JP2016017930A - Radioactive contaminated marine-soil treatment method - Google Patents

Radioactive contaminated marine-soil treatment method Download PDF

Info

Publication number
JP2016017930A
JP2016017930A JP2014142930A JP2014142930A JP2016017930A JP 2016017930 A JP2016017930 A JP 2016017930A JP 2014142930 A JP2014142930 A JP 2014142930A JP 2014142930 A JP2014142930 A JP 2014142930A JP 2016017930 A JP2016017930 A JP 2016017930A
Authority
JP
Japan
Prior art keywords
soil
contaminated
radioactive
seabed soil
seabed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014142930A
Other languages
Japanese (ja)
Other versions
JP6487158B2 (en
Inventor
初一 松本
Hatsukazu Matsumoto
初一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014142930A priority Critical patent/JP6487158B2/en
Publication of JP2016017930A publication Critical patent/JP2016017930A/en
Application granted granted Critical
Publication of JP6487158B2 publication Critical patent/JP6487158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radioactive contaminated marine-soil treatment method capable of inexpensively and safely treating radioactive contaminated soil on a sea bottom with a simple configuration.SOLUTION: The radioactive contaminated marine-soil treatment method includes: a radioactive contaminated marine-soil suction process S100 of raising, above sea, a radioactive contaminated marine-soil containing radioactive cesium on a sea bottom using a pump device; a radioactive contaminated marine-soil heating/concentrating process S200 of storing sucked radioactive contaminated soil in a contaminated soil concentrator and heating and concentrating the soil; and a radioactive contaminated marine-soil discarding process S300 of sealing and discarding the concentrated radioactive contaminated marine-soil remaining in the contaminated soil concentrator together with the contaminated soil concentrator covered with a fireproof block made of artificial ore and silicon carbide.SELECTED DRAWING: Figure 1

Description

この発明は、放射能汚染海底土処理方法に関する。   The present invention relates to a radioactively contaminated seabed soil treatment method.

2011年3月11日の東日本大震災以降、原子力発電所の事故により、放射性汚染物質に対する意識が高まっている。放射性汚染物質を除染するためには対象の汚染物に高圧水を吹き付けて、放射性汚染物質を流す高圧洗浄が知られている。そのため、大量の汚染水が発生する。   Since the Great East Japan Earthquake on March 11, 2011, the nuclear power plant has increased awareness of radioactive pollutants. In order to decontaminate radioactive contaminants, high-pressure cleaning is known in which high-pressure water is sprayed on the target contaminants and the radioactive contaminants are allowed to flow. Therefore, a large amount of contaminated water is generated.

そのため、大量の汚染水が発生した場合には、河川や海に流れることも想定される。また、大気中に浮遊している放射性汚染物質や地上に付着した放射性汚染物質は雨などにより土砂と共に、河川を伝って海へと流れ出てしまう。そして、海の中で汚染物質により汚染された土壌が蓄積されていく。そのため、このような汚染された海底土に対処する方法が望まれていた。   Therefore, when a large amount of contaminated water is generated, it can be assumed that it flows into rivers and seas. In addition, radioactive pollutants floating in the atmosphere and radioactive pollutants adhering to the ground flow out along the rivers to the sea along with the earth and sand due to rain. Then, soil contaminated with pollutants accumulates in the sea. Therefore, a method for dealing with such contaminated seabed soil has been desired.

汚染された土壌を対処する方法としては、放射性物質を吸着させて除去する方法(例えば、特許文献1参照。)や汚染された土壌をコンクリート等で囲う方法(例えば、特許文献2参照)が知られている。   As methods for dealing with contaminated soil, there are known methods for adsorbing and removing radioactive substances (for example, see Patent Document 1) and methods for surrounding contaminated soil with concrete or the like (for example, see Patent Document 2). It has been.

特開2013−083641号公報Japanese Unexamined Patent Publication No. 2013-083641 特開2013−107032号公報JP 2013-107032 A

しかしながら、汚染された海底土から汚染物質を除去・処理するには膨大な費用と、複雑な装置及び複雑な処理工程が必要であり、現実的には困難であるという問題があった。   However, there is a problem that it is difficult in practice to remove and treat the pollutant from the contaminated seabed soil, which requires enormous costs, complicated equipment and complicated treatment steps.

本発明は、上記の点に鑑みてなされたものであり、簡単な構成で、安価であり、かつ安全に海底の放射能汚染土壌を処理することができる放射能汚染海底土処理方法を提供する。   The present invention has been made in view of the above points, and provides a radioactively contaminated seabed soil treatment method that can treat radioactively contaminated soil on the seabed with a simple structure, at low cost, and safely. .

