、サイズの違いにより分離することが可能である。さらに、カーボンナノホーン集合体以外の不純物が含まれる場合、遠心分離法、沈降速度の違い、サイズによる分離等により除去できる。また、生成条件を変えることで、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体の比率を変えることが可能である。 The fibrous carbon nanohorn aggregates obtained as described above are usually obtained together with the spherical carbon nanohorn aggregates. Hereinafter, a mixture of fibrous carbon nanohorn aggregates and spherical carbon nanohorn aggregates is also simply referred to as carbon nanohorn aggregates. A spherical carbon nanohorn aggregate is a spherical carbon structure in which single-walled carbon nanohorns are radially aggregated. The spherical carbon nanohorn aggregates have a diameter of about 30 nm to 200 nm and a substantially uniform size. Also, in the fibrous carbon nanohorn aggregates and the spherical carbon nanohorn aggregates obtained, part of the carbon skeleton may be substituted with a catalytic metal element, nitrogen atom, or the like. Fibrous carbon nanohorn aggregates may be isolated and used. The fibrous carbon nanohorn aggregates may be used together with other carbon materials such as spherical carbon nanohorn aggregates. It should be noted that the fibrous carbon nanohorn aggregates and the spherical carbon nanohorn aggregates can be separated by the difference in size. Furthermore, if impurities other than carbon nanohorn aggregates are contained, they can be removed by centrifugation, sedimentation speed difference, size separation, or the like. Also, by changing the production conditions, it is possible to change the ratio of the fibrous carbon nanohorn aggregates and the spherical carbon nanohorn aggregates.

カーボンナノホーン集合体に微細な孔を開ける(開孔)場合は、酸化処理によって行うことができる。この酸化処理により、開孔部に酸素を含んだ表面官能基が形成される。また酸化処理は、気相プロセスと液相プロセスを使用できる。気相プロセスの場合は、空気、酸素、二酸化炭素等の酸素を含む雰囲気ガス中で熱処理して行う。中でも、コストの観点から空気が適している。また、温度は、300℃~650℃の範囲が使用でき、400℃~550℃がより適している。300℃以上であれば、炭素が燃え、確実に開孔を形成できる。また、650℃以下ではカーボンナノホーン集合体の全体が燃焼することを抑制できる。液相プロセスの場合、硝酸、硫酸、過酸化水素等の酸化性物質を含む液体中で行う。硝酸の場合は、室温~120℃の温度範囲で使用できる。120℃以下であれば、必要以上に酸化されることがない。過酸化水素の場合、室温~100℃の温度範囲で使用でき、40℃以上がより好ましい。40℃~100℃の温度範囲では酸化力が効率的に作用し、効率よく開孔を形成できる。また液相プロセスのとき、光照射を併用するとより効果的である。 When forming fine holes (opening) in the aggregate of carbon nanohorns, oxidation treatment can be carried out. By this oxidation treatment, surface functional groups containing oxygen are formed in the openings. Moreover, the oxidation treatment can use a vapor phase process and a liquid phase process. In the case of a vapor phase process, heat treatment is performed in an atmosphere gas containing oxygen such as air, oxygen, or carbon dioxide. Among them, air is suitable from the viewpoint of cost. Also, the temperature may be in the range of 300°C to 650°C, more preferably 400°C to 550°C. If the temperature is 300° C. or higher, the carbon is burned and pores can be reliably formed. Moreover, at 650° C. or less, it is possible to prevent the entire carbon nanohorn aggregate from burning. In the case of the liquid phase process, it is carried out in a liquid containing oxidizing substances such as nitric acid, sulfuric acid, hydrogen peroxide and the like. Nitric acid can be used in the temperature range from room temperature to 120°C. If the temperature is 120° C. or less, it will not be oxidized more than necessary. In the case of hydrogen peroxide, it can be used in the temperature range of room temperature to 100°C, preferably 40°C or higher. In the temperature range of 40° C. to 100° C., the oxidizing power works efficiently, and pores can be formed efficiently. Also, in the liquid phase process, it is more effective to use light irradiation together.

