JP2007271539A - Resin tungsten composite material - Google Patents

Resin tungsten composite material Download PDF

Info

Publication number
JP2007271539A
JP2007271539A JP2006099834A JP2006099834A JP2007271539A JP 2007271539 A JP2007271539 A JP 2007271539A JP 2006099834 A JP2006099834 A JP 2006099834A JP 2006099834 A JP2006099834 A JP 2006099834A JP 2007271539 A JP2007271539 A JP 2007271539A
Authority
JP
Japan
Prior art keywords
tungsten
resin
composite material
thermoplastic resin
prevent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006099834A
Other languages
Japanese (ja)
Inventor
Kenji Okamura
研二 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2006099834A priority Critical patent/JP2007271539A/en
Publication of JP2007271539A publication Critical patent/JP2007271539A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a resin tungsten high-density composite material which can maintain its shape, specific gravity and hardness properties, even under conditions of high temperature and high humidity. <P>SOLUTION: A coupling treatment for coating the surface of tungsten particles, with organic compounds of a silane or silicon base to prevent the tungsten particles from corroding easily, is given to them, before mixing them with thermoplastic resin in order to prevent them from oxidizing. Since the coupled tungsten particles will no longer be exposed directly to the atmosphere, oxidation does not progress, even under an environment of high temperature and humidity and they can maintain their shapes and surface roughness. Moreover, the resin tungsten composite material, obtained by mixing the coupled tungsten particles with the thermoplastic resin, is prone to deform at high temperature and high humidity. To prevent this, the surface of the thermoplastic resin is made to form a partially crosslinked structure so as to improve the heat resistance, by irradiating the surface of the resin-tungsten high-density composite material with an electron beam in order to prevent such a deformation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は放射線遮蔽材、ウェイト用部材、静振材等に用いられる樹脂タングステン複合材料に関する。 The present invention relates to a resin tungsten composite material used for a radiation shielding material, a weight member, a vibration damping material, and the like.

樹脂にタングステン粉末を分散してなる複合材、樹脂タングステン複合材料は、その密度の高さと、柔軟さ、遮蔽能力の高さから、放射線遮蔽用部材、制振用部材、ウェイト用部材等に用いられている。
特定の物体に貼り合わせ、物体に沿って用いられる場合のように、柔軟性が重要である場合に、タングステン粉末と組み合わさせる樹脂としては、柔軟性をもった樹脂材料が選定され、特に成形加工性やリサイクル性に優れた熱可塑性樹脂を用いることが多い。
ところが、熱可塑性樹脂を使用した樹脂タングステン複合材料には欠点がある。
複合材料における熱可塑性樹脂は、使用温度が上がると、軟化するために、形状の維持が困難になり、曲がる、たわむ、収縮するなどして変形したり、内在する気体の膨張により発泡現象を起こす。このため、高温雰囲気での使用においては適さなかった。
一方、タングステン粉末は、比較的酸化しやすい金属であり、特に湿度や温度が高い環境下では急激に酸化が進行する。複合材料においては、タングステン粉末は熱可塑性樹脂に覆われているために粉末状態よりも酸化の進行はゆるやかとなるが、比重10g/cm以上とタングステンが高密度である複合材料においては、材料表面にタングステン粒子が露出しており、長期間の高温高湿環境に晒された場合には表面からの酸化が進行する。その結果、酸化反応に起因した表面の粗れ、体積膨張による変形が発生し、比重や硬さ特性が変化し、形状を保つことができない。
これらの原因により、高温、高湿環境下では樹脂タングステン複合材料はタングステン粒子および熱可塑性樹脂にとって形状やその機能を維持するためには十分でない条件が揃っている。
例えば、特許文献1にはエラストマーとタングステン粉末からなる放射線遮蔽容器、特許文献2には遮蔽用の防護衣が示されているが、これらの技術では前記問題があるために、高温、高湿下での長時間の使用は難しい。
Composite material made by dispersing tungsten powder in resin, resin tungsten composite material is used for radiation shielding member, damping member, weight member, etc. because of its high density, flexibility and high shielding ability It has been.
When flexibility is important, such as when bonding to a specific object and using along the object, a resin material with flexibility is selected as the resin to be combined with the tungsten powder, especially molding processing In many cases, a thermoplastic resin excellent in recyclability and recyclability is used.
However, a resin tungsten composite material using a thermoplastic resin has a drawback.
Thermoplastic resins in composite materials soften when the operating temperature rises, making it difficult to maintain their shape, causing deformation by bending, bending, shrinking, etc., and causing foaming due to expansion of the gas present . For this reason, it was not suitable for use in a high temperature atmosphere.
Tungsten powder, on the other hand, is a metal that is relatively easy to oxidize, and oxidation proceeds abruptly particularly in an environment with high humidity and temperature. In the composite material, since the tungsten powder is covered with the thermoplastic resin, the oxidation progresses more slowly than in the powder state. However, in the composite material having a specific gravity of 10 g / cm 3 or more and a high density of tungsten, The tungsten particles are exposed on the surface, and oxidation from the surface proceeds when exposed to a high temperature and high humidity environment for a long time. As a result, surface roughness due to the oxidation reaction, deformation due to volume expansion occurs, specific gravity and hardness characteristics change, and the shape cannot be maintained.
For these reasons, under a high temperature and high humidity environment, the resin tungsten composite material has conditions that are not sufficient for maintaining the shape and function of the tungsten particles and the thermoplastic resin.
For example, Patent Document 1 shows a radiation shielding container made of an elastomer and tungsten powder, and Patent Document 2 shows a protective clothing for shielding. It is difficult to use for a long time.

