WO2013018512A1 - Agent for hardening and solidifying radioactive contaminated soil surface, radiation blocking agent, and method for prevention of scattering of radioactive substance from surface, decontamination and protection - Google Patents

Agent for hardening and solidifying radioactive contaminated soil surface, radiation blocking agent, and method for prevention of scattering of radioactive substance from surface, decontamination and protection Download PDF

Info

Publication number
WO2013018512A1
WO2013018512A1 PCT/JP2012/067554 JP2012067554W WO2013018512A1 WO 2013018512 A1 WO2013018512 A1 WO 2013018512A1 JP 2012067554 W JP2012067554 W JP 2012067554W WO 2013018512 A1 WO2013018512 A1 WO 2013018512A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing
chemical formula
group
agent
paper
Prior art date
Application number
PCT/JP2012/067554
Other languages
French (fr)
Japanese (ja)
Inventor
岩宮 陽子
Original Assignee
株式会社超越化研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社超越化研 filed Critical 株式会社超越化研
Publication of WO2013018512A1 publication Critical patent/WO2013018512A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix

Definitions

  • the present invention provides a curing / solidifying / radiation shielding agent for fixing a soil surface on which radioactive pollutants are scattered and preventing the radioactive pollutants from being scattered and capturing and removing the radioactive pollutants and It relates to decontamination and protection methods to be used.
  • radioactive pollutants Due to nuclear power reactor accidents, radioactive pollutants are scattered and humans cannot live. In such a case, in order to prevent further scattering of the scattered radioactive pollutants, for example, a synthetic resin emulsion solution made of a flying sand inhibitor cricoat made by Kurita Kogyo Co., Ltd. is sprayed and contaminated with radioactive pollutants. The surface is fixed and placed on the spot.
  • a synthetic resin emulsion solution made of a flying sand inhibitor cricoat made by Kurita Kogyo Co., Ltd. is sprayed and contaminated with radioactive pollutants. The surface is fixed and placed on the spot.
  • radioactive pollutants when radioactive pollutants are scattered on the surrounding soil surface, when the radioactive pollutants are volatile substances, for example, as disclosed in JP-A-2004-243195, “soil A pipe is embedded in the pipe, high-temperature superheated steam is jetted from the pipe into the soil, the pollutants in the soil are volatilized, and the volatiles are recovered and removed. '' Document resolution).
  • the pollutant is not a volatile substance, the contaminated surface soil is scraped off manually by human naval tactics or using heavy equipment such as a shovel car, and then removed from one place outside. It is known that decontamination of radioactive pollutants is performed by collecting in a place and removing the surface soil of the contaminated part.
  • the present invention stops the radioactive pollutants that are easily scattered, and also hardens and solidifies the radioactively contaminated soil that can very easily remove the soil surface even when removed. -To provide radiation shielding agents and prevent radioactive substances from scattering and to provide decontamination / protection methods.
  • the invention according to claim 1 of the present application is a silane-based curing / solidifying agent for curing / solidifying a radioactively contaminated soil surface, the main component compound represented by Chemical Formula 1 and a catalyst for curing / solidifying the same Hardening and solidifying agent for radioactively contaminated soil surface.
  • R 1 , R 2 , R 3 and R 4 may be the same or different, each being hydrogen or an alkyl group having 1 to 4 carbon atoms, and n is 2 to 10.
  • the invention according to claim 2 of the present application is characterized in that, in the curing / solidifying agent of claim 1, the catalyst is a hydrolyzable organometallic compound.
  • the invention according to claim 3 of the present application is the curing / solidifying agent according to claim 2, wherein the hydrolyzable organometallic compound is one or more organic compounds selected from the group consisting of titanium, zirconium, aluminum, and tin. It is a metal compound.
  • the invention according to claim 4 of the present application is the curing / solidifying agent according to any one of claims 1 to 3, further comprising three hydrolyzable substituents and one non-hydrolyzable substituent.
  • R 5 , R 6 and R 7 may be the same or different, and are hydrogen, an alkyl group or an alkenyl group, and the bond between R 5 O, R 60 and R 7 O and Si is It consists of a siloxane bond, and R 8 is an alkenyl group or a phenyl group which may contain an epoxy group or a glycidyl group (an epoxy group, a glycidyl group or an amino group) as a substituent.
  • the invention according to claim 5 of the present application is the curing / solidifying agent according to any one of claims 1 to 4, further comprising two hydrolyzable substituents and two hydrolyzable substituents.
  • R 9 and R 11 may be the same or different, and are hydrogen, an alkyl group or an alkenyl group, and the bond between R 9 O and R 11 O and Si is a siloxane bond; 10 and R 12 are an alkyl group, an alkenyl group or a phenyl group which may contain an epoxy group or a glycidyl group as a substituent.
  • the invention according to claim 6 of the present application is the curing / solidifying agent according to any one of claims 1 to 5, further comprising isopropyl alcohol (IPA), an acrylic (methacrylic) ester copolymer, and a sub-oxidation Curing / solidifying agent containing lead or lead monoxide.
  • IPA isopropyl alcohol
  • acrylic (methacrylic) ester copolymer an acrylic (methacrylic) ester copolymer
  • a sub-oxidation Curing / solidifying agent containing lead or lead monoxide (7)
  • the invention according to claim 7 of the present application is directed to the prevention and decontamination of radioactive materials on the radioactively contaminated soil surface by spraying the curing / solidifying agent of claims 1 to 6 onto the radioactively contaminated soil surface.
  • Method. is a radiation protection material obtained by immersing and drying the curing / solidifying agent according to claims 1 to 6 in Japanese paper or a fiber material.
  • the invention according to claim 9 of the present application is a radiation protection method using the radiation protection material of claim 8.
  • the invention according to claim 10 of the present application is a mixture of the curing / solidifying agent of claims 1 to 6, isopropyl alcohol (IPA), an acrylic (methacrylic) ester copolymer, and tungsten or molybdenum.
  • the invention according to claim 11 of the present application is a radiation shielding material obtained by applying or impregnating the radiation shielding agent of claim 10 to the surface of a paper material, a fiber material or a solid material.
  • the invention according to claim 12 of the present application is a mixture of the curing / solidifying agent, isopropyl alcohol (IPA), acrylic (methacrylic acid) ester copolymer, and finely powdered tungsten according to claims 1 to 6.
  • Neutron beam shielding agent is a neutron beam shielding material obtained by applying or impregnating the surface of a paper material, a fiber material, or a solid material with the neutron beam shielding agent of claim 12.
  • a radioactively contaminated soil surface can be easily sprayed and can be used as a hardening / solidifying agent for hardening / solidifying the soil surface.
  • the section is clearly radioactively decontaminated because the radioactivity intensity clearly decreases.
  • R4 in the chemical compound 1 contained in the curing / solidifying agent is not hydrolyzed even if the chemical compound 1 undergoes a subsequent hydrolysis / polycondensation reaction. It imparts water properties and, as a result, imparts water repellency to the solidified soil surface, and prevents radioactive substances in the soil from re-spraying around by water, wind, etc.
  • radioactive substances can be captured and stopped in the solidified and removed soil, and radioactive decontamination can be easily performed by moving to other places while captured. That is, since the radioactivity is measured also from the curing / solidifying agent itself, there is an effect of capturing and taking in the radioactive substance also in the medicine itself to be used.
  • the above-mentioned curing / solidifying agent itself has an unreacted bond portion in which the number of strong siloxane bonds of the main component of the compound is not enough, so that it is distributed in the form of “dangling”. It is presumed that it easily penetrates into the soil when it is done, softens the infiltrated part, and eventually traps the radioactive material in the solidified interior.
  • the selection and use amount of the organometallic catalyst used as the catalyst the selection and use of the compound of Chemical Formula 2 and / or Chemical Formula 3
  • the practitioner can prepare relatively freely, and there is an effect that it can be freely selected depending on the degree of contamination.
  • the most characteristic feature is that the drug used captures radioactive pollutants and does not easily flow out depending on water or the like, and the trapping time can be maintained. Therefore, the contamination does not spread while the contaminated soil or the like is accumulated while capturing radioactive contaminants and transferred to another place.
  • the radioactivity protection by Japanese paper etc. becomes possible by making the chemical
  • the above-mentioned drug mixed with tungsten powder or molybdenum powder is applied or impregnated on Japanese paper, copy paper, Tyvek, the above-mentioned tungsten powder molten drug is applied to prevent the scattering of soil surface particles.
  • the radiation shielding rate (reduction rate) in comparison with the impregnated comparative reference sample “No. 0 Sat” shows an excellent radiation shielding effect of 23.8% to 52.4%.
  • the radiation reduction rate (shielding rate) in comparison with the collected soil (620 CPM) before impregnation with the liquid agent is a maximum of 48.4% to 67% as shown in “Radiation shielding rate with collected soil” in the above table. It has an excellent radiation shielding effect of .7% and has an excellent effect as a radiation shielding agent.
  • a paper material and a fiber material laminated by applying and impregnating the above-mentioned agent mixed with tungsten powder are a pure tungsten plate having the same thickness. Equivalent or 1.5 times the gamma ray shielding effect of tungsten plate, not only the liquid agent to be coated and impregnated functions as a radiation shielding agent, but also the paper material and fiber material itself impregnated and impregnated should be used as a radiation shielding material Can do.
  • a paper material coated with and impregnated with the above-mentioned agent mixed with tungsten fine powder a transcendent shielding paper A in which a plurality of fiber materials are laminated (in Example 8, 17 sheets are laminated) and boric acid ((H3BO3) 99.5%) Transcendental shielding paper B mixed with the above)) (in Example 8, the same 17 sheets laminated) has a neutron radiation shielding effect.
  • Figure 1 is a 200x magnified photograph of the surface of Japanese paper before applying the liquid agent.
  • Fig. 2 is a 200x magnified photograph of the surface of Japanese paper after the application of the "Super Transcendent + Tungsten (3.5 ⁇ m powder)"
  • FIG. 3 is an enlarged cross-sectional photograph of the 200 ⁇ Japanese paper.
  • Examples of the agent used for carrying out the prevention of scattering and decontamination / protection of radioactively contaminated soil according to the present invention include, for example, curing and solidifying by the action of a catalyst in a silane-based liquid containing a compound represented by Chemical Formula 1 as a main component.
  • Use possible drugs in Chemical Formula 1, R 1 , R 2 , R 3 and R 4 may be the same or different, each being hydrogen or an alkyl group having 1 to 4 carbon atoms)
  • Examples of the solidifying agent for radioactively contaminated soil and the agent used for carrying out the method for preventing surface scattering and decontamination / protection according to the present invention include, for example, among four substituents of silicon atoms as shown in Chemical Formula 1 Infiltrate by spraying on the contaminated soil surface with a compound containing one substituted with a non-hydrolyzable substituent as a repeating unit, solidify the soil surface, and capture radioactive material scattered on the soil surface In addition to preventing re-scattering, the solidified soil surface is scraped to make it possible to decontaminate radioactive materials.
  • the raw material (monomer) for obtaining the compound of Chemical formula 1 is relatively inexpensive. Therefore, it is sufficient to use the chemical formula 1 compound without using an expensive so-called silane coupling agent. It is possible to form solidified with the above organic properties and with sufficient strength. Even when transporting the scraped surface soil to other places, the radioactivity trapped inside The substance does not leak out.
  • the use of the compound represented by Chemical Formula 1 as a chemical used for carrying out the prevention of scattering and the decontamination / protection of the radioactively contaminated soil according to the present invention is extremely excellent.
  • medical agent which has the compound shown by Chemical formula 1 as a main component is sprayed on the contaminated soil surface where the radioactive substance scattered the chemical used to carry out the prevention of scattering of radioactively contaminated soil and decontamination / protection according to the present invention. In addition, it is cured and solidified by the action of a catalyst.
  • R 1 , R 2 and R 3 in Chemical formula 1 may be the same or different and are each hydrogen or an alkyl group having 1 to 4 carbon atoms, and n is preferably 2 to 10.
  • a compound in which n is 11 or more
  • the numerical value of n should not be interpreted restrictively.
  • the compound represented by Chemical Formula 1 include methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltrimethoxysilane. Examples thereof include condensates such as ethoxysilane, methyltripropoxysilane, and ethyltripropoxysilane.
  • the compound of Chemical Formula 1 may be a product obtained by condensing only one kind of such monomers, or may be a product obtained by condensing two or more kinds of the above exemplified monomers.
  • the primary role of the non-hydrolyzable substituent (R 4 ) in the compound of Chemical Formula 1 is to provide flexibility to the soil surface, but at the same time, to impart water repellency to the soil surface.
  • R 4 may be an alkyl group.
  • the organic substituent has an organic property, that is, water repellency increases as the number of carbon atoms increases. However, when the carbon number is too large, distortion occurs in the soil surface due to steric hindrance and causes a decrease in strength of the film. Accordingly, the number of carbon atoms in the alkyl group and the type / amount of each monomer constituting the compound (condensate) of Chemical Formula 1 can be determined by conducting preliminary production tests while referring to the examples of the present specification.
  • imparting water repellency to the soil surface can also be achieved by adding a compound of Chemical Formula 2 or Chemical Formula 3, which will be described later, and therefore it is essential that R 4 in the compound of Chemical Formula 1 is an alkyl group. is not.
  • a commonly used catalyst can be used without any particular limitation.
  • an acid catalyst hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, formic acid or acetic acid
  • the base catalyst include ammonia, tetramethylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide, ethanolamine, diethanolamine, and triethanolamine.
  • the chemical used for carrying out the prevention of scattering and the decontamination / protection of the radioactively contaminated soil according to the present invention thus contains the compound of Chemical Formula 1, the catalyst and the reaction water.
  • the compound of Chemical Formula 1 In normal use, there is no particular problem. However, when this is stored for a long period of time, there is a problem that the drug is easily gelled by the reaction water.
  • organometallic compound When an organometallic compound is mixed with the compound of Chemical 1 to make a drug and sprayed onto the contaminated soil surface, moisture on the soil surface or inside or moisture in the air (humidity) is sucked and the organometallic compound hydrolyzes itself. At this time, a network is formed with the compound of chemical formula 1, and the chemical compound of chemical formula 1 is cured and solidified.
  • medical agent used in order to implement scattering prevention of the radioactively contaminated soil which concerns on this invention, and decontamination / protection what contains titanium, zircon, aluminum, or tin can be illustrated, for example.
  • tetrapropoxy titanate tetrabutoxy titanate, tetrapropoxy zirconate, tetrabutoxy zirconate, tripropoxy aluminate, aluminum acetylacetonate, dibutyltin diacetate, dibutyltin dilaurate, etc.
  • tripropoxy aluminate aluminum acetylacetonate, dibutyltin diacetate, dibutyltin dilaurate, etc.
  • an organic solvent can be added.
  • the organic solvent used for this purpose include alcohols. More specifically, methanol, ethanol, propanol, isopropanol, butanol, pentanol, hexanol and the like can be exemplified. Also, the viscosity and drying rate of the drug can be adjusted by controlling the amount added.
  • glycols such as ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, methoxyethanol, propoxyethanol, butoxyethanol, methoxypropanol, ethoxypropanol, propoxypropanol
  • an organic solvent having a high viscosity or boiling point such as cellosolves such as butoxypropanol, alone or in combination.
  • the alcohols may be added simultaneously with one or more organic solvents having a high viscosity or boiling point.
  • the same effect can be achieved not only by the organic solvent but also by a surfactant.
  • glycols and cellsolves described above may be introduced into a network of siloxane bonds formed by the condensation reaction of the compound of formula 1. Since glycols and cellsolves are organic, the introduction of them increases the organicity of the resulting soil surface, that is, the organicity of the solidified soil surface.
  • medical agent contains the said organometallic compound (for example, tetrabutoxy titanium etc.) as a catalyst, the chemical change of (1) and (2) in the following reaction 1 occurs.
  • Reaction formula 1 (1) Ti-OR + H2O ⁇ Ti-OH + ROH (2) Ti-OH + RO-Si ⁇ Ti-O-Si
  • the strength of the solidified soil surface is improved by generating Ti—O bonds in the solidified soil surface.
  • an organometallic compound is used as a catalyst, not only the reaction water does not need to coexist, but also the strength of the solidified soil surface can be improved and a thin film of a silane compound can be applied to each fine particle. It can be formed.
  • the compound of Chemical Formula 2 added for such a purpose is a compound consisting of 4 substituents, in which 3 are hydrolyzable substituents and the remaining 1 is non-hydrolyzable substituents.
  • R 5 , R 6 and R 7 may be the same or different and each is a monomer comprising hydrogen, an alkyl group having 1 to 10 carbon atoms or an alkenyl group, and R 5 O, R 6 O and The bond between R 7 O and Si is an oligomer composed of a siloxane bond, and R 8 may contain an epoxy group or a glycidyl group in its molecule, an alkyl group having 1 to 10 carbon atoms, an alkenyl group, or It is a phenyl group.
  • Specific examples of the compound represented by Chemical Formula 2 include vinyltrimethoxysilane, phenyltrimethoxysilane, ⁇ - (methacryloxypropyl) trimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, aminopropyltrimethoxysilane, ⁇ - (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, vinyltriethoxysilane, phenyltriethoxysilane,-(methacryloxypropyl) triethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, aminopropyltriethoxysilane, Examples thereof include vinyltris ( ⁇ methoxyethoxy) silane and the like, and a condensate of about 2 to 10 molecules thereof.
  • the compound of Chemical Formula 2 may be two or more of such monomers.
  • a compound obtained by condensing two or more of these monomers may be used.
  • the chemicals added with chemical compound 3 can be used to improve the organic properties of chemical compound 3 compared to the coating material produced without using chemicals. It is possible to increase the properties such as organic properties.
  • the compound of Chemical formula 3 is a compound consisting of four substituents, two of which are hydrolyzable substituents and the other two of which are non-hydrolyzable substituents.
  • R 9 and R 11 may be the same or different and each is a monomer comprising hydrogen, an alkyl group having 1 to 10 carbon atoms or an alkenyl group, and R 9 O, R 11 O and Si
  • the bond is an oligomer composed of a siloxane bond