この発明は、海底の放射性セシウムを含む放射能汚染海底土を海上までポンプ装置を用いて引き揚げる放射能汚染海底土吸引工程と、吸い上げた放射能汚染土壌を汚染土壌濃縮装置に収容し加熱濃縮させる放射能汚染海底土加熱濃縮工程と、汚染土壌濃縮装置に残された濃縮された放射能汚染海底土は、人工鉱石と炭化珪素とよりなる耐火ブロックに覆われた汚染土壌濃縮装置と共に封止して廃棄する放射能汚染海底土廃棄処理工程と、よりなることを特徴とする放射能汚染海底土処理方法を提供するものである。   The present invention includes a radioactively contaminated seabed soil suction step for lifting radioactively contaminated seabed soil containing radioactive cesium on the seafloor to the sea using a pump device, and the radioactively contaminated soil that has been sucked up is accommodated in a contaminated soil concentrator and heated and concentrated. The radioactively contaminated seabed soil heating and concentration process and the concentrated radioactively contaminated seabed soil left in the contaminated soil concentrator are sealed together with the contaminated soil concentrator covered with a refractory block made of artificial ore and silicon carbide. The present invention provides a radioactively polluted seabed soil disposal method and a radioactively polluted seabed soil disposal method characterized by comprising:

また、前記人工鉱石は珪素又は珪素化合物に金属及びカルシウムを添加して溶融、冷却を繰り返して製造されたことにも特徴を有する。   The artificial ore is also characterized in that it is manufactured by adding metal and calcium to silicon or a silicon compound, and melting and cooling repeatedly.

また、汚染土壌処理工程では、固形化した汚染物質を濃縮したタンク本体の全体を人工鉱石を主成分としたコーティング剤により密封状に包被し、かかる包被処理したタンク本体を海洋投棄や埋立てや防波堤等に利用することにも特徴を有する。   Also, in the contaminated soil treatment process, the entire tank body concentrated with the solidified pollutant is sealed in a sealed manner with a coating agent mainly composed of artificial ore, and the encased tank body is dumped or landfilled. It is also characterized by its use as a breakwater.

また、前記コーティング剤は酸化アルミニウムと液状エポキシ樹脂との混合溶液からなる主剤と、前記人工鉱石の粉末とを混合し、これらを硬化させる硬化剤により生成されることにも特徴を有する。   The coating agent is also characterized in that it is produced by a hardener that mixes a main agent composed of a mixed solution of aluminum oxide and a liquid epoxy resin and the powder of the artificial ore and hardens them.

本発明によれば、海上までポンプ装置を用いて引き揚げる放射能汚染海底土吸引工程と、吸い上げた放射能汚染土壌を汚染土壌濃縮装置に収容し加熱濃縮させる放射能汚染海底土加熱濃縮工程と、汚染土壌濃縮装置に残された濃縮された放射能汚染海底土は、人工鉱石と炭化珪素とよりなる耐火ブロックに覆われた汚染土壌濃縮装置と共に封止して廃棄する放射能汚染海底土廃棄処理工程とにより、海底の放射性セシウムを含む放射能汚染海底土を低コストかつ容易に処理することができる。   According to the present invention, a radioactively polluted seabed soil suction step that is lifted up to the sea using a pump device, a radioactively polluted seabed soil heating and concentration step in which the sucked radioactively polluted soil is housed in a contaminated soil concentrator and heated and concentrated, Concentrated radioactive contaminated seabed soil left in the contaminated soil concentrator is sealed together with the contaminated soil concentrator covered with a refractory block made of artificial ore and silicon carbide and discarded. By the process, the radioactively contaminated seabed soil containing radioactive cesium on the seabed can be easily processed at low cost.

本発明の放射能汚染海底土処理方法のフローチャートである。It is a flowchart of the radioactive contamination seabed soil processing method of this invention. 本発明の放射能汚染海底土処理方法の概略図である。It is the schematic of the radioactive contamination seabed soil processing method of this invention. 汚染土壌濃縮装置の説明図である。It is explanatory drawing of a contaminated soil concentration apparatus. 汚染土壌濃縮装置の説明図である。It is explanatory drawing of a contaminated soil concentration apparatus. γ線遮蔽計測実験に用いる計測装置を説明する図である。It is a figure explaining the measuring device used for a gamma ray shielding measurement experiment. 中性子遮蔽計測実験に用いる計測装置を説明する図である。It is a figure explaining the measuring device used for a neutron shielding measurement experiment.

以下、本実施形態に係る放射能汚染海底土処理方法について図面を参照しながら具体的に説明する。ここで、図1は、放射能汚染海底土処理方法のフローチャートである。図2は、放射能汚染海底土処理方法の概略図である。図3は、汚染土壌濃縮装置の説明図である。図4は、コーティング剤を塗布したタンクの説明図である。   Hereinafter, the radioactively contaminated seabed soil treatment method according to the present embodiment will be specifically described with reference to the drawings. Here, FIG. 1 is a flowchart of the radioactively contaminated seabed soil treatment method. FIG. 2 is a schematic view of the radioactively contaminated seabed soil treatment method. FIG. 3 is an explanatory diagram of a contaminated soil concentration apparatus. FIG. 4 is an explanatory diagram of a tank to which a coating agent is applied.