カーボンナノホーン集合体の生成時に含まれる触媒金属は、必要に応じて除去することができる。触媒金属は硝酸、硫酸、塩酸中で溶解するため除去できる。使いやすさの観点から、塩酸が適している。触媒を溶解する温度は適宜選択できるが、触媒を十分に除去する場合は、70℃以上に加熱して行うことが望ましい。また、硝酸、硫酸を用いる場合、触媒除去と開孔の形成とを同時にあるいは連続して行うことができる。また、触媒がカーボンナノホーン集合体生成時に炭素被膜で覆われる場合があるため、炭素被膜を除去するために前処理を行うことが望ましい。前処理は空気中、250℃~450℃程度で加熱することが望ましい。300℃以上では上記のように一部開孔が形成されることがある。カーボンナノホーン集合体は、カーボンナノチューブよりも触媒金属を除去することが容易である。本実施形態において、触媒金属を除去したカーボンナノホーン集合体を用いることにより、実質的に金属を含まず、金属が溶出しない塗膜を形成できる。これにより、塗膜からの金属溶出を防止できる。 The catalyst metal contained during the production of carbon nanohorn aggregates can be removed as necessary. Catalyst metals dissolve in nitric acid, sulfuric acid, and hydrochloric acid and can be removed. From the point of view of ease of use, hydrochloric acid is suitable. Although the temperature for dissolving the catalyst can be selected as appropriate, it is desirable to heat the catalyst to 70° C. or higher to sufficiently remove the catalyst. When nitric acid or sulfuric acid is used, catalyst removal and pore formation can be performed simultaneously or continuously. In addition, since the catalyst may be covered with a carbon coating during the production of carbon nanohorn aggregates, pretreatment is desirable to remove the carbon coating. It is desirable that the pretreatment be performed by heating in the air at a temperature of about 250°C to 450°C. At 300° C. or higher, partial openings may be formed as described above. Carbon nanohorn aggregates are easier to remove catalyst metal than carbon nanotubes. In the present embodiment, by using aggregates of carbon nanohorns from which catalytic metals have been removed, it is possible to form coating films that do not substantially contain metals and do not elute metals. Thereby, metal elution from the coating film can be prevented.

カーボンナノホーン集合体は、不活性ガス、水素、真空中等の非酸化性雰囲気で熱処理することで結晶性を向上させることができる。熱処理温度は、800℃~2000℃が使用できるが、好ましくは1000℃~1500℃である。また、開孔処理後では、開孔部に酸素を含んだ表面官能基が形成されるが、熱処理により除去することもできる。その熱処理温度は、150℃~2000℃が使用できる。表面官能基であるカルボキシル基、水酸基等を除去するには150℃~600℃が望ましい。表面官能基であるカルボニル基を除去するには、600℃以上が望ましい。また、表面官能基は、気体または液体雰囲気下で還元することによって除去することができる。気体雰囲気下での還元には、水素が使用でき、上記の結晶性の向上と兼用することができる。液体雰囲気下では、ヒドラジン等が利用できる。 The carbon nanohorn aggregate can be heat-treated in a non-oxidizing atmosphere such as inert gas, hydrogen, or vacuum to improve crystallinity. The heat treatment temperature can be 800°C to 2000°C, preferably 1000°C to 1500°C. After the pore-opening treatment, surface functional groups containing oxygen are formed in the pore-forming portions, but these can be removed by heat treatment. A heat treatment temperature of 150° C. to 2000° C. can be used. A temperature of 150° C. to 600° C. is desirable for removing surface functional groups such as carboxyl groups and hydroxyl groups. A temperature of 600° C. or higher is desirable for removing carbonyl groups, which are surface functional groups. Surface functional groups can also be removed by reduction in a gas or liquid atmosphere. Hydrogen can be used for the reduction in a gaseous atmosphere, and can also be used for improving the crystallinity. Hydrazine or the like can be used in a liquid atmosphere.

<塗料>
本実施形態に係る塗料は、繊維状カーボンナノホーン集合体を含む導電成分を含む。繊維状カーボンナノホーン集合体以外の導電成分としては、球状カーボンナノホーン集合体、カーボンナノチューブ、グラファイト等の炭素材料が挙げられる。導電成分は導電性材料から構成される成分であり、その他各種の導電性材料を含んでよい。導電成分は、例えば、炭素材料以外にも導電性の金属粒子や導電性ポリマー等を含んでよい。一実施形態では、導電性材料は約10-3Ω・cm以下の体積抵抗率(20℃)を備える材料である。
<Paint>
The paint according to the present embodiment contains a conductive component containing aggregates of fibrous carbon nanohorns. Examples of conductive components other than fibrous carbon nanohorn aggregates include carbon materials such as spherical carbon nanohorn aggregates, carbon nanotubes, and graphite. The conductive component is a component composed of a conductive material, and may contain various other conductive materials. The conductive component may include, for example, conductive metal particles, a conductive polymer, etc., in addition to the carbon material. In one embodiment, the conductive material is a material with a volume resistivity (20° C.) of about 10 −3 Ω·cm or less.