  • R 10 and R 12 are an alkyl group, alkenyl group or phenyl group having 1 to 10 carbon atoms which may contain an epoxy group or a glycidyl group in the molecule. .
  • Specific examples of the compound represented by Chemical Formula 3 include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylvinyldimethoxysilane, and methylvinyldiethoxysilane. And a condensate of about 2 to 10 molecules thereof.
  • the compound of Chemical Formula 3 may be two or more of these monomers, and also when two or more molecules of condensate are used, There may be.
  • the organicity of the soil surface to be solidified can be increased, but both chemical compound 2 and chemical compound 3 are used as the drug. If added, the organicity of the solidified soil surface can be further improved, and as a result, the solidification strength of the soil surface can be further improved.
  • the compound of Chemical formula 2 and / or the chemical compound of Chemical formula 3 can be added to the drug in a range generally not exceeding 50% with respect to the compound represented by Chemical formula 1, which is the main component of the drug. preferable. If the total addition amount of both exceeds this range, when sprayed, it does not bind well with the main component compound 1, and the strength of the solidified soil surface may be insufficient. It is. Therefore, in the case of actually adding the chemical compound 2 and / or chemical compound 3, it is assumed that the strength of the soil surface solidified depending on the amount added, and the examples in the present specification are used. While referring to it, it is preferable to carry out a preliminary production test or the like, clarify the range of the addition amount that can achieve the object, and minimize the addition.
  • the primary role of the non-hydrolyzable substituents (R 8 , R 10 , R 12 ) in the chemical compound 2 and chemical compound 3 is to give flexibility to the soil surface to be solidified.
  • these are organic substitutions such as alkyl groups, they also serve to impart water repellency to the soil surface to be solidified at the same time. Therefore, even if the soil surface cannot be shaved immediately after solidification, the radioactive material trapped inside by rainwater or the like does not leak out.
  • the number of carbon atoms of an organic substituent is too large, strain is generated on the soil surface solidified by steric hindrance, causing a decrease in strength. Accordingly, the number of carbon atoms of the organic substituent and the type / amount of each monomer constituting the compound (condensate) of Chemical Formula 2 and / or Chemical Formula 3 are preliminarily referred to with reference to Examples in the present specification. It is preferable to make a determination by performing an appropriate manufacturing test.
  • the siloxane bond with improved strength is also a so-called “hard” bond. Because of this “hardness,” the soil surface that has been solidified lacks flexibility, which may cause difficulties in scraping and transporting work. Therefore, the soil surface that has been solidified may sometimes require moderate flexibility.
  • sol-gel drugs generally used are tetraalkoxysilane (Si (OR) 4 ) and oligomers thereof as a starting material, but these are completely hydrolyzed.
  • Si (OR) 4 tetraalkoxysilane
  • oligomers thereof as a starting material, but these are completely hydrolyzed.
  • Si (OR) 4 tetraalkoxysilane
  • all four bonds of silicon atoms form a network of hard siloxane bonds, which are as hard as ceramics, but are not flexible and tend to collapse. Since there is a danger, it is more preferable to use a chemical comprising the above-mentioned chemical formula 1 and / or chemical formula 2 and / or chemical formula 3 as prevention of scattering and decontamination / protection of radioactively contaminated soil according to the present invention. is there.
  • the chemicals used for carrying out the prevention of decontamination and decontamination / protection of radioactively contaminated soil according to the present invention are compounds of chemical formula 1 in which one of the four substituents of the silicon atom is not hydrolyzed It is because it is made into the main component of a medicine.
  • the compound of Chemical formula 2 and the chemical compound of Chemical formula 3 which have one or two substituents which are not hydrolyzed, respectively.
  • MTM methyltrimethoxysilane condensate
  • ETM ethyltrimethoxysilane condensate
  • MTE methyltriethoxysilane condensate
  • the drug is divided into (a) no spraying, (b) 50 cc spraying, (c) 100 cc spraying, (d) 200 cc spraying, (e) 250 cc spraying, and at 10:00 am on May 16, 2011 Around 30 minutes, the drug was sprayed in the above amount with a sprayer and sprayed, and the radiation intensity of the compartment was measured.
  • the measurement was performed using a simple radiation measuring instrument “Hakarun (DX-200)” lent out free of charge as a school education support project by the Ministry of Education, Culture, Sports, Science and Technology.
  • the specifications of “Hakaru-kun (DX-200)” are as follows.
  • Table 3 shows the measurement of the radiation intensity of the section after removing the solidified surface in the sections (a) to (e) above. That is, after the measurement in Table 2 is completed, the soil surface of sections (a) to (e) is solidified, so the surface of the transplanting iron is cracked and cracked, and the tip of the transplanting iron is broken from the crack. And the solidified surface was removed.
  • the section surface of (a) is about 3 mm thick
  • the section surface of (c) is about 5 mm thick
  • the partition surface of (6) can be stripped off with a thickness of about 6 mm
  • the partition surface of (e) can be stripped with a thickness of about 8-10 mm.
  • the capture state of the radioactive substance trapped inside the solidified drug itself was verified.
  • the soil surface of the solidified soil was brought home, and the above solidification was conducted at the Polymer Research and Evaluation Center Tokyo Office of the Japan Science Research Evaluation Organization (Shigeru Nagakayama, 2-22-13 Yanagibashi, Taito-ku, Tokyo).
  • the soil was stored in a container, and 4 liters of water was poured into the container over 1 hour, and then the solidified state and radioactivity level of the soil were measured. Even after 4 liters of water was poured over 1 hour, no change was seen in the solidified state of the soil and there was no decrease in radioactivity level.
  • a drug (200B) prepared by adjusting the viscosity based on the No. 7 drug was prepared. Since this drug is referred to as trial drug 200B in the applicant company, it is displayed as drug 200B.
  • the preparation of the drug 200B is as follows.
  • Example 3 (2) Preparation of measurement samples In Example 3, as described above, 50 g of the soil surface was sampled at Koriyama City Sake Lid Park, and these were placed in a 3.2 g weight container. Samples (B to G) were prepared by spraying the above B to G chemicals on the soil. For comparison, a sample (A) in which no drug was sprayed was also prepared.
  • Example 4 the medicine C, the medicine D, the medicine E, and the medicine F created in Example 2 were each soaked in a 135 mm ⁇ 155 mm Japanese paper (weight 1.5 g) with a brush and dried sufficiently. A Japanese paper sample coated with these drugs C to D was placed on the comparative sample A, and the radioactivity level was measured from the sample. The results are shown in Table 6.
  • (a) shows the radioactivity level of Sample A without using any drug, and the level is 620 CPM.
  • the radioactivity on the sample is covered with Japanese paper impregnated with the above drugs C to D.
  • the radioactivity levels were reduced to 440 CPM, 304 CPM, 400 CPM, and 440 CPM, respectively, and radioactivity protection was confirmed.
  • Example 4 181 g of methyltrimethoxysilane, 50 g of methanol and 18 g of pure water were added and stirred sufficiently, and further 2 g of 61% nitric acid was added and heated and refluxed for 3 hours with stirring.
  • the alkoxysilane condensate MTM shown in No. 7 of Table 1 obtained by removing the methanol in the reaction vessel under reduced pressure (mainly 3 to 4 mer by gas chromatography analysis)
  • Isopropyl alcohol (IPA) 2.5 liters
  • 200 g of 100B is mixed with 20 g, 25 g, and 30 g of lead oxide (chemical formula Pb + PbO).
  • the drug B, the drug C, and the drug D are mixed with 25 g, 30 g, and 40 g of lead monoxide (chemical formula PbO), respectively.
  • Each was coated with a brush on 135 mm x 155 mm Japanese paper (weight 1.5 g), soaked into the Japanese paper, dried, and these chemicals C to D were coated on the above-mentioned comparative sample A, and from above The radioactivity level was measured (measurement results are shown in “Table 6”).
  • Example 4 since the chemicals used in Example 4 above are a mixture of lead suboxide (Pb + PbO) and lead monoxide (PbO), there are difficulties in using them directly in contact with the human body. Also, environmental and other impacts must be considered. Therefore, in place of the above lead suboxide and lead monoxide, a tungsten or molybdenum molten chemical was applied and impregnated on Japanese paper, copy paper, and Tyvek (registered trademark), and the same measurement was performed. The tungsten and molybdenum used were those manufactured by Toho Metals Co., Ltd., in the form of 3.5 ⁇ m powder and 3N standard (99.9% purity). Its physical properties are as follows.
  • the above-mentioned drug 200B is used as a translucent agent, and tungsten and molybdenum are mixed in a weight ratio of 1.5 times each to obtain “transcendental liquid agent + tungsten (3.5 ⁇ m powder)” and “transcendental liquid agent + molybdenum (3. 5 ⁇ m powder) ”solution, and this solution was applied to Japanese paper, copy paper, and Tyvex, respectively.
  • Tyvek registered trademark
  • the material and weight (10 cm ⁇ 10 cm) of each sample are organized as follows. On top of that, three sheets of the above-mentioned Japanese paper (10 cm ⁇ 10 cm), two sheets of copy paper (10 cm ⁇ 10 cm), and two sheets of tyvek (10 cm ⁇ 10 cm) are prepared. The sheet was coated and impregnated with a solution obtained by mixing 1.5 times the weight of tungsten (3.5 ⁇ m powder) with the translucent solution (200B), and each measurement material sample was added to the “No. 1 Japanese paper” sample, “No. .2 Washi ”,“ No.3 Washi ”,“ No.1 Copy Paper ”,“ No.1 Tyvek ”, and“ No.2 Tyvek ”Samples. The liquid agent (200B) was coated and impregnated with a liquid agent obtained by mixing 1.5 times by weight of molybdenum (3.5 ⁇ m powder), and this was used as a “No. 2 copy paper” sample.
  • the “No. 0 Sat” sample is the “No. 1 Washi” sample, “No. 2 Washi” sample, “No. 3 Washi” sample, “No. 1 copy paper” sample, “No. 2” These are samples for comparison with the measured values of the “copy paper” sample, the “No. 1 tyvek” sample, and the “No. 2 tyvek” sample, and the above-mentioned July 7, 2011 used in Example 3 above.
  • the “SURVEY METER LUDLUM MODEL 14C” is also designed to meet the requirements of nuclear medicine, and can detect alpha rays, beta rays, and gamma rays from 0 to 200 MR / HR with one or more external GMs (Geiger Muller Detector) or a scintillation detector, which has the following specifications.
  • CPM count per minute or count per minute
  • the measured value of the comparative reference sample “No. 0 Sat” sample was 420 CPM, and further, each measurement data sample “No. 1 Japanese paper” sample, “No. 2 By placing ⁇ Washi '' sample, ⁇ No.3 Washi '' sample, ⁇ No.1 copy paper '' sample, ⁇ No.2 copy paper '' sample, ⁇ No.1 Tyvek '' sample, ⁇ No.2 Tyvek '' sample, It was found that each had a radiation shielding effect such as 200 CPM to 320 CPM.
  • the above table X is a comparison with 420 CPM of the “No. 0 soil” sample, but the “No. 0 soil” sample prevents the scattering of soil particles during the measurement as described above.
  • the above-mentioned “Transcendent (50 g) + Tungsten (3.5 ⁇ m powder) (75 g)” was applied and solidified, and originally, on July 7, 2011, Koriyama-shi Sakeku Park (Fukushima Prefecture) The soil is collected in Fukasawa, Koriyama City.
  • a direct measurement of this soil is 620 CPM (see Sample A), as shown in Table 5 of Example 3 above, which is the above-mentioned “transluent (50 g) + tungsten (3.5 ⁇ m powder) ( 75 g) ”is reduced to 420 CPM by applying and solidifying, and further, by placing each sample thereon, it can be known that the measurement results of 200 CPM to 320 CPM are obtained.
  • the radiation shielding rate (reduction rate) in comparison with the comparative reference sample “No. 0 Sat” shows an excellent radiation shielding effect of 23.8% to 52.4%.
  • the radiation reduction rate (shielding rate) in comparison with the collected soil (620 CPM) before the coating impregnation of the maximum is 48.4% to 67.67 as shown in “Radiation shielding rate with collected soil” in the above table. It has a radiation shielding effect of 7%.
  • Fig. 1 is a 200x magnified photograph of the surface of Japanese paper before application of the liquid agent
  • Fig. 2 is a magnified photograph of the surface of the 200 paper of Japanese paper after application of the "translucent agent + tungsten (3.5 ⁇ m powder)”
  • Fig. 3 is a magnification of 200x. It is a Japanese paper enlarged cross-sectional photograph. In any case, it can be known that the liquid agent penetrates to the surface of the Japanese paper and the inside of the cross section.
  • Example 5 the “translucent agent + 3N tungsten (3.5 ⁇ m powder)” solution used in Example 5 was applied to glass fiber (manufactured by NICHIAS), kraft paper, Japanese paper, and each sample was cut into 15 cm ⁇ 17 cm. Each sample was prepared by stacking 16 sheets and fixing with tape. For each sample, methyltrimethoxysilane, methanol, pure water, and nitric acid used in Example 5 above were added, and after completion of the heating and refluxing reaction, methanol was removed and the alkoxysilane condensate MTM obtained by isopropyl was added to isopropyl.
  • the sample coated and impregnated with glass fiber is called “W + glass fiber sample”
  • the sample coated and impregnated on the kraft paper is called “W + craft paper sample”
  • the sample coated and impregnated on the same paper is called “W + Japanese paper sample”.
  • “Sample No.”, “Sample Name”, and “Thickness (mm)” of each sample are as follows.
  • Measurement location Cobalt 60 irradiation room, Faculty of Engineering, Nagoya University ⁇ Measurement date: 2011 / ll / 28 (Monday), 12/2 (Friday), 12/5 (Monday): 10.00-16.00 ⁇ Measurement equipment: Co-60 irradiation device / Flicke dosimeter ⁇ Measurement purpose: Measure the radiation shielding rate of the sample ⁇ Use source: Co-60 ⁇ Measurement method: A lead block is constructed 30cm from the radiation source. A sample is attached to the hole of the block and the dose of ⁇ -ray is measured.
  • Irradiation time 60 [min] x 3 times per sample
  • Evaluation method / evaluator Based on the evaluation of Shigefumi Imai, the person in charge of irradiation / irradiation room management at the Cobalt 60 irradiation room at Nagoya University, using a Flicke dosimeter.
  • Samples used Samples made by applying a liquid to each sample.
  • Reference value When the sample is not installed, measure the dosimeter away from the irradiation window by the thickness of the sample. Measurement is one sample per day. The order of measurement was as follows.
  • sample “W + glass fiber” has a numerical value that is almost the same (98%) as the W plate having the same thickness.
  • Sample “W + kraft paper” has a numerical value of 150% higher than a W plate of equivalent thickness.
  • the sample “W + Japanese paper” obtained a numerical value slightly inferior (81%) to the W plate having the same thickness.
  • the gamma ray shielding according to this measurement is performed by laminating 16 samples of glass fiber impregnated with the above liquid agent, and ⁇ -ray shielding of a tungsten plate having a thickness of only 4.1 mm and an equivalent thickness.
  • the liquid agent is effective as a radiation ( ⁇ -ray) shielding agent, and a paper material or a fiber material impregnated with this liquid agent has a very excellent effect as a radiation ( ⁇ -ray) shielding material.
  • Example 2 was carried out by spraying the drug on the soil surface to prevent re-scattering of radioactive substances on the soil surface and decontamination of the soil surface, but this was limited to the soil surface only. For example, even if it is a concrete surface, it is possible to prevent re-scattering of radioactive materials, as well as decontamination of radioactive materials, for example, by spraying cryogenic dry ice particles etc. It is clear that the surface can be peeled off and has a certain effect within the range of the decontamination evaluation (part 2).
  • scattering prevention and decontamination / protection of radioactively contaminated soil according to the present invention are not limited to the soil surface, and as long as the surface properties are allowed, the prevention of re-scattering of radioactive materials on the surface of any material It can also be applied to decontamination / protection.
  • the “transcendent solution (200B) + 3N tungsten (3.5 ⁇ m powder)” solution used in Example 5 above was applied to kraft paper, and the applied kraft paper was cut into 22 cm ⁇ 22 cm sample A (hereinafter “transcendence”). Also referred to as “shielding paper A”. Specifically, 750 g of 3N tungsten (3.5 ⁇ m powder) is mixed with 500 g of the translucent agent (200B), and this is applied to kraft paper having a thickness of 95.3 ⁇ m and a weight of 70 g / m 2 . The coated kraft paper was cut into 22 cm ⁇ 22 cm to obtain Sample A.
  • a tungsten plate having a thickness of 1 mm ⁇ 26.5 cm ⁇ 33.5 cm and a weight of 1759 g was prepared.
  • 22 cm ⁇ 22 cm and a weight of 970 g are measured
  • 22 cm ⁇ 22 cm and a weight of 1040 g are measured.
  • the neutron beam shielding rate was measured.
  • the measurement method is a height of 1 m from the floor, the distance from the source to the measurement center of the detector is 25 cm, and there is a case where there is no sample in between, and the dose rate is shielded from the average value measured 10 times each. The rate was determined.
  • the tungsten plate had a thickness of 1 mm, 26.5 cm ⁇ 33.5 cm, and a weight of 1759 g.
  • the weight of the measurement sample was 22 cm ⁇ 22 cm (970 g).
  • a weight (970 g) equivalent to a 22 mm ⁇ 22 cm 1 mm thick tungsten plate A measurement sample was obtained by stacking 17 sheets so as to be bundled.
  • the above transcendental shielding paper B 17 sheets of the same sheet were stacked and bundled, and the weight thereof was 1040 g.
  • the dose rate and shielding rate for the neutron source are as follows.
  • the dose rate when there was no sample was 27.4 ⁇ 0.4 ⁇ Sv / hour, and the shielding rate was obtained by (1 ⁇ with sample / without sample) ⁇ 100.
  • the dose rate of the neutron source with a 1 mm thick tungsten plate is 27.0 ⁇ 0.5 ( ⁇ Sv / hr), and the shielding rate is 1.5%
  • the transcendent shielding paper In A the dose rate is 25.9 ⁇ 0.5 ( ⁇ Sv / hour) and the shielding rate is 5.5%
  • the dose rate in the transcendent shielding paper B the dose rate is 25.04 ⁇ 0.4 ( ⁇ Sv / hour) and the shielding rate is 7.%. 3% was obtained.
  • the measurement sample A is obtained by coating and impregnating a fiber material such as paper with a solution in which tungsten powder is added while stirring and adding a catalyst to an alkoxysilane solution of an organosiliconized material evolved by using a sol-gel method.
  • the contained component alkoxysilane reacts with the moisture in the paper or in the air to initiate polycondensation reaction to silicon, and the contained component silicic acid is a glassy basic skeleton.
  • a siloxane bond occurs.
  • the vitreous liquid is soaked into the surface of the fine powder of tungsten existing between each fiber of paper or the like by capillarity, the gap, and every corner of the paper fiber to be polymerized. It becomes.
  • the silane-based thin film containing tungsten fine powder and the paper fiber are formed integrally between the paper fibers, and the silane-based liquid also contains organic matter, so the bonded surface layer is moderately flexible. It has mechanical properties that have both properties and water repellency.
  • the measurement sample B (transcendent shielding paper B) is prepared by adding fine powder of boric acid to a solution obtained by adding a catalyst to an alkoxysilane solution to the tungsten fine powder, and stirring the resulting powder into a fiber material such as paper. It is coated and impregnated.
  • radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays, and X-rays
  • the energy it holds is given to the substance, causing interactions at the atomic level such as ionization and excitation.
  • the transcendent shielding paper A and transcendental shielding paper B detailed knowledge is not clear, but the silane compound and glass in the coated and impregnated fiber are not clear.
  • fine tungsten powder Since fine tungsten powder is present in multiple layers in a multifaceted and superposed manner, the fine tungsten powder causes reflection, absorption, scattering, re-radiation, etc. of invading neutrons, which has a shielding effect. It is speculated that it is caused.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