特開2003−004892号公報JP 2003-004892 A 特開2004−077170号公報JP 2004-077170 A

高温、高湿な条件下でも形状や比重、硬さ特性を維持できる樹脂タングステン複合材料を得ることを課題とした。   It was an object to obtain a resin tungsten composite material that can maintain its shape, specific gravity, and hardness characteristics even under high temperature and high humidity conditions.

まず、タングステン粒子については、その酸化を防ぐために熱可塑性樹脂との混合以前に、粒子を腐食されにくいようにカップリング処理を行う。この場合のカップリング処理とは、シラン系やシリコン系の有機化合物を、粒子表面に薄くコーティングすることをいう。カップリングされたタングステン粒子は、雰囲気に直接触れなくなるために、高温多湿な環境下でも酸化が進まずに、形状や表面粗さを維持することができる。
また、上記カップリングを行った後に、熱可塑性樹脂と混合して得られた樹脂タングステン複合材料は、熱可塑性樹脂が高温多湿下で変形しやすい。これを防ぐために、樹脂タングステン複合材料の表面から電子線照射を行なうことにより、熱可塑性樹脂の表面が一部架橋構造を作るようになり、耐熱性が飛躍的に向上する。

以上に述べた改善点を踏まえ、実際の樹脂タングステン複合材料の製造工程を以下に説明する。

まずタングステン粉末として0.5〜10μm程度の粉末を選定する。粒子径は揃っていてもよいし、より高い密度を得るためには大小の粉末を組み合わせて選定すればよい。
次にタングステン粉末を溶媒にて溶かされたカップリング用の有機物中に投入しスラリー状とし、攪拌することで均一に分散させる。次にスラリー化した粉末を適温にて乾燥し、溶媒を蒸発させることにより、粒子全体がカップリング材にてコーティングされる。この際カップリング材としては、少なくとも2つ以上の種類の反応基を持ち、そのうち少なくとも一つが金属と反応しやすいメチル基、エチル基、メトキシ基、エトキシキ基等を有している材料が最も適当であり、もう一方の反応基としては樹脂材料に応じて各種の反応基が選定される。
次に、カップリング剤にてコーティングされたタングステン粉末を、ニーダー等の攪拌、混合用装置にて熱可塑性樹脂と混合する。熱可塑性樹脂としてはオレフィン系熱可塑性エラストマーがより環境への適合性や、強度、柔軟性を得るために適当である。両者を均一に混合した後にプレス加工、ドクターブレード、押し出し成形、射出成形、ロール圧延等の手段にて所望の形を成形することにより樹脂タングステン複合材料が得られる。
更に得られた樹脂タングステン複合材料の表面に電子線照射を行なう。樹脂タングステン複合材料に電子線を照射すると、加速電子により高分子材料の水素原子の分離と再結合反応(架橋反応)が起こり、高分子間の結合が強化され、熱可塑性樹脂の耐熱性が改善される。電子線照射の具体的方法としては、電子線照射装置を用いて加速度1MeV以上の高エネルギ−の電子線を複合材に照射することで材料表層から内部まで改質される。照射量としてはオレフィン系エラストマーを使用した場合、50kGyから200kGy程度とすることが好ましい。