本発明は、図1,図2に示すように、放射性汚染物質である放射性セシウムを含み、海底に堆積された海底土を海上まで引き揚げて(放射能汚染海底土吸引工程S100)、タンカー上に設置した加熱濃縮処理装置により海底土を加熱濃縮させて(放射能汚染海底土加熱濃縮工程S200)、輸送して破棄する(放射能汚染海底土廃棄処理工程S300)処理方法である。   As shown in FIGS. 1 and 2, the present invention includes radioactive cesium, which is a radioactive pollutant, and lifts the seabed soil deposited on the seabed to the sea (radiation-contaminated seabed soil suction step S100) on a tanker. This is a processing method in which the seabed soil is heated and concentrated by the installed heat concentration treatment apparatus (radiation-contaminated seabed soil heating and concentration step S200), and transported and discarded (radiation-contaminated seabed soil disposal processing step S300).

ここで放射能汚染海底土に含まれる放射性物質は、放射性セシウムであり、例えばセシウム137やセシウム134である。前記放射性セシウムは、セシウム単体で沸点が671度であり、水酸化セシウムであれば990度である。   Here, the radioactive substance contained in the radioactively polluted seabed soil is radioactive cesium, for example, cesium 137 and cesium 134. The radioactive cesium has a boiling point of 671 degrees as a simple substance of cesium and 990 degrees as long as it is cesium hydroxide.

本実施形態に係る放射能汚染海底土処理方法における放射能汚染海底土吸引工程S100は、海底の放射性汚染物質を含む放射能汚染海底土を海上までポンプ装置を用いて引き揚げる工程である。   The radioactively polluted seabed soil suction step S100 in the radioactively polluted seabed soil treatment method according to the present embodiment is a process of lifting the radioactively polluted seabed soil containing radioactive pollutants on the seabed to the sea using a pump device.

具体的には、海底200〜1000メートル付近に堆積した放射性物質により汚染された汚染土壌を海水と共に吸引ホース1を用いて吸い上げて回収する。この手段としては、エアリフトポンプ装置やサンドポンプ装置等を用いる。こうして回収された汚染土壌は、海上へのタンカー2へと送られて放射能汚染海底土加熱濃縮工程S200に移される。   Specifically, the contaminated soil contaminated with radioactive material deposited near the seabed 200 to 1000 meters is sucked up with the seawater using the suction hose 1 and collected. As this means, an air lift pump device, a sand pump device or the like is used. The contaminated soil collected in this way is sent to the tanker 2 to the sea and transferred to the radioactively contaminated seabed soil heating and concentration step S200.

放射能汚染海底土吸引工程S100より、タンカー2へと移された海水と放射能汚染海底土は、タンカー上に設けた汚染土壌濃縮装置3に収容され、放射能汚染海底土加熱濃縮工程S200が行われる。   The seawater transferred to the tanker 2 and the radioactively contaminated seabed soil from the radioactively contaminated seabed soil suction step S100 are accommodated in the contaminated soil concentrating device 3 provided on the tanker. Done.

ここで、汚染土壌濃縮装置3とは、図3に示すように、流入管31と汚染海底土タンク32と水蒸気排出管33より構成される。   Here, the contaminated soil concentrating device 3 includes an inflow pipe 31, a contaminated seabed soil tank 32, and a water vapor discharge pipe 33, as shown in FIG.

流入管31は、吸引ホース1と連結しており、流入してくる海水混じりの汚染海底土を汚染海底土タンク32へと送るものである。   The inflow pipe 31 is connected to the suction hose 1 and sends inflowing contaminated seabed soil mixed with seawater to the contaminated seabed soil tank 32.

流入管31より汚染海底土タンク32に収容された汚染海底土は、汚染海底土タンク32において加熱濃縮される。   The contaminated seabed soil accommodated in the contaminated seabed soil tank 32 from the inflow pipe 31 is heated and concentrated in the contaminated seabed soil tank 32.

汚染海底土タンク32は、図3に示すように、タンク本体は略直方体であり、そのタンク内壁34は金属で形成され、タンク外壁35は人工鉱石及び炭化珪素からなる耐火ブロック36によりコーティングされている。このタンク外壁35は、後述するように、厚さ360mm以上とすると放射線を遮断することができる。   As shown in FIG. 3, the contaminated submarine soil tank 32 has a substantially rectangular parallelepiped tank body, the tank inner wall 34 is made of metal, and the tank outer wall 35 is coated with a fireproof block 36 made of artificial ore and silicon carbide. Yes. As will be described later, the tank outer wall 35 can block radiation if it has a thickness of 360 mm or more.