[Problem] To provide an agent for hardening and solidifying radioactive contaminated soil, said agent enabling the retention of a radioactive contaminated substance, which otherwise would easily scatter, and, in the case where the soil surface is to be removed, making the removal easy. To provide a method for the prevention of the scattering of a radioactive substance, decontamination and protection. [Solution] A silane-based hardening and solidifying agent which hardens and solidifies radioactive contaminated soil surface, said hardening and solidifying agent comprising a compound represented by chemical formula (1) as the main component together with a catalyst for hardening and solidifying the same. In chemical formula (1), R1, R2, R3 and R4 may be either the same or different and each represents hydrogen or a C1-4 alkyl group.

Description

放射能汚染土壌表面の硬化・固化・放射線遮蔽剤及び表面飛散防止並びに除染・防護方法Radiation contaminated soil surface hardening / solidification / radiation shielding agent and surface scattering prevention and decontamination / protection method
 本発明は、放射能汚染物質が飛散した土壌表面を固定し放射能汚染物質が飛散するのを防止するとともに当該放射能汚染物質を捕捉して取り除くための硬化・固化・放射線遮蔽剤並びにそれを利用する除染・防護方法に関する。 The present invention provides a curing / solidifying / radiation shielding agent for fixing a soil surface on which radioactive pollutants are scattered and preventing the radioactive pollutants from being scattered and capturing and removing the radioactive pollutants and It relates to decontamination and protection methods to be used.
 原子力発電炉事故等により、放射能汚染物質が飛散し、人間が住めない状況に陥ることが生じている。
 このような場合には、飛散した放射能汚染物質のさらなる飛散を防止するために、例えば、栗田工業社製飛砂防止剤クリコートからなる合成樹脂エマルジョン溶液を散布し、放射能汚染物質で汚染された表面を固定し、その場に止め置くことが行われる。
Due to nuclear power reactor accidents, radioactive pollutants are scattered and humans cannot live.
In such a case, in order to prevent further scattering of the scattered radioactive pollutants, for example, a synthetic resin emulsion solution made of a flying sand inhibitor cricoat made by Kurita Kogyo Co., Ltd. is sprayed and contaminated with radioactive pollutants. The surface is fixed and placed on the spot.
 また、周囲の土壌表面に放射能汚染物質が飛散した場合には、当該放射能汚染物質が揮発性物質である場合には、例えば、特開2004-243195号公報に開示のように、「土壌の中にパイプを埋入して、該パイプから高温過熱水蒸気を土壌中に噴射して、該土壌中の汚染物質を揮発させ、該揮発物を回収除去すること」が行われる(同公報要約書解決方法参照)。しかしながら、汚染物質が、揮発性物質ではない場合には、汚染された表面土壌を人海戦術により人の手作業で、あるいは、シャベルカー等の重機を用いて削り取り、それを外の場所の一カ所に集めて、当該汚染箇所の表面土壌を取り除くことにより、放射能汚染物質の除染を行うことが知られている。 Further, when radioactive pollutants are scattered on the surrounding soil surface, when the radioactive pollutants are volatile substances, for example, as disclosed in JP-A-2004-243195, “soil A pipe is embedded in the pipe, high-temperature superheated steam is jetted from the pipe into the soil, the pollutants in the soil are volatilized, and the volatiles are recovered and removed. '' Document resolution). However, if the pollutant is not a volatile substance, the contaminated surface soil is scraped off manually by human naval tactics or using heavy equipment such as a shovel car, and then removed from one place outside. It is known that decontamination of radioactive pollutants is performed by collecting in a place and removing the surface soil of the contaminated part.
 しかしながら、放射能汚染物質の場合には、土壌表面を削り取る等の作業には、作業員への放射能被害を避けるために、作業員各自には放射能防護服等の着用を義務づける等して、土壌表面だけを削り取る等の作業を行わなければならず、重機等を使用する場合などには表面削り取りだけでも十数センチの表面土壌の削り取りしかできない等の困難が伴う。 However, in the case of radioactive pollutants, in order to avoid radioactive damage to workers, such as scraping the soil surface, each worker is required to wear radiation protective clothing. Therefore, it is necessary to perform work such as scraping only the surface of the soil. When using heavy machinery or the like, it is difficult to only scrape the surface soil of a few tens of centimeters only by scraping the surface.
特開2004-243195号公報JP 2004-243195 A
 上記のような問題点に鑑み、本願発明は、容易に飛散した放射能汚染物質を止め置き、また、除去する場合にもきわめて容易に土壌表面を取り除くことができる放射能汚染土壌の硬化・固化・放射線遮蔽剤の提供並びに放射能物質の飛散防止及び除染・防護方法を提供することを目的とする。 In view of the problems as described above, the present invention stops the radioactive pollutants that are easily scattered, and also hardens and solidifies the radioactively contaminated soil that can very easily remove the soil surface even when removed. -To provide radiation shielding agents and prevent radioactive substances from scattering and to provide decontamination / protection methods.
(1)本願請求項1に係る発明は、放射能汚染土壌表面を硬化・固化するシラン系硬化・固化剤であって、化1で示される主成分化合物と、その硬化・固化のための触媒とを含む、放射能汚染土壌表面の硬化・固化剤。
Figure JPOXMLDOC01-appb-C000004
 (化1において、R、R、R及びRは、それぞれ同一又は異なっても良い、水素又は炭素数が1~4のアルキル基であり、nは2~10である)
(2)また、本願請求項2に係る発明は、前記請求項1の硬化・固化剤において、前記触媒は、加水分解可能な有機金属化合物であることを特徴とする。
(3)本願請求項3に係る発明は、前記請求項2の硬化・固化剤において、前記加水分解可能な有機金属化合物は、チタン、ジルコニウム、アルミニウム及びスズから成る群から選ばれる一種以上の有機金属化合物であることを特徴とする。
(4)本願請求項4に係る発明は、前記請求項1~3のいずれかの硬化・固化剤において、さらに、3個の加水分解可能な置換基と1個は加水分解不可能な置換基を有する、化2で示される化合物を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
 (化2において、R、R及びR7は、それぞれ同一又は異なっていても良く、水素、アルキル基又はアルケニル基であり、RO、R0及びROとSiとの結合はシロキサン結合からなり、Rは、置換基としてエポキシ基又はグリシジル基(エポキシ基、グリシジル基又はアミノ基)を含んでいても良い、アルケニル基又はフェニル基である)
(5)本願請求項5に係る発明は、前記請求項1~4のいずれかの硬化・固化剤において、さらに、2個の加水分解可能な置換基と2個の加水分解可能な置換基を有する、化3で示される化合物を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000006
 (化3において、R及びR11は、それぞれ同一又は異なっていても良く、水素、アルキル基又はアルケニル基であり、RO及びR11OとSiとの結合はシロキサン結合からなり、R10及びR12は、置換基としてエポキシ基又はグリシジル基を含んでいても良い、アルキル基、アルケニル基又はフェニル基である)
(6)本願請求項6に係る発明は、前記請求項1~5のいずれかの硬化・固化剤において、さらに、イソプロプルアルコール(IPA)、アクリル(メタクリル)酸エステル共重合体、及び亜酸化鉛又は一酸化鉛を含有してなる硬化・固化剤。
(7)本願請求項7に係る発明は、前記請求項1ないし6の硬化・固化剤を放射能汚染土壌表面に散布して放射能汚染された土壌表面の放射能物質の飛散防止及び除染方法。
(8)本願請求項8に係る発明は、前記請求項1ないし6の硬化・固化剤を和紙又は繊維素材に浸漬・乾燥させてなる放射能防護素材。
(9)本願請求項9に係る発明は、前記請求項8の放射能防護素材を用いた放射能防護方法。
(10)本願請求項10に係る発明は、前記請求項1ないし請求項6の硬化・固化剤、イソプロプルアルコール(IPA)、アクリル(メタクリル)酸エステル共重合体、及びタングステン又はモリブデンを混合してなる放射線遮蔽剤。
(11)本願請求項11に係る発明は、前記請求項10の放射線遮蔽剤を紙素材、繊維素材又は固体素材の表面に塗布又は含浸させてなる放射線遮蔽材。
(12)本願請求項12に係る発明は、前記請求項1ないし請求項6の硬化・固化剤、イソプロプルアルコール(IPA)、アクリル(メタクリル)酸エステル共重合体、及び微粉末タングステンを混合してなる中性子線遮蔽剤。
(13)本願請求項13に係る発明は、前記請求項12の中性子線遮蔽剤を紙素材、繊維素材又は固体素材の表面に塗布又は含浸させてなる中性子線遮蔽材。
(1) The invention according to claim 1 of the present application is a silane-based curing / solidifying agent for curing / solidifying a radioactively contaminated soil surface, the main component compound represented by Chemical Formula 1 and a catalyst for curing / solidifying the same Hardening and solidifying agent for radioactively contaminated soil surface.
Figure JPOXMLDOC01-appb-C000004
(In Chemical Formula 1, R 1 , R 2 , R 3 and R 4 may be the same or different, each being hydrogen or an alkyl group having 1 to 4 carbon atoms, and n is 2 to 10)
(2) The invention according to claim 2 of the present application is characterized in that, in the curing / solidifying agent of claim 1, the catalyst is a hydrolyzable organometallic compound.
(3) The invention according to claim 3 of the present application is the curing / solidifying agent according to claim 2, wherein the hydrolyzable organometallic compound is one or more organic compounds selected from the group consisting of titanium, zirconium, aluminum, and tin. It is a metal compound.
(4) The invention according to claim 4 of the present application is the curing / solidifying agent according to any one of claims 1 to 3, further comprising three hydrolyzable substituents and one non-hydrolyzable substituent. And a compound represented by the formula (2):
Figure JPOXMLDOC01-appb-C000005
(In Chemical Formula 2, R 5 , R 6 and R 7 may be the same or different, and are hydrogen, an alkyl group or an alkenyl group, and the bond between R 5 O, R 60 and R 7 O and Si is It consists of a siloxane bond, and R 8 is an alkenyl group or a phenyl group which may contain an epoxy group or a glycidyl group (an epoxy group, a glycidyl group or an amino group) as a substituent.
(5) The invention according to claim 5 of the present application is the curing / solidifying agent according to any one of claims 1 to 4, further comprising two hydrolyzable substituents and two hydrolyzable substituents. It has the compound shown by Chemical formula 3 which has.
Figure JPOXMLDOC01-appb-C000006
(In Chemical Formula 3, R 9 and R 11 may be the same or different, and are hydrogen, an alkyl group or an alkenyl group, and the bond between R 9 O and R 11 O and Si is a siloxane bond; 10 and R 12 are an alkyl group, an alkenyl group or a phenyl group which may contain an epoxy group or a glycidyl group as a substituent.
(6) The invention according to claim 6 of the present application is the curing / solidifying agent according to any one of claims 1 to 5, further comprising isopropyl alcohol (IPA), an acrylic (methacrylic) ester copolymer, and a sub-oxidation Curing / solidifying agent containing lead or lead monoxide.
(7) The invention according to claim 7 of the present application is directed to the prevention and decontamination of radioactive materials on the radioactively contaminated soil surface by spraying the curing / solidifying agent of claims 1 to 6 onto the radioactively contaminated soil surface. Method.
(8) The invention according to claim 8 of the present application is a radiation protection material obtained by immersing and drying the curing / solidifying agent according to claims 1 to 6 in Japanese paper or a fiber material.
(9) The invention according to claim 9 of the present application is a radiation protection method using the radiation protection material of claim 8.
(10) The invention according to claim 10 of the present application is a mixture of the curing / solidifying agent of claims 1 to 6, isopropyl alcohol (IPA), an acrylic (methacrylic) ester copolymer, and tungsten or molybdenum. A radiation shielding agent.
(11) The invention according to claim 11 of the present application is a radiation shielding material obtained by applying or impregnating the radiation shielding agent of claim 10 to the surface of a paper material, a fiber material or a solid material.
(12) The invention according to claim 12 of the present application is a mixture of the curing / solidifying agent, isopropyl alcohol (IPA), acrylic (methacrylic acid) ester copolymer, and finely powdered tungsten according to claims 1 to 6. Neutron beam shielding agent.
(13) The invention according to claim 13 of the present application is a neutron beam shielding material obtained by applying or impregnating the surface of a paper material, a fiber material, or a solid material with the neutron beam shielding agent of claim 12.
 本発明によれば、次のような効果を奏する。
(1)放射能汚染土壌表面を容易に散布可能で、土壌表面を硬化・固化する硬化・固化剤とすることができる。これにより、同剤を散布して、土壌表面を固化し、また、固化した土壌表面を取り除いた後には、その区画は、明らかに放射能強度が減少するので放射能除染となる。
 これは、上記硬化・固化剤に含まれる化合物の化1中のR4は、化1の化合物がその後の加水分解・重縮合反応を受けても、加水分解されないため、固化された土壌表面に有機性を与え、そして結果的には固化した土壌表面に撥水性を与え、土壌内の放射能物質が水、風等によって周囲に再飛散するのを防止する。
The present invention has the following effects.
(1) A radioactively contaminated soil surface can be easily sprayed and can be used as a hardening / solidifying agent for hardening / solidifying the soil surface. As a result, after spraying the same agent to solidify the soil surface and remove the solidified soil surface, the section is clearly radioactively decontaminated because the radioactivity intensity clearly decreases.
This is because R4 in the chemical compound 1 contained in the curing / solidifying agent is not hydrolyzed even if the chemical compound 1 undergoes a subsequent hydrolysis / polycondensation reaction. It imparts water properties and, as a result, imparts water repellency to the solidified soil surface, and prevents radioactive substances in the soil from re-spraying around by water, wind, etc.
(2)さらに、固化し取り除いた土壌内に放射能物質を捕捉し止めおくことができ、捕捉したままで他所に移動すれば、容易に放射能除染ができる。すなわち、硬化・固化剤自体からも放射能が計測されることから、使用する薬剤自体にも放射能物質を捕捉し、取り込む効果がある。
 このことは、上記硬化・固化剤自体が、その主成分である化合物の強固なシロキサン結合の数が1つ足りない未反応結合部分が、いわば「宙ぶらりん」の形で残るため、土壌表面に撒布されたときに容易に土壌に浸透し、浸透部分を柔軟に固化し、そして結果的には固化した内部に放射能物質を捕捉するものと推測される。
(2) Furthermore, radioactive substances can be captured and stopped in the solidified and removed soil, and radioactive decontamination can be easily performed by moving to other places while captured. That is, since the radioactivity is measured also from the curing / solidifying agent itself, there is an effect of capturing and taking in the radioactive substance also in the medicine itself to be used.
This means that the above-mentioned curing / solidifying agent itself has an unreacted bond portion in which the number of strong siloxane bonds of the main component of the compound is not enough, so that it is distributed in the form of “dangling”. It is presumed that it easily penetrates into the soil when it is done, softens the infiltrated part, and eventually traps the radioactive material in the solidified interior.
(3)また、これらの放射能物質の再飛散の防止や内部での捕捉については、前記触媒として使用する有機金属触媒の選択と使用量、化2及び/又は化3の化合物の選択と使用量、薬剤の散布量等を任意に選択・調製することにより、実施者が比較的自由に調製可能であり、汚染の程度等によって自由に選定しうるという効果もある。 (3) In addition, regarding the prevention of re-scattering of these radioactive substances and the trapping inside, the selection and use amount of the organometallic catalyst used as the catalyst, the selection and use of the compound of Chemical Formula 2 and / or Chemical Formula 3 By arbitrarily selecting and preparing the amount, the spraying amount of the medicine, etc., the practitioner can prepare relatively freely, and there is an effect that it can be freely selected depending on the degree of contamination.
(4)さらに、シランカップリング剤を用いる必要がないことから、固化される土壌表面の形成反応が不均一になることがなく、また更には、化1の化合物等は合成が容易であることから、従来の有機・無機複合材料を用いるものと比較して、より安価に提供し得るという効果もある。
 特に、無機材質であるために、ホウ素イオン及びハロゲンイオン等を使用するものではないため、本発明に係る放射能汚染土壌の飛散防止及び除染・防護では、使用済液の廃棄が、前記イオン等を使用するものよりも容易であり、他の汚染を生じさせないという効果もある。
(4) Furthermore, since there is no need to use a silane coupling agent, the formation reaction of the soil surface to be solidified does not become non-uniform, and furthermore, the compound of Chemical Formula 1 etc. is easy to synthesize. Therefore, there is also an effect that it can be provided at a lower cost than those using a conventional organic / inorganic composite material.
In particular, since it is an inorganic material, it does not use boron ions, halogen ions, or the like. Therefore, in the prevention of scattering and decontamination / protection of radioactively contaminated soil according to the present invention, the used liquid is discarded as the ions. It is easier than the one using etc., and there is an effect that it does not cause other contamination.
(5)そして、何よりも特徴的なのは、使用する薬剤が放射能汚染物質を捕捉し、水等によっては簡単に流れ出ることはなく、捕捉時間を維持することができるという効果がある。したがって、放射能汚染物質を捕捉している間に当該汚染土壌等を集積し、他所に移し替える間にも汚染が拡散することがない。
(6)また、本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤を和紙等に染み込ませることにより、和紙等による放射能防護が可能となる。
(5) The most characteristic feature is that the drug used captures radioactive pollutants and does not easily flow out depending on water or the like, and the trapping time can be maintained. Therefore, the contamination does not spread while the contaminated soil or the like is accumulated while capturing radioactive contaminants and transferred to another place.
(6) Moreover, the radioactivity protection by Japanese paper etc. becomes possible by making the chemical | medical agent used in order to carry out the prevention of scattering of the radioactive contamination soil which concerns on this invention, and decontamination / protection into Japanese paper.
(7)そして、タングステン粉末又はモリブデン粉末を混合させた上記薬剤を和紙、コピー紙、タイベックに塗布又は含浸させたものは、土壌表面粒子の飛散を防止するために、上記タングステン粉末溶融薬剤を塗布含浸させた比較参照サンプル「No.0土」との比較における放射線遮蔽率(低減率)は、23.8%~52.4%と優れた放射線遮蔽効果を示し、さらには、上記タングステン粉末溶融液剤の塗布含浸以前の採取土壌(620CPM)との比較における放射線低減率(遮蔽率)は、上記表中の「採取土との放射線遮蔽率」に示されるように、最大48.4%~67.7%の優れた放射線遮蔽効果を有し、放射線遮蔽剤として優れた効果を有する。 (7) And if the above-mentioned drug mixed with tungsten powder or molybdenum powder is applied or impregnated on Japanese paper, copy paper, Tyvek, the above-mentioned tungsten powder molten drug is applied to prevent the scattering of soil surface particles. The radiation shielding rate (reduction rate) in comparison with the impregnated comparative reference sample “No. 0 Sat” shows an excellent radiation shielding effect of 23.8% to 52.4%. The radiation reduction rate (shielding rate) in comparison with the collected soil (620 CPM) before impregnation with the liquid agent is a maximum of 48.4% to 67% as shown in “Radiation shielding rate with collected soil” in the above table. It has an excellent radiation shielding effect of .7% and has an excellent effect as a radiation shielding agent.
(8)さらに、放射線遮蔽において、タングステン粉末を混合した上記薬剤を塗布含浸した紙素材、繊維素材を複数枚積層したもの(実施例6では、16枚積層)は、同じ厚みの純タングステン板と同等ないしはタングステン板の1.5倍ものγ線遮蔽効果を有し、塗布含浸する液剤が放射線遮蔽剤として機能するばかりでなく、塗布含浸された紙素材・繊維素材自体が放射線遮蔽材として用いることができる。
 また、タングステン微粉末を混合した上記薬剤を塗布含浸した紙素材、繊維素材を複数枚積層した超越遮蔽紙A(実施例8では、17枚積層)及びさらにこれにホウ酸((H3BO3) 99.5%以上))を混合した超越遮蔽紙B(実施例8では、同17枚積層)は中性子線遮蔽効果を有する。
(8) Furthermore, in radiation shielding, a paper material and a fiber material laminated by applying and impregnating the above-mentioned agent mixed with tungsten powder (in Example 6, 16 laminated materials) are a pure tungsten plate having the same thickness. Equivalent or 1.5 times the gamma ray shielding effect of tungsten plate, not only the liquid agent to be coated and impregnated functions as a radiation shielding agent, but also the paper material and fiber material itself impregnated and impregnated should be used as a radiation shielding material Can do.
In addition, a paper material coated with and impregnated with the above-mentioned agent mixed with tungsten fine powder, a transcendent shielding paper A in which a plurality of fiber materials are laminated (in Example 8, 17 sheets are laminated) and boric acid ((H3BO3) 99.5%) Transcendental shielding paper B mixed with the above)) (in Example 8, the same 17 sheets laminated) has a neutron radiation shielding effect.
図1は、液剤塗布前の200倍和紙表面拡大写真Figure 1 is a 200x magnified photograph of the surface of Japanese paper before applying the liquid agent. 図2は、同「超越液剤+タングステン(3.5μm粉末)」塗布後の200倍和紙表面拡大写真Fig. 2 is a 200x magnified photograph of the surface of Japanese paper after the application of the "Super Transcendent + Tungsten (3.5μm powder)" 図3は、同200倍和紙拡大断面写真である。FIG. 3 is an enlarged cross-sectional photograph of the 200 × Japanese paper.
 本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するための形態の一実施例を詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a mode for carrying out the prevention of scattering and decontamination / protection of radioactively contaminated soil according to the present invention will be described in detail.
(使用する薬剤)
 本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤として、例えば、化1で示される化合物を主成分とするシラン系液剤に触媒の作用で硬化・固化可能な薬剤を用いる。
Figure JPOXMLDOC01-appb-C000007
(化1において、R、R、R及びRは、それぞれ同一又は異なっても良い、水素又は炭素数が1~4のアルキル基である)
(Drugs used)
Examples of the agent used for carrying out the prevention of scattering and decontamination / protection of radioactively contaminated soil according to the present invention include, for example, curing and solidifying by the action of a catalyst in a silane-based liquid containing a compound represented by Chemical Formula 1 as a main component. Use possible drugs.
