JP6113973B2 - Method for manufacturing gamma-ray radioactive substance containing member - Google Patents

Method for manufacturing gamma-ray radioactive substance containing member Download PDF

Info

Publication number
JP6113973B2
JP6113973B2 JP2012173415A JP2012173415A JP6113973B2 JP 6113973 B2 JP6113973 B2 JP 6113973B2 JP 2012173415 A JP2012173415 A JP 2012173415A JP 2012173415 A JP2012173415 A JP 2012173415A JP 6113973 B2 JP6113973 B2 JP 6113973B2
Authority
JP
Japan
Prior art keywords
radioactive substance
ray
radiation shielding
ray radioactive
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012173415A
Other languages
Japanese (ja)
Other versions
JP2014031554A (en
Inventor
晃宏 神野
晃宏 神野
寺谷 武馬
武馬 寺谷
伊藤 義康
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP2012173415A priority Critical patent/JP6113973B2/en
Publication of JP2014031554A publication Critical patent/JP2014031554A/en
Application granted granted Critical
Publication of JP6113973B2 publication Critical patent/JP6113973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、γ線を遮蔽するための皮膜を備えるγ線放射性物質収容部材の製造方法に関し、特に放射線施設や、放射線廃棄物、核燃料、ラジオアイソトープ等の貯蔵容器、輸送容器、又は放射線関連機器を構成するのに適したγ線放射性物質収容部材の製造方法に関するものである。 The present invention relates to a method for producing a γ-ray radiation material accommodating member which Ru with a film for shielding γ rays, and in particular radiation facilities, radiation waste, nuclear fuel, storage containers, such as radioisotope, transport containers, or radiation a process for producing a γ-ray radiation material accommodating portion material suitable for constituting a related device.

原子力発電所の事故により、セシウムなどの放射性物質で汚染されたガレキ、汚染水、汚泥、草木など放射性廃棄物の処理が問題となっている。そのため、放射性廃棄物の収集、運搬、さらには長期貯蔵、中間貯蔵する放射性遮蔽特性に優れた容器(キャスク)などを構成する放射線遮蔽部材の開発が喫緊の課題となっている。   Due to an accident at a nuclear power plant, the disposal of radioactive waste such as rubble, contaminated water, sludge, and plants contaminated with radioactive materials such as cesium has become a problem. Therefore, it is an urgent issue to develop a radiation shielding member that constitutes a container (cask) having excellent radioactive shielding characteristics for collection, transportation, and long-term storage and intermediate storage of radioactive waste.

γ線、X線、電子線の遮蔽には一般的に、鉛、鉄、コンクリートなどが用いられている。例えばコンクリートを遮蔽部材として用いる場合、十分な遮蔽効果を得るために相当の壁厚を必要とし、容器の使用可能容積が小さくなるといった問題がある。またコンクリート構造体は、その吸水性により汚染水を吸水してしまう恐れもある。   Generally, lead, iron, concrete and the like are used for shielding γ rays, X rays and electron beams. For example, when concrete is used as a shielding member, there is a problem that a considerable wall thickness is required to obtain a sufficient shielding effect, and the usable volume of the container is reduced. Further, the concrete structure may absorb contaminated water due to its water absorption.

鉛、鉄、コンクリートなどとポリエチレンやパラフィンなどを組み合わせた遮蔽部材も知られているが、ポリエチレンやパラフィンの接着性が悪く、製造及び施工が困難となる。さらに、両者の熱膨張係数が著しく異なるために、温度差によって歪や反り、脱離が生じ、製造及び施工後の温度管理にかなりの注意を要する。また昨今の環境問題により、鉛に代表される人体に有害な材料は、可能な限り使用を控える傾向にある。   A shielding member in which lead, iron, concrete or the like is combined with polyethylene, paraffin or the like is also known, but the adhesiveness of polyethylene or paraffin is poor, and manufacture and construction become difficult. Furthermore, since the thermal expansion coefficients of the two are significantly different, distortion, warpage, and detachment occur due to the temperature difference, and considerable care is required for temperature management after manufacturing and construction. In addition, due to recent environmental problems, materials harmful to the human body represented by lead tend to be avoided as much as possible.

例えば特許文献1には、中性子減速材と中性子吸収材とγ線遮蔽材からなる混合粉末を、鉄粉末に混合して成形した放射線遮蔽部材が記載されている。特許文献2には、放射線吸収率の高い材料と加硫ゴムとからなる放射線遮蔽材が記載されており、特許文献3には、樹脂中に、アンチモン、スズの金属単体粉末又は化合物粉末が配合された放射線遮蔽材が記載されている。   For example, Patent Document 1 describes a radiation shielding member formed by mixing a mixed powder composed of a neutron moderator, a neutron absorber, and a γ-ray shielding material with iron powder. Patent Document 2 describes a radiation shielding material composed of a material having a high radiation absorption rate and vulcanized rubber, and Patent Document 3 contains a simple metal powder or compound powder of antimony and tin in a resin. A radiation shielding material is described.

特公平8−27388号公報Japanese Patent Publication No. 8-27388 特開平10−153687号公報JP-A-10-153687 特開2002−365393号公報JP 2002-365393 A

しかし特許文献1のようにγ線遮蔽材を鉄粉末に混合した放射線遮蔽部材を用いて、例えば放射性廃棄物の容器を構成する場合、放射性廃棄物に塩分を含む汚染水が含まれていると、その汚染水に腐食され易くなる。そのため、腐食による汚染水漏れが懸念される。特許文献2及び特許文献3のように、樹脂を多く配合した放射線遮蔽材の場合、高エネルギーのγ線の照射や水分環境によって、高分子の結合が次第に切れていき、比較的早期に樹脂劣化が生じてしまう。そのため、耐久性が低く、長期貯蔵、中間貯蔵には適さない。さらに、樹脂を多く配合した放射線遮蔽材では、容易に摩耗して減肉してしまうといった問題もある。   However, when a radioactive waste container is configured using a radiation shielding member in which a γ-ray shielding material is mixed with iron powder as in Patent Document 1, for example, when radioactive waste contains contaminated water containing salt, It becomes easy to be corroded by the contaminated water. Therefore, there is a concern about contamination water leakage due to corrosion. In the case of a radiation shielding material containing a large amount of resin, as in Patent Document 2 and Patent Document 3, polymer bonds are gradually broken by irradiation with high energy γ rays and a moisture environment, and the resin deteriorates relatively early. Will occur. Therefore, it has low durability and is not suitable for long-term storage or intermediate storage. Furthermore, the radiation shielding material containing a large amount of resin has a problem that it is easily worn and thinned.