ここで、上記人工鉱石は珪素又は二酸化珪素等の珪素化合物を溶融させた後に、金属及びカルシウムを添加して溶融、冷却を繰り返して製造されるものである。具体的には、はじめに、略真空状態下で1650℃〜1680℃に加熱した真空溶融炉に約80重量%の粉末状の珪素及び珪素化合物を投入し、その後、約5重量%の粉末状の鉄と約5重量%の粉末状のアルミニウムと約5重量%のカルシウムとを3〜5分間隔で順に投入しながら撹拌混合し、その後、真空溶融炉から溶融物を取出し、常温中で自然冷却し、再度溶融、冷却を繰返すことによって生成される。このように生成された人工鉱石は優れた熱の蓄熱性及び拡散性を有する。   Here, the artificial ore is manufactured by melting a silicon compound such as silicon or silicon dioxide, then adding a metal and calcium, and melting and cooling repeatedly. Specifically, first, about 80% by weight of powdered silicon and silicon compound is charged into a vacuum melting furnace heated to 1650 ° C. to 1680 ° C. under a substantially vacuum state, and then about 5% by weight of powdered silicon. Iron, about 5% by weight of powdered aluminum, and about 5% by weight of calcium are stirred and mixed in order at intervals of 3 to 5 minutes, and then the melt is taken out from the vacuum melting furnace and naturally cooled at room temperature. Then, it is generated by repeating melting and cooling again. The artificial ore thus produced has excellent heat storage and diffusibility.

上記のように生成された人工鉱石を粉砕したものに、粉末等にした炭化珪素を混合させて焼結させると、耐火ブロック36であるタンク外壁35が形成される。このように、人工鉱石と炭化珪素とにより生成された耐火ブロック36は、板状などに加工しても強度を保ち、耐熱性、耐摩耗性が向上し、更に人工鉱石が有する熱の蓄熱性及び拡散性をも向上させることができる。   When the artificial ore generated as described above is pulverized and mixed with powdered silicon carbide and sintered, a tank outer wall 35 as a fireproof block 36 is formed. As described above, the fireproof block 36 generated from the artificial ore and silicon carbide maintains strength even when processed into a plate shape or the like, improves heat resistance and wear resistance, and further stores heat stored in the artificial ore. In addition, the diffusibility can be improved.

また、汚染海底土タンク32の外部には、汚染海底土タンク32を加熱するための加熱装置37が設けられており、この加熱装置37により、汚染海底土タンク32内に収容された汚染海底土を加熱濃縮することが可能なように構成される。   In addition, a heating device 37 for heating the contaminated seabed soil tank 32 is provided outside the contaminated seabed soil tank 32, and the contaminated seabed soil contained in the contaminated seabed soil tank 32 is provided by the heating device 37. It is comprised so that it can heat-concentrate.

ここで、本実施形態における加熱装置37は、マイクロ波発生装置37´である。このタンク本体の周囲に設けたマイクロ波発生装置37´は、タンク本体の人工鉱石及び炭化珪素によりコーティングされた耐火ブロック36であるタンク外壁35の側壁、上面及び底面に向けてマイクロ波を照射するものである。なお、その他の加熱装置37としては、マイクロ波による加熱だけでなく、赤外線やレーダーを照射することによる加熱やヒーターによりタンク本体を直接加熱することを組み合わせて補助的に加熱することも可能である。   Here, the heating device 37 in the present embodiment is a microwave generator 37 ′. The microwave generator 37 ′ provided around the tank body irradiates the microwave toward the side wall, the upper surface and the bottom surface of the tank outer wall 35 which is the fireproof block 36 coated with the artificial ore and silicon carbide of the tank body. Is. In addition, as the other heating device 37, not only heating by microwaves but also heating by irradiating infrared rays or radar or direct heating of the tank main body by a heater can be combined and auxiliary heating can be performed. .

汚染海底土タンク32により、加熱濃縮された汚染海底土中に含まれる水は、水蒸気となって水蒸気排出管33により外部へと放出される。この水蒸気は、そのまま大気中へと放出することができる。   The water contained in the contaminated seabed soil heated and concentrated by the contaminated seabed soil tank 32 is converted into water vapor and discharged to the outside through the water vapor discharge pipe 33. This water vapor can be directly released into the atmosphere.

このようにして、放射能汚染海底土加熱濃縮工程S200により加熱濃縮された汚染海底土は、流入管31、水蒸気排出管33を取り除いた汚染海底土タンク32に収容されたまま、放射能汚染海底土廃棄処理工程S300へと移される。   In this way, the contaminated seabed soil heated and concentrated in the radioactively contaminated seabed soil heating and concentration step S200 is stored in the contaminated seabed soil tank 32 from which the inflow pipe 31 and the water vapor discharge pipe 33 are removed. It moves to soil disposal processing step S300.