Figure JPOXMLDOC01-appb-C000007
(In Chemical Formula 1, R 1 , R 2 , R 3 and R 4 may be the same or different, each being hydrogen or an alkyl group having 1 to 4 carbon atoms)
 本発明に係る放射能汚染土壌の固化剤及び表面飛散防止並びに除染・防護方法を実施するために使用する薬剤として、例えば、化1に示すように、ケイ素原子の4個の置換基のうち、1個が加水分解不可能な置換基で置換されたものを繰り返し単位として含む化合物によって汚染土壌表面に散布することにより浸透し、当該土壌表面を固め、土壌表面に飛散した放射能物質を捕捉し、再度の飛散を防止するとともに、固化された土壌表面を削り取り、放射能物質の除染を可能ならしめるものである。 Examples of the solidifying agent for radioactively contaminated soil and the agent used for carrying out the method for preventing surface scattering and decontamination / protection according to the present invention include, for example, among four substituents of silicon atoms as shown in Chemical Formula 1 Infiltrate by spraying on the contaminated soil surface with a compound containing one substituted with a non-hydrolyzable substituent as a repeating unit, solidify the soil surface, and capture radioactive material scattered on the soil surface In addition to preventing re-scattering, the solidified soil surface is scraped to make it possible to decontaminate radioactive materials.
 また、化1の化合物を得るための原料(単量体)は、比較的安価であり、したがって、化1の化合物を用いることにより、あえて高価ないわゆるシランカップリング剤を併用しなくとも、十分に上記の有機性を持ち、かつ十分な強度を持った固化形成を可能とすることができるのであり、削り取った表面土壌を他に場所に運搬等をする場合にも、内部に捕捉した放射能物質が外部に漏れ出ることがないのである。このように、本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤として、化1で示される化合物を使用することによりきわめて優れている。 In addition, the raw material (monomer) for obtaining the compound of Chemical formula 1 is relatively inexpensive. Therefore, it is sufficient to use the chemical formula 1 compound without using an expensive so-called silane coupling agent. It is possible to form solidified with the above organic properties and with sufficient strength. Even when transporting the scraped surface soil to other places, the radioactivity trapped inside The substance does not leak out. As described above, the use of the compound represented by Chemical Formula 1 as a chemical used for carrying out the prevention of scattering and the decontamination / protection of the radioactively contaminated soil according to the present invention is extremely excellent.
 本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤を放射能物質が飛散した汚染土壌表面に、化1で示される化合物を主成分とする薬剤を散布し、また、触媒の作用でこれを硬化・固化させるものである。化1におけるR、R及びRは、それぞれ同一又は異なっても良い、水素又は炭素数が1~4のアルキル基であり、nは2~10であることが好ましい。 The chemical | medical agent which has the compound shown by Chemical formula 1 as a main component is sprayed on the contaminated soil surface where the radioactive substance scattered the chemical used to carry out the prevention of scattering of radioactively contaminated soil and decontamination / protection according to the present invention. In addition, it is cured and solidified by the action of a catalyst. R 1 , R 2 and R 3 in Chemical formula 1 may be the same or different and are each hydrogen or an alkyl group having 1 to 4 carbon atoms, and n is preferably 2 to 10.
 かかる化合物は、n=1の単量体(例えば、メチルトリメトキシシラン)を縮合することにより得ることが出来る。主鎖の繰り返しが、n=1~10であるのは、nが11以上となると、逆に汚染土壌表面に散布した時に、汚染土壌表面でのポリマー化のためのアルコキシ基等の数が不足して、十分な強度を持った固化形成が困難になるからである。
 n=1即ち単量体を用いると、ポリマー化に時間が掛かり、短時間で十分な強度を持った固化形成に時間を要する。従って、本発明に係る放射能汚染土壌の飛散防止及び除染、防護を実施するために使用する薬剤としてn=1~10、中でもn=2~8の縮合体が好ましい。
Such a compound can be obtained by condensing a monomer of n = 1 (for example, methyltrimethoxysilane). The main chain repeat is n = 1 to 10. If n is 11 or more, the number of alkoxy groups for polymerizing on the contaminated soil surface is insufficient when sprayed on the contaminated soil surface. This is because it is difficult to form solidified with sufficient strength.
When n = 1, that is, a monomer is used, it takes time to polymerize, and it takes time to form a solid with sufficient strength in a short time. Therefore, a condensate of n = 1 to 10, particularly n = 2 to 8 is preferable as a chemical agent used for carrying out prevention, decontamination and protection of radioactively contaminated soil according to the present invention.
 なお、一般に単量体から化1のような縮合体を合成する場合、その重合度を正確に制御することは、技術的にいって、事実上不可能である。したがって、本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤として、例えば、n=2~10、好ましくはn=2~8のものを使用するとの意味は、重合度の分布から見て、主としてnが2~10、好ましくは主として2~8のものが含まれているような薬剤を使用することに他ならず、例えばnが11以上である化合物が含まれていたとしても、差し支えなく、nの数値は制限的に解釈されるべきものではないのである。 In general, when a condensate such as Chemical Formula 1 is synthesized from monomers, it is technically impossible to accurately control the degree of polymerization. Therefore, the meaning of using, for example, n = 2 to 10, preferably n = 2 to 8, as the agent used for carrying out the prevention of scattering and decontamination / protection of the radioactively contaminated soil according to the present invention. In view of the distribution of the degree of polymerization, there is no use other than the use of a drug mainly containing n of 2 to 10, preferably mainly 2 to 8. For example, a compound in which n is 11 or more However, the numerical value of n should not be interpreted restrictively.
 化1で示される化合物としては、具体的に、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリプロポキシシラン等の縮合体を例示できる。なお、化1の化合物は、かかる単量体の1種類のみを縮合したものであっても、また上記例示した単量体の2種類以上を縮合したものであっても良い。 Specific examples of the compound represented by Chemical Formula 1 include methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltrimethoxysilane. Examples thereof include condensates such as ethoxysilane, methyltripropoxysilane, and ethyltripropoxysilane. In addition, the compound of Chemical Formula 1 may be a product obtained by condensing only one kind of such monomers, or may be a product obtained by condensing two or more kinds of the above exemplified monomers.
 なお、化1の化合物における加水分解不可能な置換基(R)の第一義的な役割は、土壌表面に柔軟性を与えることにあるが、同時に土壌表面に撥水性を付与するのであれば、Rはアルキル基とすれば良い。一般に有機性置換基は、炭素数が増える程、有機性すなわち撥水性が増加するが、炭素数があまり大きくなると、立体障害により土壌表面内に歪が生じて膜の強度低下の原因となる。したがって、アルキル基の炭素数や化1の化合物(縮合体)を構成する各単量体の種類・量は、本願明細書の実施例などを参照しつつ、予備的な製造試験を行う等して決定することが好ましい。もっとも、土壌表面への撥水性の付与は、後述する化2又は化3の化合物を添加することによっても達成可能であるため、化1の化合物におけるRをアルキル基とすることが必須というわけではない。 The primary role of the non-hydrolyzable substituent (R 4 ) in the compound of Chemical Formula 1 is to provide flexibility to the soil surface, but at the same time, to impart water repellency to the soil surface. For example, R 4 may be an alkyl group. In general, the organic substituent has an organic property, that is, water repellency increases as the number of carbon atoms increases. However, when the carbon number is too large, distortion occurs in the soil surface due to steric hindrance and causes a decrease in strength of the film. Accordingly, the number of carbon atoms in the alkyl group and the type / amount of each monomer constituting the compound (condensate) of Chemical Formula 1 can be determined by conducting preliminary production tests while referring to the examples of the present specification. Is preferably determined. However, imparting water repellency to the soil surface can also be achieved by adding a compound of Chemical Formula 2 or Chemical Formula 3, which will be described later, and therefore it is essential that R 4 in the compound of Chemical Formula 1 is an alkyl group. is not.
 化1で示される化合物を硬化・固化させる触媒としては、一般に用いられている触媒が特別の制限なしに使用可能である。例えば、酸触媒であれば、塩酸、硝酸、硫酸、リン酸、ぎ酸又は酢酸等を例示できる。塩基触媒であれば、アンモニア、水酸化テトラメチルアンモニウム、水酸化2―ヒドロキシエチルトリメチルアンモニウム、エタノールアミン、ジエタノールアミン又はトリエタノールアミン等が例示できる。これら通常の触媒を用いる場合は、化1の化合物を硬化・固化させるため、反応水を共存させる。 As a catalyst for curing and solidifying the compound represented by Chemical Formula 1, a commonly used catalyst can be used without any particular limitation. For example, in the case of an acid catalyst, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, formic acid or acetic acid can be exemplified. Examples of the base catalyst include ammonia, tetramethylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide, ethanolamine, diethanolamine, and triethanolamine. When these ordinary catalysts are used, reaction water is allowed to coexist in order to cure and solidify the compound of Chemical Formula 1.
 本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤は、このように、化1の化合物、触媒及び反応水を含むものである。通常使用する場合には特に問題は生じないが、これを長期保存する場合、反応水によって薬剤がゲル化し易い、という課題を生じる。これを解決するためには、上記したような通常の触媒ではなく、触媒として加水分解可能な有機金属化合物を用いると良い。加水分解可能な有機金属化合物を使用すれば、反応水を共存させる必要はなくなり、長期保存安定性のため好ましくなる。 The chemical used for carrying out the prevention of scattering and the decontamination / protection of the radioactively contaminated soil according to the present invention thus contains the compound of Chemical Formula 1, the catalyst and the reaction water. In normal use, there is no particular problem. However, when this is stored for a long period of time, there is a problem that the drug is easily gelled by the reaction water. In order to solve this, it is preferable to use a hydrolyzable organometallic compound as a catalyst instead of the above-described ordinary catalyst. If a hydrolyzable organometallic compound is used, there is no need to coexist with reaction water, which is preferable for long-term storage stability.
 有機金属化合物を化1の化合物と混合して薬剤とし、これを汚染土壌表面に散布すると、土壌表面又は内部に存する水分又は空気中の水分(湿気)を吸い、有機金属化合物が自ら加水分解し、この時、化1の化合物とネットワークを形成し、化1の化合物を硬化・固化する。本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤において好ましく用いられる有機金属化合物としては、例えば、チタン、ジルコン、アルミ又はスズを含むものを例示できる。より具体的には、テトラプロポキシチタネート、テトラブトキシチタネート、テトラプロポキシジルコネート、テトラブトキシジルコネート、トリプロポキシアルミネート、アルミニウムアセチルアセトナート、ジブチルスズジアセテート又はジブチルスズジラウレート等を例示できる。 When an organometallic compound is mixed with the compound of Chemical 1 to make a drug and sprayed onto the contaminated soil surface, moisture on the soil surface or inside or moisture in the air (humidity) is sucked and the organometallic compound hydrolyzes itself. At this time, a network is formed with the compound of chemical formula 1, and the chemical compound of chemical formula 1 is cured and solidified. As an organometallic compound preferably used in the chemical | medical agent used in order to implement scattering prevention of the radioactively contaminated soil which concerns on this invention, and decontamination / protection, what contains titanium, zircon, aluminum, or tin can be illustrated, for example. More specifically, tetrapropoxy titanate, tetrabutoxy titanate, tetrapropoxy zirconate, tetrabutoxy zirconate, tripropoxy aluminate, aluminum acetylacetonate, dibutyltin diacetate, dibutyltin dilaurate, etc. can be exemplified.
 また本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤には、化1の化合物、触媒、そして場合により必要となる反応水を均一に混合させるため、有機溶剤を添加することが出来る。この目的で使用される有機溶剤としては、アルコール類を例示できる。より具体的には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール又はヘキサノール等を例示できる。また、その添加量を制御することによって、薬剤の粘度や乾燥速度の調製も可能である。 In addition, in order to uniformly mix the compound of chemical formula 1, the catalyst, and, in some cases, necessary reaction water, the chemical used for carrying out the prevention of scattering and decontamination / protection of radioactively contaminated soil according to the present invention, An organic solvent can be added. Examples of the organic solvent used for this purpose include alcohols. More specifically, methanol, ethanol, propanol, isopropanol, butanol, pentanol, hexanol and the like can be exemplified. Also, the viscosity and drying rate of the drug can be adjusted by controlling the amount added.
 このような調製の目的では、特に、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコールなどのグリコール類、メトキシエタノール、プロポキシエタノール、ブトキシエタノール、メトキシプロパノール、エトキシプロパノール、プロポキシプロパノール又はブトキシプロパノール等のセルソルブ類等の粘度や沸点の高い有機溶剤を単独又は二種以上混合して使用することが好ましい。むろん、上記粘度や沸点の高い有機溶媒の1種以上と共に、上記アルコール類を同時に添加しても良い。なお薬剤の粘度や乾燥速度の調製を目的とする場合は、前記有機溶媒のみならず、界面活性剤によっても同様の効果を達成することができる。 For the purpose of such preparation, in particular glycols such as ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, methoxyethanol, propoxyethanol, butoxyethanol, methoxypropanol, ethoxypropanol, propoxypropanol Alternatively, it is preferable to use an organic solvent having a high viscosity or boiling point, such as cellosolves such as butoxypropanol, alone or in combination. Of course, the alcohols may be added simultaneously with one or more organic solvents having a high viscosity or boiling point. For the purpose of adjusting the viscosity and drying rate of the drug, the same effect can be achieved not only by the organic solvent but also by a surfactant.
 特に、前記したグリコール類やセルソルブ類は、その分子内に水酸基を有しているため、化1の化合物の縮合反応によって形成されるシロキサン結合のネットワーク内に導入されることがある。グリコール類やセルソルブ類は有機性を有しているため、これが導入される事により、得られる土壌表面の有機性が増す、すなわち固化形成される土壌表面の有機性が増すことになる。
 また、前記薬剤が、触媒として前記有機金属化合物(例えばテトラブトキシチタニウム等)を含む場合は、下記反応化1における(1)及び(2)の化学変化が起きる。
In particular, since the glycols and cellsolves described above have a hydroxyl group in the molecule, they may be introduced into a network of siloxane bonds formed by the condensation reaction of the compound of formula 1. Since glycols and cellsolves are organic, the introduction of them increases the organicity of the resulting soil surface, that is, the organicity of the solidified soil surface.
Moreover, when the said chemical | medical agent contains the said organometallic compound (for example, tetrabutoxy titanium etc.) as a catalyst, the chemical change of (1) and (2) in the following reaction 1 occurs.
 反応式1;
 (1)Ti-OR+H2O → Ti-OH+ROH
 (2)Ti-OH+RO-Si → Ti-O-Si
 上記のように、Ti-O結合が固化される土壌表面内に生成することにより、上記固化された土壌表面の強度が向上する。このように、触媒として有機金属化合物を使用すると、反応水を共存させる必要が無いばかりでなく、固化される土壌表面の強度を向上させることができるとともに個々の微粒子体にもシラン化合物の薄膜を形成することができるのである。
Reaction formula 1;
(1) Ti-OR + H2O → Ti-OH + ROH
(2) Ti-OH + RO-Si → Ti-O-Si
As described above, the strength of the solidified soil surface is improved by generating Ti—O bonds in the solidified soil surface. As described above, when an organometallic compound is used as a catalyst, not only the reaction water does not need to coexist, but also the strength of the solidified soil surface can be improved and a thin film of a silane compound can be applied to each fine particle. It can be formed.
(薬剤の変形例)
 また、本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤には、化1の化合物に加え、化2の化合物を含む薬剤を使用することにより、これを使用せずに製造したコート素材に比べて、化2の化合物が有する有機性等の性質を新たに付与したり、又は、有機性等の性質を増加することが可能である。
(Modification of drug)
In addition, in addition to the compound of Chemical formula 1, in addition to the chemical compound of Chemical 1, the chemical used to carry out the prevention and decontamination / protection of radioactively contaminated soil according to the present invention, Compared with a coating material produced without using, it is possible to newly impart the organic property or the like possessed by the compound of Chemical Formula 2 or to increase the organic property or the like.
Figure JPOXMLDOC01-appb-C000008
 このような目的で加えられる化2の化合物は、4個の置換基のうち、3個が加水分解可能な置換基であり、残り1個が加水分解不可能な置換基から成り立つ化合物である。
Figure JPOXMLDOC01-appb-C000008
The compound of Chemical Formula 2 added for such a purpose is a compound consisting of 4 substituents, in which 3 are hydrolyzable substituents and the remaining 1 is non-hydrolyzable substituents.
 化2において、R、R及びRは、それぞれ同一又は異なっていても良く、水素若しくは炭素数1~10のアルキル基又はアルケニル基からなるモノマーであり、RO、RO及びROとSiとの結合はシロキサン結合からなるオリゴマーであり、Rは、その分子内にエポキシ基又はグリシジル基を含んでいても良い、炭素数が1~10のアルキル基、アルケニル基又はフェニル基である。
 化2で示される化合物としては、具体的に、ビニルトリメトキシシラン、フェニルトリメトキシシラン、γ-(メタクリロキシプロピル)トリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、アミノプロピルトリメトキシシラン、β-(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、-(メタクリロキシプロピル)トリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、アミノプロピルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン等や、これらの2~10分子程度の縮合体を例示できる。
In Chemical Formula 2, R 5 , R 6 and R 7 may be the same or different and each is a monomer comprising hydrogen, an alkyl group having 1 to 10 carbon atoms or an alkenyl group, and R 5 O, R 6 O and The bond between R 7 O and Si is an oligomer composed of a siloxane bond, and R 8 may contain an epoxy group or a glycidyl group in its molecule, an alkyl group having 1 to 10 carbon atoms, an alkenyl group, or It is a phenyl group.
Specific examples of the compound represented by Chemical Formula 2 include vinyltrimethoxysilane, phenyltrimethoxysilane, γ- (methacryloxypropyl) trimethoxysilane, γ-glycidoxypropyltrimethoxysilane, aminopropyltrimethoxysilane, β- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, vinyltriethoxysilane, phenyltriethoxysilane,-(methacryloxypropyl) triethoxysilane, γ-glycidoxypropyltriethoxysilane, aminopropyltriethoxysilane, Examples thereof include vinyltris (βmethoxyethoxy) silane and the like, and a condensate of about 2 to 10 molecules thereof.
 なお、化2の化合物は、かかる単量体の2種以上であっても良い。化2の化合物として、2分子以上の縮合体を使用する場合には、かかる単量体の2種以上を縮合したものであっても良い。
 また、本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤では、化1の化合物を含む薬剤に加え、又は、化1の化合物及び化2の化合物の両方を含む薬剤に加え、さらに、化3の化合物を添加した薬剤を使用することによって、これを使用せずに製造したコート素材に比べて、化3の化合物が有する有機性等の性質を新たに付与したり、又は、有機性等の性質を増加することが可能である。
The compound of Chemical Formula 2 may be two or more of such monomers. In the case of using a condensate of two or more molecules as the compound of Chemical Formula 2, a compound obtained by condensing two or more of these monomers may be used.
Moreover, in the chemical | medical agent used in order to implement scattering prevention and decontamination / protection of the radioactively contaminated soil based on this invention, in addition to the chemical | medical agent containing the compound of Chemical formula 1, or the chemical compound of Chemical formula 1 and the chemical compound of Chemical formula 2 In addition to the chemicals containing both, the chemicals added with chemical compound 3 can be used to improve the organic properties of chemical compound 3 compared to the coating material produced without using chemicals. It is possible to increase the properties such as organic properties.
Figure JPOXMLDOC01-appb-C000009
 化3の化合物は、4個の置換基のうち、2個が加水分解可能な置換基であり、他の2個が加水分解不可能な置換基から成り立つ化合物である。化3において、R及びR11は、それぞれ同一又は異なっていても良く、水素若しくは炭素数1~10のアルキル基又はアルケニル基からなるモノマーであり、RO及びR11OとSiとの結合はシロキサン結合からなるオリゴマーであり、R10及びR12は、その分子内にエポキシ基又はグリシジル基を含んでいても良い、炭素数が1~10のアルキル基、アルケニル基又はフェニル基である。
Figure JPOXMLDOC01-appb-C000009
The compound of Chemical formula 3 is a compound consisting of four substituents, two of which are hydrolyzable substituents and the other two of which are non-hydrolyzable substituents. In the chemical formula 3, R 9 and R 11 may be the same or different and each is a monomer comprising hydrogen, an alkyl group having 1 to 10 carbon atoms or an alkenyl group, and R 9 O, R 11 O and Si The bond is an oligomer composed of a siloxane bond, and R 10 and R 12 are an alkyl group, alkenyl group or phenyl group having 1 to 10 carbon atoms which may contain an epoxy group or a glycidyl group in the molecule. .
 化3で示される化合物としては、具体的に、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン等や、これらの2~10分子程度の縮合体を例示できる。なお、化3の化合物は、かかる単量体の2種以上であっても良く、また、更に2分子以上の縮合体を使用する場合にも、かかる単量体の2種以上の縮合体であっても良い。 Specific examples of the compound represented by Chemical Formula 3 include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylvinyldimethoxysilane, and methylvinyldiethoxysilane. And a condensate of about 2 to 10 molecules thereof. The compound of Chemical Formula 3 may be two or more of these monomers, and also when two or more molecules of condensate are used, There may be.