以上の手段により本発明の耐酸化性が高く、耐高温性に優れた熱可塑性樹脂からなる樹脂タングステン複合材料を得ることができる。
First, in order to prevent the oxidation of the tungsten particles, a coupling treatment is performed so that the particles are not easily corroded before mixing with the thermoplastic resin. In this case, the coupling treatment refers to thinly coating a particle surface with a silane-based or silicon-based organic compound. Since the coupled tungsten particles do not directly touch the atmosphere, the shape and the surface roughness can be maintained without being oxidized even in a high temperature and high humidity environment.
In addition, in the resin tungsten composite material obtained by mixing with the thermoplastic resin after the coupling is performed, the thermoplastic resin is easily deformed under high temperature and high humidity. In order to prevent this, by performing electron beam irradiation from the surface of the resin tungsten composite material, the surface of the thermoplastic resin partially forms a crosslinked structure, and the heat resistance is drastically improved.

Based on the improvements described above, the actual manufacturing process of the resin tungsten composite material will be described below.

First, a powder of about 0.5 to 10 μm is selected as the tungsten powder. The particle diameter may be uniform, or a combination of large and small powders may be selected to obtain a higher density.
Next, the tungsten powder is put into an organic substance for coupling dissolved in a solvent to form a slurry, which is uniformly dispersed by stirring. Next, the slurryed powder is dried at an appropriate temperature, and the solvent is evaporated to coat the entire particle with the coupling material. In this case, the most suitable coupling material is a material having at least two or more kinds of reactive groups, at least one of which has a methyl group, an ethyl group, a methoxy group, an ethoxy group, etc. that easily react with a metal. As the other reactive group, various reactive groups are selected according to the resin material.
Next, the tungsten powder coated with the coupling agent is mixed with the thermoplastic resin by a stirring and mixing apparatus such as a kneader. As the thermoplastic resin, an olefin-based thermoplastic elastomer is suitable for obtaining environmental compatibility, strength, and flexibility. After mixing both uniformly, a resin tungsten composite material is obtained by shape | molding a desired shape by means, such as press work, a doctor blade, extrusion molding, injection molding, and roll rolling.
Further, the surface of the obtained resin tungsten composite material is irradiated with an electron beam. When an electron beam is irradiated to a resin tungsten composite material, hydrogen atoms of the polymer material are separated and recombination reaction (crosslinking reaction) occurs due to accelerated electrons, strengthening the bond between the polymers, and improving the heat resistance of the thermoplastic resin. Is done. As a specific method of electron beam irradiation, an electron beam irradiation device is used to irradiate the composite material with a high energy electron beam having an acceleration of 1 MeV or more, thereby reforming the material from the surface layer to the inside. When the olefin elastomer is used, the irradiation amount is preferably about 50 kGy to about 200 kGy.

By the above means, a resin tungsten composite material comprising a thermoplastic resin having high oxidation resistance and excellent high temperature resistance of the present invention can be obtained.

本発明によって、長期間の高温、高湿の雰囲気下においても、形状を維持し、材料特性の劣化を抑えることが可能な樹脂タングステン複合材料を得ることができる。
According to the present invention, it is possible to obtain a resin tungsten composite material capable of maintaining a shape and suppressing deterioration of material characteristics even under a long-term high temperature and high humidity atmosphere.

(実施例1)
複合材料としてタングステン粉末として平均粒子径12μm、4μm、1μmの3種類の粉末を重量比で1:1:1となるように混合する。次にカップリング剤としてメタクリル基およびエトキシ基を有する3−メタクリリロキシロプロピルトリエトキシシランをタングステン粉末に対して配合量0.05重量%をメタノール溶媒に溶かし、前記タングステン粉末をその中に投入してタングステン粉末スラリーとする。その後に真空乾燥機にて60℃/5時間乾燥させメタノール溶媒を除き、カップリング処理したタングステン粉末を作製した。
上記のカップリング処理したタングステン粉末と、熱可塑性樹脂としてオレフィン系熱可塑性エラストマー樹脂材料および微量添加剤として可塑剤、離型剤、滑剤を全体の比重が12g/cmとなる配合条件にてニーダーに投入した。ニーダーで混練し、高密度の樹脂タングステン複合材料を作製し、この樹脂タングステン複合材料を押し出し成形により、厚さ1mmの柔軟性を有するシート材料が得られた。
次に作成したシート材料に対して加速度3MeV電子線を100kGy 照射を実施した。
評価:前記工程にて得られた本発明のシート材料より、図1に示す形状のダンベル形に切り出し、片側の太い部分(図1のA)を挟み固定して、細い部分(図1のB)と下部の太い部分(図1のC)の自重によりシート材料が下方に引っぱられる試験を行った。試験条件は100℃の高温環境にて10時間吊り下げ保持試験を実施した。
試験後にシート材を確認したところ、変形、面粗れ、特性の変化は認められなかった。
また、85℃、85%の雰囲気下で150hr保持する試験を行い、試験前後の特性を比較したが、変形、面粗れ、特性の劣化は認められなかった。

(比較例1)
複合材料としてタングステン粉末として平均粒子径12μm、4μm、1μmの3種類の粉末を混合しタングステン粉末およびオレフィン系熱可塑性エラストマー樹脂材料および微量添加剤として可塑剤、離型剤、滑剤を全体の比重が12g/cmとなる配合条件にてニーダーに投入し混練し高密度の樹脂タングステン複合材料を作製し、この樹脂タングステン複合材料を押し出し成形により厚さ1mmの柔軟性を有するシート材料が得られた。
本シート材料より試験片を実施例と同様にダンベル形に切り出し100℃の高温環境にて保持試験を実施したところ、徐々に軟化し約15分間で自重にて変形し、破断した。
また、85℃85%雰囲気下の試験環境に150時間保持し試験前後の特性を比較したところ酸化反応による体積膨張およびそり変形が確認された。
Example 1
As a composite material, three kinds of powders having an average particle diameter of 12 μm, 4 μm, and 1 μm are mixed as tungsten powder so that the weight ratio is 1: 1: 1. Next, 0.05 wt% of 3-methacrylyloxylopropyltriethoxysilane having a methacryl group and an ethoxy group as a coupling agent is dissolved in a methanol solvent with respect to the tungsten powder, and the tungsten powder is put therein. To make a tungsten powder slurry. Thereafter, it was dried in a vacuum dryer at 60 ° C. for 5 hours to remove the methanol solvent, and a coupled tungsten powder was produced.
The above-mentioned coupling-treated tungsten powder, an olefinic thermoplastic elastomer resin material as a thermoplastic resin, and a plasticizer, a release agent and a lubricant as a trace additive under a blending condition with an overall specific gravity of 12 g / cm 3. It was thrown into. By kneading with a kneader, a high-density resin tungsten composite material was produced, and by extruding the resin tungsten composite material, a flexible sheet material having a thickness of 1 mm was obtained.
Next, 100 kGy irradiation of acceleration 3 MeV electron beam was implemented with respect to the produced sheet material.
Evaluation: From the sheet material of the present invention obtained in the above step, cut into a dumbbell shape having the shape shown in FIG. 1, sandwiching and fixing one thick part (A in FIG. 1), and narrow part (B in FIG. 1) ) And the lower thick part (C in FIG. 1), the sheet material was pulled downward. The test condition was a holding test suspended for 10 hours in a high temperature environment of 100 ° C.
When the sheet material was confirmed after the test, no deformation, surface roughness, or change in characteristics was observed.
Moreover, the test which hold | maintains for 150 hours in 85 degreeC and 85% atmosphere was done, and the characteristic before and behind a test was compared, but a deformation | transformation, surface roughening, and deterioration of a characteristic were not recognized.

(Comparative Example 1)
Three kinds of powders with an average particle size of 12 μm, 4 μm, and 1 μm are mixed as tungsten powder as a composite material, and the total specific gravity of tungsten powder, olefin-based thermoplastic elastomer resin material and plasticizer, mold release agent, and lubricant as trace additives A high-density resin tungsten composite material was prepared by mixing in a kneader under a blending condition of 12 g / cm 3 to produce a high-density resin tungsten composite material. A sheet material having a thickness of 1 mm was obtained by extruding the resin tungsten composite material. .
A test piece was cut out from the sheet material into a dumbbell shape in the same manner as in the example and subjected to a holding test in a high temperature environment of 100 ° C. As a result, it gradually softened and deformed by its own weight in about 15 minutes and fractured.
Further, when the characteristics before and after the test were compared for 150 hours in a test environment of 85 ° C. and 85% atmosphere, volume expansion and warpage deformation due to oxidation reaction were confirmed.

耐熱、耐食性に対する特性を検査するための試料形状Sample shape for testing characteristics against heat and corrosion resistance

Claims (2)

タングステン粒子と熱可塑性樹脂からなる樹脂タングステン複合材料において、
タングステン粒子は耐酸化性を付与するカップリング材で被覆され、
そのタングステン粒子と熱可塑性樹脂とがカップリング材を介してカップリングしており、
少なくともその材料表面部に電子線照射層を有することを特徴とする、樹脂タングステン複合材料。
In the resin tungsten composite material consisting of tungsten particles and thermoplastic resin,
The tungsten particles are coated with a coupling material that provides oxidation resistance,
The tungsten particles and the thermoplastic resin are coupled via a coupling material,
A resin tungsten composite material comprising an electron beam irradiation layer at least on the surface of the material.
カップリング材が複数の反応基を有するシラン系有機化合物またはシリコン系有機化合物で、
複数の反応基のうちの少なくとも一つの反応基が金属系と反応しやすいメチル基、エチル其、メトキシ基、エトキシ基を有することを特徴とする請求項1に記載の樹脂−タングステン高密度複合材料。
The coupling material is a silane organic compound or a silicon organic compound having a plurality of reactive groups,
2. The resin-tungsten high-density composite material according to claim 1, wherein at least one of the plurality of reactive groups has a methyl group, an ethyl group, a methoxy group, or an ethoxy group that easily reacts with a metal system. .
JP2006099834A 2006-03-31 2006-03-31 Resin tungsten composite material Pending JP2007271539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099834A JP2007271539A (en) 2006-03-31 2006-03-31 Resin tungsten composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099834A JP2007271539A (en) 2006-03-31 2006-03-31 Resin tungsten composite material

Publications (1)

Publication Number Publication Date
JP2007271539A true JP2007271539A (en) 2007-10-18

Family

ID=38674478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099834A Pending JP2007271539A (en) 2006-03-31 2006-03-31 Resin tungsten composite material

Country Status (1)

Country Link
JP (1) JP2007271539A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237039A (en) * 2009-03-31 2010-10-21 Nippon Tungsten Co Ltd X-ray shield curtain for food inspection
WO2013018512A1 (en) * 2011-08-01 2013-02-07 株式会社超越化研 Agent for hardening and solidifying radioactive contaminated soil surface, radiation blocking agent, and method for prevention of scattering of radioactive substance from surface, decontamination and protection
CN104240782A (en) * 2013-06-06 2014-12-24 日本华尔卡工业株式会社 Radioactive ray shielding film and manufacturing method thereof
JP2015175658A (en) * 2014-03-13 2015-10-05 セイコー・イージーアンドジー株式会社 radiation detector
WO2016068241A1 (en) * 2014-10-30 2016-05-06 株式会社Ricanal Sheet-shaped radiation shielding material
JP2017173296A (en) * 2016-03-22 2017-09-28 早川ゴム株式会社 Radiation shield material composition and radiation shield material
JP2017181375A (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Foam and method for producing foam

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733905A (en) * 1993-07-23 1995-02-03 Toyo Ink Mfg Co Ltd Composition for balancing weight of instrument pointer
JPH0859862A (en) * 1994-08-23 1996-03-05 Yamahito Kogure Method of modifying plastic with radiation
JP2000080181A (en) * 1998-09-07 2000-03-21 Shiyuukai Method for modifying plastic by irradiation with electron beam
WO2001099119A1 (en) * 2000-06-20 2001-12-27 Kanebo, Limited Radiation shielding material
WO2002044277A1 (en) * 2000-12-01 2002-06-06 Kanebo, Limited Molded resin for radiation shielding
JP2005163112A (en) * 2003-12-02 2005-06-23 Nippon Paint Co Ltd Heavy alloy sheet, coated-heavy alloy sheet, and method of producing heavy alloy sheet
JP2005225988A (en) * 2004-02-13 2005-08-25 Kishimoto Sangyo Co Ltd Vibration-damping and sound-reducing resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733905A (en) * 1993-07-23 1995-02-03 Toyo Ink Mfg Co Ltd Composition for balancing weight of instrument pointer
JPH0859862A (en) * 1994-08-23 1996-03-05 Yamahito Kogure Method of modifying plastic with radiation
JP2000080181A (en) * 1998-09-07 2000-03-21 Shiyuukai Method for modifying plastic by irradiation with electron beam
WO2001099119A1 (en) * 2000-06-20 2001-12-27 Kanebo, Limited Radiation shielding material
WO2002044277A1 (en) * 2000-12-01 2002-06-06 Kanebo, Limited Molded resin for radiation shielding
JP2005163112A (en) * 2003-12-02 2005-06-23 Nippon Paint Co Ltd Heavy alloy sheet, coated-heavy alloy sheet, and method of producing heavy alloy sheet
JP2005225988A (en) * 2004-02-13 2005-08-25 Kishimoto Sangyo Co Ltd Vibration-damping and sound-reducing resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237039A (en) * 2009-03-31 2010-10-21 Nippon Tungsten Co Ltd X-ray shield curtain for food inspection
WO2013018512A1 (en) * 2011-08-01 2013-02-07 株式会社超越化研 Agent for hardening and solidifying radioactive contaminated soil surface, radiation blocking agent, and method for prevention of scattering of radioactive substance from surface, decontamination and protection
CN104240782A (en) * 2013-06-06 2014-12-24 日本华尔卡工业株式会社 Radioactive ray shielding film and manufacturing method thereof
JP2015175658A (en) * 2014-03-13 2015-10-05 セイコー・イージーアンドジー株式会社 radiation detector
WO2016068241A1 (en) * 2014-10-30 2016-05-06 株式会社Ricanal Sheet-shaped radiation shielding material
JP2017173296A (en) * 2016-03-22 2017-09-28 早川ゴム株式会社 Radiation shield material composition and radiation shield material
JP2017181375A (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Foam and method for producing foam

Similar Documents

Publication Publication Date Title
JP2007271539A (en) Resin tungsten composite material
CN1146647C (en) Anisotropic conductive adhesive and method for preparation thereof and electronic apapratus using said adhesive
JP5423455B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
EP2011838B1 (en) Coating composition comprising surface-treated multilayer carbon nanofibers and coated article
TWI745158B (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and method for producing exothermic resin composition
TW201247732A (en) Encapsulating sheet and electronic device
JP6294077B2 (en) Method for producing exfoliated graphite derivative and method for producing exfoliated graphite / resin composite material
EP3315573B1 (en) Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
JP2013091783A (en) Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
Paluvai et al. Fabrication and evaluation of acrylated epoxidized castor oil‐toughened diglycidyl ether of bisphenol A nanocomposites
US20210237509A1 (en) Dispersions for additive manufacturing comprising discrete carbon nanotubes
Riyajan et al. A novel natural rubber‐graft‐cassava starch foam for oil/gasohol absorption
WO2022081271A1 (en) Conductive photo-curable compositions for additive manufacturing
JP2012149161A (en) Electroconductive resin composition, and conductive coating and conductive adhesive using the same
JP2023099671A (en) Asymmetry composite material
Zhang et al. Flexible water-resistant intumescent coatings: fabrication, characterization, and fire protective performance
KR20230160855A (en) Dispersions for additive manufacturing containing discrete carbon nanotubes
JP5782181B2 (en) Manufacturing method of resin composite material and resin composite material
JP2008291232A (en) Production method of silicone gel sheet
KR20150052824A (en) Composite material, and method for producing same
JP2021528841A (en) Electromagnetic wave shielding film
KR101662546B1 (en) manufacturing method of expandable polystyrene having improved insulation property
Islam et al. Thermal stability and kinetics analysis of epoxy composites modified with reactive polyol diluent and multiwalled carbon nanotubes
JP7334959B2 (en) Thermally conductive composition and thermally conductive member
Raza et al. Radiation resistant metal decorated MWCNTs/PMMA nanocomposite films with enhanced thermomechanical properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111122

Free format text: JAPANESE INTERMEDIATE CODE: A02