放射能汚染海底土廃棄処理工程S300では、放射能汚染海底土加熱濃縮工程S200にて加熱濃縮された汚染海底土を、汚染海底土タンク32に封止して廃棄する工程である。後述するように、タンク外壁35である人工鉱石及び炭化珪素からなる耐火ブロック36は、放射線を遮蔽する力を有し、経年劣化もないため、長期的に保管が可能である。   In the radioactively contaminated seabed soil disposal process S300, the contaminated seabed soil heated and concentrated in the radioactively contaminated seabed soil heating and concentration process S200 is sealed in the contaminated seabed soil tank 32 and discarded. As will be described later, the refractory block 36 made of artificial ore and silicon carbide, which is the tank outer wall 35, has the ability to shield radiation and does not deteriorate over time, and can be stored for a long time.

また、図4に示すように、密封されたタンク本体の全体に人工鉱石を主成分としたコーティング剤40を塗布することもできる。   Moreover, as shown in FIG. 4, the coating agent 40 which has an artificial ore as a main component can also be apply | coated to the whole sealed tank main body.

前記コーティング剤40は、人工鉱石40、主剤、及び硬化剤により製造される。この人工鉱石40は、粒径が5〜30μmの粉体、又は粒径が150〜200メッシュの粉体である。また、主剤には、60〜80重量%の酸化アルミニウムと15〜25重量%のビスフェノールA型液状エポキシ樹脂と5〜15重量%のアルキルフェノールグリシジルエーテルとを混合したものを用い、硬化剤には、75〜85重量%の変性ポリアミドアミンと15〜25重量%のトリエチレンテトラミンとを有するものを用いる。なお、約100gの主剤に対し、約5.6gの硬化剤を用いることが好ましい。   The coating agent 40 is manufactured with an artificial ore 40, a main agent, and a curing agent. The artificial ore 40 is a powder having a particle size of 5 to 30 μm or a powder having a particle size of 150 to 200 mesh. The main agent is a mixture of 60 to 80% by weight of aluminum oxide, 15 to 25% by weight of bisphenol A type liquid epoxy resin, and 5 to 15% by weight of alkylphenol glycidyl ether. A material having 75 to 85% by weight of modified polyamidoamine and 15 to 25% by weight of triethylenetetramine is used. In addition, it is preferable to use about 5.6 g of curing agent for about 100 g of the main agent.

コーティング剤40によって包皮処理されたタンク本体は、耐火ブロックの有する防水性、防腐性を更に向上させることができて耐久力を高めることができる。   The tank body that has been foreskind by the coating agent 40 can further improve the waterproofness and antiseptic properties of the fireproof block and can increase the durability.

このように、汚染海底土を収容した汚染海底土タンク32は、そのまま地中へ廃棄することもできるし、埋立地又は防波堤のケーソンなどに用いることもできる。   In this way, the contaminated seabed soil tank 32 containing the contaminated seabed soil can be discarded directly into the ground, or can be used as a landfill or a breakwater caisson.

次に、耐火ブロックのγ線及び中性子の遮蔽計測実験について以下に説明する。   Next, γ-ray and neutron shielding measurement experiments of the refractory block will be described below.

(γ線遮蔽計測実験)
図5に示す計測装置を用いて、コリメートしたγ線を試料に照射し、試料を透過したγ線線量率(μSv/h)を検出器で測定を行い、下記の式より線減衰係数と半価層(cm)を求めた。計測値は10回の計測値の平均を用いた。
(式)I/I0=e−μx=e−(μ/ρ)ρx
μ:線減衰係数,x:厚さ(cm),ρ:密度(g/cm
λ=1/μ:平均自由工程,μm=μ/ρ:質量減衰係数(cm
D=0.693/μ:半価層(cm)
(Γ-ray shielding measurement experiment)
Using the measuring device shown in FIG. 5, the sample is irradiated with collimated γ-rays, and the γ-ray dose rate (μSv / h) transmitted through the sample is measured with a detector. The valence layer (cm) was determined. As the measurement value, an average of 10 measurement values was used.
(Expression) I / I 0 = e −μx = e − (μ / ρ) ρx
μ: linear attenuation coefficient, x: thickness (cm), ρ: density (g / cm 3 )
λ = 1 / μ: mean free process, μm = μ / ρ: mass attenuation coefficient (cm 2 )
D = 0.693 / μ: Half-value layer (cm)

線源としては、コバルト(光子エネルギー:1.173MeV又は1.333MeV,500KBq)、セシウム(光子エネルギー:0.662MeV,800KBq)、ラジウム(光子エネルギー:0.186MeV)を使用した。また、検出器はfildSPEC(BICRON社製)を用いた。試料は、以下に示す人工鉱石9及び炭化珪素を主成分とする耐火ブロックと、比較試料としてコンクリート及び鉛ブロックを用いた。
・耐火ブロック(400×400×30mm,13.3kg,密度2.77g/cm)12枚
・コンクリート(400×400×30mm,11kg,密度2.3g/cm)9枚
・鉛ブロック(300×300×10mm,密度11.34g/cm)5枚
Cobalt (photon energy: 1.173 MeV or 1.333 MeV, 500 KBq), cesium (photon energy: 0.662 MeV, 800 KBq), and radium (photon energy: 0.186 MeV) were used as the radiation source. Moreover, fieldSPEC (made by BICRON) was used for the detector. The sample used was a refractory block mainly composed of artificial ore 9 and silicon carbide shown below, and concrete and a lead block as comparative samples.
・ 12 fireproof blocks (400 × 400 × 30 mm, 13.3 kg, density 2.77 g / cm 3 ) ・ 9 concrete (400 × 400 × 30 mm, 11 kg, density 2.3 g / cm 3 ) ・ Lead block (300 × 300 × 10 mm, density 11.34 g / cm 3 ) 5 sheets