塗料の母材は特に限定されず、基材に塗膜を形成し得る樹脂、重合性モノマー等の塗料に一般的に用いられる材料であってよい。樹脂としては、例えば、アルキド樹脂、不飽和ポリエステル樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、塩化ビニル樹脂、アクリル樹脂、アクリルウレタン樹脂、ウレタン樹脂、シリコーン樹脂、アクリルシリコーン樹脂、フッ素樹脂等が挙げられる。重合性モノマーとしては、例えば、スチレン、メチルメタクリレート、2-ヒドロキシエチルアクリレート、メタクリル酸、マレイン酸、イタコン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、o-およびp-スチレンスルホネート、ジビニルベンゼン、エチレンジアクリレート、N,N-メチレンビスアクリルアミド等が挙げられる。 The base material of the paint is not particularly limited, and may be a material generally used for paint, such as a resin capable of forming a coating film on the base material, or a polymerizable monomer. Examples of resins include alkyd resins, unsaturated polyester resins, melamine resins, phenol resins, epoxy resins, vinyl chloride resins, acrylic resins, acrylic urethane resins, urethane resins, silicone resins, acrylic silicone resins, fluorine resins, and the like. . Polymerizable monomers include, for example, styrene, methyl methacrylate, 2-hydroxyethyl acrylate, methacrylic acid, maleic acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, o- and p-styrenesulfonates, divinylbenzene, ethylene diacrylate, N,N-methylenebisacrylamide and the like.

塗料は水および/または有機溶媒を含んでよい。有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、エチレングリコール等のグリコール類、ケトン類、エーテル類等が挙げられる。 The paint may contain water and/or organic solvents. Examples of organic solvents include alcohols such as methanol, ethanol and isopropanol, glycols such as ethylene glycol, ketones, and ethers.

塗料は、母材(特には重合性モノマー)に適する硬化剤を含んでよい。また、塗料には、レベリング剤、スリップ剤、可塑剤、増粘剤、乾燥剤、消泡剤、顔料、染料等の従来公知の添加剤を任意に配合できる。 The coating may contain a curing agent suitable for the matrix (especially the polymerizable monomer). In addition, conventionally known additives such as leveling agents, slip agents, plasticizers, thickeners, desiccants, antifoaming agents, pigments and dyes can be arbitrarily added to the paint.

<塗膜>
塗料を基材に塗布することにより塗膜を形成できる。必要に応じて塗膜を更に乾燥し、水や有機溶媒等の揮発性成分を除去してよい。必要に応じて塗膜を更に硬化処理してよい。塗膜の硬化方法は母材、特には重合性モノマーの種類に応じて適宜決定される。例えば、熱硬化や光硬化等を採用できる。塗膜の厚さは特には限定されないが、例えば、1μm~50μmの範囲である。
<Coating film>
A coating film can be formed by applying a coating material to a substrate. If necessary, the coating film may be further dried to remove volatile components such as water and organic solvents. If necessary, the coating film may be further cured. The method of curing the coating film is appropriately determined according to the type of the base material, particularly the polymerizable monomer. For example, heat curing, light curing, or the like can be used. Although the thickness of the coating film is not particularly limited, it is, for example, in the range of 1 μm to 50 μm.

塗膜に含まれる繊維状カーボンナノホーン集合体の量は、好ましくは0.001質量%以上、より好ましくは0.002質量%以上、さらに好ましくは0.003質量%以上である。繊維状カーボンナノホーン集合体の量がこの範囲内である場合、塗膜の導電性を高めることができる。塗膜に含まれる繊維状カーボンナノホーン集合体の量は、好ましくは1質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.01質量%以下、特に好ましくは0.005質量%以下である。繊維状カーボンナノホーン集合体の量がこの範囲内である場合、繊維状カーボンナノホーン集合体が塗膜の色味に影響しにくく、透明な塗膜を形成できる。塗膜に含まれる導電成分または炭素材料の総量は、好ましくは0.001質量%以上、より好ましくは0.005質量%以上、さらに好ましくは0.01質量%以上である。塗膜に含まれる導電成分または炭素材料の総量は、好ましくは1質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.08質量%以下である。 The amount of fibrous carbon nanohorn aggregates contained in the coating film is preferably 0.001% by mass or more, more preferably 0.002% by mass or more, and still more preferably 0.003% by mass or more. When the amount of fibrous carbon nanohorn aggregates is within this range, the electrical conductivity of the coating film can be enhanced. The amount of fibrous carbon nanohorn aggregates contained in the coating film is preferably 1% by mass or less, more preferably 0.1% by mass or less, still more preferably 0.01% by mass or less, and particularly preferably 0.005% by mass. It is below. When the amount of the fibrous carbon nanohorn aggregates is within this range, the fibrous carbon nanohorn aggregates hardly affect the color of the coating film, and a transparent coating film can be formed. The total amount of conductive components or carbon materials contained in the coating film is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, and still more preferably 0.01% by mass or more. The total amount of conductive components or carbon materials contained in the coating film is preferably 1% by mass or less, more preferably 0.1% by mass or less, and even more preferably 0.08% by mass or less.