そこで本発明は、上記従来技術の問題点に鑑み、汚染水による影響が少なく、それと共に高エネルギーのγ線の照射や水分環境によって耐久性が低下せず、かつ摩耗し難いγ線放射性物質収容部材の製造方法を提供することを目的とする。 The present invention is the view of the prior art problems, less affected by the contaminated water, high durability by γ-ray irradiation and moisture environments of energy does not lower, and wear resistance can not γ-emitting substance therewith and to provide a manufacturing method of the housing member.

上記目的を達成するため、次の技術的手段を講じた。
即ち本発明のγ線放射性物質収容部材の製造方法は、基材と、この基材の表面に被覆されたW材料からなる溶射皮膜とで構成されるγ線遮蔽コーティング部材を備えるγ線放射性物質収容部材の製造方法であって、前記溶射皮膜は、大気プラズマ溶射法および減圧プラズマ溶射法のいずれかによって形成されることを特徴とする。
In order to achieve the above object, the following technical measures were taken.
That method of manufacturing a gamma ray radioactive substance storage member of the present invention comprises a substrate and, gamma ray shielding coating member gamma ray radioactivity Ru provided composed of a sprayed coating made of W material coated on the surface of the substrate In the method of manufacturing a substance housing member, the thermal spray coating is formed by either an atmospheric plasma spraying method or a low pressure plasma spraying method .

上記本発明のγ線放射性物質収容部材の製造方法によれば、基材の表面にγ線遮蔽皮膜が被覆され、このγ線遮蔽皮膜が、W材料からなるので、放射性廃棄物に塩分を含む汚染水が含まれている場合であっても、その汚染水に腐食されることはない。そのため、腐食による汚染水漏れを生じないようにできる。樹脂のように、高エネルギーのγ線の照射や水分環境による劣化が起こらないので、高い耐久性を得ることができる。さらに基材の表面を覆うγ線遮蔽皮膜は、樹脂よりも硬質の材料からなるので耐摩耗性を向上させることができる。 According to the method for producing a γ-ray radioactive substance containing member of the present invention, since the γ-ray shielding film is coated on the surface of the base material and the γ-ray shielding film is made of W material, the radioactive waste contains salt. Even when contaminated water is contained, the contaminated water is not corroded. Therefore, it is possible to prevent leakage of contaminated water due to corrosion. Since resin does not cause deterioration due to irradiation with high energy γ rays or moisture environment, high durability can be obtained. Further, since the γ-ray shielding film covering the surface of the substrate is made of a material harder than the resin, the wear resistance can be improved.

前記γ線遮蔽皮膜を構成する皮膜層間の隙間が、封孔剤によって埋められていてもよく、このような封孔剤として、Co、Ni、Cr、Al、Zn、SiO、硅酸塩、嫌気性メタクリル酸塩、リン酸塩、ゾルゲル剤、金属アルコキシドの群から選択される1種以上の材料を含むものが挙げられる。さらに、封孔剤として、高分子材料、パラフィン、防錆油、グリース、コールタールから選択される1種以上の有機系材料を含むものとしてもよい。 The gap between the coating layers constituting the γ-ray shielding coating may be filled with a sealing agent, such as Co, Ni, Cr, Al, Zn, SiO 2 , oxalate, Examples include those containing one or more materials selected from the group of anaerobic methacrylates, phosphates, sol-gel agents, and metal alkoxides. Furthermore, the sealing agent may include one or more organic materials selected from polymer materials, paraffin, rust preventive oil, grease, and coal tar.

前記γ線遮蔽皮膜を構成する皮膜層間の隙間が封孔剤によって埋められていれば、汚染水の侵入を確実に防ぐことができ、水分環境による基材の劣化をも抑えることができる。これにより、耐久性を格段に向上させることができる。 If the gap between the coating layers constituting the γ-ray shielding coating is filled with a sealing agent, it is possible to reliably prevent the entry of contaminated water and to suppress deterioration of the substrate due to the moisture environment. Thereby, durability can be improved markedly.

前記基材と前記γ線遮蔽皮膜との間にボンドコートを設けてもよく、このボンドコートは、Fe、Al、Ti、Ni、Cr、Zn、Co、Yから選択される金属、又はこれら組み合わせの合金よりなることが好ましい。基材とγ線遮蔽皮膜との間に上記材料のボンドコートを設ければ、γ線遮蔽皮膜が基材から脱離し難くなり、密着力を向上させることができる。 A bond coat may be provided between the substrate and the γ-ray shielding film, and the bond coat is a metal selected from Fe, Al, Ti, Ni, Cr, Zn, Co, and Y, or a combination thereof. It is preferable that it consists of these alloys. If a bond coat of the above material is provided between the base material and the γ-ray shielding film, the γ-ray shielding film becomes difficult to be detached from the base material, and the adhesion can be improved.

前記基材は限定されず、例えばFe、Al、Ti、Mg、Ni、及びこれらの合金、コンクリート、金属を含むセラミックス、炭素繊維を含むセラミックス、高分子材料、金属を含む高分子材料、炭素繊維を含む高分子材料のいずれかであることが好ましい。   The base material is not limited. For example, Fe, Al, Ti, Mg, Ni, and alloys thereof, concrete, ceramics including metal, ceramics including carbon fiber, polymer material, polymer material including metal, and carbon fiber. It is preferable that it is either the polymeric material containing this.