 上記したような、化2の化合物又は化3の化合物のいずれかを薬剤に添加することで、固化される土壌表面の有機性を増加できるが、化2及び化3の化合物の両者を薬剤に添加すれば、固化される土壌表面の有機性を更に向上させ、結果的に土俵表面の固化形成強度を更に向上できる。 By adding either chemical compound 2 or chemical compound 3 as described above to the drug, the organicity of the soil surface to be solidified can be increased, but both chemical compound 2 and chemical compound 3 are used as the drug. If added, the organicity of the solidified soil surface can be further improved, and as a result, the solidification strength of the soil surface can be further improved.
 化2の化合物及び/又は化3の化合物は、薬剤の主成分である、前記化1で示される化合物に対し、一般的には総量が50%を超えない範囲にて薬剤に添加することが好ましい。両者の合計添加量がこの範囲を越えると、散布した時に、主成分である化1の化合物との間でうまく結合せず、固化される土壌表面の強度が不十分となる可能性があるからである。したがって、実際に化2の化合物及び/又は化3の化合物を添加する場合には、添加量に依存して固化される土壌表面の強度が低下することを想定し、本願明細書の実施例を参照しつつ、予備的な製造試験を行う等し、目的を達成し得る添加量の範囲を明らかにしたうえで、添加を最小限に抑えるようにすることが好ましい。 The compound of Chemical formula 2 and / or the chemical compound of Chemical formula 3 can be added to the drug in a range generally not exceeding 50% with respect to the compound represented by Chemical formula 1, which is the main component of the drug. preferable. If the total addition amount of both exceeds this range, when sprayed, it does not bind well with the main component compound 1, and the strength of the solidified soil surface may be insufficient. It is. Therefore, in the case of actually adding the chemical compound 2 and / or chemical compound 3, it is assumed that the strength of the soil surface solidified depending on the amount added, and the examples in the present specification are used. While referring to it, it is preferable to carry out a preliminary production test or the like, clarify the range of the addition amount that can achieve the object, and minimize the addition.
 なお、化2の化合物及び化3の化合物における加水分解不可能な置換基(R、R10、R12)の第一義的な役割は、固化される土壌表面に柔軟性を与えることにあるが、これらはアルキル基等の有機性置換であるため、同時に固化される土壌表面に撥水性を付与する役割をも果たす。したがって、固化後に直ちに土壌表面を削りとることができない等の場合であっても、雨水等によって内部に捕捉された放射能物質が漏れ出すことはない。 The primary role of the non-hydrolyzable substituents (R 8 , R 10 , R 12 ) in the chemical compound 2 and chemical compound 3 is to give flexibility to the soil surface to be solidified. However, since these are organic substitutions such as alkyl groups, they also serve to impart water repellency to the soil surface to be solidified at the same time. Therefore, even if the soil surface cannot be shaved immediately after solidification, the radioactive material trapped inside by rainwater or the like does not leak out.
 一般に有機性置換基は、炭素数があまり大きくなると、立体障害により固化される土壌表面に歪が生じて強度低下の原因となる。したがって、有機性置換基の炭素数や化2及び/又は化3の化合物(縮合体)を構成する各単量体の種類・量は、本願明細書の実施例などを参照しつつ、予備的な製造試験を行う等して決定することが好ましい。 In general, when the number of carbon atoms of an organic substituent is too large, strain is generated on the soil surface solidified by steric hindrance, causing a decrease in strength. Accordingly, the number of carbon atoms of the organic substituent and the type / amount of each monomer constituting the compound (condensate) of Chemical Formula 2 and / or Chemical Formula 3 are preliminarily referred to with reference to Examples in the present specification. It is preferable to make a determination by performing an appropriate manufacturing test.
 強度が向上したシロキサン結合は、一方でいわゆる「硬い」結合でもある。この「硬さ」のため、固化形成された土壌表面の柔軟性が欠如して、かえって削りとり作業や運搬の作業に困難を生じる場合がある。したがって、固化形成された土壌表面には、時として適度の柔軟性が求められても良い。 The siloxane bond with improved strength is also a so-called “hard” bond. Because of this “hardness,” the soil surface that has been solidified lacks flexibility, which may cause difficulties in scraping and transporting work. Therefore, the soil surface that has been solidified may sometimes require moderate flexibility.
 従来から一般に用いられているゾル・ゲル薬剤は、出発原料にテトラアルコキシシラン(Si(OR))やそのオリゴマー体が用いられるのが通例であるが、これらのものを完全に加水分解反応させて土壌表面を固化形成させると、ケイ素原子の4個の結合全てが硬いシロキサン結合のネットワークを形成し、セラミックと同様に硬いが、しかし、柔軟性に欠け、かえって崩壊しやすいものとなってしまう危険があるため、上記の化1及び/又は化2及び/又は化3からなる薬剤を使用することが、本発明に係る放射能汚染土壌の飛散防止及び除染・防護としてはより好ましいものである。 Conventionally, sol-gel drugs generally used are tetraalkoxysilane (Si (OR) 4 ) and oligomers thereof as a starting material, but these are completely hydrolyzed. When the soil surface is solidified, all four bonds of silicon atoms form a network of hard siloxane bonds, which are as hard as ceramics, but are not flexible and tend to collapse. Since there is a danger, it is more preferable to use a chemical comprising the above-mentioned chemical formula 1 and / or chemical formula 2 and / or chemical formula 3 as prevention of scattering and decontamination / protection of radioactively contaminated soil according to the present invention. is there.
 これは、本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤は、ケイ素原子の4個の置換基のうち、1個が加水分解されない化1の化合物を薬剤の主成分としているからである。
 また、本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤では、加水分解されない置換基をそれぞれ1個又は2個有する化2の化合物と化3の化合物を薬剤に添加することにより、任意に柔軟性等を増すことが可能となる。
This is because the chemicals used for carrying out the prevention of decontamination and decontamination / protection of radioactively contaminated soil according to the present invention are compounds of chemical formula 1 in which one of the four substituents of the silicon atom is not hydrolyzed It is because it is made into the main component of a medicine.
Moreover, in the chemical | medical agent used in order to implement scattering prevention and decontamination / protection of the radioactively contaminated soil based on this invention, the compound of Chemical formula 2 and the chemical compound of Chemical formula 3 which have one or two substituents which are not hydrolyzed, respectively. By adding to the drug, flexibility and the like can be arbitrarily increased.
 以下、本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤の製造に関する実施例を詳細に説明するが、実施例はあくまで一例であって、本発明に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤製造がこれらに限定されるものではない。 Hereinafter, examples relating to the production of chemicals used for carrying out the prevention of decontamination and decontamination / protection of radioactively contaminated soil according to the present invention will be described in detail, but the examples are only examples, and The pharmaceutical production used for carrying out the prevention and decontamination / protection of such radioactively contaminated soil is not limited to these.
(アルコキシシラン縮合体の製造)
 以下のようにして、メチルトリメトキシシラン縮合体(MTM)、エチルトリメトキシシラン縮合体(ETM)及びメチルトリエトキシシラン縮合体(MTE)を合成した。
(Production of alkoxysilane condensate)
A methyltrimethoxysilane condensate (MTM), an ethyltrimethoxysilane condensate (ETM) and a methyltriethoxysilane condensate (MTE) were synthesized as follows.
(1)MTMの合成
 500ml三つ口フラスコに、メチルトリメトキシシラン181g、メタノール50g及び純水18gを加え十分に攪拌した。さらに61%硝酸2gを加え攪拌しながら3時間加熱・環流させ、反応終了後、加熱しながら反応容器内を減圧にしメタノールを除去した。このようにして得られたMTMは、ガスクロマトグラフィー分析により3~4量体が中心であった。
(1) Synthesis of MTM To a 500 ml three-necked flask, 181 g of methyltrimethoxysilane, 50 g of methanol and 18 g of pure water were added and sufficiently stirred. Further, 2 g of 61% nitric acid was added, and the mixture was heated and refluxed for 3 hours with stirring. After the reaction was completed, the pressure in the reaction vessel was reduced while heating to remove methanol. The MTM thus obtained was mainly composed of 3 to 4 mer by gas chromatography analysis.
(2)ETMの合成
 500ml三つ口フラスコに、エチルトリメトキシシラン200g、メタノール50g及び純水18gを加え十分に攪拌した。さらに61%硝酸2gを加え攪拌しながら7時間加熱・環流させ、反応終了後、加熱しながら反応容器内を減圧にしメタノールを除去した。このようにして得られたETMは、ガスクロマトグラフィー分析により3~4量体が中心であった。
(2) Synthesis of ETM To a 500 ml three-necked flask, 200 g of ethyltrimethoxysilane, 50 g of methanol, and 18 g of pure water were added and sufficiently stirred. Further, 2 g of 61% nitric acid was added, and the mixture was heated and refluxed for 7 hours while stirring. After the reaction was completed, the inside of the reaction vessel was depressurized while heating to remove methanol. The ETM thus obtained was mainly composed of 3 to 4 mer by gas chromatography analysis.
(3)MTEの合成
 500ml三つ口フラスコに、メチルトリエトキシシラン273g、エタノール50g及び純水18gを加え十分に攪拌した。さらに61%硝酸2gを加え攪拌しながら12時間加熱・環流させ、反応終了後、加熱しながら反応容器内を減圧にしメタノールを除去した。このようにして得られたMTEは、ガスクロマトグラフィー分析により3~4量体が中心であった。
(4)上記MTM、ETM、MTEとして、化1を基本に化2,化3の薬剤を組み合わせ、下記表1に示すNo.1~N0.17の薬剤(MTM、ETM、MTE)とした。
(3) Synthesis of MTE To a 500 ml three-necked flask, 273 g of methyltriethoxysilane, 50 g of ethanol and 18 g of pure water were added and sufficiently stirred. Further, 2 g of 61% nitric acid was added and heated and refluxed with stirring for 12 hours. After the reaction was completed, the reaction vessel was depressurized while heating to remove methanol. The MTE thus obtained was mainly composed of 3 to 4 mer by gas chromatography analysis.
(4) As the above MTM, ETM, and MTE, the chemicals of chemical formulas 2 and 3 were combined based on chemical formula 1, and the chemicals No. 1 to N0.17 shown in Table 1 below (MTM, ETM, MTE) were obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(1)薬剤の調製
 実施例1で合成したアルコキシシラン縮合体を用い、これらを主成分として含むMTM19.0gを、イソプロピルアルコール及びエチレングリコールをそれぞれ2gからなる溶剤に、さらに、触媒としてテトラブトキシジルコニウム0.8gを添加して本実施例に係る放射能汚染土壌の飛散防止及び除染・防護を実施するために使用する薬剤(前記表1におけるNo.7)を調製した。
(1) Preparation of drug Using the alkoxysilane condensate synthesized in Example 1, 19.0 g of MTM containing these as main components, a solvent composed of 2 g of isopropyl alcohol and ethylene glycol, and tetrabutoxyzirconium as a catalyst The chemical | medical agent (No. 7 in the said Table 1) used in order to implement scattering prevention and decontamination / protection of the radioactively contaminated soil which concerns on a present Example by adding 0.8g was prepared.
(2)薬剤の汚染土壌表面への散布
 本発明に係る放射能汚染土壌の飛散防止及び除染・防護では、まず、任意の広さの放射能物質が飛散して汚染されている土壌表面に前記の薬剤(前記表1におけるNo.7)を散布した。具体的な散布の方法は、特に制限されないが、例えば、スプレー器で噴霧することにより行い得る。
(2) Dispersion of chemicals on contaminated soil surface In the prevention and decontamination / protection of radioactively contaminated soil according to the present invention, first, the radioactive material of any size is scattered on the contaminated soil surface. The drug (No. 7 in Table 1) was sprayed. Although the specific spraying method is not particularly limited, for example, it can be performed by spraying with a sprayer.
(3)評価
(あ)放射能汚染土壌の表面固化の評価
 東日本大地震により原発事故により放射能物質が周囲に飛散した福島県福島市立渡利小学校(福島県福島市渡利字八幡町120:高橋友憲校長)校庭において、平成23年5月16日17日(16日11:30~17日9:30)の間、校庭内のお立ち台近辺を100cm×100cmを6区画に分け、それらの各区画に対し、前記薬剤を(ア)散布なし、(イ)50cc散布、(ウ)100cc散布、(エ)200cc散布、(オ)250cc散布の区画として区切り、平成23年5月16日午前10時30分頃上記薬剤をスプレー器で上記の量を噴霧して散布し、当該区画の放射線強度を測定した。
(3) Evaluation (a) Evaluation of surface solidification of radioactively contaminated soil Fukushima City Watari Elementary School, Fukushima City, Fukushima City, Hachimancho 120, Fukushima City: Tomotaka Takahashi In the schoolyard, during the 17th May 17th 2011 (16:30 11:30 to 17th 9:30), the area around the stand in the schoolyard was divided into 6 sections of 100cm x 100cm. On the other hand, the drug is divided into (a) no spraying, (b) 50 cc spraying, (c) 100 cc spraying, (d) 200 cc spraying, (e) 250 cc spraying, and at 10:00 am on May 16, 2011 Around 30 minutes, the drug was sprayed in the above amount with a sprayer and sprayed, and the radiation intensity of the compartment was measured.
 測定は、文部科学省学校教育支援事業として無料で貸し出しされている簡易放射線測定器「はかるくん(DX-200)」を使用して測定した。
「はかるくん(DX-200)」の仕様は次のものである。
(a)検出部:測定放射線(ガンマ(γ)線)
(b)検出器の種類:CsI(Tl)
(c)感度・計数効率:0.01μSv/hにおいて10cpm以上
(d)指示誤差:±10%
(e)エネルギー範囲:150keV~3MeV
(f)測定部:測定範囲(0.001~9.999μSv/h)
(g)表示方式:デジタルレート表示
(h)サンプリング時間:60秒
(i)表示間隔:60秒間の計数値(移動平均値)を10秒毎に表示
(j)電池:Ni-Cd充電池
(k)使用時間:約10時間(Ni-Cd充電池の特性上、短くなる場合もある)
(l)記憶機能:なし
(m)外形:寸法L×W×D(mm)(151×63×26)
The measurement was performed using a simple radiation measuring instrument “Hakarun (DX-200)” lent out free of charge as a school education support project by the Ministry of Education, Culture, Sports, Science and Technology.
The specifications of “Hakaru-kun (DX-200)” are as follows.
(A) Detector: Measurement radiation (gamma (γ) rays)
(B) Detector type: CsI (Tl)
(C) Sensitivity / counting efficiency: 10 cpm or more at 0.01 μSv / h (d) Indication error: ± 10%
(E) Energy range: 150 keV to 3 MeV
(F) Measuring part: Measuring range (0.001 to 9.999μSv / h)
(G) Display method: Digital rate display (h) Sampling time: 60 seconds (i) Display interval: Count value (moving average value) for 60 seconds is displayed every 10 seconds (j) Battery: Ni-Cd rechargeable battery ( k) Operating time: Approx. 10 hours (may be shortened due to Ni-Cd rechargeable battery characteristics)
(L) Memory function: None (m) Outline: Dimensions L x W x D (mm) (151 x 63 x 26)
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表2は、その測定結果である。
 上記薬剤をスプレーにて噴霧して散布後、それぞれ表示の時間に放射線測定を行ったが、放射線強度には変わりは見られなかった。
 しかし、薬剤を散布した区画(イ)~(オ)は、土壌表面がガラス化されて固化しており、土壌が流れ出すことはなかった。
(い)放射能物質除染評価(その1)
Table 2 shows the measurement results.
After spraying the drug with a spray and spraying, radiation measurements were performed at the indicated times, but no change was seen in the radiation intensity.
However, in the sections (a) to (e) where the chemicals were sprayed, the soil surface was vitrified and solidified, and the soil did not flow out.
(Ii) Radioactive substance decontamination evaluation (1)
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表3は、上記の(ア)~(オ)の区画において、固化された表面を取り除き、取り除いた後の当該区画の放射線強度を測定したものである。すなわち、表2の測定が終了後、(イ)~(オ)の区画の土壌表面は、固化しているので、移植ゴテ先端で表面をたたき割り、表面にヒビを入れ、割れ目から移植ゴテ先端を食い込ませ、固化された表面を取り除いた。 Table 3 shows the measurement of the radiation intensity of the section after removing the solidified surface in the sections (a) to (e) above. That is, after the measurement in Table 2 is completed, the soil surface of sections (a) to (e) is solidified, so the surface of the transplanting iron is cracked and cracked, and the tip of the transplanting iron is broken from the crack. And the solidified surface was removed.
 上記薬剤が散布された土壌表面で、その表面が固化された土壌表面が、それぞれ、前記(イ)の区画表面は、約3mm厚、(ウ)の区画表面は、約5mm厚、(エ)の区画表面は、約6mm厚、(オ)の区画表面は、約8~10mm厚で剥ぎ取ることができる。 The surface of the soil on which the above-mentioned chemicals are sprayed, and the solidified surface of the soil, the section surface of (a) is about 3 mm thick, the section surface of (c) is about 5 mm thick, and (d) The partition surface of (6) can be stripped off with a thickness of about 6 mm, and the partition surface of (e) can be stripped with a thickness of about 8-10 mm.
 この固化表面を取り除いた後に、再び当該区画の放射線強度を測定すると、明らかに放射線強度が減少していることが知りうる。測定は、上記同様、簡易放射線測定器「はかるくん(DX-200)」を使用して測定した。 After removing the solidified surface and measuring the radiation intensity of the section again, it can be seen that the radiation intensity is clearly reduced. The measurement was performed using a simple radiation measuring instrument “Hakarun (DX-200)” as described above.
 なお、上記区画(ア)についても若干減少しているが、これは、表面土壌を取り除いた後の放射線強度を他の区画と比較するために、厚さ30mm程度の土壌を取り除いた結果、若干の放射線強度の減少が見られたものである。
(う)放射能物質除染評価(その2)
In addition, although the above-mentioned section (a) is slightly decreased, this is a result of removing the soil having a thickness of about 30 mm in order to compare the radiation intensity after removing the surface soil with other sections. A decrease in radiation intensity was observed.
(U) Radioactive substance decontamination evaluation (2)
 次に、固化された薬剤自体の内部に捕捉された放射能物質の捕捉状態を検証した。検証は、固化された土壌の土壌表面を持ち帰り、財団法人科学研究評価機構高分子試験・評価センター東京事業所(東京都台東区柳橋2-22-13事業所 長香山茂)にて、上記固化された土壌を容器に収容し、同容器に4リットルの水を1時間に渡り流し込み、その後の土壌の固化状態及び放射能レベルを測定した。4リットルの水を1時間にわたり流し込んだ後でも、土壌の固化状態に変化は見られず放射能レベルの減少はなかった。測定は、同センターの測定器(LUDLUM MEASUREMENES,INC DETECTOR:LUDLUM MODEL 44-9 SURVEY METER:LUDLUM MODEL 14C)計測したところ、流水を流し込む前の当初620CPMから流水1時間後に500CPMに減少した程度で、土壌に流水を流し込んでも土壌が放射能物質を捕捉している状態に変化はないと判断した。 Next, the capture state of the radioactive substance trapped inside the solidified drug itself was verified. For the verification, the soil surface of the solidified soil was brought home, and the above solidification was conducted at the Polymer Research and Evaluation Center Tokyo Office of the Japan Science Research Evaluation Organization (Shigeru Nagakayama, 2-22-13 Yanagibashi, Taito-ku, Tokyo). The soil was stored in a container, and 4 liters of water was poured into the container over 1 hour, and then the solidified state and radioactivity level of the soil were measured. Even after 4 liters of water was poured over 1 hour, no change was seen in the solidified state of the soil and there was no decrease in radioactivity level. The measurement was conducted at the same center (LUDLUM MEASUREMENES, INC DETECTOR: LUDLUM MODEL 44-9 SURVEY METER: LUDLUM MODEL 14C), and it was only about 1 hour after running water to 500 CPM before flowing water. Even when running water was poured into the soil, it was judged that there was no change in the state where the soil was capturing radioactive materials.
 実施例3として、平成23年7月7日に郡山市酒蓋公園(福島県郡山市深沢2丁目)で再び土壌表面を固化し、放射能レベルを測定した。同公園は、郡山市内で一番高い放射線量が計測され、全国的に話題となった公園で、報道等によれば、3.8(マイクロシーベルト/時間9の放射線レベルとのことである。
(1)薬剤(200B)の調製
As Example 3, on July 7, 2011, the soil surface was solidified again in Koriyama City Sakeku Park (2-chome Fukasawa, Koriyama City, Fukushima Prefecture), and the radioactivity level was measured. The park has the highest radiation dose in Koriyama city, and has become a hot topic nationwide. According to reports, it is 3.8 (microsievert / hour 9 radiation level. is there.
(1) Preparation of drug (200B)
 前記表1におけるNo.7の薬剤は、混合粘度性に問題があり、散布しにくかったので、前記No.7の薬剤を基本に粘度調製を行った薬剤(200B)を調製した。この薬剤は、本願出願人会社において、試作薬剤200Bと称しているので薬剤200Bと表示する。薬剤200Bの調製は以下のものである。 Since the No. 7 drug in Table 1 had a problem in mixing viscosity and was difficult to spray, a drug (200B) prepared by adjusting the viscosity based on the No. 7 drug was prepared. Since this drug is referred to as trial drug 200B in the applicant company, it is displayed as drug 200B. The preparation of the drug 200B is as follows.
 まず、上記薬剤(No.7)2.5リットルに対して、イソプロプルアルコール(IPA)2.5リットル、それに、互応化学工業株式会社(京都府宇治市伊勢田町井尻58)製薬剤(同社商品名NKー310:アクリル(メタクリル)酸エステル共重合体35~45%+イソプロピルアルコール55~65%含有)10リットルを混合した薬剤(200B)を調製した。そして、この薬剤200Bに、さらに、NIケミテック株式会社(大阪府堺市西区築港浜寺西町19-6)製亜酸化鉛(化学式Pb+PbO:同社商品名「鉛粉」)をそれぞれ20g、25g 30gを混合させて、これをそれぞれ薬剤B、薬剤C、薬剤Dとし、一方、同薬剤200Bに同NIケミテック株式会社製一酸化鉛(化学式PbO:同社商品名「リザージ」)をそれぞれ25g、30g、40gを混合させて,これを薬剤E、薬剤F、薬剤Gとして散布薬剤とした。整理すると以下の表4ものである。なお、Aは、後述する土壌散布の効果確認の比較のためのものであり、何らの薬剤を使用しない場合について便宜上表示したものである First, 2.5 liters of the above-mentioned drug (No. 7), 2.5 liters of isopropyl alcohol (IPA), and a drug manufactured by Kyoyo Chemical Industry Co., Ltd. (58, Ijiri-machi, Ijita-cho, Uji, Kyoto) Name NK-310: Acrylic (methacrylic acid) ester copolymer 35 to 45% + isopropyl alcohol 55 to 65% contained) 10 liters of a drug (200B) was prepared. In addition, 20 g, 25 g, and 30 g of lead oxide (chemical formula Pb + PbO: the company's trade name “lead powder”) manufactured by NI Chemtech Co., Ltd. (19-6 Tsukihama Hamadera Nishimachi, Sakai-ku, Osaka, Japan) are mixed with the drug 200B. These were designated as Drug B, Drug C, and Drug D, respectively, while lead monoxide (chemical formula PbO: company name “Lizzage”) manufactured by NI Chemtech Co., Ltd. was added to 25 g, 30 g, and 40 g, respectively. After mixing, this was used as a sprayed drug as Drug E, Drug F, and Drug G. These are summarized in Table 4 below. In addition, A is for the comparison of the effect confirmation of the soil application mentioned later, and is displayed for convenience about the case where no medicine is used.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(2)測定サンプルの作成