塗膜の導電性を更に高めるために、形成した塗膜の表面に剥離シートを貼合してよい。剥離シートを塗膜から剥がすことにより塗膜の表面を毛羽立たせることができる。毛羽立った塗膜の表面では、繊維状カーボンナノホーン集合体の先端が露出するようになり、塗膜の導電性が高まる。 In order to further increase the conductivity of the coating film, a release sheet may be attached to the surface of the formed coating film. By peeling the release sheet from the coating film, the surface of the coating film can be fluffed. On the surface of the fluffed coating film, the tips of the fibrous carbon nanohorn aggregates are exposed, increasing the conductivity of the coating film.

剥離シートは、好ましくは粘着成分を含む粘着剤層を有する易剥離性粘着シートである。易剥離性粘着シートの粘着剤層に用いられる粘着成分としては、例えばゴム系樹脂、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ビニルエーテル樹脂等が挙げられる。特に、易剥離性粘着シートには、ダイシングテープやマスキングテープとして市販されているものを好適に用いることができる。 The release sheet is preferably an easily peelable adhesive sheet having an adhesive layer containing an adhesive component. Examples of the adhesive component used in the adhesive layer of the easily peelable adhesive sheet include rubber-based resins, acrylic resins, silicone resins, urethane resins, vinyl ether resins, and the like. In particular, commercially available dicing tapes and masking tapes can be preferably used as the easily peelable pressure-sensitive adhesive sheet.

易剥離性粘着シートの粘着面は粘着力の高い部分(粘着部)と粘着力の低い部分(非粘着部)を有することが好ましい。粘着部と非粘着部を設けることにより、易剥離性粘着シートを剥離する際に、易剥離性粘着シートが伸縮し、塗膜の表面から露出する繊維状カーボンナノホーン集合体の数を増やすことができる。非粘着部には、シリコーン剥離剤や長鎖アルキル剥離剤等の剥離成分を用いることができる。粘着部には、ゴム系樹脂、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ビニルエーテル樹脂等の粘着成分を用いることができる。基材上に剥離剤層を設け、その一部に粘着剤層を設け、粘着部と非粘着部を形成できる。あるいは、基材上に粘着剤層を設け、その一部に剥離剤層を設け、粘着部と非粘着部を形成できる。粘着部または非粘着部の形状は特に限定されず、例えば、格子状、ドット状、穴あき状、または縞状等が挙げられる。易剥離性粘着シートの粘着面における粘着部と非粘着部の面積比率は、例えば、1:10~10:1、好ましくは1:3~3:1であってよい。 The adhesive surface of the easily peelable adhesive sheet preferably has a highly adhesive portion (adhesive portion) and a low adhesive portion (non-adhesive portion). By providing an adhesive part and a non-adhesive part, the easily peelable adhesive sheet expands and contracts when the easily peelable adhesive sheet is peeled off, increasing the number of fibrous carbon nanohorn aggregates exposed from the surface of the coating film. can. A release component such as a silicone release agent or a long-chain alkyl release agent can be used in the non-adhesive portion. Adhesive components such as rubber-based resins, acrylic resins, silicone resins, urethane resins, and vinyl ether resins can be used for the adhesive portion. A release agent layer may be provided on a base material, and an adhesive layer may be provided on a part thereof to form an adhesive portion and a non-adhesive portion. Alternatively, a pressure-sensitive adhesive layer may be provided on the base material, and a release agent layer may be provided on a part thereof to form an adhesive portion and a non-adhesive portion. The shape of the adhesive portion or the non-adhesive portion is not particularly limited, and examples thereof include lattice, dot, perforated, and striped shapes. The area ratio of the adhesive portion to the non-adhesive portion on the adhesive surface of the easily peelable adhesive sheet may be, for example, 1:10 to 10:1, preferably 1:3 to 3:1.

繊維状カーボンナノホーン集合体を塗膜の表面に露出するために、塗膜と剥離シートとの引きはがし粘着力が所定の範囲内にあることが好ましい。塗膜と剥離シートとの引きはがし粘着力は、好ましくは0.1N/cm以上、より好ましくは1N/cm以上、さらに好ましくは2N/cm以上である。塗膜と剥離シートとの引きはがし粘着力は、好ましくは10N/cm以下、より好ましくは8N/cm以下、さらに好ましくは4N/cm以下である。引きはがし粘着力はJIS Z 0237(剥離ライナーをテープおよびシートの粘着面に対して180°に引きはがす試験方法)により測定される。JIS Z 0237において、引きはがし粘着力は引張試験機により測定され、引張試験機の引きはがし速度は5.0±0.2mm/sである。 In order to expose the fibrous carbon nanohorn aggregates on the surface of the coating film, it is preferable that the peeling adhesive force between the coating film and the release sheet is within a predetermined range. The peel adhesive strength between the coating film and the release sheet is preferably 0.1 N/cm or more, more preferably 1 N/cm or more, and still more preferably 2 N/cm or more. The peel adhesive strength between the coating film and the release sheet is preferably 10 N/cm or less, more preferably 8 N/cm or less, and even more preferably 4 N/cm or less. The peel adhesive strength is measured according to JIS Z 0237 (a test method in which a release liner is peeled off from the adhesive surface of a tape or sheet at 180°). In JIS Z 0237, the peel adhesive strength is measured by a tensile tester, and the peeling speed of the tensile tester is 5.0±0.2 mm/s.