上記試験の測定結果を以下の表1〜表3に示す。なお、鉛はコバルトに関して別途計測を行った値を用いた。

Figure 2016017930
Figure 2016017930
Figure 2016017930
The measurement results of the above tests are shown in Tables 1 to 3 below. In addition, the value which measured separately about lead was used for lead.
Figure 2016017930
Figure 2016017930
Figure 2016017930

表1〜表3からも分かるように、人工鉱石及び炭化珪素よりなる耐火ブロック36はγ線に対して遮蔽効果を有することがわかった。また、上記3つの試料の遮蔽力は、鉛>耐火ブロック>コンクリートの順に大きいことがわかった。   As can be seen from Tables 1 to 3, it was found that the refractory block 36 made of artificial ore and silicon carbide has a shielding effect against γ rays. Moreover, it turned out that the shielding power of said three samples is large in order of lead> refractory block> concrete.

(中性子遮蔽計測実験)
次に、中性子遮蔽計測実験ついて説明する。
(Neutron shielding measurement experiment)
Next, a neutron shielding measurement experiment will be described.

図6に示す計測装置を用いて、コリメートした中性子線を試料に照射し、試料を透過した線量をカウント数として検出器で測定を行い、下記の式より平均自由工程(cm)と半価層(cm)を求めた。計測値は10回の計測値の平均を用いた。
(式)I/I=e−Σx
Σ:巨視的断面積,x:厚さ(cm),λ=1/Σ:平均自由工程(cm)
D=0.693/Σ:半価層(cm)
Using the measurement device shown in FIG. 6, the sample is irradiated with collimated neutron beams, the dose measured through the sample is measured with a detector, and the mean free process (cm) and half-value layer are calculated from the following formulas (Cm) was determined. As the measurement value, an average of 10 measurement values was used.
(Formula) I / I 0 = e −Σx
Σ: Macroscopic cross section, x: Thickness (cm), λ = 1 / Σ: Mean free process (cm)
D = 0.693 / Σ: Half-value layer (cm)

線源としては、コバルト(光子エネルギー:1.173MeV又は1.333MeV,500KBq)、セシウム(光子エネルギー:0.662MeV,800KBq)、ラジウム(光子エネルギー:0.186MeV)を使用した。また、検出器はHeカウンターを用いた。試料は、以下に示す人工鉱石9及び炭化珪素を主成分とする耐火ブロックと、比較試料としてコンクリート,パラフィンブロック及び鉛ブロックを用いた。
・耐火ブロック(400×400×30mm,13.3kg,密度2.77g/cm)12枚
・コンクリート(400×400×30mm,11kg,密度2.3g/cm)9枚
・パラフィンブロック(200×100×50mm,密度0.9g/cm)5枚
・鉛ブロック(300×300×10mm,密度11.34g/cm)5枚
As a radiation source, cobalt (photon energy: 1.173 MeV or 1.333 MeV, 500 KBq), cesium (photon energy: 0.662 MeV, 800 KBq), and radium (photon energy: 0.186 MeV) were used. The detector used was a 3 He counter. The sample used was a refractory block mainly composed of artificial ore 9 and silicon carbide shown below, and concrete, paraffin block and lead block as comparative samples.
· Refractory block (400 × 400 × 30mm, 13.3kg , density 2.77g / cm 3) 12 sheets Concrete (400 × 400 × 30mm, 11kg , density 2.3g / cm 3) 9 Like Paraffin blocks (200 × 5 × 100 × 50 mm, density 0.9 g / cm 3 ) • 5 lead blocks (300 × 300 × 10 mm, density 11.34 g / cm 3 )

上記試験の測定結果を以下の表4及び表5に示す。

Figure 2016017930
Figure 2016017930
The measurement results of the above tests are shown in Table 4 and Table 5 below.
Figure 2016017930
Figure 2016017930

表4及び表5からも分かるように、人工鉱石及び炭化珪素よりなる耐火ブロック36は中性子線に対して遮蔽効果を有することがわかった。また、上記3つの試料の遮蔽力は、パラフィン>鉛>耐火ブロック>コンクリートの順に大きいことがわかった。   As can be seen from Tables 4 and 5, it was found that the refractory block 36 made of artificial ore and silicon carbide has a shielding effect against neutron beams. Moreover, it turned out that the shielding power of said three samples is large in order of paraffin> lead> fireproof block> concrete.