 本実施例3においては、上述するように、郡山市酒蓋公園においてその土壌表面をそれぞれ50gづつを採取し、これをそれぞれ3.2g重量の容器に入れ、これらの土壌に上記のB~Gの薬剤を散布してサンプル(B~G)を作成した。なお、比較のために、いずれの薬剤も散布しないサンプル(A)も同時に作成した。
(2) Preparation of measurement samples In Example 3, as described above, 50 g of the soil surface was sampled at Koriyama City Sake Lid Park, and these were placed in a 3.2 g weight container. Samples (B to G) were prepared by spraying the above B to G chemicals on the soil. For comparison, a sample (A) in which no drug was sprayed was also prepared.
(3)評価
 上記のように作成したサンプルA~Gについて、それぞれ、総重量及び放射能レベルを測定したところ、次のような結果を得た。
(3) Evaluation Regarding samples A to G prepared as described above, the total weight and the radioactivity level were measured, and the following results were obtained.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 なお、計測は、上述の財団法人科学研究評価機構高分子試験・評価センター東京事業所の測定器(LUDLUM MEASUREMENES,INC DETECTOR:LUDLUM MODEL 44-9 SURVEY METER:LUDLUM MODEL 14C)で計測した
 表5から、いずれの薬剤も散布しないサンプルAの放射能レベルは620CPMであったが、上記薬剤B~Gを散布したサンプルB~サンプルGについては、いずれも放射能レベルの低減が見られた。
Measurements were taken with the above-mentioned measuring instrument (LUDLUM MEASUREMENES, INC DETECTOR: LUDLUM MODEL 44-9 SURVEY METER: LUDLUM MODEL 14C) at the Polymer Research and Evaluation Center Tokyo Office of the above scientific research evaluation organization. The radioactivity level of sample A to which no drug was sprayed was 620 CPM. However, for samples B to G to which the drugs B to G were sprayed, a decrease in the radioactivity level was observed.
 実施例4として、実施例2において作成された薬剤C、薬剤D、薬剤E、薬剤Fを135mm×155mmの和紙(重量1.5g)にそれぞれ刷毛塗りで染み込ませ,十分に乾燥させた後、これら薬剤C~Dを塗布和紙サンプルを上記比較例サンプルAの上に載せ、その上から放射能レベルを測定した。その結果を表6に示す。 As Example 4, the medicine C, the medicine D, the medicine E, and the medicine F created in Example 2 were each soaked in a 135 mm × 155 mm Japanese paper (weight 1.5 g) with a brush and dried sufficiently. A Japanese paper sample coated with these drugs C to D was placed on the comparative sample A, and the radioactivity level was measured from the sample. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表6において、(ア)は、薬剤を使用しないサンプルAの放射能レベルを示すものであり、そのレベルは620CPMであり、上記薬剤C~Dを染み込ませた和紙で覆ってその上の放射能レベルを測定したところ、それぞれ440CPM、304CPM、400CPM、440CPMと、放射能レベルが低減され、放射能防護が確認できた。 In Table 6, (a) shows the radioactivity level of Sample A without using any drug, and the level is 620 CPM. The radioactivity on the sample is covered with Japanese paper impregnated with the above drugs C to D. When the levels were measured, the radioactivity levels were reduced to 440 CPM, 304 CPM, 400 CPM, and 440 CPM, respectively, and radioactivity protection was confirmed.
 なお、このような薬剤を染み込ませることのない紙一般についての放射線遮蔽は、放射線中のアルファ(α)線は、紙一枚でも遮蔽することができるが、上記のようにCPM計測単位で測定されるベータ(β)線・ガンマ(γ)線では、和紙一枚程度を載せた程度で遮蔽することはできないもののようである(http://www.hepco.co.jp/ato_env_ene/atomic/explanation/knowledge-05.html)。したがって、上記のように放射能レベルが低減されたことは、和紙に染み込ませた本実施例3に係る薬剤によって放射能レベルが低減されたものと解することができる。なお、本実施例4は、素材として和紙を用いたが、これは、上記薬剤が染み込む素材であれば、和紙に限らず、布等の繊維素材であっても良い。 In addition, radiation shielding for general paper that does not impregnate such drugs can shield alpha (α) rays in radiation even with a single sheet of paper, but it is measured in CPM measurement units as described above. It seems that the beta (β) and gamma (γ) rays that are used cannot be shielded with only a sheet of Japanese paper (http://www.hepco.co.jp/ato_env_ene/atomic/ explanation / knowledge-05.html). Therefore, the fact that the radioactivity level has been reduced as described above can be understood as that the radioactivity level has been reduced by the drug according to Example 3 soaked in Japanese paper. In the fourth embodiment, Japanese paper is used as a material. However, the material is not limited to Japanese paper, and may be a fiber material such as cloth as long as the above-described drug is infiltrated.
 上記実施例4においては、メチルトリメトキシシラン181g、メタノール50g及び純水18gを加え十分に攪拌し、さらに61%硝酸2gを加え攪拌しながら3時間加熱・環流させ、反応終了後、加熱しながら反応容器内を減圧にしメタノールを除去して得られた表1のNo.7に示されるアルコシキシラン縮合体MTM(ガスクロマトグラフィー分析により3~4量体が中心)2.5リットルに対して、イソプロプルアルコール(IPA)2.5リットル、アクリル(メタクリル)酸エステル共重合体35~45%+イソプロピルアルコール55~65%含有)10リットルを混合し、これを薬剤200Bと命名し、この薬剤200B100gに対して、亜酸化鉛(化学式Pb+PbO)をそれぞれ20g、25g 30g混合させて、これをそれぞれ薬剤B、薬剤C、薬剤Dとし、また、一酸化鉛(化学式PbO)をそれぞれ25g、30g、40gを混合させて,これを薬剤E、薬剤F、薬剤Gとして散布薬剤とし、これを135mmx155mmの和紙(重量1.5g)にそれぞれ刷毛塗りし、和紙地に染み込ませた後,乾燥させ、これら薬剤C~Dを塗布和紙サンプルを上記比較例サンプルAの上に載せ、その上から放射能レベルを測定したものである(測定結果は「表6」に示される)。 In Example 4 above, 181 g of methyltrimethoxysilane, 50 g of methanol and 18 g of pure water were added and stirred sufficiently, and further 2 g of 61% nitric acid was added and heated and refluxed for 3 hours with stirring. With respect to 2.5 liters of the alkoxysilane condensate MTM shown in No. 7 of Table 1 obtained by removing the methanol in the reaction vessel under reduced pressure (mainly 3 to 4 mer by gas chromatography analysis) , Isopropyl alcohol (IPA) 2.5 liters, acrylic (methacrylic acid ester copolymer 35-45% + isopropyl alcohol 55-65% containing) 10 liters was mixed, and this was named Drug 200B. 200 g of 100B is mixed with 20 g, 25 g, and 30 g of lead oxide (chemical formula Pb + PbO). Respectively, the drug B, the drug C, and the drug D are mixed with 25 g, 30 g, and 40 g of lead monoxide (chemical formula PbO), respectively. Each was coated with a brush on 135 mm x 155 mm Japanese paper (weight 1.5 g), soaked into the Japanese paper, dried, and these chemicals C to D were coated on the above-mentioned comparative sample A, and from above The radioactivity level was measured (measurement results are shown in “Table 6”).
 しかしながら、上記実施例4で使用する薬剤は、いずれも亜酸化鉛(Pb+PbO)、一酸化鉛(PbO)を混合させたものであることから、人体に直接触れるところでの使用に難点がある。また、環境上も他への影響も考慮されなければならない。
 そこで、上記亜酸化鉛及び一酸化鉛に代え、タングステン又はモリブデン溶融薬剤を和紙、コピー用紙、タイベック(登録商標)に塗布・含浸させ、同様の測定を行った。
 使用したタングステン、モリブデンは、東邦金属株式会社製のいずれも3.5μm粉末状で3N規格(99.9%純度)のものを用いた。その物性は次のものである。
However, since the chemicals used in Example 4 above are a mixture of lead suboxide (Pb + PbO) and lead monoxide (PbO), there are difficulties in using them directly in contact with the human body. Also, environmental and other impacts must be considered.
Therefore, in place of the above lead suboxide and lead monoxide, a tungsten or molybdenum molten chemical was applied and impregnated on Japanese paper, copy paper, and Tyvek (registered trademark), and the same measurement was performed.
The tungsten and molybdenum used were those manufactured by Toho Metals Co., Ltd., in the form of 3.5 μm powder and 3N standard (99.9% purity). Its physical properties are as follows.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 上記薬剤200Bを超越液剤とし、これにタングステン、モリブデンをそれぞれ重量比で1.5倍重量を混合させて、それぞれ「超越液剤+タングステン(3.5μm粉末)」、「超越液剤+モリブデン(3.5μm粉末)」液剤とし、この液剤をそれぞれ和紙、コピー紙、タイベックスに塗布した。
 なお、タイベック(登録商標)とは、デュポン社が独自開発した高密度ポリエチレン不織布で、0.5~10ミクロンのポリエチレンの極細長繊維をランダムに積層し、熱と圧力だけで結合させたシート(不織布)をいい(http://tyvek.co.jp/construction/about/)、優れた透湿・防水性能を有し、抜群の強度と耐久性能を保持する特性を有する(同)。
The above-mentioned drug 200B is used as a translucent agent, and tungsten and molybdenum are mixed in a weight ratio of 1.5 times each to obtain “transcendental liquid agent + tungsten (3.5 μm powder)” and “transcendental liquid agent + molybdenum (3. 5 μm powder) ”solution, and this solution was applied to Japanese paper, copy paper, and Tyvex, respectively.
Tyvek (registered trademark) is a high-density polyethylene nonwoven fabric originally developed by DuPont. A sheet (nonwoven fabric) in which ultrathin polyethylene fibers of 0.5 to 10 microns are randomly laminated and bonded only by heat and pressure. (Http://tyvek.co.jp/construction/about/), has excellent moisture permeability and waterproof performance, and maintains outstanding strength and durability (same as above).
 上記超越液剤にタングステン粉末又はモリブデン粉末を混合させ、これを上記の和紙、コピー紙及びタイベックスのそれぞれに塗布含浸させたサンプルを用意し、その放射線遮蔽実験を行った。
 すなわち、測定資料サンプルとして、次を用意した。
・No.1和紙「超越液剤+タングステン(3.5μm粉末)」塗布品(以下、「No.1和紙」サンプルという)
・No.2和紙「超越液剤+タングステン(3.5μm粉末)」塗布品(以下、「No.2和紙」サンプルという)
・No.3和紙「超越液剤+タングステン(3.5μm粉末)」塗布品(以下、「No.3和紙」サンプルという)
・No.1コピー紙「超越液剤+タングステン(3.5μm粉末)」塗布品(以下、「No.1コピー紙」サンプルという)
・No.2コピー紙「超越液剤+モリブデン(3.5μm粉末)」塗布品(以下、「No.2コピー紙」サンプルという)
・No.1タイベック「超越液剤+タングステン(3.5μm粉末)」塗布品(以下、「No.1タイベック」サンプルという)
・No.2タイベック「超越液剤+タングステン(3.5μm粉末)」塗布品(以下、「No.2タイベック」サンプルという)
・No.0土「超越液剤+タングステン(3.5μm粉末)」塗布品(以下、「No.0土」サンプルという)
Samples were prepared by mixing tungsten powder or molybdenum powder with the translucent agent, and applying and impregnating each of the above Japanese paper, copy paper, and Tyvex, and conducting radiation shielding experiments.
That is, the following were prepared as measurement data samples.
・ No.1 Japanese paper “Transcendent + Tungsten (3.5μm powder)” coated product (hereinafter referred to as “No.1 Japanese paper” sample)
・ No.2 Japanese paper “Transcendent + Tungsten (3.5μm powder)” coated product (hereinafter referred to as “No.2 Japanese paper” sample)
・ No.3 Japanese paper “Transcendent + Tungsten (3.5μm powder)” coated product (hereinafter referred to as “No.3 Japanese paper” sample)
・ No.1 copy paper “Super Transcendent + Tungsten (3.5μm powder)” coated product (hereinafter referred to as “No.1 copy paper” sample)
・ No.2 copy paper “Super Transcendent + Molybdenum (3.5μm powder)” coated product (hereinafter referred to as “No.2 copy paper” sample)
・ No.1 Tyvek “Transcendant + Tungsten (3.5μm powder)” coated product (hereinafter referred to as “No.1 Tyvek” sample)
・ No.2 Tyvek “Transcendent + Tungsten (3.5μm powder)” coated product (hereinafter referred to as “No.2 Tyvek” sample)
・ No.0 Soil “Transcendent + Tungsten (3.5μm powder)” coated product (hereinafter referred to as “No.0 Sat” sample)
 各サンプルの材質、重量(10cm×10cm)を整理すると以下のとおりである。
 その上で、上記和紙(10cm×10cm)を3枚、コピー用紙(10cm×10cm)2枚、タイベック(10cm×10cm)2枚を用意し、これらの和紙3枚にコピー用紙1枚及びタイベック2枚には、超越液剤(200B)に対しこの1.5重量倍のタングステン(3.5μm粉末)を混合させた液剤を塗布含浸させ、各測定資料サンプルを上記「No.1和紙」サンプル、「No.2和紙」サンプル、「No.3和紙」サンプル、「No.1コピー紙」サンプル、「No.1タイベック」サンプル、「No.2タイベック」サンプルとし、また、コピー用紙1枚には、超越液剤(200B)に対しこの1.5重量倍のモリブデン(3.5μm粉末)を混合させた液剤を塗布含浸させ、これを「No.2コピー紙」サンプルとした。
The material and weight (10 cm × 10 cm) of each sample are organized as follows.
On top of that, three sheets of the above-mentioned Japanese paper (10 cm × 10 cm), two sheets of copy paper (10 cm × 10 cm), and two sheets of tyvek (10 cm × 10 cm) are prepared. The sheet was coated and impregnated with a solution obtained by mixing 1.5 times the weight of tungsten (3.5 μm powder) with the translucent solution (200B), and each measurement material sample was added to the “No. 1 Japanese paper” sample, “No. .2 Washi ”,“ No.3 Washi ”,“ No.1 Copy Paper ”,“ No.1 Tyvek ”, and“ No.2 Tyvek ”Samples. The liquid agent (200B) was coated and impregnated with a liquid agent obtained by mixing 1.5 times by weight of molybdenum (3.5 μm powder), and this was used as a “No. 2 copy paper” sample.
 なお、上記「No.0土」サンプルは、上記「No.1和紙」サンプル、「No.2和紙」サンプル、「No.3和紙」サンプル、「No.1コピー紙」サンプル、「No.2コピー紙」サンプル、「No.1タイベック」サンプル、「No.2タイベック」サンプルのそれぞれの測定値と比較検証するためのサンプルであり、上記実施例3で使用した前述の平成23年7月7日に郡山市酒蓋公園(福島県郡山市深沢2丁目)で採取の土壌50gに測定中に土壌粒子の飛散を防止するために上記「超越液剤(50g)+タングステン(3.5μm粉末)(75g)」を塗布し固化したサンプルである。 The “No. 0 Sat” sample is the “No. 1 Washi” sample, “No. 2 Washi” sample, “No. 3 Washi” sample, “No. 1 copy paper” sample, “No. 2” These are samples for comparison with the measured values of the “copy paper” sample, the “No. 1 tyvek” sample, and the “No. 2 tyvek” sample, and the above-mentioned July 7, 2011 used in Example 3 above. To prevent the scattering of soil particles during measurement on 50g of soil collected at Koriyama Sakeku Park (2chome, Koriyama City, Fukushima Prefecture) on the day, the above-mentioned “Transcendental Solution (50g) + Tungsten (3.5μm powder) (75g) ) "Is applied and solidified.
 測定は、財団法人化学研究評価機構高分子試験・評価センター東京事業者(東京都江東区東雲2-11-17 所長 香山茂)において、平成23年11月14日にサーベイメータによる表面汚染密度測定を行った。使用した測定機器としては、GM(ガイガー・ミュラー)サーベイメータ(1)DETECTOR LUDLUM MODEL 44-9(LUDLUM MEASUREMENTS,INC.製)、(2)SURVEY METER LUDLUM MODEL 14C(同LUDLUM MEASUREMENTS,INC.製)を使用した。
 LUDLUM MEASUREMENTS,INC.製「DETECTOR LUDLUM MODEL 44-9」は、GM(ガイガー・ミュラー型)パンケーキプローブを有する放射線検出器であり、次の仕様のものである。
(1)用途:α線,β線,γ線サーベイおよび所持品検査
(2)検出器:パンケーキ型ハロゲン消滅GM
(3)対応製品:汎用サーベイメータ,計数率計,計数器
(4)窓:1.7±0.3mg/cm2 マイカ
(5)窓エリア:アクティブ -15cm2、オープン -12cm2
(6)検出効率(4π幾何学効率):C-14:5%、Sr-90/Y-90:22%、Tc-99:19%、P-32:32%、Pu-239:15%、I-125:0.2%
(7)感度:3,300cpm/mR/hr(Cs-137 γ線)
(8)エネルギーレスポンス:エネルギーに依存(Ludlum社オプションエネルギーフィルタ参照)
(9)デッドタイム:80μs
(10)動作電圧:900V
(11)コネクタ:C タイプシリーズ
(12)構成:アルミ製ハウジング(色:ベージュコーティング)およびステンレス鋼製防護スクリーン(79%オープン)
(13)使用温度範囲: -15~50℃
(14)サイズ:4.6cm(高)×6.9cm(幅)×27.2cm(長)
(15)重量:0.5kg
(16)検出範囲:0~2000μSv/h
Measurements were made at the Tokyo Institute of Chemical Research, Polymer Testing and Evaluation Center Tokyo (Shigeru Kayama, Manager, 2-11-17 Shinonome, Koto-ku, Tokyo) on November 14, 2011, using a survey meter to measure the surface contamination density. went. GM (Geiger Muller) survey meter (1) DETECTOR LUDLUM MODEL 44-9 (manufactured by LUDLUM MEASUREMENTS, INC.), (2) SURVEY METER LUDLUM MODEL 14C (manufactured by LUDLUM MEASUREMENTS, INC.) used.
“DETECTOR LUDLUM MODEL 44-9” manufactured by LUDLUM MEASUREMENTS, INC. Is a radiation detector having a GM (Geiger-Muller type) pancake probe and has the following specifications.
(1) Application: α-ray, β-ray, γ-ray survey and inventory inspection (2) Detector: Pancake type halogen extinction GM
(3) the corresponding product: General survey meter, counting rate meter, counter (4) Window: 1.7 ± 0.3mg / cm 2 Mica (5) Window Area: Active -15Cm2, open -12cm2
(6) Detection efficiency (4π geometric efficiency): C-14: 5%, Sr-90 / Y-90: 22%, Tc-99: 19%, P-32: 32%, Pu-239: 15% , I-125: 0.2%
(7) Sensitivity: 3,300 cpm / mR / hr (Cs-137 γ-ray)
(8) Energy response: Energy dependent (see Ludlum optional energy filter)
(9) Dead time: 80μs
(10) Operating voltage: 900V
(11) Connector: C type series (12) Configuration: Aluminum housing (color: beige coating) and stainless steel protective screen (79% open)
(13) Operating temperature range: -15 to 50 ° C
(14) Size: 4.6cm (high) x 6.9cm (width) x 27.2cm (long)
(15) Weight: 0.5kg
(16) Detection range: 0 to 2000 μSv / h
 また、「SURVEY METER LUDLUM MODEL 14C」も、核医学の要件を満たすように設計され、α線、β線、及び0から200 MR/HRのγ線検出を1つ以上の外部GM(ガイガー・ミュラー検出器)又はシンチレーション検出器を用いることができる検出器であり、以下の仕様のものである。
(1)対応検知器:ガイガー・ミュラー管、シンチレーション管
(2)メータ目盛り:通常0-2m R/hr 及びcpm、電池テスト(他も可)
(3)乗数:X0.1、X1、X10、X100、X1000
(4)リニア形:探知器の接続状態で、真値±10%以内の読み取り
(5)コネクタ:シリーズ「C」(他も可)
(6)内部検知器:エネルギー補償済みガイガー・ミュラー管(1000倍スケールでの使用時のみ)
(7)エネルギー応答:60keV-3 MeVの間の真値の±15%以内(内部検知器の使用のみ)
(8)敷居値:30mV±10mV
(9)オーディオ:ON/OFFするユニモフスピーカー内蔵(2フィートで60dB以上)
(10)較正制御:器具(保護カバー具備)の正面からアクセス可
(11)高電圧: 900 V
(12)敷居値:30mV±10mV
(13)応答:最終読取の10%-90%のFAST(4秒)又はSLOW(22秒)を選択するトグルスイッチ
(14)リセット:ゼロ値に合わせるためには押しボタン
(15)パワー:2つの各「D」セル型電池(外部的に接続可能な密封区画が収容される)
(16)バッテリー寿命:通常1000時間以上(メーター上でバッテリー状態をチェック可)
(17)目盛り:2.5インチ(6.4cm)の弧、アナログ型1mA
(18)構造:ベージュのポリウレタンエナメル塗装のアルミ鋳造引き
(19)温度範囲:4°F(-20℃)から122°F(50℃) -40°F(-40℃)から150°F(65℃)まで操作可
(20)寸法:6.5インチ(16.5cm)のH X3.5インチ(8.9cm)W X8.5インチ(21.6cm)L
(21)重さ:バッテリーを含む3.5ポンド(1.6kg)
The “SURVEY METER LUDLUM MODEL 14C” is also designed to meet the requirements of nuclear medicine, and can detect alpha rays, beta rays, and gamma rays from 0 to 200 MR / HR with one or more external GMs (Geiger Muller Detector) or a scintillation detector, which has the following specifications.
(1) Supported detectors: Geiger-Muller tube, scintillation tube (2) Meter scale: Normal 0-2m R / hr and cpm, battery test (others are also acceptable)
(3) Multiplier: X0.1, X1, X10, X100, X1000
(4) Linear type: Reading within ± 10% of true value with detector connected (5) Connector: Series “C” (others are also possible)
(6) Internal detector: Geiger-Muller tube with energy compensation (only when used at 1000 times scale)
(7) Energy response: Within ± 15% of the true value between 60keV-3 MeV (use of internal detector only)
(8) Threshold value: 30mV ± 10mV
(9) Audio: Built-in unimov speaker (ON / OFF) (60dB or more at 2 feet)
(10) Calibration control: accessible from the front of the instrument (with protective cover) (11) High voltage: 900 V
(12) Threshold value: 30mV ± 10mV
(13) Response: Toggle switch to select FAST (4 seconds) or SLOW (22 seconds) of 10% -90% of last reading (14) Reset: Push button (15) Power to set to zero value: 2 Each "D" cell type battery (contains an externally connectable sealed compartment)
(16) Battery life: Usually over 1000 hours (battery status can be checked on the meter)
(17) Scale: 2.5 inch (6.4cm) arc, analog type 1mA
(18) Structure: Aluminum cast with beige polyurethane enamel coating (19) Temperature range: 4 ° F (-20 ° C) to 122 ° F (50 ° C) -40 ° F (-40 ° C) to 150 ° F ( (20) Dimensions: 6.5 inches (16.5cm) H X3.5 inches (8.9cm) W X8.5 inches (21.6cm) L
(21) Weight: 3.5 pounds (1.6kg) including battery
 測定方法は、比較参照サンプル「No.0土」の上に、その他の各測定資料サンプル上記「No.1和紙」、「No.2和紙」、「No.3和紙」、「No.1コピー紙」、「No.2コピー紙」、「No.1タイベック」、「No.2タイベック」を置き、その上からプローブをあて(プローブとの距離23mmに統一)、2分間の照射の後の数値を測定した。なお、プローブから測定対象物を遠ざけ、同様にバックグラウンドを測定した。
 測定結果を以下に示す。
For the measurement method, on the comparative reference sample “No. 0 Sat”, other measurement data samples “No. 1 Japanese paper”, “No. 2 Japanese paper”, “No. 3 Japanese paper”, “No. 1 copy” Place "paper", "No.2 copy paper", "No.1 tyvek", "No.2 tyvek", apply the probe from above (unify the distance to the probe to 23mm), and after 2 minutes of irradiation Numerical values were measured. In addition, the measurement object was moved away from the probe, and the background was measured in the same manner.
The measurement results are shown below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 ここで、「CPM(カウント・パー・ミニット又はカウント・パー・ミニッツ)」とは、1分間当たりの放射線計測回数で表される放射線量(放射線測定機に1分間に入ってきた放射線の数を計測している)である。人体への影響の大小は考慮していない。「100 CPM が約 1 マイクロシーベルト/hr に相当する」とされ、「1Bq(ベクレル)の放射性物質から毎崩壊時に1個の放射線が放出されて、その放射線を検出器全て捕まえている場合には、60CPMの計数率が1Bqの放射能の量であることを示す」ということである。 Here, “CPM (count per minute or count per minute)” is the amount of radiation expressed by the number of radiation measurements per minute (the number of radiation that has entered the radiation measuring instrument per minute). Measuring). It does not consider the impact on the human body. “100 CPM is equivalent to about 1 microsievert / hr”, “when 1 radiation is emitted from the radioactive material of 1 Bq (Becquerel) at every decay and all the detectors are captured. Indicates that a count rate of 60 CPM is an amount of radioactivity of 1 Bq. "
 上記の表Xから明らかなとおり、比較参照サンプル「No.0土」サンプルの測定値が420CPMであったものが、その上に、各測定資料サンプル「No.1和紙」サンプル、「No.2和紙」サンプル、「No.3和紙」サンプル、「No.1コピー紙」サンプル、「No.2コピー紙」サンプル、「No.1タイベック」サンプル、「No.2タイベック」サンプルを置くことにより、それぞれ200CPM~320CPM等、放射能遮蔽効果があることが知り得た。 As is clear from Table X above, the measured value of the comparative reference sample “No. 0 Sat” sample was 420 CPM, and further, each measurement data sample “No. 1 Japanese paper” sample, “No. 2 By placing `` Washi '' sample, `` No.3 Washi '' sample, `` No.1 copy paper '' sample, `` No.2 copy paper '' sample, `` No.1 Tyvek '' sample, `` No.2 Tyvek '' sample, It was found that each had a radiation shielding effect such as 200 CPM to 320 CPM.
 なお、上記の表Xは、「No.0土」サンプルの420CPMとの比較であるが、「No.0土」サンプルは、上述するように、当該測定中の土壌粒子の飛散を防止するために、上記「超越液剤(50g)+タングステン(3.5μm粉末)(75g)」を塗布し固化したものであり、本来的には、平成23年7月7日に郡山市酒蓋公園(福島県郡山市深沢2丁目)で採取の土壌である。この土壌を直接測定したものは、上記実施例3の表5に示されるように、620CPM(サンプルA参照)であり、それが、前述の「超越液剤(50g)+タングステン(3.5μm粉末)(75g)」を塗布・固化することにより、420CPMに低減され、さらに、その上に各サンプルを置くことにより、さらに低減されて、200CPM~320CPMの測定結果を得ていることを知りうる。 The above table X is a comparison with 420 CPM of the “No. 0 soil” sample, but the “No. 0 soil” sample prevents the scattering of soil particles during the measurement as described above. The above-mentioned “Transcendent (50 g) + Tungsten (3.5 μm powder) (75 g)” was applied and solidified, and originally, on July 7, 2011, Koriyama-shi Sakeku Park (Fukushima Prefecture) The soil is collected in Fukasawa, Koriyama City. A direct measurement of this soil is 620 CPM (see Sample A), as shown in Table 5 of Example 3 above, which is the above-mentioned “transluent (50 g) + tungsten (3.5 μm powder) ( 75 g) ”is reduced to 420 CPM by applying and solidifying, and further, by placing each sample thereon, it can be known that the measurement results of 200 CPM to 320 CPM are obtained.
 したがって、比較参照サンプル「No.0土」との比較における放射線遮蔽率(低減率)は、23.8%~52.4%と優れた放射線遮蔽効果を示し、さらには、上記タングステン粉末溶融液剤の塗布含浸以前の採取土壌(620CPM)との比較における放射線低減率(遮蔽率)は、上記表中の「採取土との放射線遮蔽率」に示されるように、最大48.4%~67.7%の放射線遮蔽効果を有する。 Accordingly, the radiation shielding rate (reduction rate) in comparison with the comparative reference sample “No. 0 Sat” shows an excellent radiation shielding effect of 23.8% to 52.4%. The radiation reduction rate (shielding rate) in comparison with the collected soil (620 CPM) before the coating impregnation of the maximum is 48.4% to 67.67 as shown in “Radiation shielding rate with collected soil” in the above table. It has a radiation shielding effect of 7%.
 なお、上記に使用する和紙について、液剤塗布前の和紙と超越液剤+タングステン(3.5μm粉末)塗布後の和紙について、デジタルマイクロスコープ200倍写真を参考までに検証した。
 図1は、液剤塗布前の200倍和紙表面拡大写真であり、図2は、同「超越液剤+タングステン(3.5μm粉末)」塗布後の200倍和紙表面拡大写真、図3は、同200倍和紙拡大断面写真である。いずれも、和紙表面及び断面内部まで、液剤が浸透していることを知りうる。
In addition, about the Japanese paper used above, the Japanese paper before application of the liquid agent and the Japanese paper after application of the translucent agent + tungsten (3.5 μm powder) were verified with reference to a digital microscope 200 times photograph.
Fig. 1 is a 200x magnified photograph of the surface of Japanese paper before application of the liquid agent, Fig. 2 is a magnified photograph of the surface of the 200 paper of Japanese paper after application of the "translucent agent + tungsten (3.5 µm powder)", and Fig. 3 is a magnification of 200x. It is a Japanese paper enlarged cross-sectional photograph. In any case, it can be known that the liquid agent penetrates to the surface of the Japanese paper and the inside of the cross section.
 次いで、上記実施例5で用いた「超越液剤+3Nタングステン(3.5μm粉末)」液剤をガラス繊維(ニチアス製)、クラフト紙、和紙に塗布し、各サンプルを15cm×17cmに切断し、これを各16枚重ねてテープで固定した各サンプルを作成した。各サンプルについては、上記実施例5で使用したメチルトリメトキシシラン、メタノール、純水、硝酸を加えて加熱・環流の反応終了後、メタノールを除去して得られるアルコシキシラン縮合体MTMにイソプロプルアルコール(IPA)、アクリル(メタクリル)酸エステル共重合体にイソプロピルアルコールを混合した上記薬剤200Bにタングステン3.5μm粉末を1.5倍重量を混合させた液剤(ときとして「超越液剤」と称する)をガラス繊維に塗布含浸したサンプルを「W+ガラス繊維サンプル」とし、同クラフト紙に塗布含浸させたサンプルを「W+クラフト紙サンプル」とし、同和紙に塗布含浸させたサンプルを「W+和紙サンプル」とした。
 各サンプルの「Sample No.」、「Sample Name」及び「厚み(mm)」は、以下のものである。
Next, the “translucent agent + 3N tungsten (3.5 μm powder)” solution used in Example 5 was applied to glass fiber (manufactured by NICHIAS), kraft paper, Japanese paper, and each sample was cut into 15 cm × 17 cm. Each sample was prepared by stacking 16 sheets and fixing with tape. For each sample, methyltrimethoxysilane, methanol, pure water, and nitric acid used in Example 5 above were added, and after completion of the heating and refluxing reaction, methanol was removed and the alkoxysilane condensate MTM obtained by isopropyl was added to isopropyl. A solution in which 1.5 times the weight of 3.5 μm tungsten powder is mixed with the above-mentioned drug 200B in which isopropyl alcohol is mixed with an alcohol (IPA) and acrylic (methacrylic acid) ester copolymer (sometimes referred to as “transcendental liquid agent”). The sample coated and impregnated with glass fiber is called “W + glass fiber sample”, the sample coated and impregnated on the kraft paper is called “W + craft paper sample”, and the sample coated and impregnated on the same paper is called “W + Japanese paper sample”. did.
“Sample No.”, “Sample Name”, and “Thickness (mm)” of each sample are as follows.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 この各サンプルに対し、γ線照射実験を行い、その透過率(遮蔽率)を測定した。
 測定詳細は以下のとおりである。
○東邦金属株式会社商品開発課坂田浩章持ち込みの上記サンプル品についてのγ線依頼照射(「依頼照射」とは、コバルト60ガンマ線照射室の管理主任者が申請者からの依頼を受けて照射を行うことをいう)により実施。
○測定場所:名古屋大学工学部 コバルト60照射室
○測定日時:2011/ll/28(月)・12/2(金)・12/5(月):10.00~16.00
○測定機材:Co-60照射装置/フリッケ線量計
○測定目的:サンプルの放射線遮蔽率を測定
○使用線源:Co-60
○測定方法:線源から30〔cm〕の所に鉛ブロックを構成。ブロックの穴に試料を貼り付け、γ線の線量を測定する。
○照射時間:1試料につき 60[min]×3回
○評価方法/評価者:フリッケ線量計を使用し、名古屋大学工学部コバルト60照射室依頼照射・照射室管理責任者今井重文技師の評価による。
○使用サンプル:各サンプルに液剤を塗布して素材としたもの。
○基準値:サンプル未設置時に、線量計を照射窓から試料の厚みだけ離して測定。測定は、1日1サンプル。測定の順番は以下のとおりで行った。
A γ-ray irradiation experiment was performed on each sample, and the transmittance (shielding rate) was measured.
The measurement details are as follows.
○ Toho Metals Co., Ltd. Product Development Division Hiroaki Sakata Bringing γ-ray request irradiation for the above sample products (“Request irradiation” means that the supervisor of the cobalt 60 gamma irradiation room receives the request from the applicant. Implemented).
○ Measurement location: Cobalt 60 irradiation room, Faculty of Engineering, Nagoya University ○ Measurement date: 2011 / ll / 28 (Monday), 12/2 (Friday), 12/5 (Monday): 10.00-16.00
○ Measurement equipment: Co-60 irradiation device / Flicke dosimeter ○ Measurement purpose: Measure the radiation shielding rate of the sample ○ Use source: Co-60
○ Measurement method: A lead block is constructed 30cm from the radiation source. A sample is attached to the hole of the block and the dose of γ-ray is measured.
○ Irradiation time: 60 [min] x 3 times per sample ○ Evaluation method / evaluator: Based on the evaluation of Shigefumi Imai, the person in charge of irradiation / irradiation room management at the Cobalt 60 irradiation room at Nagoya University, using a Flicke dosimeter.
○ Samples used: Samples made by applying a liquid to each sample.
○ Reference value: When the sample is not installed, measure the dosimeter away from the irradiation window by the thickness of the sample. Measurement is one sample per day. The order of measurement was as follows.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
○実験結果
Figure JPOXMLDOC01-appb-T000021
○ Experimental results
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
○理論値:Pb・10[cm]でほぼ100%遮蔽(99.996%)という標準データと、タングステンの密度から遮蔽率の理論値を求めると以下のとおりである(この場合の理論値は密度・純度ともに100%のWの板材での数値となる。)。 ○ Theoretical value: Pb · 10 [cm] is almost 100% shielded (99.996%) standard data and the theoretical value of the shielding rate from the density of tungsten is as follows (the theoretical value in this case is Both the density and purity are values for a 100% W plate.)
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
○今井技師の考察評価
1.試料「W+ガラス繊維」は、同等厚さのW板とほぼ同等(98%)の数値
2.試料「W+クラフト紙」は、同等厚さのW板を上回る(150%)の数値
3.試料「W+和紙」は、同等厚さのW板にやや劣る(81%)数値
を得た。
○ Consideration evaluation by Imai engineer The sample “W + glass fiber” has a numerical value that is almost the same (98%) as the W plate having the same thickness. Sample “W + kraft paper” has a numerical value of 150% higher than a W plate of equivalent thickness. The sample “W + Japanese paper” obtained a numerical value slightly inferior (81%) to the W plate having the same thickness.
 上記考察評価から明らかなように、この測定に係るγ線遮蔽は、ガラス繊維に上記液剤を含浸させたサンプルを16枚積層させ、僅か4.1mm厚で同等厚さのタングステン板のβ線遮蔽に遜色ない結果を示し、クラフト紙含浸にあっては、僅か4.1mm厚で同等厚さのタングステン板の1.5倍ものγ線遮蔽を達成できた。
 したがって、上記液剤は、放射線(γ線)遮蔽剤として有効であり、またこの液剤を塗布含浸させた紙素材又は繊維素材は、放射線(γ線)遮蔽材として極めて優れた効果を有する。
As is apparent from the above discussion and evaluation, the gamma ray shielding according to this measurement is performed by laminating 16 samples of glass fiber impregnated with the above liquid agent, and β-ray shielding of a tungsten plate having a thickness of only 4.1 mm and an equivalent thickness. In the kraft paper impregnation, γ-ray shielding of 1.5 times that of a tungsten plate having a thickness of only 4.1 mm and an equivalent thickness was achieved.
Therefore, the liquid agent is effective as a radiation (γ-ray) shielding agent, and a paper material or a fiber material impregnated with this liquid agent has a very excellent effect as a radiation (γ-ray) shielding material.
 上述してきたように、上記実施例2は、土壌表面に上記薬剤を散布し、土壌表面の放射能物質の再飛散の防止及び土壌表面の除染として実施したが、これは土壌表面だけに限られるものではなく、例えば、コンクリート表面であっても、射能物質の再飛散を防止できることはもとより、放射能物質の除染についても、例えば、極低温のドライアイス粒子等を吹き付けることにより上記放表面を引き剥がすことができ、前記除染評価(その2)の範囲内において、一定程度の効果があることは明らかである。したがって、本発明に係る放射能汚染土壌の飛散防止及び除染・防護は、土壌表面に限られるものではなく、その表面性質が許容される限り、あらゆる材質表面における放射能物質の再飛散の防止及び除染・防護にも適用可能である。 As described above, Example 2 was carried out by spraying the drug on the soil surface to prevent re-scattering of radioactive substances on the soil surface and decontamination of the soil surface, but this was limited to the soil surface only. For example, even if it is a concrete surface, it is possible to prevent re-scattering of radioactive materials, as well as decontamination of radioactive materials, for example, by spraying cryogenic dry ice particles etc. It is clear that the surface can be peeled off and has a certain effect within the range of the decontamination evaluation (part 2). Therefore, scattering prevention and decontamination / protection of radioactively contaminated soil according to the present invention are not limited to the soil surface, and as long as the surface properties are allowed, the prevention of re-scattering of radioactive materials on the surface of any material It can also be applied to decontamination / protection.
(中性子線遮蔽測定)
 次いで、上記実施例5で用いた「超越液剤(200B)+3Nタングステン(3.5μm粉末)」液剤をクラフト紙に塗布し、塗布されたクラフト紙を22cm×22cmに切断したサンプルA(以下、「超越遮蔽紙A」ともいう)を作成した。具体的には、前記超越液剤(200B)500gに対し、前記3Nタングステン(3.5μm粉末)750gを混合し、これを厚さ95.3μm、重量70g/m2のクラフト紙に塗布し、その後、この塗布されたクラフト紙を22cm×22cmに切断してサンプルAとした。
(Neutron shielding measurement)
Next, the “transcendent solution (200B) + 3N tungsten (3.5 μm powder)” solution used in Example 5 above was applied to kraft paper, and the applied kraft paper was cut into 22 cm × 22 cm sample A (hereinafter “transcendence”). Also referred to as “shielding paper A”. Specifically, 750 g of 3N tungsten (3.5 μm powder) is mixed with 500 g of the translucent agent (200B), and this is applied to kraft paper having a thickness of 95.3 μm and a weight of 70 g / m 2 . The coated kraft paper was cut into 22 cm × 22 cm to obtain Sample A.
 一方、同様に上記実施例5で用いた「超越液剤(200B)+3Nタングステン(3.5μm粉末)」液剤に当該超越液剤(200B)の10%重量のホウ酸末(健栄製薬株式会社製日本薬局方ホウ酸((H3BO3) 99.5%以上))を混合し、この液剤を同様のクラフト紙に塗布し、塗布されたクラフト紙を22cm×22cmに切断したサンプルB(以下、「超越遮蔽紙B」ともいう)を作成した。具体的には、前記超越液剤(200B)500gに対し、前記3Nタングステン(3.5μm粉末)750gを混合し、さらに、これに70gのホウ酸末(健栄製薬株式会社製日本薬局方ホウ酸((H3BO3) 99.5%以上))を混合し、この液剤を同様のクラフト紙に塗布し、これを厚さ95.3μm、重量70g/m2のクラフト紙に塗布し、その後、この塗布されたクラフト紙を22cm×22cmに切断してサンプルBとした。 On the other hand, 10% weight boric acid powder (Kenei Pharmaceutical Co., Ltd. Nippon Pharmacy) of the above-mentioned transcendental solution (200B) was added to the “transcendental solution (200B) + 3N tungsten (3.5 μm powder)” solution used in Example 5 above. Sample B (hereinafter referred to as “Transcendental Shielding Paper B”) mixed with boric acid ((H3BO3) 99.5% or more), this liquid agent was applied to the same kraft paper, and the applied kraft paper was cut into 22 cm × 22 cm. (Also called). Specifically, 750 g of 3N tungsten (3.5 μm powder) is mixed with 500 g of the translucent agent (200B), and 70 g of boric acid powder (Japanese Pharmacopoeia Boric Acid (Kenei Pharmaceutical Co., Ltd.) (H3BO3) 99.5% or more) is mixed, and this solution is applied to the same kraft paper, which is applied to kraft paper having a thickness of 95.3 μm and a weight of 70 g / m 2 , and then the applied kraft paper. The paper was cut into 22 cm × 22 cm to obtain Sample B.
 さらに、タングステン板素材との比較を試みるために、厚さ1mm×26.5cm×33.5cm、重量1759gのタングステン板を用意し、これとの比較のため、前記サンプルA及びサンプルBをそれぞれ17枚重ね合わせて、サンプルA(「超越遮蔽紙A」)については、22cm×22cm、重量970gを測定し、また、サンプルB(「超越遮蔽紙B」)については、22cm×22cm、重量1040gを測定して、中性子線遮蔽率を測定した。 Furthermore, in order to make a comparison with the tungsten plate material, a tungsten plate having a thickness of 1 mm × 26.5 cm × 33.5 cm and a weight of 1759 g was prepared. For the sample A (“transcendent shielding paper A”), 22 cm × 22 cm and a weight of 970 g are measured, and for the sample B (“transcendental shielding paper B”), 22 cm × 22 cm and a weight of 1040 g are measured. The neutron beam shielding rate was measured.
 測定は、地方独立行政法人東京都立産業技術研究センター(東京都江東区青海2-4-10:理事長 片岡正俊)にて、線源として、Eckert & Ziegler社製カリホニウム252(Cf-252)中性子線源(商品名:N-252 S.N.;CA406S102S)(平成23年3月1日現在3.7MBq)を、測定機器としては、アロカ社製中性子サーべイメータ(商品名:TPS-451BS S.N.;46R928)を使用した。
 測定方法は、床から1mの高さで、線源と検出器の測定中心までの距離を25cm離し、その間に試料がない場合とある場合について、線量率をそれぞれ10回測定した平均値より遮蔽率を求めた。
Measurements were taken at the Tokyo Metropolitan Industrial Technology Research Center (2-4-10 Aomi, Koto-ku, Tokyo; Chairman Masatoshi Kataoka), and the source was caliphonium 252 (Cf-252) neutron from Eckert & Ziegler. A radiation source (trade name: N-252 SN; CA406S102S) (3.7 MBq as of March 1, 2011) is used as a measuring instrument, and a neutron survey meter (trade name: TPS-451BS SN; 46R928 manufactured by Aloka). )It was used.
The measurement method is a height of 1 m from the floor, the distance from the source to the measurement center of the detector is 25 cm, and there is a case where there is no sample in between, and the dose rate is shielded from the average value measured 10 times each. The rate was determined.
 なお、タングステン板は、1mm厚、26.5cm×33.5cm、重量1759gであったが、中性子線の回析等を考慮して、測定試料の大きさ22cm×22cm相当の重量(970g)に換算し、また、この1mm厚のタングステン板との中性子線遮蔽率の比較を求めるため、上記超越遮蔽紙Aについての測定試料として、22cm×22cmの1mm厚タングステン板と同等の重量(970g)となるように17枚を重ねて束ねたものを測定試料とした。
 同様に、上記超越遮蔽紙Bについても、同枚の17枚を重ね束ねた結果、その重量は1040gのものを測定試料とした。
 この結果、上記中性子線源についての線量率及び遮蔽率は以下のものである。
The tungsten plate had a thickness of 1 mm, 26.5 cm × 33.5 cm, and a weight of 1759 g. However, considering the diffraction of neutrons, the weight of the measurement sample was 22 cm × 22 cm (970 g). In order to calculate and compare the neutron beam shielding rate with this 1 mm thick tungsten plate, as a measurement sample for the transcendental shielding paper A, a weight (970 g) equivalent to a 22 mm × 22 cm 1 mm thick tungsten plate A measurement sample was obtained by stacking 17 sheets so as to be bundled.
Similarly, as for the above transcendental shielding paper B, 17 sheets of the same sheet were stacked and bundled, and the weight thereof was 1040 g.
As a result, the dose rate and shielding rate for the neutron source are as follows.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 ただし、試料がないときの線量率は、27.4±0.4μSv/時であり、遮蔽率は、(1-試料有/試料無)×100により求めた。 However, the dose rate when there was no sample was 27.4 ± 0.4 μSv / hour, and the shielding rate was obtained by (1−with sample / without sample) × 100.
 上記表17より、1mm厚タングステン板の中性子線源の線量率は27.0±0.5(μSv/時)であり、その遮蔽率は、1.5%であるのに対し、超越遮蔽紙Aでは、線量率25.9±0.5(μSv/時)、遮蔽率5.5%、超越遮蔽紙Bでは、線量率25.04±0.4(μSv/時)、遮蔽率7.3%が得られた。 From Table 17 above, the dose rate of the neutron source with a 1 mm thick tungsten plate is 27.0 ± 0.5 (μSv / hr), and the shielding rate is 1.5%, whereas the transcendent shielding paper In A, the dose rate is 25.9 ± 0.5 (μSv / hour) and the shielding rate is 5.5%. In the transcendent shielding paper B, the dose rate is 25.04 ± 0.4 (μSv / hour) and the shielding rate is 7.%. 3% was obtained.
 これは、次のような理由によるものと考えられる。すなわち、ゾル・ゲル法を利用し進化させた有機ケイ素化含物のアルコキシシラン液剤に触媒を加え撹拌させながらタングステン粉末を加えた液剤を紙等の繊維素材に塗布含浸させてなる上記測定試料A(超越遮蔽紙A)においては、含有成分のアルコキシシランが紙の水分や空気中の水分と反応してケイ素への重縮合反応を始め、また、同含有成分のケイ酸はガラス質の基本骨格に対しシロキサン結合が起きる。ここで、ガラス質の液は、毛細管現象により紙等の繊維の一本一本と繊維間に存在するタングステン微粉体の表面や、空隙、紙繊維の隅々まで浸み込み、ポリマー化することとなる。 This is thought to be due to the following reasons. That is, the measurement sample A is obtained by coating and impregnating a fiber material such as paper with a solution in which tungsten powder is added while stirring and adding a catalyst to an alkoxysilane solution of an organosiliconized material evolved by using a sol-gel method. In (Transcendental shielding paper A), the contained component alkoxysilane reacts with the moisture in the paper or in the air to initiate polycondensation reaction to silicon, and the contained component silicic acid is a glassy basic skeleton. In contrast, a siloxane bond occurs. Here, the vitreous liquid is soaked into the surface of the fine powder of tungsten existing between each fiber of paper or the like by capillarity, the gap, and every corner of the paper fiber to be polymerized. It becomes.
 そして、さらに、そこでOH基との反応結合し、強固に結びつき、剥離する事のないシロキサン結合のネットワークが出来上がることとなる。また、紙の繊維間どうしにもタングステン微粉体を包含したシラン系薄膜と紙の繊維とが一体化して形成され、シラン系液剤は有機質をも含んでいるので、結合した表面層は適度の柔軟性と撥水性をも有する機械的特性を有することとなる。 Furthermore, there will be a network of siloxane bonds that reacts with OH groups and binds firmly and does not peel off. In addition, the silane-based thin film containing tungsten fine powder and the paper fiber are formed integrally between the paper fibers, and the silane-based liquid also contains organic matter, so the bonded surface layer is moderately flexible. It has mechanical properties that have both properties and water repellency.
 また、上記測定試料B(超越遮蔽紙B)は、上記タングステン微粉体をアルコキシシラン液剤に触媒を加えた液剤にさらにホウ酸微紛末を添加、撹絆し、これを紙等の繊維素材に塗布含浸させてなる。
 α線、β線、γ線、X線等の放射線が物質中を通過するとき、その保有するエネルギーを物質に与え、電離や励起作用など原子レベルで相互作用を起こし、それが科学的変化や生物的変化に進展することがあると言われており、この超越遮蔽紙A及び超越遮蔽紙Bによれば、詳しい知見は明らかではないが、塗布含浸された繊維質内にシラン系化合物及びガラス質に微粉末タングステンが多面的・重畳的に幾層にも存在しているので、当該タングステン微粉末により、侵入する中性子線等が反射、吸収、散乱、再放散等を起こし、これが遮蔽効果を引き起こしているのではないかと推測される。
The measurement sample B (transcendent shielding paper B) is prepared by adding fine powder of boric acid to a solution obtained by adding a catalyst to an alkoxysilane solution to the tungsten fine powder, and stirring the resulting powder into a fiber material such as paper. It is coated and impregnated.
When radiation such as α-rays, β-rays, γ-rays, and X-rays passes through a substance, the energy it holds is given to the substance, causing interactions at the atomic level such as ionization and excitation, According to the transcendent shielding paper A and transcendental shielding paper B, detailed knowledge is not clear, but the silane compound and glass in the coated and impregnated fiber are not clear. Since fine tungsten powder is present in multiple layers in a multifaceted and superposed manner, the fine tungsten powder causes reflection, absorption, scattering, re-radiation, etc. of invading neutrons, which has a shielding effect. It is speculated that it is caused.
 このような中性子線に対する遮蔽効果は、これまで水槽や分厚いコンクリートや鉛板等でしか遮蔽できないと考えられてきた遮蔽物に変わりうる可能性を有しており、また、極めて加工しやすく、人体、環境への問題視される懸念は全く無く、しかも、タングステン等の微粉体の使用にて、環境にやさしい紙あるいは繊維の重層にて安価で、軽量な、放射能遮蔽効果材となりうる。
 
Such shielding effects against neutron beams have the potential to change to shields that could only be shielded with water tanks, thick concrete, lead plates, etc., and are extremely easy to process, There is no concern about environmental problems, and by using fine powders such as tungsten, it is possible to provide an inexpensive, lightweight, radiation shielding effect material with an environmentally friendly paper or fiber overlay.

Claims (13)

  1.  放射能汚染土壌表面を硬化・固化するシラン系硬化・固化剤であって、化1で示される主成分化合物と、その硬化・固化のための触媒とを含む、放射能汚染土壌表面の硬化・固化剤。
    Figure JPOXMLDOC01-appb-C000001
     
     (化1において、R、R、R及びRは、それぞれ同一又は異なっても良い、水素又は炭素数が1~4のアルキル基であり、nは2~10である)
    A silane-based curing / solidifying agent that hardens and solidifies the radioactively contaminated soil surface, comprising the main component compound represented by Chemical Formula 1 and a catalyst for curing and solidifying the radioactively contaminated soil surface. Solidifying agent.
    Figure JPOXMLDOC01-appb-C000001

    (In Chemical Formula 1, R 1 , R 2 , R 3 and R 4 may be the same or different, each being hydrogen or an alkyl group having 1 to 4 carbon atoms, and n is 2 to 10)
  2.  前記触媒は、加水分解可能な有機金属化合物であることを特徴とする、請求項1の硬化・固化剤。 The curing / solidifying agent according to claim 1, wherein the catalyst is a hydrolyzable organometallic compound.
  3.  前記加水分解可能な有機金属化合物は、チタン、ジルコニウム、アルミニウム及びスズから成る群から選ばれる一種以上の有機金属化合物であることを特徴とする、請求項2の硬化・固化剤。 The curing / solidifying agent according to claim 2, wherein the hydrolyzable organometallic compound is one or more organometallic compounds selected from the group consisting of titanium, zirconium, aluminum and tin.
  4.  さらに、3個の加水分解可能な置換基と1個は加水分解不可能な置換基を有する、化2で示される化合物を含むことを特徴とする、請求項1~3のいずれかの硬化・固化剤。
    Figure JPOXMLDOC01-appb-C000002
     (化2において、R、R及びR7は、それぞれ同一又は異なっていても良く、水素、アルキル基又はアルケニル基であり、RO、R0及びROとSiとの結合はシロキサン結合からなり、Rは、置換基としてエポキシ基又はグリシジル基(エポキシ基、グリシジル基又はアミノ基)を含んでいても良い、アルケニル基又はフェニル基である)
    4. The curing or curing process according to claim 1, further comprising a compound represented by Chemical Formula 2 having three hydrolyzable substituents and one having a non-hydrolyzable substituent. Solidifying agent.
    Figure JPOXMLDOC01-appb-C000002
    (In Chemical Formula 2, R 5 , R 6 and R 7 may be the same or different, and are hydrogen, an alkyl group or an alkenyl group, and the bond between R 5 O, R 60 and R 7 O and Si is It consists of a siloxane bond, and R 8 is an alkenyl group or a phenyl group which may contain an epoxy group or a glycidyl group (an epoxy group, a glycidyl group or an amino group) as a substituent.
  5.  さらに、2個の加水分解可能な置換基と2個の加水分解可能な置換基を有する、化3で示される化合物を含むことを特徴とする、請求項1~4のいずれかの硬化・固化剤。
    Figure JPOXMLDOC01-appb-C000003
     (化3において、R及びR11は、それぞれ同一又は異なっていても良く、水素、アルキル基又はアルケニル基であり、RO及びR11OとSiとの結合はシロキサン結合からなり、R10及びR12は、置換基としてエポキシ基又はグリシジル基を含んでいても良い、アルキル基、アルケニル基又はフェニル基である)
    5. The curing / solidification according to claim 1, further comprising a compound represented by Chemical formula 3 having two hydrolyzable substituents and two hydrolyzable substituents. Agent.
    Figure JPOXMLDOC01-appb-C000003
    (In Chemical Formula 3, R 9 and R 11 may be the same or different, and are hydrogen, an alkyl group or an alkenyl group, and the bond between R 9 O and R 11 O and Si is a siloxane bond; 10 and R 12 are an alkyl group, an alkenyl group or a phenyl group which may contain an epoxy group or a glycidyl group as a substituent.
  6.  さらに、イソプロプルアルコール(IPA)、アクリル(メタクリル)酸エステル共重合体、及び亜酸化鉛又は一酸化鉛を含有してなる請求項1~5のいずれかの硬化・固化剤。 The curing / solidifying agent according to any one of claims 1 to 5, further comprising isopropyl alcohol (IPA), an acrylic (methacrylic acid) ester copolymer, and lead suboxide or lead monoxide.
  7.  前記請求項1ないし6の硬化・固化剤を放射能汚染土壌表面に散布して放射能汚染された土壌表面の放射能物質の飛散防止及び除染方法。 A method for preventing and decontaminating radioactive substances on the soil surface contaminated with radiation by spraying the curing / solidifying agent according to any one of claims 1 to 6 on the surface of the radioactively contaminated soil.
  8.  前記請求項1ないし6の硬化・固化剤を和紙又は繊維素材に浸漬・乾燥させてなる放射能防護素材。 A radiation protection material obtained by immersing and drying the curing / solidifying agent according to any one of claims 1 to 6 in Japanese paper or a fiber material.
  9.  前記請求項8の放射能防護素材を用いた放射能防護方法。 A radiation protection method using the radiation protection material according to claim 8.
  10.  前記請求項1ないし請求項6の硬化・固化剤、イソプロプルアルコール(IPA)、アクリル(メタクリル)酸エステル共重合体、及びタングステン又はモリブデンを混合してなる放射線遮蔽剤。 A radiation shielding agent comprising the curing / solidifying agent according to any one of claims 1 to 6, isopropyl alcohol (IPA), an acrylic (methacrylic) ester copolymer, and tungsten or molybdenum.
  11.  前記請求項10の放射線遮蔽剤を紙素材、繊維素材又は固体素材の表面に塗布又は含浸させてなる放射線遮蔽材。 A radiation shielding material obtained by applying or impregnating the radiation shielding agent of claim 10 onto the surface of a paper material, a fiber material or a solid material.
  12.  前記請求項1ないし請求項6の硬化・固化剤、イソプロプルアルコール(IPA)、アクリル(メタクリル)酸エステル共重合体、及び微粉末タングステンを混合してなる中性子線遮蔽剤。 A neutron beam shielding agent obtained by mixing the curing / solidifying agent according to any one of claims 1 to 6, isopropyl alcohol (IPA), an acrylic (methacrylic) ester copolymer, and fine powder tungsten.
  13.  前記請求項12の中性子線遮蔽剤を紙素材、繊維素材又は固体素材の表面に塗布又は含浸させてなる中性子線遮蔽材。
     
    A neutron beam shielding material obtained by applying or impregnating the surface of a paper material, a fiber material, or a solid material with the neutron beam shielding agent according to claim 12.
PCT/JP2012/067554 2011-08-01 2012-07-10 Agent for hardening and solidifying radioactive contaminated soil surface, radiation blocking agent, and method for prevention of scattering of radioactive substance from surface, decontamination and protection WO2013018512A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-167931 2011-08-01
JP2011167931 2011-08-01
JP2012002717 2012-01-11
JP2012-002717 2012-02-09

Publications (1)

Publication Number Publication Date
WO2013018512A1 true WO2013018512A1 (en) 2013-02-07

Family

ID=47629043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067554 WO2013018512A1 (en) 2011-08-01 2012-07-10 Agent for hardening and solidifying radioactive contaminated soil surface, radiation blocking agent, and method for prevention of scattering of radioactive substance from surface, decontamination and protection

Country Status (1)

Country Link
WO (1) WO2013018512A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321992B1 (en) * 2011-08-17 2013-10-23 独立行政法人農業・食品産業技術総合研究機構 Removal method of contaminated soil surface
WO2022069053A1 (en) * 2020-10-01 2022-04-07 Caradonna Emiliano Process for the treatment of radioactive liquid sewage and apparatus for implementing the process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071996A (en) * 1983-09-29 1985-04-23 チッソ株式会社 Heavy metal group composition for radiation defensive material
JPS61241699A (en) * 1985-04-18 1986-10-27 東レ・ダウコーニング・シリコーン株式会社 Organopolysiloxane composition for shielding gamma-ray
JPH045207A (en) * 1990-04-23 1992-01-09 Nichiban Kenkyusho:Kk Septic-deodorant
JPH0692758A (en) * 1991-12-20 1994-04-05 Toyo Ink Mfg Co Ltd Aqueous organosilicon based composition
WO2002044277A1 (en) * 2000-12-01 2002-06-06 Kanebo, Limited Molded resin for radiation shielding
JP2007271539A (en) * 2006-03-31 2007-10-18 Nippon Tungsten Co Ltd Resin tungsten composite material
JP2012042300A (en) * 2010-08-18 2012-03-01 Sanyo Chem Ind Ltd Radioactivity diffusion prevention composition
JP2012112797A (en) * 2010-11-25 2012-06-14 Toshiba Corp Method and apparatus for treating radioactive waste liquid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071996A (en) * 1983-09-29 1985-04-23 チッソ株式会社 Heavy metal group composition for radiation defensive material
JPS61241699A (en) * 1985-04-18 1986-10-27 東レ・ダウコーニング・シリコーン株式会社 Organopolysiloxane composition for shielding gamma-ray
JPH045207A (en) * 1990-04-23 1992-01-09 Nichiban Kenkyusho:Kk Septic-deodorant
JPH0692758A (en) * 1991-12-20 1994-04-05 Toyo Ink Mfg Co Ltd Aqueous organosilicon based composition
WO2002044277A1 (en) * 2000-12-01 2002-06-06 Kanebo, Limited Molded resin for radiation shielding
JP2007271539A (en) * 2006-03-31 2007-10-18 Nippon Tungsten Co Ltd Resin tungsten composite material
JP2012042300A (en) * 2010-08-18 2012-03-01 Sanyo Chem Ind Ltd Radioactivity diffusion prevention composition
JP2012112797A (en) * 2010-11-25 2012-06-14 Toshiba Corp Method and apparatus for treating radioactive waste liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321992B1 (en) * 2011-08-17 2013-10-23 独立行政法人農業・食品産業技術総合研究機構 Removal method of contaminated soil surface
WO2022069053A1 (en) * 2020-10-01 2022-04-07 Caradonna Emiliano Process for the treatment of radioactive liquid sewage and apparatus for implementing the process
WO2022069739A1 (en) * 2020-10-01 2022-04-07 Caradonna Emiliano Process for the treatment of radioactive liquid sewage and apparatus for implementing the process

Similar Documents

Publication Publication Date Title
TW201019347A (en) Waste storage vessels and compositions therefor
Wagh et al. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields
WO2013018512A1 (en) Agent for hardening and solidifying radioactive contaminated soil surface, radiation blocking agent, and method for prevention of scattering of radioactive substance from surface, decontamination and protection
US20120038243A1 (en) High efficiency 4-pi negatron beta-3 particle emission source fabrication and its use as an electrode in a self-charged high-voltage capacitor
JP2014044197A (en) Paint film containing radiation shield material, and film formed body forming the same
JP2014028913A (en) Thermoluminescent phosphor plate and image reading device using the same
JP5832019B2 (en) Method for producing radiation shielding mortar and method for producing radiation shielding container
Kim et al. Progress toward zeolite-based self-luminous sensors for radioactive isotopes such as 201Tl and 137Cs: structures and luminescence of Hf, Cl, Tl-A and Hf, Cl, Cs, Na-A
Abdous et al. Advances in Polymeric Neutron Shielding: The Role of Benzoxazine-h-BN Nanocomposites in Nuclear Protection
JP2016014645A (en) Storage container of contaminated waste contaminated with radioactive substances
JP2520978B2 (en) Radiation shield
JP6343773B2 (en) Method for producing translucent ZnS / 10B converter neutron scintillator
KR20150111886A (en) Composite for protecting of radiation and manufacturing method thereof
Hirayama et al. Estimation of radionuclide concentration in plume using pulse height distribution measured by LaBr3 scintillation detector and its response to radionuclides in plume calculated with egs5
Abdous et al. Investigating the Radiation Shielding Properties of Hexagonal-Boron Nitride Nanocomposite with Bisphenol A-Based Polybenzoxazine Matrix
Cao Advanced Materials Manufacturing for Nuclear Radiation Shielding and Structure Protection
Nicolino et al. TENORM employed as inert material for house building: a model for evaluating the radon activity enhancement
Shawamreh Measurement of Natural Radioactive Isotopes Concentration in Soil Samples in the Northern Part of West Bank-Palestine
Tüzün Development of uniform surface sources by functionalization for decommissioning
MHATRE Tailored Polymer Ligand Sorbents for Radioanalytical Applications
Abdel Geleel et al. Decontamination of 125 I in Medical Laboratory
Banerjee et al. Development of strippable gel for surface decontamination applications
JP2022037678A (en) Common transparent shielding material for gamma rays, x rays, and neutrons
JP2016017930A (en) Radioactive contaminated marine-soil treatment method
Chen et al. Design of a remote sprayed fast-curing γ-radiation-shielding material used in the collection of the leaked radioactive waste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.07.2014)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12819408

Country of ref document: EP

Kind code of ref document: A1