本実施形態に係る塗膜は、上に記載されるように導電成分の含有量が少ない場合であっても高い導電性を有する。塗膜の表面抵抗率は、一般的には1×1014Ω/□以下、好ましくは1×1011Ω/□以下、より好ましくは1×1010Ω/□以下、さらに好ましくは1×10Ω/□以下である。塗膜の表面抵抗率は、一般的には、1×10Ω/□以上である。表面抵抗率はJIS K6911に準拠して測定できる。一実施形態では、導電成分における炭素材料以外の導電性材料(ただし、繊維状カーボンナノホーン集合体製造用の触媒由来の金属は除く)の量は、好ましくは1質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.001質量%以下である。一実施形態では、塗膜は、導電成分以外には炭素材料以外の導電性材料(ただし、繊維状カーボンナノホーン集合体製造用の触媒由来の金属は除く)を含まない。一実施形態では、導電成分における炭素材料の量は、好ましくは50質量%以上、より好ましくは80質量%以上であり、100質量%であってもよい。The coating film according to the present embodiment has high conductivity even when the content of the conductive component is small as described above. The surface resistivity of the coating film is generally 1×10 14 Ω/□ or less, preferably 1×10 11 Ω/□ or less, more preferably 1×10 10 Ω/□ or less, further preferably 1×10 Ω/□ or less. 9 Ω/□ or less. The surface resistivity of the coating film is generally 1×10 5 Ω/□ or more. Surface resistivity can be measured according to JIS K6911. In one embodiment, the amount of conductive materials other than carbon materials in the conductive component (excluding metals derived from catalysts for producing fibrous carbon nanohorn aggregates) is preferably 1% by mass or less, more preferably 0.5% by mass or less. It is 1% by mass or less, more preferably 0.001% by mass or less. In one embodiment, the coating film does not contain conductive materials other than carbon materials (excluding metals derived from catalysts for producing fibrous carbon nanohorn aggregates) other than conductive components. In one embodiment, the amount of carbon material in the conductive component is preferably 50 wt% or more, more preferably 80 wt% or more, and may be 100 wt%.

<CNB生成物>
窒素雰囲気下のチャンバー内で、鉄を含有した炭素ターゲットをCOレーザーアブレーションすることで繊維状カーボンナノホーン集合体を含む炭素材料混合物(以降CNB生成物と記載)を作製した。詳細には、鉄を1重量%含有する炭素ターゲットを、2rpmで回転させて、これにCOレーザーを連続的に照射した。COレーザーのエネルギー密度は、50kW/cmであった。チャンバー内の温度は室温とし、チャンバー内に供給する窒素の流量を10L/minになるように調整した。チャンバー内の圧力は933.254hPa~1266.559hPa(700Torr~950Torr)に制御した。
<CNB product>
A carbon material mixture containing fibrous carbon nanohorn aggregates (hereinafter referred to as a CNB product) was produced by CO 2 laser ablation of a carbon target containing iron in a chamber under a nitrogen atmosphere. Specifically, a carbon target containing 1% by weight of iron was rotated at 2 rpm and was continuously irradiated with a CO 2 laser. The energy density of the CO2 laser was 50 kW/ cm2 . The temperature in the chamber was room temperature, and the flow rate of nitrogen supplied into the chamber was adjusted to 10 L/min. The pressure inside the chamber was controlled at 933.254 hPa to 1266.559 hPa (700 Torr to 950 Torr).

CNB生成物をSEM観察すると、繊維状の物質(繊維状カーボンナノホーン集合体)と球状の物質(球状カーボンナノホーン集合体)とグラファイトが観察された。繊維状カーボンナノホーン集合体は、直径が30nm~100nm程度で、長さが数μm~数10μmであった。球状カーボンナノホーン集合体は、直径が30nm~200nm程度の範囲でほぼ均一なサイズのものが多くを占めていた。グラファイトは、大きさが1μm~数10μmであった。 SEM observation of the CNB product revealed fibrous substances (fibrous carbon nanohorn aggregates), spherical substances (spherical carbon nanohorn aggregates), and graphite. The fibrous carbon nanohorn aggregates had a diameter of about 30 nm to 100 nm and a length of several μm to several tens of μm. Most of the spherical carbon nanohorn aggregates had a diameter of about 30 nm to 200 nm and had a substantially uniform size. The graphite had a size of 1 μm to several tens of μm.

熱重量分析、および動的光散乱法による粒度分布測定から、CNB生成物は、繊維状カーボンナノホーン集合体4質量%、球状カーボンナノホーン集合体62質量%、グラファイト21質量%、酸化鉄13質量%を含んでいることが確認された。 Thermogravimetric analysis and particle size distribution measurement by a dynamic light scattering method revealed that the CNB product consisted of 4% by mass of fibrous carbon nanohorn aggregates, 62% by mass of spherical carbon nanohorn aggregates, 21% by mass of graphite, and 13% by mass of iron oxide. was confirmed to contain

<実施例1>
シリコーン樹脂エマルジョン(旭化成SILRES(登録商標)、不揮発成分60質量%含有)100質量部にCNB生成物を0.05質量部加え、三本ロールミルで混錬した。水で希釈した塗料を基板にローラーで塗布し、200℃で1時間硬化した。この塗膜の表面抵抗率を25℃の条件下で、半導体パラメーター・アナライザ(商品名:Agilent 4155C、Agilent Technologies社製)を用いて四探針法で測定したところ、塗膜の表面抵抗率は2×1010Ω/□であった。
<Example 1>
0.05 parts by mass of the CNB product was added to 100 parts by mass of a silicone resin emulsion (Asahi Kasei SILRES (registered trademark), containing 60% by mass of non-volatile components) and kneaded in a three-roll mill. The water-diluted paint was applied to the substrate with a roller and cured at 200° C. for 1 hour. The surface resistivity of this coating film was measured at 25° C. using a semiconductor parameter analyzer (trade name: Agilent 4155C, manufactured by Agilent Technologies) using a four-probe method. It was 2×10 10 Ω/□.

<実施例2>
実施例1で得られた塗膜の表面にダイシングテープ(日立化成 HAE-1503L)を貼り、引き剥がした。塗膜の表面抵抗率は3×10Ω/□であった。
<Example 2>
A dicing tape (Hitachi Kasei HAE-1503L) was attached to the surface of the coating film obtained in Example 1 and then peeled off. The surface resistivity of the coating film was 3×10 8 Ω/□.

<比較例1>
シリコーン樹脂エマルジョン(旭化成SILRES(登録商標)、不揮発成分60質量%含有)100質量部にカーボンナノチューブを0.05質量部加え、三本ロールミルで混錬した。水で希釈した塗料を基板にローラーで塗布し、200℃で1時間硬化した。塗膜の表面抵抗率は5×1012Ω/□であった。
<Comparative Example 1>
0.05 parts by mass of carbon nanotubes was added to 100 parts by mass of a silicone resin emulsion (Asahi Kasei SILRES (registered trademark), containing 60% by mass of non-volatile components), and kneaded in a three-roll mill. The water-diluted paint was applied to the substrate with a roller and cured at 200° C. for 1 hour. The surface resistivity of the coating film was 5×10 12 Ω/□.

<比較例2>
比較例1で得られた塗膜の表面にダイシングテープを貼り、引き剥がした。塗膜の表面抵抗率は2×1012Ω/□であり、CNB生成物を添加した塗膜と比較すると表面処理の効果が小さかった。繊維状カーボンナノホーン集合体は凸凹した形状を有するためダイシングテープに接着する部分が多く、表面処理の効果が大きくなったと考えられる。
<Comparative Example 2>
A dicing tape was attached to the surface of the coating film obtained in Comparative Example 1 and then peeled off. The surface resistivity of the coating was 2×10 12 Ω/square, indicating less effect of the surface treatment compared to the coating containing the CNB product. Since the fibrous carbon nanohorn aggregates have an uneven shape, there are many portions that are adhered to the dicing tape, and it is thought that the effect of the surface treatment is enhanced.

この出願は、2019年1月16日に出願された日本出願特願2019-005018を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2019-005018 filed on January 16, 2019, and the entire disclosure thereof is incorporated herein.

以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

Claims (3)

繊維状カーボンナノホーン集合体を含む導電成分を含む帯電防止塗膜の製造方法であって、
基材に繊維状カーボンナノホーン集合体を含む導電成分を含む塗料を塗布し、塗膜を形成する工程、
前記塗膜に易剥離性粘着シートを貼合する工程、および
前記塗膜から前記易剥離性粘着シートを剥離する工程
を含む帯電防止塗膜の製造方法。
A method for producing an antistatic coating film containing a conductive component containing fibrous carbon nanohorn aggregates,
a step of applying a coating material containing a conductive component containing fibrous carbon nanohorn aggregates to the base material to form a coating film;
A method for producing an antistatic coating film, comprising a step of laminating an easily peelable adhesive sheet to the coating film, and a step of peeling the easily peelable adhesive sheet from the coating film.
帯電防止塗膜中の繊維状カーボンナノホーン集合体の量が0.001質量%以上0.1質量%以下である、請求項に記載の帯電防止塗膜の製造方法。 2. The method for producing an antistatic coating according to claim 1 , wherein the amount of fibrous carbon nanohorn aggregates in the antistatic coating is 0.001% by mass or more and 0.1% by mass or less. 帯電防止塗膜中の前記導電成分の量が0.1質量%以下であり、帯電防止塗膜の表面抵抗率が1×1010Ω/□以下である、請求項またはに記載の帯電防止塗膜の製造方法。 The charging according to claim 1 or 2 , wherein the amount of the conductive component in the antistatic coating is 0.1% by mass or less, and the surface resistivity of the antistatic coating is 1 × 10 10 Ω/□ or less. A method for producing a protective coating.
JP2020566419A 2019-01-16 2020-01-15 Carbon nanobrush antistatic paint Active JP7230928B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019005018 2019-01-16
JP2019005018 2019-01-16
PCT/JP2020/000975 WO2020149283A1 (en) 2019-01-16 2020-01-15 Carbon nano brush antistatic coating material

Publications (2)

Publication Number Publication Date
JPWO2020149283A1 JPWO2020149283A1 (en) 2021-11-25
JP7230928B2 true JP7230928B2 (en) 2023-03-01

Family

ID=71613918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020566419A Active JP7230928B2 (en) 2019-01-16 2020-01-15 Carbon nanobrush antistatic paint

Country Status (2)

Country Link
JP (1) JP7230928B2 (en)
WO (1) WO2020149283A1 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127737A (en) 2002-10-03 2004-04-22 Hitachi Zosen Corp Carbon nanotube conductive material and its manufacturing method
WO2006043449A1 (en) 2004-10-21 2006-04-27 Nitto Denko Corporation Antistatic adhesive optical film and image display
JP2006272876A (en) 2005-03-30 2006-10-12 Takiron Co Ltd Electroconductive element
JP2007190717A (en) 2006-01-17 2007-08-02 Lintec Corp Peel film and its manufacturing method
JP2007229989A (en) 2006-02-28 2007-09-13 Takiron Co Ltd Conductive molded body and its manufacturing method
JP2008168591A (en) 2007-01-15 2008-07-24 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display
JP2010262857A (en) 2009-05-08 2010-11-18 Nec Corp Manufacturing method of electron-emitting element, and forming method and lighting apparatus of surface-emitting element
JP2010269569A (en) 2009-05-25 2010-12-02 Nippon Kayaku Co Ltd Conductive film for transfer, production process thereof and conductive object
JP2011064920A (en) 2009-09-17 2011-03-31 Fujicopian Co Ltd Pasting anti-reflection film
WO2012133239A1 (en) 2011-03-31 2012-10-04 日本電気株式会社 Carbon nanotube/carbon nanohorn complex, method for producing carbon nanotube/carbon nanohorn complex, and application therefor
JP2012248295A (en) 2011-05-25 2012-12-13 Nec Corp Field emission type light emitting device
JP2013211272A (en) 2013-05-17 2013-10-10 Nissha Printing Co Ltd Method of manufacturing conductive pattern coating body
JP2013256631A (en) 2012-06-14 2013-12-26 Mitsubishi Rayon Co Ltd Nanocarbon-containing composition, and conductor using the same
JP2014152080A (en) 2013-02-08 2014-08-25 Kohjin Film & Chemicals Co Ltd Active energy ray-curable nanocarbon dispersion, method for manufacturing the same, and active energy ray-curable coating agent using the same
JP2014169193A (en) 2013-03-01 2014-09-18 Nec Corp Carbon material composed of nanocarbon and graphene or graphite compounded with each other, and method for producing the same
WO2015016316A1 (en) 2013-07-31 2015-02-05 日産化学工業株式会社 Carbon material dispersed film formation composition
WO2016147909A1 (en) 2015-03-16 2016-09-22 日本電気株式会社 Fibrous carbon nanohorn aggregates and method for producing same
WO2018146810A1 (en) 2017-02-13 2018-08-16 日本電気株式会社 Dispersion liquid, preparation method thereof, gas sensor and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104104A (en) * 2011-11-14 2013-05-30 Mec Kk Etching solution, replenishment solution, and method for forming copper wiring

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127737A (en) 2002-10-03 2004-04-22 Hitachi Zosen Corp Carbon nanotube conductive material and its manufacturing method
WO2006043449A1 (en) 2004-10-21 2006-04-27 Nitto Denko Corporation Antistatic adhesive optical film and image display
JP2006272876A (en) 2005-03-30 2006-10-12 Takiron Co Ltd Electroconductive element
JP2007190717A (en) 2006-01-17 2007-08-02 Lintec Corp Peel film and its manufacturing method
JP2007229989A (en) 2006-02-28 2007-09-13 Takiron Co Ltd Conductive molded body and its manufacturing method
JP2008168591A (en) 2007-01-15 2008-07-24 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display
JP2010262857A (en) 2009-05-08 2010-11-18 Nec Corp Manufacturing method of electron-emitting element, and forming method and lighting apparatus of surface-emitting element
JP2010269569A (en) 2009-05-25 2010-12-02 Nippon Kayaku Co Ltd Conductive film for transfer, production process thereof and conductive object
JP2011064920A (en) 2009-09-17 2011-03-31 Fujicopian Co Ltd Pasting anti-reflection film
WO2012133239A1 (en) 2011-03-31 2012-10-04 日本電気株式会社 Carbon nanotube/carbon nanohorn complex, method for producing carbon nanotube/carbon nanohorn complex, and application therefor
JP2012248295A (en) 2011-05-25 2012-12-13 Nec Corp Field emission type light emitting device
JP2013256631A (en) 2012-06-14 2013-12-26 Mitsubishi Rayon Co Ltd Nanocarbon-containing composition, and conductor using the same
JP2014152080A (en) 2013-02-08 2014-08-25 Kohjin Film & Chemicals Co Ltd Active energy ray-curable nanocarbon dispersion, method for manufacturing the same, and active energy ray-curable coating agent using the same
JP2014169193A (en) 2013-03-01 2014-09-18 Nec Corp Carbon material composed of nanocarbon and graphene or graphite compounded with each other, and method for producing the same
JP2013211272A (en) 2013-05-17 2013-10-10 Nissha Printing Co Ltd Method of manufacturing conductive pattern coating body
WO2015016316A1 (en) 2013-07-31 2015-02-05 日産化学工業株式会社 Carbon material dispersed film formation composition
WO2016147909A1 (en) 2015-03-16 2016-09-22 日本電気株式会社 Fibrous carbon nanohorn aggregates and method for producing same
WO2018146810A1 (en) 2017-02-13 2018-08-16 日本電気株式会社 Dispersion liquid, preparation method thereof, gas sensor and method for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PILLA, S. et al.,Nitrogen Rich Hyperbranched Polyurethane-Carbon Nanohorn Composite: Implications on the Development,POLYMER COMPOSITES,2016年09月12日,Volume 39, Issue S2,p.E772-E779

Also Published As

Publication number Publication date
WO2020149283A1 (en) 2020-07-23
JPWO2020149283A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP4915826B2 (en) Application of carbon nanotubes
JP5691524B2 (en) Graphene film transfer method and transparent conductive film manufacturing method
Fabbri et al. In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures
EP3258489A1 (en) Heat transfer sheet and method for producing same
JP2005314226A (en) Carbon nanotube, electron emission source including the same and electron emission device including the electron emission source
JPWO2012105344A1 (en) Method for producing exfoliated graphite-polymer composite material
JP2007145634A (en) Double-walled carbon nanotube, bulk structure of the same, method and apparatus for producing them, and applications of the nanotube and bulk structure
KR100964561B1 (en) Conductive adhesive composition
JP2010202503A (en) Carbon nanotube composite material and method for making the same
CN102730671A (en) Copper-graphene composite material and method for preparation of graphene film on copper-based metal surface
JP5775366B2 (en) Method for producing carbonaceous material-polymer composite material
JP5314803B1 (en) Method for producing carbonaceous material-polymer composite material and carbonaceous material-polymer composite material
US20050189860A1 (en) Composition for formatting an electron emission source for use in an electron emission device and an electron emission source fabricated using the same
JP7230928B2 (en) Carbon nanobrush antistatic paint
JP6922893B2 (en) Adsorbent
JP2011195432A (en) Method for producing flaky graphite and flaky graphite
JP2007271539A (en) Resin tungsten composite material
KR20150118624A (en) Manufacture method of basic ink containing carbon-nonbonding metal nanoparticles &amp; metal nanoparticles particle-dispersed ink
JP7192988B2 (en) composite material
JP7283083B2 (en) Carbon nanobrush adhesive/adhesive
JP7120210B2 (en) Method for producing carbon nanohorn aggregate
JP2019012601A (en) Template carbon material for fuel cell catalyst carrier, method of producing template carbon material for fuel cell catalyst carrier, catalyst layer for fuel cell, and fuel cell
KR20150128056A (en) Three-dimensional Grapheene Structure and Manufacturing method of Thereof and Elctrode using thereof
Liu et al. Superamphiphilic Ag–CNTs electrode by atmosphere plasma treatment
TWI593809B (en) Method for producing exfoliated graphite and exfoliated graphite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R151 Written notification of patent or utility model registration

Ref document number: 7230928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151