上述したように、本発明の人工鉱石及び炭化珪素よりなる耐火ブロック36は放射線(γ線、中性子線)を遮蔽することができる。このため、加熱濃縮された海底土を人工鉱石及び炭化珪素よりなる耐火ブロックで囲繞することによって、放射線の外部への漏れを防止することができる。この耐火ブロックの厚さを360mm以上にすると良い。   As described above, the refractory block 36 made of the artificial ore and silicon carbide of the present invention can shield radiation (γ rays and neutron rays). For this reason, leakage of radiation to the outside can be prevented by surrounding the heat-concentrated seabed soil with a fireproof block made of artificial ore and silicon carbide. The thickness of the fireproof block is preferably 360 mm or more.

なお、本発明は上述した実施形態等に限られず、上述した実施形態等の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した実施形態等の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も含まれる。   Note that the present invention is not limited to the above-described embodiment and the like. Among the configurations disclosed in the above-described embodiments and the like, the configurations that are mutually replaced or the combination is changed, known techniques, and the above-described embodiments. Also included are configurations in which the configurations disclosed in 1 are replaced with each other or combinations are changed.

S100 放射能汚染海底土吸引工程
S200 放射能汚染海底土加熱濃縮工程
S300 放射能汚染海底土廃棄処理工程
1 吸引ホース
2 タンカー
3 汚染土壌濃縮装置
31 流入管
32 汚染海底土タンク
33 水蒸気排出管
34 タンク内壁
35 タンク外壁
36 耐火ブロック
37 加熱装置
37´マイクロ波発生装置
40 コーティング剤
S100 Radioactive contaminated seabed soil suction process S200 Radioactive contaminated seabed soil heating and concentration process S300 Radioactive contaminated seabed soil disposal process 1 Suction hose 2 Tanker 3 Contaminated soil concentrator 31 Inflow pipe 32 Contaminated seabed soil tank 33 Water vapor discharge pipe 34 Tank Inner wall 35 Tank outer wall 36 Refractory block 37 Heating device 37 'Microwave generator 40 Coating agent

Claims (4)

海底の放射性セシウムを含む放射能汚染海底土を海上までポンプ装置を用いて引き揚げる放射能汚染海底土吸引工程と、
吸い上げた放射能汚染土壌を汚染土壌濃縮装置に収容し加熱濃縮させる放射能汚染海底土加熱濃縮工程と、
汚染土壌濃縮装置に残された濃縮された放射能汚染海底土は、人工鉱石と炭化珪素とよりなる耐火ブロックに覆われた汚染土壌濃縮装置と共に封止して廃棄する放射能汚染海底土廃棄処理工程と、よりなることを特徴とする放射能汚染海底土処理方法。
Radioactive contaminated seabed soil suction process for lifting radioactively contaminated seabed soil containing radioactive cesium from the seafloor to the sea using a pump device;
Radioactive contaminated seabed soil heating and concentration process in which the radioactively contaminated soil sucked up is housed in a contaminated soil concentrator and heated and concentrated,
Concentrated radioactive contaminated seabed soil left in the contaminated soil concentrator is sealed together with the contaminated soil concentrator covered with a refractory block made of artificial ore and silicon carbide and discarded. And a radioactively contaminated seabed soil treatment method characterized by comprising:
前記人工鉱石は珪素又は珪素化合物に金属及びカルシウムを添加して溶融、冷却を繰り返して製造されたことを特徴とする請求項1に記載の放射能汚染海底土処理方法。 2. The radioactively contaminated seabed soil treatment method according to claim 1, wherein the artificial ore is produced by adding metal and calcium to silicon or a silicon compound, and melting and cooling repeatedly. 汚染土壌処理工程では、固形化した汚染物質を濃縮したタンク本体の全体を人工鉱石を主成分としたコーティング剤により密封状に包被し、かかる包被処理したタンク本体を海洋投棄や埋立てや防波堤等に利用することを特徴とする請求項1又は請求項2に記載の放射能汚染海底土処理方法。 In the contaminated soil treatment process, the entire tank body concentrated with the solidified pollutant is sealed in a sealed manner with a coating agent mainly composed of artificial ore, and the encased tank body is dumped or landfilled. It uses for a breakwater etc., The radioactive contamination seabed soil processing method of Claim 1 or Claim 2 characterized by the above-mentioned. 前記コーティング剤は酸化アルミニウムと液状エポキシ樹脂との混合溶液からなる主剤と、前記人工鉱石の粉末とを混合し、これらを硬化させる硬化剤により生成されることを特徴とする請求項3に記載の放射能汚染海底土処理方法。 The said coating agent is produced | generated by the hardening | curing agent which mixes the main ingredient which consists of a mixed solution of an aluminum oxide and a liquid epoxy resin, and the powder of the said artificial ore, and hardens these. Radioactive contaminated seabed soil treatment method.
JP2014142930A 2014-07-11 2014-07-11 Radioactive contaminated seabed treatment method Expired - Fee Related JP6487158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142930A JP6487158B2 (en) 2014-07-11 2014-07-11 Radioactive contaminated seabed treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014142930A JP6487158B2 (en) 2014-07-11 2014-07-11 Radioactive contaminated seabed treatment method