本発明の製造方法によれば、優れた施工性が得られ、そのため現地施工が可能となり、かつ高品質のγ線放射性物質収容部材を得ることができる。 According to manufacturing method of the present invention, it provides excellent workability, therefore local construction can and will, it is possible to obtain a γ-ray radioactive substance storage member of high quality.

上記の通り本発明によれば、基材の表面に被覆されたγ線遮蔽皮膜が、W材料で形成されているので、放射性廃棄物に塩分を含む汚染水が含まれている場合であっても、その汚染水に腐食されることはない。そのため、長期に渡って腐食による汚染水漏れを生じないようにできる。高エネルギーのγ線の照射や水分環境による劣化が起こらないので、耐久性を高めることができる。基材の表面を覆うγ線遮蔽皮膜は、樹脂よりも硬質の材料からなるので耐摩耗性を向上させることができる。 As described above, according to the present invention, since the γ-ray shielding film coated on the surface of the base material is formed of the W material , the radioactive waste contains contaminated water containing salt. However, it will not be corroded by the contaminated water. Therefore, it is possible to prevent leakage of contaminated water due to corrosion over a long period of time. Since deterioration due to irradiation with high energy gamma rays or a moisture environment does not occur, durability can be enhanced. Since the γ-ray shielding film covering the surface of the base material is made of a material harder than the resin, the wear resistance can be improved.

本発明の一実施形態に係る放射線遮蔽コーティング部材の断面模式図である。It is a cross-sectional schematic diagram of the radiation shielding coating member which concerns on one Embodiment of this invention. 放射線遮蔽皮膜の断面SEM写真である。It is a cross-sectional SEM photograph of a radiation shielding film. 放射線遮蔽皮膜の断面SEM写真である。It is a cross-sectional SEM photograph of a radiation shielding film. γ線透過率と遮蔽体厚みとの関係を表すグラフである。It is a graph showing the relationship between a gamma ray transmittance and a shield thickness.

以下、本発明の実施形態について説明する。図1は本発明の一実施形態に係る放射線遮蔽コーティング部材1を示す断面模式図である。本実施形態の放射線遮蔽コーティング部材1は、放射性廃棄物の収集、運搬、長期貯蔵、中間貯蔵用の容器を構成するためのものであり、基材2と、この基材2の表面2aに被覆された放射線遮蔽皮膜3とを備えている。   Hereinafter, embodiments of the present invention will be described. FIG. 1 is a schematic cross-sectional view showing a radiation shielding coating member 1 according to an embodiment of the present invention. The radiation shielding coating member 1 of this embodiment is for constituting a container for collection, transportation, long-term storage, and intermediate storage of radioactive waste, and covers the base 2 and the surface 2a of the base 2 The radiation shielding film 3 is provided.

放射線遮蔽皮膜3を被覆する基材2は限定されない。基材2の具体例として、例えば、Fe、Al、Ti、Mg、Niの金属単体、及びこれらの合金、コンクリート、金属を含むセラミックス、炭素繊維を含むセラミックス、高分子材料、金属を含む高分子材料、CFRPなどの炭素繊維を含む高分子材料が挙げられる。   The substrate 2 that covers the radiation shielding film 3 is not limited. Specific examples of the base material 2 include, for example, simple metals such as Fe, Al, Ti, Mg, and Ni, and alloys thereof, concrete, ceramics containing metal, ceramics containing carbon fiber, polymer materials, and polymers containing metals. Examples thereof include polymer materials including carbon fibers such as CFRP.

本実施形態の基材2の厚みは約6mmであり、放射線遮蔽皮膜3の厚みは約1mmとなっているが、基材2及び放射線遮蔽皮膜3の厚みは、放射線遮蔽コーティング部材1によって構成する構造体や放射性廃棄物などに応じて適宜変更される。   Although the thickness of the base material 2 of this embodiment is about 6 mm and the thickness of the radiation shielding film 3 is about 1 mm, the thickness of the base material 2 and the radiation shielding film 3 is constituted by the radiation shielding coating member 1. It is changed as appropriate according to the structure and radioactive waste.

放射線遮蔽皮膜3を形成する材料は限定されず、例えばW(タングステン)材料に代表される、比重が10〜20g/cm3の高密度の金属材料が好適に用いられる。放射線遮蔽皮膜3を形成する材料として、W、Mo(モリブデン)のうち1種以上の元素を主成分とする材料や、W、Moのうち1種以上の元素を含む合金が好適である。図2に、W材料からなる放射線遮蔽皮膜3の断面SEM写真を示す。上記の合金としては、W−Mo合金、W−Ni(ニッケル)合金、W−Cu(銅)合金、W−Fe(鉄)合金、Mo−W合金、Mo−Ni合金、Mo−Cu合金、Mo−Fe合金、及びこれらを主体とする合金が好適に用いられる。 The material for forming the radiation shielding film 3 is not limited, and for example, a high-density metal material having a specific gravity of 10 to 20 g / cm 3 , typically a W (tungsten) material, is preferably used. As a material for forming the radiation shielding film 3, a material mainly containing one or more elements of W and Mo (molybdenum) and an alloy containing one or more elements of W and Mo are preferable. In FIG. 2, the cross-sectional SEM photograph of the radiation shielding film 3 which consists of W material is shown. As said alloy, W-Mo alloy, W-Ni (nickel) alloy, W-Cu (copper) alloy, W-Fe (iron) alloy, Mo-W alloy, Mo-Ni alloy, Mo-Cu alloy, Mo—Fe alloys and alloys mainly composed of these are preferably used.

さらに放射線遮蔽皮膜3を形成する材料として、WB、WC、WC、MoB、MoSi、及びこれらを主体とする化合物が好適である。これらの材料は、単体で用いてもよく、バインダー材に配合して用いてもよい。その中でも、WC(タングステンカーバイド)系材料(例えばWC系サーメット)が特に好適である。図3に、WC−CrNi材料からなる放射線遮蔽皮膜3の断面SEM写真を示す。このように、放射線遮蔽皮膜3は、W材料やWC材料などの硬質材料が主成分となるので、放射線遮蔽コーティング部材1の表面硬度を高くすることができ、耐摩耗性を向上させることができる。 Further, WB, WC, W 2 C, MoB, MoSi 2 , and compounds mainly composed of these are suitable as a material for forming the radiation shielding film 3. These materials may be used alone or in combination with a binder material. Among these, WC (tungsten carbide) -based material (for example, WC-based cermet) is particularly suitable. In FIG. 3, the cross-sectional SEM photograph of the radiation shielding film 3 which consists of WC-CrNi material is shown. Thus, since the radiation shielding film 3 is mainly composed of a hard material such as a W material or a WC material, the surface hardness of the radiation shielding coating member 1 can be increased, and the wear resistance can be improved. .

バインダー材の具体例としては、例えばCo、Ni、Cr、Fe、Al、Y、Ti、P、Mo、W、Si、Mn、V、Nb、Bの群から選択される元素単体、又はこれら元素の1種以上を主成分とする合金が挙げられる。より具体的には、MCrAlY、Cr−Ni、Co−Cr、ハステロイ合金、Ni−Pが挙げられる。放射線遮蔽皮膜3に上記のバインダー材を用いた場合、バインダー材とWCなどの硬質粒子の作用によって、耐摩耗性をさらに向上させることができる。   Specific examples of the binder material include, for example, elemental elements selected from the group of Co, Ni, Cr, Fe, Al, Y, Ti, P, Mo, W, Si, Mn, V, Nb, and B, or these elements An alloy containing one or more of these as a main component can be given. More specifically, MCrAlY, Cr—Ni, Co—Cr, Hastelloy alloy, and Ni—P may be mentioned. When the binder material is used for the radiation shielding film 3, the wear resistance can be further improved by the action of the binder material and hard particles such as WC.

遮蔽効果に関し、W(比重:18.5g/cm3)及びWC系サーメット(比重:11.3g/cm3)で、鉛以上のγ線遮蔽能力を示す。例えばW材料からなる放射線遮蔽皮膜3(膜厚:2mm)のγ線遮蔽効果は、同じ厚みの鉛板の1.4倍、鋼板の2.2倍、コンクリートの9倍を示す。 Regarding the shielding effect, W (specific gravity: 18.5 g / cm 3 ) and WC-based cermet (specific gravity: 11.3 g / cm 3 ) exhibit a gamma ray shielding ability higher than that of lead. For example, the gamma ray shielding effect of the radiation shielding film 3 (thickness: 2 mm) made of W material is 1.4 times that of a lead plate having the same thickness, 2.2 times that of a steel plate, and 9 times that of concrete.

放射線遮蔽皮膜3は、大気プラズマ溶射法、減圧プラズマ溶射法、高速フレーム溶射法、ガスフレーム溶射法、アーク溶射法、爆発溶射法、コールドスプレー法のいずれかの方法で形成されている。   The radiation shielding coating 3 is formed by any one of atmospheric plasma spraying, reduced pressure plasma spraying, high-speed flame spraying, gas flame spraying, arc spraying, explosion spraying, and cold spraying.

これら溶射法又はコールドスプレー法を用いることによって、耐久性に優れ、かつ高品質の放射線遮蔽皮膜3を得ることができる。一般的なスプレー塗布などによって放射線遮蔽皮膜3を形成してもよい。なお、各溶射法及びコールドスプレー法による成膜条件は、基材、原料粉末、膜厚、製造環境などに応じて適宜設定すればよい。   By using these thermal spraying methods or cold spray methods, it is possible to obtain a radiation shielding film 3 having excellent durability and high quality. The radiation shielding film 3 may be formed by general spray coating or the like. In addition, what is necessary is just to set suitably the film-forming conditions by each thermal spraying method and the cold spray method according to a base material, raw material powder, a film thickness, a manufacturing environment, etc.

W材料からなる放射線遮蔽皮膜3を、大気プラズマ溶射法で溶射する場合の条件と、WC−CrNi材料からなる放射線遮蔽皮膜3を、高速フレーム溶射法で溶射する場合の条件を以下に示す。なお、以下の条件は一例であって、上述のように溶射条件は適宜設定される。   The conditions for spraying the radiation shielding coating 3 made of the W material by the atmospheric plasma spraying method and the conditions for spraying the radiation shielding coating 3 made of the WC-CrNi material by the high-speed flame spraying method are shown below. The following conditions are examples, and the spraying conditions are appropriately set as described above.

W(大気プラズマ溶射法)
溶射装置:Sulzer Metco−F4
ノズル:φ6mm
アルゴンガス流量:50NLPM
水素ガス流量:10NLPM
トーチ入力:40kW
溶射距離:150mm
W (Atmospheric plasma spraying method)
Thermal spray equipment: Sulzer Metco-F4
Nozzle: φ6mm
Argon gas flow: 50NLPM
Hydrogen gas flow rate: 10NLPM
Torch input: 40kW
Thermal spraying distance: 150mm

WC−CrNi(高速フレーム溶射法)
溶射装置:TAFA−JP5000
バレル長さ:8inch
酸素流量:2000scfh
灯油流量:6.0gph
溶射距離:400mm
WC-CrNi (High-speed flame spraying method)
Thermal spraying equipment: TAFA-JP5000
Barrel length: 8inch
Oxygen flow rate: 2000 scfh
Kerosene flow rate: 6.0gph
Thermal spray distance: 400mm

本実施形態の放射線遮蔽皮膜3は、封孔剤によって封孔処理されている。封孔処理の方法としては、はけ塗り、ディッピング、スプレー、ローラー塗布等、従来の方法が用いられる。放射線遮蔽皮膜3を封孔剤によって封孔処理すれば、放射線遮蔽皮膜3を構成する皮膜層間の僅かな気孔や割れによる隙間が封孔剤によって埋められ、汚染水の侵入を防ぐことができ、水分環境による基材の劣化をも抑えることができる。これにより、耐久性を格段に向上させることができる。   The radiation shielding film 3 of the present embodiment is sealed with a sealing agent. As a sealing treatment method, conventional methods such as brush coating, dipping, spraying, and roller coating are used. If the radiation shielding film 3 is sealed with a sealing agent, slight pores or cracks between the coating layers constituting the radiation shielding film 3 are filled with the sealing agent, and intrusion of contaminated water can be prevented. Deterioration of the substrate due to moisture environment can also be suppressed. Thereby, durability can be improved markedly.

上記封孔剤の具体例として、Co、Ni、Cr、Al、Zn、SiO、ナトリウム硅酸塩やエチル硅酸塩などの硅酸塩、嫌気性メタクリル酸塩、リン酸塩、ゾルゲル剤、金属アルコキシドから選択される1種以上の無機材料を含むものが挙げられる。さらに、封孔剤として、高分子材料、パラフィン、防錆油、グリース、コールタールから選択される1種以上の有機系材料が挙げられる。 Specific examples of the sealing agent include Co, Ni, Cr, Al, Zn, SiO 2 , oxalates such as sodium oxalate and ethyl oxalate, anaerobic methacrylate, phosphate, sol-gel agent, Examples thereof include those containing one or more inorganic materials selected from metal alkoxides. Further, examples of the sealing agent include one or more organic materials selected from polymer materials, paraffin, rust preventive oil, grease, and coal tar.

高分子材料としては、例えばビニル樹脂、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、フェノール樹脂、エステル樹脂、シリコン樹脂、エポキシフェノール樹脂、アミド樹脂、エポキシメラミン樹脂、フッ素樹脂などが挙げられる。封孔剤としては、上記無機材料のみ、上記有機材料のみ、又は上記無機材料と上記有機材料を混合したものが好適である。なお、放射線遮蔽皮膜3が高分子材料などの有機系の封孔剤で処理されている場合であっても、当該放射線遮蔽皮膜3に含まれる封孔剤の含有量は僅かであるので、耐摩耗性には殆ど影響を及ぼさない。   Examples of the polymer material include vinyl resin, epoxy resin, urethane resin, acrylic resin, phenol resin, ester resin, silicon resin, epoxy phenol resin, amide resin, epoxy melamine resin, and fluorine resin. As the sealing agent, only the inorganic material, only the organic material, or a mixture of the inorganic material and the organic material is preferable. Even when the radiation shielding film 3 is treated with an organic sealing agent such as a polymer material, the content of the sealing agent contained in the radiation shielding film 3 is very small. Abrasion is hardly affected.

本実施形態では、基材2と放射線遮蔽皮膜3との間にボンドコートが設けられている。ボンドコートとしては、Fe、Al、Ti、Ni、Cr、Zn、Co、Yから選択される金属、又はこれら組み合わせの合金が好適である。基材2と放射線遮蔽皮膜3との間に上記材料からなるボンドコートを設ければ、放射線遮蔽皮膜3が基材2から脱離し難くなり、放射線遮蔽コーティング部材1の密着性を向上させることができる。   In the present embodiment, a bond coat is provided between the substrate 2 and the radiation shielding film 3. As the bond coat, a metal selected from Fe, Al, Ti, Ni, Cr, Zn, Co, and Y, or an alloy of these combinations is suitable. If a bond coat made of the above material is provided between the base material 2 and the radiation shielding film 3, the radiation shielding film 3 is difficult to be detached from the base material 2, and the adhesion of the radiation shielding coating member 1 can be improved. it can.

例えば、基材をSS400鋼とし、その表面にW材料からなる放射線遮蔽皮膜を形成した場合の密着力は、所定の試験条件下で5MPaを示す。これに対し、基材をSS400鋼とし、その表面にボンドコートとしてAlボンドコートを塗布し、塗布した表面にW材料からなる放射線遮蔽皮膜を形成した場合の密着力は、同じ試験条件下で10MPaを示す。このようにボンドコートを介在させた場合、基材と放射線遮蔽皮膜との密着力が格段に向上する。   For example, the adhesion when a base material is SS400 steel and a radiation shielding film made of a W material is formed on the surface thereof is 5 MPa under predetermined test conditions. On the other hand, when the base material is SS400 steel, an Al bond coat is applied as a bond coat on the surface, and a radiation shielding film made of W material is formed on the applied surface, the adhesion force is 10 MPa under the same test conditions. Indicates. When a bond coat is interposed in this way, the adhesion between the substrate and the radiation shielding film is significantly improved.

上記本実施形態の放射線遮蔽コーティング部材1によれば、基材2の表面2aに放射線遮蔽皮膜3が被覆され、この放射線遮蔽皮膜3が、W、WC系材料など上記各種の材料で形成されているので、放射性廃棄物に塩分を含む汚染水が含まれている場合であっても、その汚染水に腐食されることはない。そのため、腐食による汚染水漏れを生じないようにできる。樹脂のように、高エネルギーのγ線の照射や水分環境による劣化が起こらないので、高い耐久性を得ることができる。さらに、放射線遮蔽皮膜3は、W材料やWC材料などの硬質材料が主成分となるので、表面硬度が高くなり、耐摩耗性を向上させることができる。放射線遮蔽皮膜3にバインダー材を用いた場合、バインダー材とWCなどの硬質粒子の作用によって、耐摩耗性をさらに向上させることができる。   According to the radiation shielding coating member 1 of the present embodiment, the radiation shielding film 3 is coated on the surface 2a of the substrate 2, and the radiation shielding film 3 is formed of the above-described various materials such as W and WC materials. Therefore, even if radioactive waste contains contaminated water containing salt, it will not be corroded by the contaminated water. Therefore, it is possible to prevent leakage of contaminated water due to corrosion. Since resin does not cause deterioration due to irradiation with high energy γ rays or moisture environment, high durability can be obtained. Furthermore, since the radiation shielding film 3 is mainly composed of a hard material such as a W material or a WC material, the surface hardness is increased and the wear resistance can be improved. When a binder material is used for the radiation shielding film 3, the wear resistance can be further improved by the action of the binder material and hard particles such as WC.

放射線遮蔽皮膜3は、上記の各種溶射法などで形成されるため、皮膜厚さ:0.01mmから数10mmの範囲で自由に選択可能であり、容易に施工可能である。このような優れた施工性から、工場のみならず現地施工によって、放射線遮蔽皮膜3を基材2の表面2aへ形成することができる。円筒構造物の内面や、複雑な形状の構造物など、いかなる形状の構造物にも、放射線遮蔽皮膜3の形成が可能である。そのため、従来では被覆できなかった箇所への放射線遮蔽皮膜3の形成が可能となり、ひいてはセシウムなどの放射性物質で汚染されたガレキ、汚染水、汚泥、草木など放射性廃棄物の処理を効率良く進めることができる。さらに、図2及び図3に示すように柔軟性に優れたミクロな層構造の皮膜が得られ、高品質の放射線遮蔽コーティング部材1を得ることができる。   Since the radiation shielding coating 3 is formed by the above-described various thermal spraying methods, the coating thickness can be freely selected within a range of 0.01 mm to several tens of mm, and can be easily constructed. Because of such excellent workability, the radiation shielding film 3 can be formed on the surface 2a of the base material 2 not only in the factory but also on site. The radiation shielding film 3 can be formed on a structure having any shape such as an inner surface of a cylindrical structure or a structure having a complicated shape. Therefore, it is possible to form the radiation shielding film 3 in a place that could not be covered conventionally, and as a result, the radioactive waste such as rubble, contaminated water, sludge, and plants contaminated with radioactive substances such as cesium can be efficiently processed. Can do. Furthermore, as shown in FIG. 2 and FIG. 3, a film having a micro layer structure excellent in flexibility can be obtained, and a high-quality radiation shielding coating member 1 can be obtained.

放射線遮蔽皮膜3が、W、WC系材料など上記各種の材料で形成されていることにより、鉛が含まれず人体に悪影響を及ぼすことが殆どなく、安全性が高い。また、十分な強度、高い耐熱性、疎水性、高い耐薬品性、高い耐摩耗性を有する放射線遮蔽コーティング部材1を得ることができる。   Since the radiation shielding film 3 is formed of the above-described various materials such as W and WC materials, lead is not contained and the human body is hardly adversely affected and safety is high. Moreover, the radiation shielding coating member 1 having sufficient strength, high heat resistance, hydrophobicity, high chemical resistance, and high wear resistance can be obtained.

以下、実施例により本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。本発明にかかる実施例、及び比較例の試料を製作してγ線透過率を測定した。実施例として、150×150×6mmのSS400鋼の片面に、大気プラズマ溶射法を用いて上記成膜条件でW皮膜(W材料からなる放射線遮蔽皮膜)を被覆した試料片を製作した。W皮膜の膜厚は1mmとした。比較例として、150×150×6mmのコンクリート、SS400鋼、鉛の試料片を製作した。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example. Samples of Examples and Comparative Examples according to the present invention were manufactured, and γ-ray transmittance was measured. As an example, a sample piece in which a W film (a radiation shielding film made of a W material) was coated on one surface of 150 × 150 × 6 mm SS400 steel using the atmospheric plasma spraying method under the film forming conditions described above. The film thickness of the W film was 1 mm. As a comparative example, 150 × 150 × 6 mm concrete, SS400 steel, and lead specimens were manufactured.

試験方法は、各試験片の片側からγ線を照射し、反対側に透過したγ線量を線量計で測定した。各試験片を1枚の場合、2枚並べた場合、3枚並べた場合、4枚並べた場合で測定した。γ線透過率と遮蔽体厚み(mm)との関係を図4のグラフに示す。ここでいう遮蔽体厚みとは、実施例では放射線遮蔽皮膜の厚み、比較例では各試料の厚みをいう。この試験結果から、γ線遮蔽効果は、W皮膜(膜厚:2mm)で15%を示し、SS400鋼(板厚:6mm、23%のγ線遮蔽)にW皮膜(膜厚:2mm)の被覆で、34%程度のγ線遮蔽効果を得ることが解る。   In the test method, γ rays were irradiated from one side of each test piece, and the γ dose transmitted to the opposite side was measured with a dosimeter. The measurement was performed when each test piece was one, two were arranged, three were arranged, and four were arranged. The relationship between the γ-ray transmittance and the shield thickness (mm) is shown in the graph of FIG. The shield thickness here means the thickness of the radiation shielding film in the examples, and the thickness of each sample in the comparative example. From this test result, the γ-ray shielding effect is 15% in the W film (film thickness: 2 mm), and the W film (film thickness: 2 mm) is applied to SS400 steel (plate thickness: 6 mm, 23% γ-ray shielding). It can be seen that the coating provides a γ-ray shielding effect of about 34%.

次に、摩耗試験及び硬度測定を実施した。実施例として、試験規格で設定された所定寸法のSS400鋼の片面(試験面)に、高速フレーム溶射法を用いて上記成膜条件でWC−NiCr皮膜を被覆した試験片を製作した。比較例として所定寸法のSS400鋼、SUS304鋼の試験片を製作した。摩耗試験はスガ式摩耗試験(SiC#320−3.25kgf−2000回往復)で実施し、硬度測定はビッカース硬度測定で実施した。   Next, an abrasion test and hardness measurement were performed. As an example, a test piece in which one side (test surface) of SS400 steel having a predetermined size set by the test standard was coated with a WC-NiCr film under the above-described film formation conditions using a high-speed flame spraying method was manufactured. As comparative examples, specimens of SS400 steel and SUS304 steel having predetermined dimensions were manufactured. The abrasion test was carried out by a Suga abrasion test (SiC # 320-3.25 kgf-2000 reciprocations), and the hardness measurement was carried out by Vickers hardness measurement.

摩耗試験及び硬度測定の結果を以下に示す。
(摩耗試験)
比較例 SS400鋼 198
SUS304鋼 168
実施例 WC−NiCr皮膜 6
The results of the abrasion test and hardness measurement are shown below.
(Abrasion test)
Comparative Example SS400 Steel 198
SUS304 steel 168
Example WC-NiCr coating 6

(硬度測定)
比較例 SS400鋼 170
SUS304鋼 180
実施例 WC−NiCr皮膜 1100
上記のとおり、WC−NiCr皮膜では、SS400鋼及びSUS304鋼に比べて、約30倍の耐摩耗性を示し、約6倍の硬さを有している。
(Hardness measurement)
Comparative example SS400 steel 170
SUS304 steel 180
Example WC-NiCr coating 1100
As described above, the WC-NiCr coating exhibits about 30 times the wear resistance and about 6 times the hardness as compared with SS400 steel and SUS304 steel.

上記実施形態及び実施例は例示であり制限的なものではない。本発明の範囲には、特許請求の範囲と均等となる範囲における全ての変更が含まれる。本発明の放射線遮蔽コーティング部材は、放射性廃棄物の収集、運搬などに用いられる容器だけでなく、あらゆる用途へ用いることができる。例えば、原子力関連施設の放射線遮蔽付き設備、各種の放射線装置(工業用検査、フィルム表面改質、医療診断・治療、殺菌処理)、各種の放射線照射作業(γ線、X線、電子線)における放射線遮蔽部材などへの幅広い適用が可能である。   The above embodiments and examples are illustrative and not restrictive. The scope of the present invention includes all modifications within the scope equivalent to the claims. The radiation shielding coating member of the present invention can be used not only for containers used for collecting and transporting radioactive waste, but also for every application. For example, in facilities with radiation shielding in nuclear facilities, various radiation devices (industrial inspection, film surface modification, medical diagnosis / treatment, sterilization treatment), various radiation irradiation operations (γ rays, X rays, electron beams) Wide application to radiation shielding members and the like is possible.

1 放射線遮蔽コーティング部材
2 基材
2a 表面
3 放射線遮蔽皮膜
DESCRIPTION OF SYMBOLS 1 Radiation shielding coating member 2 Base material 2a Surface 3 Radiation shielding film

Claims (6)

基材と、この基材の表面に被覆されたW材料からなる溶射皮膜とで構成されるγ線遮蔽コーティング部材を備えるγ線放射性物質収容部材の製造方法であって
前記溶射皮膜は、大気プラズマ溶射法および減圧プラズマ溶射法のいずれかによって形成されることを特徴とするγ線放射性物質収容部材の製造方法
A substrate, a method for producing a γ-ray radioactive substance storage member that Ru provided with a γ ray shielding coating member consists of a sprayed coating made of W material coated on the surface of the substrate,
The thermal spray coating method of atmospheric plasma spraying method and low pressure plasma spraying process γ ray radioactive substance storage member you characterized by being formed by either.
前記溶射皮膜は、封孔剤によって封孔処理されることを特徴とする請求項1に記載のγ線放射性物質収容部材の製造方法The thermal spray coating method for producing a γ-ray radioactive substance storage member according to claim 1, characterized in that the sealing treatment by sealer. 前記封孔剤は、Co、Ni、Cr、Al、Zn、SiO、硅酸塩、嫌気性メタクリル酸塩、リン酸塩、ゾルゲル剤、金属アルコキシドの群から選択される1種以上の材料を含むことを特徴とする請求項2に記載のγ線放射性物質収容部材の製造方法The sealing agent is made of one or more materials selected from the group consisting of Co, Ni, Cr, Al, Zn, SiO 2 , oxalate, anaerobic methacrylate, phosphate, sol-gel agent, and metal alkoxide. The manufacturing method of the gamma- ray radioactive substance accommodating member of Claim 2 characterized by the above-mentioned. 前記封孔剤は、高分子材料、パラフィン、防錆油、グリース、コールタールから選択される1種以上の材料を含むことを特徴とする請求項2又は3に記載のγ線放射性物質収容部材の製造方法The said sealing agent contains 1 or more types of materials selected from a polymeric material, paraffin, rust prevention oil, grease, and coal tar , The gamma- ray radioactive substance accommodating member of Claim 2 or 3 characterized by the above-mentioned. Manufacturing method . 前記基材と前記溶射皮膜との間にボンドコートが設けられており、このボンドコートは、Fe、Al、Ti、Ni、Cr、Zn、Co、Yの群から選択される金属、又はこれら組み合わせの合金よりなることを特徴とする請求項1〜4のいずれかに記載のγ線放射性物質収容部材の製造方法A bond coat is provided between the substrate and the thermal spray coating, and the bond coat is a metal selected from the group consisting of Fe, Al, Ti, Ni, Cr, Zn, Co, and Y, or a combination thereof. The manufacturing method of the gamma- ray radioactive substance accommodating member in any one of Claims 1-4 characterized by the above-mentioned. 前記基材は、Fe、Al、Ti、Mg、Ni、及びこれらの合金、コンクリート、金属を含むセラミックス、炭素繊維を含むセラミックス、高分子材料、金属を含む高分子材料、炭素繊維を含む高分子材料のいずれかであることを特徴とする請求項1〜5のいずれかに記載のγ線放射性物質収容部材の製造方法The base material is Fe, Al, Ti, Mg, Ni, and alloys thereof, concrete, ceramics including metal, ceramics including carbon fiber, polymer material, polymer material including metal, polymer including carbon fiber. The method for producing a γ- ray radioactive substance containing member according to any one of claims 1 to 5, wherein the material is any one of materials.
JP2012173415A 2012-08-03 2012-08-03 Method for manufacturing gamma-ray radioactive substance containing member Active JP6113973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012173415A JP6113973B2 (en) 2012-08-03 2012-08-03 Method for manufacturing gamma-ray radioactive substance containing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012173415A JP6113973B2 (en) 2012-08-03 2012-08-03 Method for manufacturing gamma-ray radioactive substance containing member

Publications (2)

Publication Number Publication Date
JP2014031554A JP2014031554A (en) 2014-02-20
JP6113973B2 true JP6113973B2 (en) 2017-04-12

Family

ID=50281614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012173415A Active JP6113973B2 (en) 2012-08-03 2012-08-03 Method for manufacturing gamma-ray radioactive substance containing member

Country Status (1)

Country Link
JP (1) JP6113973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608176A (en) * 2018-12-18 2019-04-12 辽宁省轻工科学研究院有限公司 A kind of novel ablation dimension shape fiber coat and preparation, construction method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690969A (en) * 1979-12-24 1981-07-23 Nippon Tungsten Co Ltd Method of making melt-sprayed film dense
JPS6020200A (en) * 1983-07-14 1985-02-01 株式会社東芝 Monitor device for deposited layer of radioactive gas
JPS61166914A (en) * 1985-01-18 1986-07-28 Nippon Steel Corp Hearth roll
JP2553937B2 (en) * 1989-09-06 1996-11-13 日鉄ハード株式会社 Immersion member for molten metal with excellent corrosion and wear resistance
JPH0827388B2 (en) * 1990-11-08 1996-03-21 動力炉・核燃料開発事業団 Heat resistant radiation shielding material
JPH0791625B2 (en) * 1992-05-14 1995-10-04 プラクスエア工学株式会社 Molten zinc bath immersion member and method for manufacturing the same
JPH0821432A (en) * 1994-07-05 1996-01-23 Nittetsu Hard Kk Roll for immersion into molten metal having molten metal corrosionproof skin film electric-discharge-deposited on surface and related member
US6749337B1 (en) * 2000-01-26 2004-06-15 Varian Medical Systems, Inc. X-ray tube and method of manufacture
JP3925849B2 (en) * 2002-03-18 2007-06-06 新日本製鐵株式会社 Sealing treatment method, sealed sprayed coating and fan or blower having the coating
JP2004162147A (en) * 2002-11-15 2004-06-10 Plasma Giken Kogyo Kk Aluminum nitride sintered body having thermal-sprayed coating
US7163752B2 (en) * 2002-12-19 2007-01-16 The Boeing Company Shielded system with a housing having a high atomic number metal coating applied by thermal spray technique
JP2012042317A (en) * 2010-08-18 2012-03-01 Toyo Kohan Co Ltd Thermal neutron shielding material and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608176A (en) * 2018-12-18 2019-04-12 辽宁省轻工科学研究院有限公司 A kind of novel ablation dimension shape fiber coat and preparation, construction method

Also Published As

Publication number Publication date
JP2014031554A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP6125827B2 (en) Radiation shielding coating member and manufacturing method of radiation shielding coating member
JP6014578B2 (en) Method and apparatus for anti-corrosion fuel rods for light water reactor (LWR) nuclear fuel bundles
Fu et al. The advancement of neutron shielding materials for the storage of spent nuclear fuel
TW201019347A (en) Waste storage vessels and compositions therefor
JP2009520876A (en) Corrosion resistant neutron absorption coating
JP6113973B2 (en) Method for manufacturing gamma-ray radioactive substance containing member
Oğul et al. Gamma and Neutron Shielding Parameters of Polyester-based composites reinforced with boron and tin nanopowders
US20190392960A1 (en) Systems and methods for nuclear material storage containers that are chloride-induced stress corrosion susceptible
CN107805777B (en) Tungsten-boron layered material with ray and neutron comprehensive shielding effect
Usta et al. The effect of the ceramic amount on the radiation shielding properties of metal-matrix composite coatings
US6919576B2 (en) Composite neutron absorbing coatings for nuclear criticality control
He et al. Compatibility between high-flux helium plasma irradiated molybdenum and liquid lithium
US11273526B1 (en) Systems and methods for application of stress corrosion cracking resistant cold spray coatings
JP2014115143A (en) Thermal neutron absorbing material and coating method using the same
Alsmadi et al. Shielding Properties of 316 Stainless Steel with Multi-layered barriers for Spent Fuel Drycasks
Lu et al. Microstructures and properties of a multilayered Al/W composite fabricated for γ-ray-shielding applications
EP1600985A2 (en) Radiation shields and methods of making the same
Kanies et al. Thermoluminescence and optically stimulated luminescence response of Al2O3 coatings deposited by mist-chemical vapor deposition
Paul et al. A review on radiation shielding materials based on low-strength chemical wastes and nanomaterials
JP2017218658A (en) Local corrosion inhibition method of stainless steel and storage method of metal container
US20070140405A1 (en) Neutron absorbing coating for nuclear criticality control
JPH0720282A (en) Corrosion-proof method for metal vessel and corrosion-proof vessel
Wu et al. Comprehensive study on structure, shielding properties of Ga-In-Sn-Bi-Zn alloys: potential use for low energy radiation
JP2018179953A (en) Method of attenuating radiation from radioactive material
JP2014202738A (en) Container structure for storing radioactive waste, method for depositing and storing radioactive waste, and system for depositing and storing radioactive waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6113973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250