Publications (2)

Publication Number Publication Date
JP2016017930A true JP2016017930A (en) 2016-02-01
JP6487158B2 JP6487158B2 (en) 2019-03-20

Family

ID=55233231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142930A Expired - Fee Related JP6487158B2 (en) 2014-07-11 2014-07-11 Radioactive contaminated seabed treatment method

Country Status (1)

Country Link
JP (1) JP6487158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023943A (en) * 2014-07-16 2016-02-08 小柳建設株式会社 Processing method of radioactive material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035298A (en) * 1983-08-05 1985-02-23 工業技術院長 Radioactive waste vessel
JPH0450697A (en) * 1990-06-12 1992-02-19 Chichibu Cement Co Ltd Radioactive waste processing container
JPH05264793A (en) * 1992-03-18 1993-10-12 Hitachi Ltd Water-impermeable vessel for solidifying radioactive waste
US20020111525A1 (en) * 1990-03-16 2002-08-15 Dhiraj Pal Reduction of leachability and solubility of radionuclides and radioactive substances in contaminated soils and materials
WO2002079093A1 (en) * 2001-03-30 2002-10-10 Hatsuichi Matsumoto Artificial ore and coating material or refractory block containing the artificial ore
JP2014052326A (en) * 2012-09-10 2014-03-20 Public Works Research Center Radioactive substance containment processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035298A (en) * 1983-08-05 1985-02-23 工業技術院長 Radioactive waste vessel
US20020111525A1 (en) * 1990-03-16 2002-08-15 Dhiraj Pal Reduction of leachability and solubility of radionuclides and radioactive substances in contaminated soils and materials
JPH0450697A (en) * 1990-06-12 1992-02-19 Chichibu Cement Co Ltd Radioactive waste processing container
JPH05264793A (en) * 1992-03-18 1993-10-12 Hitachi Ltd Water-impermeable vessel for solidifying radioactive waste
WO2002079093A1 (en) * 2001-03-30 2002-10-10 Hatsuichi Matsumoto Artificial ore and coating material or refractory block containing the artificial ore
JP2014052326A (en) * 2012-09-10 2014-03-20 Public Works Research Center Radioactive substance containment processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023943A (en) * 2014-07-16 2016-02-08 小柳建設株式会社 Processing method of radioactive material

Also Published As

Publication number Publication date
JP6487158B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
TW201019347A (en) Waste storage vessels and compositions therefor
JP2005507071A (en) Flexible amorphous mixture for high radiation levels and environmental protection
Falciglia et al. Stabilisation/solidification of radionuclide polluted soils—part I: assessment of setting time, mechanical resistance, γ-radiation shielding and leachate γ-radiation
JP6487158B2 (en) Radioactive contaminated seabed treatment method
TW200426855A (en) Amorphous composition for high level radiation and environmental protection
JP5885324B2 (en) Method for producing waste solidified body and method for treating radioactive waste
Falciglia et al. Performance study and influence of radiation emission energy and soil contamination level on γ-radiation shielding of stabilised/solidified radionuclide-polluted soils
Kukreti et al. A review on properties of heavy weight concrete
Azeez et al. Radiation shielding characteristics of concretes incorporates different particle sizes of various waste materials
JP6113973B2 (en) Method for manufacturing gamma-ray radioactive substance containing member
JP6895320B2 (en) Method for measuring the penetration depth of β-ray nuclide radioactive cesium
JP2015152464A (en) Radiation shield body and radiation shield structure
KR100314998B1 (en) Composition for radiation shield
Okamoto et al. Transfer behavior of cesium adsorbed on clay minerals in aqueous solution
JP2015141175A (en) Debris recovery method
JP2016090277A (en) Radiation shielding panel and shielding structure
Maruyama et al. Attenuation of 4-32 MeV X-rays in Ordinary Concrete, Heavy Concrete, Iron and Lead
Ishii et al. Micro-PIXE analysis of the distribution of cesium in clay particles for environmental remediation of Fukushima
JP2018179953A (en) Method of attenuating radiation from radioactive material
JP2016183952A (en) Next generation-radiation countermeasure material developing system ucsx
McGehee et al. Fixation of heavy contaminants of a dirty bomb attack: studies with uranium and metal simulants
Falciglia et al. Reclamation of Sites Impacted by Mining Activities: Stabilization/Solidification of 232Th-Contaminated Soils
Sobolev et al. Disposal of Spent Sealed Radiation Sources in Borehole Repositories
LT2018568A (en) Method for dismantling of the graphite stack of nuclear reactor
JP6887362B2 (en) Waste storage container and waste monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190221

R150 Certificate of patent or registration of utility model

Ref document number: 6487158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees