JP5423455B2 - HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET - Google Patents

HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET Download PDF

Info

Publication number
JP5423455B2
JP5423455B2 JP2010026240A JP2010026240A JP5423455B2 JP 5423455 B2 JP5423455 B2 JP 5423455B2 JP 2010026240 A JP2010026240 A JP 2010026240A JP 2010026240 A JP2010026240 A JP 2010026240A JP 5423455 B2 JP5423455 B2 JP 5423455B2
Authority
JP
Japan
Prior art keywords
sheet
conductive sheet
heat conductive
meth
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010026240A
Other languages
Japanese (ja)
Other versions
JP2011162642A (en
Inventor
徹 吉川
優香 吉田
倫明 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010026240A priority Critical patent/JP5423455B2/en
Publication of JP2011162642A publication Critical patent/JP2011162642A/en
Application granted granted Critical
Publication of JP5423455B2 publication Critical patent/JP5423455B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置に関する。   The present invention relates to a heat conductive sheet, a manufacturing method thereof, and a heat dissipation device using the heat conductive sheet.

近年、多層配線板、半導体パッケージに対する配線の高密度化や電子部品の搭載密度が大きくなり、また半導体素子も高集積化して単位面積あたりの発熱量が大きくなったため、半導体パッケージからの熱放散をよくすることが望まれるようになっている。   In recent years, the density of wiring and the mounting density of electronic components on multilayer wiring boards and semiconductor packages have increased, and the amount of heat generated per unit area has increased due to higher integration of semiconductor elements. There is a desire to improve.

半導体パッケージのような発熱体とアルミや銅などの放熱体との間に熱伝導グリース又は熱伝導シートをはさんで密着させることにより熱を放散する放熱装置が一般に簡便に使用されているが、熱伝導グリースよりは熱伝導シートの方が放熱装置を組み立てる際の作業性に優れている。熱放散性をよくするには熱伝導シートに高い熱伝導性が求められるが、従来の熱伝導シートの熱伝導性は、必ずしも充分とは言えなかった。   Generally, a heat dissipation device that dissipates heat by closely adhering a heat conductive grease or a heat conductive sheet between a heat generating element such as a semiconductor package and a heat dissipating element such as aluminum or copper is generally used. The heat conductive sheet is superior to the heat conductive grease in assembling the heat dissipation device. In order to improve heat dissipation, the thermal conductive sheet is required to have high thermal conductivity, but the thermal conductivity of the conventional thermal conductive sheet is not necessarily sufficient.

そのため、熱伝導シートの熱伝導性をさらに向上させる目的で、マトリックス材料中に熱伝導性の大きな無機粉末を配合し、さらにそれをシート面に対し垂直に配向させた熱伝導シートが提案されている。   Therefore, for the purpose of further improving the thermal conductivity of the thermal conductive sheet, a thermal conductive sheet has been proposed in which an inorganic powder having a large thermal conductivity is blended in the matrix material and further oriented perpendicularly to the sheet surface. Yes.

特許文献1はシート面に関してほぼ垂直な方向に無機充填材(窒化ほう素)が配向した熱伝導シートである。特許文献2ではゲル状物質に分散された炭素繊維がシート面に対して垂直に配向した構造が記載されている。
いずれの場合もシート表面では熱伝導性の無機材料が露出するため表面の粘着性(タック性)は低く、発熱体とアルミや銅などの放熱体の間に実装する工程において仮固定しにくいため作業性が悪いという点がある。特許文献1では、それを回避するためにスライシング後に可塑剤を含浸させる工程も設けているが、それによってバインダ樹脂が軟化するためタック性は向上するものの、シートの強度が低下する問題が生じ、また可塑剤又はそれによって軟化したバインダ樹脂が表面を覆ってしまい、熱流路を切断してしまう影響で熱抵抗が上がってしまう傾向がある。
また、一般にこのようなシートの場合、長期間にわたり熱がかかると可塑剤が揮発しやすくなり、バインダ樹脂が老化する影響によりシートが固く脆くなり、タック性も失われていく傾向がある。シートが固く脆くなってタック性が失われると、最悪の場合、シートが周辺にちぎれ落ちて短絡事故の原因になり、シートの密着性が保てなくなって放熱性を維持できなくなる恐れがある。
Patent Document 1 is a heat conductive sheet in which an inorganic filler (boron nitride) is oriented in a direction substantially perpendicular to the sheet surface. Patent Document 2 describes a structure in which carbon fibers dispersed in a gel material are oriented perpendicular to the sheet surface.
In either case, the surface of the sheet is exposed to a thermally conductive inorganic material, so the surface has low adhesiveness (tackiness), and it is difficult to temporarily fix it in the process of mounting between a heating element and a radiator such as aluminum or copper. There is a point that workability is bad. In Patent Document 1, a step of impregnating a plasticizer after slicing is also provided in order to avoid this, but the tackiness is improved because the binder resin is softened thereby, but there is a problem that the strength of the sheet is reduced, In addition, the plasticizer or the binder resin softened thereby covers the surface, and the thermal resistance tends to increase due to the influence of cutting the heat flow path.
In general, in the case of such a sheet, when the heat is applied for a long period of time, the plasticizer tends to volatilize, the sheet becomes hard and brittle due to the effect of aging of the binder resin, and the tackiness tends to be lost. If the sheet becomes hard and brittle and tackiness is lost, in the worst case, the sheet may tear off to the periphery, causing a short circuit accident, and the adhesiveness of the sheet cannot be maintained, and there is a possibility that heat dissipation cannot be maintained.

特開2002−26202号公報Japanese Patent Laid-Open No. 2002-26202 特開2000−195998号公報JP 2000-195998 A

本発明の目的は、高い熱伝導性と高い柔軟性及びタック性を有し、さらに耐熱性に優れる熱伝導シートを提供することである。また、本発明の目的は、高い熱伝導性と高い柔軟性及びタック性を有し、さらに耐熱性に優れる熱伝導シートが得られる製造方法を提供することである。さらに本発明の目的は、高い放熱能力を持ち、かつ信頼性の高い放熱装置を提供することである。   An object of the present invention is to provide a heat conductive sheet having high heat conductivity, high flexibility and tackiness, and having excellent heat resistance. Moreover, the objective of this invention is providing the manufacturing method from which the heat conductive sheet which has high heat conductivity, high softness | flexibility, and tackiness and is excellent in heat resistance is obtained. A further object of the present invention is to provide a highly reliable heat dissipating device having a high heat dissipating capability.

本発明者等は上記課題を解決すべく、鋭意検討を重ねた結果、熱伝導シートの組成物中に、特定の架橋硬化物と、特定の高分子化合物とを含有させることにより、柔軟性及びタック性に優れる熱伝導シートが得られることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have incorporated a specific cross-linked cured product and a specific polymer compound into the composition of the heat conductive sheet. It has been found that a heat conductive sheet excellent in tackiness can be obtained.

すなわち、本発明は以下の通りである。
<1>鱗片状、楕球状又は棒状であり、結晶中の六角平面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、Tgが50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)と、重量平均分子量が5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)と、を含有する組成物を含む熱伝導シートであって、
前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が熱伝導シートの厚み方向に配向していることを特徴とする熱伝導シート。
<2>前記ポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)と前記ポリ(メタ)アクリル酸エステル系高分子化合物(C)の質量配合比率が、(B):(C)=5:5〜7:3の範囲であり、
前記ポリ(メタ)アクリル酸エステル系高分子化合物(C)が内部添加によりシート材全体に存在させてあるか、又は前記ポリ(メタ)アクリル酸エステル系高分子化合物(C)が0.1mg/cm2以上4mg/cm2以下の量で表面に塗布又は含浸されていることを特徴とする上記<1>に記載の熱伝導シート。
That is, the present invention is as follows.
<1> Graphite particles or hexagonal boron nitride particles having a flaky shape, an elliptical shape, or a rod shape, and having a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipsoid, or the major axis direction of the rod (A), a crosslinked cured product (B) of a poly (meth) acrylate polymer compound having a Tg of 50 ° C. or less, a weight average molecular weight of 5,000 to 100,000, and a Tg of 0 ° C. or less, A poly (meth) acrylate polymer compound (C) having no reactive functional group, and a heat conductive sheet comprising a composition comprising:
The heat conduction characterized in that the surface direction of the scale of the graphite particles or hexagonal boron nitride particles (A), the major axis direction of the ellipsoid or the major axis direction of the rod are oriented in the thickness direction of the heat conductive sheet. Sheet.
<2> The mass blending ratio of the crosslinked cured product (B) of the poly (meth) acrylate polymer compound and the poly (meth) acrylate polymer compound (C) is (B) :( C ) = 5: 5-7: 3,
The poly (meth) acrylate polymer compound (C) is present throughout the sheet material by internal addition, or the poly (meth) acrylate polymer compound (C) is 0.1 mg / thermally conductive sheet according to the <1>, characterized in that are coated or impregnated to the surface in an amount of cm 2 or more 4 mg / cm 2 or less.

<3>前記黒鉛(A)が膨張黒鉛であり、シート中に40質量%以上85質量%以下含まれていることを特徴とする上記<1>又は<2>に記載の熱伝導シート。
<4>前記六方晶窒化ほう素粒子(A)が鱗片状の六方晶窒化ほう素粒子であり、シート中に40質量%以上85質量%以下含まれていることを特徴とする上記<1>又は<2>に記載の熱伝導シート。
<3> The thermal conductive sheet according to <1> or <2>, wherein the graphite (A) is expanded graphite and is contained in the sheet in an amount of 40% by mass to 85% by mass.
<4> The hexagonal boron nitride particles (A) are flaky hexagonal boron nitride particles, and are contained in the sheet in an amount of 40% by mass to 85% by mass. <1> Or the heat conductive sheet as described in <2>.

<5>前記組成物が、りん酸エステル系難燃剤(D)を10質量%〜40質量%の範囲で含有することを特徴とする上記<1>〜<4>のいずれか一つに記載の熱伝導シート。
<6>前記ポリ(メタ)アクリル酸エステル系高分子化合物(C)が、一方の面に塗布されている又は一方の面に含浸されていることを特徴とする上記<1>〜<5>のいずれか一つに記載の熱伝導シート。
<5> The composition according to any one of <1> to <4>, wherein the composition contains a phosphate ester flame retardant (D) in a range of 10% by mass to 40% by mass. Heat conduction sheet.
<6> The above <1> to <5>, wherein the poly (meth) acrylate polymer compound (C) is applied on one surface or impregnated on one surface. The heat conductive sheet as described in any one of these.

<7>下記工程(1a)〜(4)を含む、黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に配向している熱伝導シートの製造方法。
(1a)鱗片状、楕球状又は棒状であり、結晶中の六角平面が、鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、Tgが50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)と、重量平均分子量が5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)と、を含有する組成物を、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下の厚みに圧延成形、プレス成形、押出成形又は塗工し、主たる面に関して、ほぼ平行な方向に黒鉛粒子又は六方晶窒化ほう素粒子(A)が配向した一次シートを作製する工程、
(2)前記一次シートを積層して成形体を得る工程、
(3)前記成形体を加熱して、前記ポリ(メタ)アクリル酸エステル系高分子化合物(B’)と硬化剤(b)とを反応させる工程、
(4)前記一次シート面から出る法線に対し、0〜30度の角度でスライスしてシートを得る工程。
<7> including the following steps (1a) to (4), the surface direction of the scale of graphite particles or hexagonal boron nitride particles (A), the major axis direction of the ellipsoid, or the major axis direction of the rod is a heat conductive sheet The manufacturing method of the heat conductive sheet orientated in the thickness direction.
(1a) Graphite particles or hexagonal boron nitride having a scale shape, an elliptical shape, or a rod shape, and a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod Particle (A), poly (meth) acrylate polymer compound (B ′) having a Tg of 50 ° C. or less, a curing agent (b) for crosslinking and curing the same, and a weight average molecular weight of 5,000 to 100,000 And a composition containing a poly (meth) acrylate polymer compound (C) having a Tg of 0 ° C. or less and having no reactive functional group, the graphite particles or hexagonal boron nitride. Roll forming, press forming, extrusion forming or coating to a thickness of 20 times or less of the mass average diameter of the particles (A), the graphite particles or hexagonal boron nitride particles (A) are in a substantially parallel direction with respect to the main surface. Producing an oriented primary sheet,
(2) A step of obtaining a molded body by laminating the primary sheet,
(3) heating the molded body to react the poly (meth) acrylate polymer compound (B ′) with the curing agent (b);
(4) A step of obtaining a sheet by slicing at an angle of 0 to 30 degrees with respect to a normal line emerging from the primary sheet surface.

<8>下記工程(1b)〜(5)を含む、黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に配向している熱伝導シートの製造方法。
(1b)鱗片状、楕球状又は棒状であり、結晶中の六角平面が、鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、Tgが50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)と、を含有する組成物を、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下の厚みに圧延成形、プレス成形、押出成形又は塗工し、主たる面に関して、平行な方向に黒鉛粒子又は六方晶窒化ほう素粒子(A)が配向した一次シートを作製する工程、
(2)前記一次シートを積層して成形体を得る工程、
(3)前記成形体を加熱して、前記ポリ(メタ)アクリル酸エステル系高分子化合物(B’)と硬化剤(b)とを反応させる工程、
(4)前記一次シート面から出る法線に対し、0〜30度の角度でスライスしてシートを得る工程、
(5)前記シートの少なくとも一方の面に、重量平均分子量5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布又は含浸させる工程。
<8> The surface direction of the scale of graphite particles or hexagonal boron nitride particles (A), the major axis direction of the ellipsoid, or the major axis direction of the rod, including the following steps (1b) to (5): The manufacturing method of the heat conductive sheet orientated in the thickness direction.
(1b) Graphite particles or hexagonal boron nitride having a scale shape, an elliptical shape, or a rod shape, and a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod A composition containing particles (A), a poly (meth) acrylate polymer compound (B ′) having a Tg of 50 ° C. or less, and a curing agent (b) for crosslinking and curing the composition, Rolled, pressed, extruded or coated to a thickness of 20 times or less the mass average diameter of the graphite particles or hexagonal boron nitride particles (A), and the graphite particles or hexagonal nitriding in a parallel direction with respect to the main surface Producing a primary sheet in which the boron particles (A) are oriented;
(2) A step of obtaining a molded body by laminating the primary sheet,
(3) heating the molded body to react the poly (meth) acrylate polymer compound (B ′) with the curing agent (b);
(4) A step of obtaining a sheet by slicing at an angle of 0 to 30 degrees with respect to a normal line emerging from the primary sheet surface;
(5) On at least one surface of the sheet, a poly (meth) acrylate polymer compound (C) having a weight average molecular weight of 5,000 to 100,000 and a Tg of 0 ° C. or less and having no reactive functional group. ) Is applied or impregnated.

<9>上記<1>〜<6>のいずれか一つに記載の熱伝導シート又は上記<7>又は<8>に記載の製造方法により得られた熱伝導シートを発熱体と放熱体の間に介在させてなることを特徴とする放熱装置。 <9> The heat conductive sheet according to any one of <1> to <6> or the heat conductive sheet obtained by the production method according to <7> or <8> A heat dissipating device characterized by being interposed therebetween.

前記<1>記載の熱伝導シートは、高い熱伝導性と高い柔軟性及びタック性を有し、さらに耐熱性に優れる放熱用途に好適である。
また、前記<2>記載の熱伝導シートは、前記<1>記載の発明の効果に加えて、さらに高いタック性を達成できる。
また、前記<3>及び<4>記載の熱伝導シートは、前記<1>又は<2>記載の発明の効果に加えてさらに高い熱伝導性を達成できる。
また、前記<5>記載の熱伝導シートは、前記<1>〜<4>のいずれか一つに記載の発明の効果に加えて、難燃性を付与できる上、更に高い柔軟性も達成できる。
前記<6>記載の熱伝導シートは、前記<1>〜<5>のいずれか一つに記載の発明の効果に加えて一方の面のみに強いタックを有することが出来るので、両面の被着体を付けたりはずしたりする際に、強いタック面側に固定されるのでハンドリング性に優れる。
The heat conductive sheet according to <1> is suitable for heat dissipation applications having high heat conductivity, high flexibility and tackiness, and excellent heat resistance.
Moreover, in addition to the effect of the invention described in <1>, the heat conductive sheet described in <2> can achieve higher tackiness.
In addition to the effects of the invention described in <1> or <2>, the thermal conductive sheet described in <3> and <4> can achieve higher thermal conductivity.
Moreover, in addition to the effect of the invention as described in any one of <1> to <4>, the heat conductive sheet according to <5> can impart flame retardancy and also achieve higher flexibility. it can.
In addition to the effects of the invention described in any one of <1> to <5>, the heat conductive sheet described in <6> can have a strong tack on only one surface, so When attaching and removing the kimono, it is fixed to the strong tack surface, so it is easy to handle.

また、前記<7>記載の熱伝導シートの製造方法は、高い熱伝導性と高い柔軟性及びタック性を有し、さらに耐熱性に優れる熱伝導シートを、生産性、コスト面及びエネルギー効率の点で有利に、かつ確実に製造できる。
また、前記<8>記載の熱伝導シートの製造方法は、前記<7>記載の発明の効果に加えて、一方の面のみに強いタックを有することが出来るので、両面の被着体を付けたり、はずしたりする際に、強いタック面側に固定されるのでハンドリング性に優れる熱伝導シートを製造できる。
さらに、前記<9>記載の放熱装置は、高い放熱能力を長期間にわたり有する。
In addition, the method for producing a heat conductive sheet according to the above <7>, a heat conductive sheet having high heat conductivity, high flexibility and tackiness, and having excellent heat resistance, is improved in productivity, cost and energy efficiency. Advantageous and reliable in terms of production.
In addition to the effect of the invention described in <7>, the method for producing a heat conductive sheet described in <8> can have a strong tack on only one surface, so that both-surface adherends are attached. When it is removed or removed, it is fixed to the strong tack surface side, so that it is possible to manufacture a heat conductive sheet having excellent handling properties.
Furthermore, the heat dissipating device according to <9> has a high heat dissipating capability over a long period of time.

<熱伝導シート>
本発明の熱伝導シートは、鱗片状、楕球状又は棒状であり、結晶中の六角平面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、Tgが50℃以下である有機高分子化合物(B)と、重量平均分子量が5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)とを含有する組成物を含んでなる。
前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に配向していることを特徴とする。
<Heat conduction sheet>
The heat conductive sheet of the present invention is a scaly, oval or rod-like shape, and the hexagonal plane in the crystal is oriented in the plane direction of the scaly, the major axis direction of the ellipse or the major axis direction of the rod, or hexagonal Crystalline boron nitride particles (A), an organic polymer compound (B) having a Tg of 50 ° C. or less, a weight average molecular weight of 5,000 to 100,000, and a Tg of 0 ° C. or less, having a reactive functional group A composition containing a poly (meth) acrylic acid ester polymer compound (C) not to be used.
The scale surface direction of the graphite particles or hexagonal boron nitride particles (A), the major axis direction of the ellipse or the major axis direction of the rod are oriented in the thickness direction of the heat conductive sheet.

本発明における黒鉛粒子又は六方晶窒化ほう素粒子(A)の形状は、鱗片状、楕球状又は棒状であり、なかでも鱗片状が好ましい。前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の形状が球状や不定形の場合は熱伝導性に劣り、繊維状の場合はシートに成形するのが困難で生産性に劣る。   The shape of the graphite particles or hexagonal boron nitride particles (A) in the present invention is scaly, oval or rod-like, and scaly is particularly preferable. When the shape of the graphite particles or hexagonal boron nitride particles (A) is spherical or indefinite, the thermal conductivity is inferior. When the shape is fibrous, it is difficult to form into a sheet and the productivity is inferior.

結晶中の六角平面は鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向しており、X線回折測定により確認することができる。
黒鉛粒子又は六方晶窒化ほう素粒子(A)の結晶中の六角平面の配向方向は、具体的には以下の方法で確認する。
先ず、黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、シート又はフィルムの面方向に対して実質的に平行に配向した測定用サンプルシートを作製する。測定用サンプルシート調製の具体的な方法としては、10体積%以上の黒鉛粒子又は六方晶窒化ほう素粒子と、樹脂との混合物をシート化する。ここで用いる「樹脂」とは、ポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)とポリ(メタ)アクリル酸エステル系高分子(C)とを含む組成物に相当する樹脂を使用できるが、非晶質樹脂のようなX線回折の妨げになるピークが現れない材料、また、形状を作ることが可能である材料であれば、樹脂でなくても用いることができる。この混合物のシートが、元の厚みの1/10以下となるようにプレスし、プレスしたシートを積層し、この積層体を更に1/10以下まで押しつぶす操作を3回以上繰り返す。この操作により、調製した測定用サンプルシート中では、黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、測定用サンプルシートの面方向に対し実質的に平行に配向した状態になる。
The hexagonal plane in the crystal is oriented in the scale direction, the long axis direction of the ellipse or the long axis direction of the rod, and can be confirmed by X-ray diffraction measurement.
The orientation direction of the hexagonal plane in the crystal of graphite particles or hexagonal boron nitride particles (A) is specifically confirmed by the following method.
First, the scale direction of the graphite particles or hexagonal boron nitride particles (A), the major axis direction of the ellipsoid, or the major axis direction of the rod are oriented substantially parallel to the plane direction of the sheet or film. A measurement sample sheet is prepared. As a specific method for preparing the sample sheet for measurement, a mixture of 10% by volume or more of graphite particles or hexagonal boron nitride particles and a resin is formed into a sheet. The “resin” used here is a resin corresponding to a composition containing a cross-linked cured product (B) of a poly (meth) acrylate polymer compound and a poly (meth) acrylate polymer (C). However, a material that does not show a peak that hinders X-ray diffraction, such as an amorphous resin, or a material that can be shaped can be used without using a resin. The operation of pressing the mixture sheet to 1/10 or less of the original thickness, laminating the pressed sheets, and further crushing the laminate to 1/10 or less is repeated three or more times. By this operation, in the prepared measurement sample sheet, the surface direction of the scale of the graphite particles or hexagonal boron nitride particles (A), the major axis direction of the ellipse, or the major axis direction of the rod is the same as that of the measurement sample sheet. It is in a state of being oriented substantially parallel to the surface direction.

上記のように調製した測定用サンプルシートの表面に対し、黒鉛粒子の場合、X線回折測定を行うと、2θ=77°付近に現れる黒鉛の(110)面に対応するピークの高さを、2θ=27°付近に現れる黒鉛の(002)面に対応するピークの高さで割った値が0〜0.02となる。また、六方晶窒化ほう素粒子の場合も同様で、X線回折測定を行うと、2θ=77°付近に現れる六方晶窒化ほう素粒子の(110)面に対応するピークの高さを、2θ=27°付近に現れる六方晶窒化ほう素の(002)面に対応するピークの高さで割った値が0〜0.02となる。
このことより、本発明において、「結晶中の六角平面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している」とは、黒鉛粒子又は六方晶窒化ほう素粒子(A)及びポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物等を含有した組成物をシート化したものの表面に対しX線回折測定を行い、2θ=77°付近に現れる黒鉛又は六方晶窒化ほう素の(110)面に対応するピークの高さを2θ=27°付近に現れる黒鉛又は六方晶窒化ほう素の(002)面に対応するピークの高さで割った値が0〜0.02となる状態をいう。
In the case of graphite particles, when the X-ray diffraction measurement is performed on the surface of the measurement sample sheet prepared as described above, the peak height corresponding to the (110) plane of graphite appearing near 2θ = 77 ° is obtained. The value divided by the height of the peak corresponding to the (002) plane of graphite appearing around 2θ = 27 ° is 0 to 0.02. The same applies to the case of hexagonal boron nitride particles. When X-ray diffraction measurement is performed, the peak height corresponding to the (110) plane of hexagonal boron nitride particles appearing in the vicinity of 2θ = 77 ° is 2θ. The value divided by the height of the peak corresponding to the (002) plane of hexagonal boron nitride appearing around = 27 ° is 0 to 0.02.
Thus, in the present invention, "the hexagonal plane in the crystal is oriented in the plane direction of the scale, the major axis direction of the ellipse or the major axis direction of the rod" means that the graphite particles or hexagonal boron nitride particles Graphite or hexagonal that appears in the vicinity of 2θ = 77 ° by performing X-ray diffraction measurement on the surface of a sheet of a composition containing a cross-linked cured product of (A) and a poly (meth) acrylate polymer compound. The value obtained by dividing the height of the peak corresponding to the (110) plane of crystalline boron nitride by the height of the peak corresponding to the (002) plane of graphite or hexagonal boron nitride near 2θ = 27 ° is 0 to It means a state that becomes 0.02.

本発明で用いられる黒鉛粒子としては、例えば、鱗片黒鉛粒子、人造黒鉛粒子、薄片化黒鉛粒子、酸処理黒鉛粒子、膨張黒鉛粒子、炭素繊維フレーク等の鱗片状、楕球状又は棒状の黒鉛粒子を用いることができる。本発明で用いられる六方晶窒化ほう素粒子としては、板状窒化ほう素粒子、鱗片状窒化ほう素粒子等が挙げられる。   Examples of the graphite particles used in the present invention include flaky, oval or rod-like graphite particles such as flaky graphite particles, artificial graphite particles, exfoliated graphite particles, acid-treated graphite particles, expanded graphite particles, and carbon fiber flakes. Can be used. Examples of the hexagonal boron nitride particles used in the present invention include plate-like boron nitride particles and scaly boron nitride particles.

特に、ポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)と混合した際に、鱗片状の黒鉛粒子になり易いものが好ましい。具体的には、薄片化黒鉛粒子、膨張黒鉛粒子の鱗片状黒鉛粒子が配向させ易く、粒子間接触も保ち易く、高い熱伝導性を得易いためより好ましい。
なお、六方晶窒化ほう素粒子の場合も、鱗片状、薄片状等の異方性形状が好ましい。
本発明の熱伝導シートにおいて、熱伝導性の点では、黒鉛粒子の方が六方晶窒化ほう素粒子と比較して5〜10倍程度の熱伝導率を有することから好ましい。一方、電気絶縁性が要求される用途においては、黒鉛粒子は電気伝導性があるため、六方晶窒化ほう素粒子の方が好ましい。
In particular, those which are likely to become scaly graphite particles when mixed with a crosslinked cured product (B) of a poly (meth) acrylate polymer compound are preferred. Specifically, flake graphite particles such as exfoliated graphite particles and expanded graphite particles are more preferable because they can be easily oriented, the interparticle contact is easily maintained, and high thermal conductivity is easily obtained.
In the case of hexagonal boron nitride particles, an anisotropic shape such as a scale shape or a flake shape is preferable.
In the heat conductive sheet of the present invention, in terms of heat conductivity, graphite particles are preferable because they have a heat conductivity of about 5 to 10 times that of hexagonal boron nitride particles. On the other hand, in applications where electrical insulation is required, hexagonal boron nitride particles are preferred because graphite particles have electrical conductivity.

黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径は特に制限されないが、熱伝導性の向上の観点で、好ましくは0.05〜2mm、より好ましくは0.1〜1.0mm、特に好ましくは0.2〜0.5mmである。
なお、質量平均径は以下のように測定する。
「質量平均径」は黒鉛粒子又は六方晶窒化ほう素粒子の粒子径を測定した値で、ふるい等による分級により累積質量分布曲線を求め、累積質量が50%に達する径を意味する。
The mass average diameter of the graphite particles or hexagonal boron nitride particles (A) is not particularly limited, but is preferably 0.05 to 2 mm, more preferably 0.1 to 1.0 mm, from the viewpoint of improving thermal conductivity. Especially preferably, it is 0.2-0.5 mm.
The mass average diameter is measured as follows.
“Mass average diameter” is a value obtained by measuring the particle diameter of graphite particles or hexagonal boron nitride particles, and means a diameter at which the cumulative mass reaches 50% when a cumulative mass distribution curve is obtained by classification with a sieve or the like.

黒鉛粒子又は六方晶窒化ほう素粒子(A)の含有量は特に制限されないが、組成物全体積の40質量%以上85質量%以下であることが好ましく、45質量%以上75質量%以下であることがより好ましい。前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の含有量が40質量%未満である場合は熱伝導性が低下する傾向があり、85質量%を超える場合は充分な柔軟性や密着性、及びタック性が得難くなる傾向がある。   The content of the graphite particles or hexagonal boron nitride particles (A) is not particularly limited, but is preferably 40% by mass or more and 85% by mass or less, and 45% by mass or more and 75% by mass or less of the total volume of the composition. It is more preferable. When the content of the graphite particles or hexagonal boron nitride particles (A) is less than 40% by mass, the thermal conductivity tends to decrease, and when the content exceeds 85% by mass, sufficient flexibility and adhesion, In addition, the tackiness tends to be difficult to obtain.

なお、本明細書における黒鉛粒子又は六方晶窒化ほう素粒子(A)の含有量(体積%)は次式により求めた値である。
黒鉛粒子又は六方晶窒化ほう素粒子(A)の含有量(体積%)=(Aw/dA)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)+(Dw/Dd)+・・・)×100
Aw:黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量組成(質量%)
Bw:Tgが50℃以下のポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)の質量組成(質量%)
Cw:反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)の質量組成(質量%)
Dw:りん酸エステル系難燃材等のその他の任意成分(D)の質量組成(質量%)
Ad:黒鉛粒子又は六方晶窒化ほう素粒子(A)の比重(本発明においてAdは黒鉛の場合:2.1、六方晶窒化ほう素の場合:2.3で計算した。)
Bd:Tgが50℃以下のポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)の比重
Cd:反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)の比重
Dd:りん酸エステル系難燃材等のその他の任意成分(D)の比重
In addition, the content (volume%) of the graphite particles or the hexagonal boron nitride particles (A) in the present specification is a value obtained by the following formula.
Content of graphite particles or hexagonal boron nitride particles (A) (% by volume) = (Aw / dA) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd) + (Dw / Dd) + ...) × 100
Aw: mass composition (mass%) of graphite particles or hexagonal boron nitride particles (A)
Bw: Mass composition (% by mass) of a crosslinked cured product (B) of a poly (meth) acrylic acid ester polymer compound having a Tg of 50 ° C. or lower.
Cw: mass composition (% by mass) of poly (meth) acrylate polymer compound (C) having no reactive functional group
Dw: mass composition (mass%) of other optional components (D) such as phosphate ester flame retardants
Ad: Specific gravity of graphite particles or hexagonal boron nitride particles (A) (In the present invention, Ad is calculated in the case of graphite: 2.1, in the case of hexagonal boron nitride: 2.3)
Bd: Specific gravity of cross-linked cured product (B) of poly (meth) acrylate polymer compound having Tg of 50 ° C. or less Cd: Poly (meth) acrylate polymer compound having no reactive functional group ( C) Specific gravity Dd: Specific gravity of other optional component (D) such as phosphate ester flame retardant

なお、本発明において、(Bw/Bd)は、次式から求める。
(Bw/Bd)=(B’w/B’d)+(bw/bd)
B’w:Tgが50℃以下のポリ(メタ)アクリル酸エステル系高分子化合物(B’)の質量組成(質量%)
bw:硬化剤(b)の質量組成(質量%)
B’d:Tgが50℃以下のポリ(メタ)アクリル酸エステル系高分子化合物(B’)の比重
bd:硬化剤(b)の比重
In the present invention, (Bw / Bd) is obtained from the following equation.
(Bw / Bd) = (B′w / B′d) + (bw / bd)
B′w: Mass composition (% by mass) of poly (meth) acrylic acid ester polymer compound (B ′) having a Tg of 50 ° C. or less
bw: mass composition (% by mass) of the curing agent (b)
B′d: Specific gravity of poly (meth) acrylate polymer compound (B ′) having Tg of 50 ° C. or less bd: Specific gravity of curing agent (b)

本発明におけるポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)は、Tg(ガラス転移温度)が50℃以下、好ましくは−70〜20℃、より好ましくは−60〜0℃である。前記Tgが50℃を超える場合は、柔軟性に劣り、発熱体及び放熱体に対する密着性が不良である。
なお、ポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)のTgは、架橋硬化物(B)原料のポリ(メタ)アクリル酸エステル系高分子化合物(B’)のTgとほぼ同じである。
ガラス転移温度(Tg)は示差走査熱量装置(DSC)により測定する。
The cross-linked cured product (B) of the poly (meth) acrylate polymer compound in the present invention has a Tg (glass transition temperature) of 50 ° C. or lower, preferably −70 to 20 ° C., more preferably −60 to 0 ° C. It is. When the Tg exceeds 50 ° C., the flexibility is inferior, and the adhesion to the heat generator and the heat radiator is poor.
The Tg of the cross-linked cured product (B) of the poly (meth) acrylate polymer compound is equal to the Tg of the poly (meth) acrylate polymer compound (B ′) as the raw material of the cross-linked cured product (B). It is almost the same.
The glass transition temperature (Tg) is measured by a differential scanning calorimeter (DSC).

本発明におけるポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)はポリ(メタ)アクリル酸エステル系高分子化合物(B’)を硬化剤(b)で硬化させることにより得られる。   The cross-linked cured product (B) of the poly (meth) acrylate polymer compound in the present invention is obtained by curing the poly (meth) acrylate polymer compound (B ′) with a curing agent (b). .

本発明で用いられるポリ(メタ)アクリル酸エステル系高分子化合物(B’)としては、例えば、アクリル酸ブチル、アクリル酸2−エチルヘキシル等を主要な原料成分とし、(メタ)アクリル酸、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸グリシジル等を共重合させて反応活性な官能基を導入したポリ(メタ)アクリル酸エステル系高分子化合物(所謂アクリルゴム)が好適に用いられる。
これを硬化する硬化剤(b)としては、多官能エポキシ、多官能イソシアネート、多官能アミン、イミダゾール、フェノール性水酸基を複数有する化合物等が挙げられる。
特にアクリル酸ブチル又はアクリル酸2−エチルヘキシルを共重合成分中に70質量%以上99質量%以下(メタ)アクリル酸を1質量%以上10質量%以下含んだ(メタ)アクリル酸エステル系モノマを共重合させたものをポリ(メタ)アクリル酸エステル系高分子化合物(B’)とし、多官能エポキシを硬化剤(b)として得た架橋硬化物(B)が、製造時の適度な反応速度の点、及び得られるシートの柔軟性と強度のバランスの点が良好であり、好ましい。
また、架橋硬化物(B)のガラス転移温度は、アクリル酸ブチル又はアクリル酸2−エチルヘキシル等の共重合成分が多ければ下がる傾向にある。従って、架橋硬化物(B)のガラス転移温度が50℃以下となるようにこれらの共重合成分の量を適宜調製すればよい。
Examples of the poly (meth) acrylate polymer compound (B ′) used in the present invention include, for example, butyl acrylate, 2-ethylhexyl acrylate and the like as main raw material components, and (meth) acrylic acid, (meth A poly (meth) acrylate polymer compound (so-called acrylic rubber) in which a reactive functional group is introduced by copolymerizing hydroxyethyl acrylate, glycidyl (meth) acrylate, or the like is preferably used.
Examples of the curing agent (b) for curing this include polyfunctional epoxy, polyfunctional isocyanate, polyfunctional amine, imidazole, and a compound having a plurality of phenolic hydroxyl groups.
In particular, butyl acrylate or 2-ethylhexyl acrylate is copolymerized with a (meth) acrylic acid ester monomer containing 70% by mass to 99% by mass of (meth) acrylic acid in an amount of 1% by mass to 10% by mass. The polymerized product is a poly (meth) acrylic acid ester polymer compound (B ′), and a crosslinked cured product (B) obtained using a polyfunctional epoxy as a curing agent (b) has an appropriate reaction rate during production. The point of the balance of the softness | flexibility and intensity | strength of an obtained sheet | seat and intensity | strength is favorable, and preferable.
In addition, the glass transition temperature of the crosslinked cured product (B) tends to decrease as the amount of copolymer components such as butyl acrylate or 2-ethylhexyl acrylate increases. Therefore, what is necessary is just to adjust the quantity of these copolymerization components suitably so that the glass transition temperature of bridge | crosslinking hardened | cured material (B) may be 50 degrees C or less.

本発明の熱伝導シートにおけるポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)の含有量は特に制限されないが、ポリ(メタ)アクリル酸エステル系高分子化合物(C)を内部添加する場合は、組成物全体積に対して好ましくは10質量%〜30質量%、より好ましくは12質量%〜25質量%である。ポリ(メタ)アクリル酸エステル系高分子化合物(C)をシート表面に塗布又は含浸させる場合は、塗布量又は含浸量が0.1〜4mg/cmであることが好ましく、より好ましくは0.2〜3mg/cmである。塗布量又は含浸量が0.1mg/cm以上であれば、充分なタック性を得られやすく、4mg/cm以下であれば熱伝導性が低下を制御しやすい傾向がある。
なお、ポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)とポリ(メタ)アクリル酸エステル系高分子化合物(C)の含有比率については後述する。
The content of the cross-linked cured product (B) of the poly (meth) acrylate polymer compound in the heat conductive sheet of the present invention is not particularly limited, but the poly (meth) acrylate polymer compound (C) is contained inside. When added, it is preferably 10% by mass to 30% by mass, and more preferably 12% by mass to 25% by mass with respect to the total volume of the composition. When the poly (meth) acrylate polymer compound (C) is applied or impregnated on the sheet surface, the application amount or impregnation amount is preferably 0.1 to 4 mg / cm 2 , more preferably 0. it is a 2~3mg / cm 2. If the coating amount or impregnation amount is 0.1 mg / cm 2 or more, sufficient tackiness can be easily obtained, and if it is 4 mg / cm 2 or less, the thermal conductivity tends to control the decrease.
In addition, the content ratio of the crosslinked cured product (B) of the poly (meth) acrylate polymer compound and the poly (meth) acrylate polymer compound (C) will be described later.

本発明におけるポリ(メタ)アクリル酸エステル系高分子化合物(C)は、例えば、アクリル酸ブチル、アクリル酸エチル、アクリル酸2−エチルヘキシル等を主要な原料成分とし、必要に応じて(メタ)アクリル酸メチル等を共重合させたポリ(メタ)アクリル酸エステル系高分子化合物(所謂アクリルゴム)が好適に用いられる。
本発明の熱伝導シートにおいて、ポリ(メタ)アクリル酸エステル系高分子化合物(C)が内部添加によりシート材の全体に存在させてあるか、又は0.1mg/cm以上4mg/cm以下の量で表面に塗布又は含浸されることにより、熱伝導シートが優れたタック性を有する。より具体的には、例えば、熱伝導シートの製造において成形体をスライスする際に、黒鉛粒子又は六方晶窒化ほう素粒子がスライス時にへき開してシート表面を覆ってしまうこともあり、その場合にはシートのタック性が低下する傾向があるが、本発明におけるポリ(メタ)アクリル酸エステル系高分子化合物(C)が滲み出して、熱伝導シートのタック性に寄与する。
重量平均分子量が5000以上100000以下である必要があり、重量平均分子量が5000未満の場合、タック性を向上する効果が無く、強度も低下しやすい。重量平均分子量が100000を超えると、タック性及び柔軟性を向上する効果が無い。より好ましくは6000以上10000以下が良い。
The poly (meth) acrylic acid ester polymer compound (C) in the present invention contains, for example, butyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate and the like as main raw material components, and (meth) acrylic as necessary. A poly (meth) acrylic acid ester polymer compound (so-called acrylic rubber) obtained by copolymerizing methyl acid or the like is preferably used.
In the heat conductive sheet of the present invention, the poly (meth) acrylate polymer compound (C) is present in the entire sheet material by internal addition, or 0.1 mg / cm 2 or more and 4 mg / cm 2 or less. When the surface is applied or impregnated with the amount, the heat conductive sheet has excellent tackiness. More specifically, for example, when slicing a molded body in the production of a heat conductive sheet, graphite particles or hexagonal boron nitride particles may be cleaved during slicing to cover the sheet surface. Although the tackiness of the sheet tends to decrease, the poly (meth) acrylate polymer compound (C) in the present invention oozes out and contributes to the tackiness of the heat conductive sheet.
The weight average molecular weight needs to be 5000 or more and 100000 or less, and when the weight average molecular weight is less than 5000, there is no effect of improving tackiness and the strength tends to decrease. When the weight average molecular weight exceeds 100,000, there is no effect of improving tackiness and flexibility. More preferably, it is 6000 or more and 10,000 or less.

また、ポリ(メタ)アクリル酸エステル系高分子化合物(C)はTgが0℃以下である必要がある。Tgが0℃を超えるとタック性及び柔軟性を向上する効果が無い。より好ましくは−30℃以下が良い。グリシジル基、水酸基、カルボキシル基等の反応性官能基を有さない必要があり、これらがあるとタック性及び柔軟性を長期間保てなかったり、タック性及び柔軟性が熱履歴により低下したりする傾向がある。
ポリ(メタ)アクリル酸エステル系高分子化合物(C)の重量平均分子量を5000以上100000以下とするには、例えば、溶液重合法により、重合開始剤の量、連鎖移動剤の量、重合温度等により適宜調整すればよい。
ポリ(メタ)アクリル酸エステル系高分子化合物(C)のTgは、モノマ組成比で調整可能である。モノマ組成中にアクリル酸ブチル(ホモポリマのTgは−50℃程度)、アクリル酸2−エチルヘキシル(ホモポリマのTgは−60℃程度)のようなホモポリマのTgが低いものが多ければ得られるポリマのTgは低くなり、メタクリル酸メチル(ホモポリマのTgは100℃程度)のようなホモポリマのTgが高いものが多ければ得られるポリマのTgは高くなるため、モノマ組成によりTgが0℃以下となるように調整する。
The poly (meth) acrylic acid ester polymer compound (C) needs to have a Tg of 0 ° C. or lower. When Tg exceeds 0 ° C., there is no effect of improving tackiness and flexibility. More preferably, it is −30 ° C. or lower. It is necessary to have no reactive functional groups such as glycidyl group, hydroxyl group, and carboxyl group, and if these are present, tackiness and flexibility cannot be maintained for a long time, or tackiness and flexibility may be reduced due to thermal history. Tend to.
In order to set the weight average molecular weight of the poly (meth) acrylic acid ester polymer compound (C) to 5,000 or more and 100,000 or less, for example, by the solution polymerization method, the amount of the polymerization initiator, the amount of the chain transfer agent, the polymerization temperature, etc. May be adjusted as appropriate.
The Tg of the poly (meth) acrylate polymer compound (C) can be adjusted by the monomer composition ratio. If there are many homopolymers with low Tg such as butyl acrylate (Tg of homopolymer is about -50 ° C) and 2-ethylhexyl acrylate (Tg of homopolymer is about -60 ° C) in the monomer composition, the Tg of the resulting polymer The higher the Tg of homopolymers, such as methyl methacrylate (the homopolymer Tg is about 100 ° C.), the higher the Tg of the resulting polymer, so that the Tg is 0 ° C. or less due to the monomer composition. adjust.

本発明で用いられるポリ(メタ)アクリル酸エステル系高分子化合物(C)は内部添加により熱伝導シート材全体に存在させても良いが、表面に塗布又は含浸することにより表面に局在化させても良く、特に片面に塗布又は片面に含浸すると片面のみに強いタック性を付与できるため、ハンドリング性の良いシートが得られる点で好ましい。   The poly (meth) acrylate polymer compound (C) used in the present invention may be present throughout the heat conductive sheet material by internal addition, but is localized on the surface by coating or impregnating on the surface. In particular, when one surface is coated or impregnated on one surface, strong tackiness can be imparted only to one surface, which is preferable in terms of obtaining a sheet with good handling properties.

本発明で用いられるポリ(メタ)アクリル酸エステル系高分子化合物(C)の含有量は特に制限されないが、内部添加の場合、ポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)と前記ポリ(メタ)アクリル酸エステル系高分子化合物(C)の質量配合比率が(B):(C)=5:5〜7:3の範囲となる量が好ましい。
(B):(C)=7:3より(C)の比率が少ない場合、充分なタック性を得難くなる傾向があり、(B):(C)=5:5より(C)の比率が多いと、シートの強度が低下する傾向がある。更に好ましい範囲は(B):(C)=5.5:4.5〜6.5:3.5である。
また、表面に塗布又は含浸する場合は0.1mg/cm2以上4mg/cm2以下の量を塗布又は含浸するのが好ましい。0.1mg/cm2未満の場合は充分なタック性を得難くなる傾向があり、4mg/cm2を超えると熱伝導性が低下する傾向がある。
なお、本発明の熱伝導シートは、ポリ(メタ)アクリル酸エステル系高分子化合物(C)を内部添加しつつ、且つシート表面にポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布又は含浸させてもよい。内部添加しつつ、シート表面にポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布又は含浸する場合の、好ましいポリ(メタ)アクリル酸エステル系高分子化合物(C)の含有量、塗布量又は含浸量は、上記範囲と同様である。
The content of the poly (meth) acrylate polymer compound (C) used in the present invention is not particularly limited. However, in the case of internal addition, a crosslinked cured product of poly (meth) acrylate polymer compound (B ) And the poly (meth) acrylic acid ester polymer compound (C) in a mass blending ratio of (B) :( C) = 5: 5 to 7: 3 is preferable.
When the ratio of (C) is smaller than (B) :( C) = 7: 3, there is a tendency that sufficient tackiness is difficult to obtain, and the ratio of (C) from (B) :( C) = 5: 5. When there is much, there exists a tendency for the intensity | strength of a sheet | seat to fall. A more preferable range is (B) :( C) = 5.5: 4.5 to 6.5: 3.5.
Moreover, when apply | coating or impregnating to the surface, it is preferable to apply | coat or impregnate the quantity of 0.1 mg / cm < 2 > or more and 4 mg / cm < 2 > or less. If it is less than 0.1 mg / cm 2, it tends to be difficult to obtain sufficient tackiness, and if it exceeds 4 mg / cm 2 , the thermal conductivity tends to decrease.
In the heat conductive sheet of the present invention, the poly (meth) acrylate polymer compound (C) is applied to the sheet surface while the poly (meth) acrylate polymer compound (C) is internally added. Alternatively, it may be impregnated. Preferred content of poly (meth) acrylate polymer compound (C) and coating when poly (meth) acrylate polymer compound (C) is coated or impregnated on the sheet surface while internally added The amount or impregnation amount is the same as the above range.

本発明の熱伝導シートは、ポリ(メタ)アクリル酸エステル系高分子化合物(C)が内部添加されつつ、さらにシートの一方の表面にポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布又は含浸されていることも好ましい。該構成の場合も、好ましいポリ(メタ)アクリル酸エステル系高分子化合物(C)の含有量、塗布量又は含浸量は、上述の範囲と同様である。   In the heat conductive sheet of the present invention, the poly (meth) acrylate polymer compound (C) is added to one surface of the sheet while the poly (meth) acrylate polymer compound (C) is internally added. Application or impregnation is also preferred. Also in the case of this configuration, the preferable content, coating amount or impregnation amount of the poly (meth) acrylic acid ester polymer compound (C) is the same as the above range.

また、本発明の熱伝導シートは難燃剤を含有することができる。難燃剤としては特に限定されず、例えば、赤りん系難燃剤やりん酸エステル系難燃剤を含有することができる。
赤りん系難燃剤としては、純粋な赤りん粉末の他に、安全性や安定性を高める目的で種々のコーティングを施したもの、マスターバッチになっているもの等が挙げられ、具体的には、例えば、燐化学工業(株)製、商品名:ノーバレッド、ノーバエクセル、ノーバクエル、ノーバペレット等が挙げられる。
Moreover, the heat conductive sheet of this invention can contain a flame retardant. It does not specifically limit as a flame retardant, For example, a red phosphorus flame retardant and a phosphate ester flame retardant can be contained.
Examples of red phosphorus flame retardants include pure red phosphorus powder, various coatings for the purpose of improving safety and stability, and master batches. Examples include trade names: Nova Red, Nova Excel, Nova Quel, Nova Pellet, etc., manufactured by Rin Chemical Industry Co., Ltd.

りん酸エステル系難燃剤としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート等の脂肪族リン酸エステル;トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、クレジル−2,6−キシレニルホスフェート、トリス(t−ブチル化フェニル)ホスフェート、トリス(イソプロピル化フェニル)ホスフェート、リン酸トリアリールイソプロピル化物等の芳香族リン酸エステル;レゾルシノールビスジフェニルホスフェート、ビスフェノールAビス(ジフェニルホスフェート)、レゾルシノールビスジキシレニルホスフェート等の芳香族縮合リン酸エステル;等が挙げられる。これらは一種類を用いても、二種類以上を併用してもよい。中でも液状のりん酸エステル系難燃剤がシートの柔軟性に寄与するので好ましい。   Examples of the phosphate ester flame retardant include aliphatic phosphate esters such as trimethyl phosphate, triethyl phosphate, tributyl phosphate; triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, trixylenyl phosphate, cresyl-2, Aromatic phosphate esters such as 6-xylenyl phosphate, tris (t-butylated phenyl) phosphate, tris (isopropylated phenyl) phosphate, triaryl isopropylate; resorcinol bisdiphenyl phosphate, bisphenol A bis (diphenyl phosphate) ), Aromatic condensed phosphoric acid esters such as resorcinol bis-dixylenyl phosphate; and the like. These may be used alone or in combination of two or more. Among these, a liquid phosphate ester flame retardant is preferable because it contributes to the flexibility of the sheet.

難燃剤の含有量は特に制限されないが、組成物全体積に対して好ましくは10〜40質量%、より好ましくは15〜30質量%である。難燃剤の含有量が前記範囲であれば、充分な難燃性が発現され、かつ柔軟性の点で有利となるので好ましい。前記難燃剤の含有量が10質量%未満である場合は充分な難燃性が得難く、40質量%を超える場合はシート強度が低下する傾向がある。   The content of the flame retardant is not particularly limited, but is preferably 10 to 40% by mass, more preferably 15 to 30% by mass with respect to the total volume of the composition. If the content of the flame retardant is within the above range, it is preferable because sufficient flame retardancy is exhibited and it is advantageous in terms of flexibility. When the content of the flame retardant is less than 10% by mass, it is difficult to obtain sufficient flame retardancy, and when it exceeds 40% by mass, the sheet strength tends to decrease.

また、本発明の熱伝導シートは、更に必要に応じてウレタンアクリレート等の靭性改良剤;酸化カルシウム、酸化マグネシウム等の吸湿剤;シランカップリング剤、チタンカップリング剤、酸無水物等の接着力向上剤;ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤;等を適宜添加することができる。   In addition, the heat conductive sheet of the present invention is further provided with a toughness improving agent such as urethane acrylate; a hygroscopic agent such as calcium oxide or magnesium oxide; an adhesive strength such as a silane coupling agent, a titanium coupling agent, or an acid anhydride. An improvement agent; a wetting improvement agent such as a nonionic surfactant or a fluorine-based surfactant; an antifoaming agent such as silicone oil; an ion trapping agent such as an inorganic ion exchanger; or the like can be appropriately added.

本発明の熱伝導シートは、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が熱伝導シートの厚み方向に配向しており、この配向がないと、充分な熱伝導性が得られない。   In the heat conductive sheet of the present invention, the surface direction of the scale of the graphite particles or hexagonal boron nitride particles (A), the long axis direction of the ellipse or the long axis direction of the rod are oriented in the thickness direction of the heat conductive sheet. Without this orientation, sufficient thermal conductivity cannot be obtained.

本発明において「熱伝導シートの厚み方向に配向」とは、熱伝導シートの厚み方向の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子又は六方晶窒化ほう素粒子について見えている方向から長軸方向の熱伝導シート表面に対する角度(90度以上の場合は補角を採用する)を測定し、その平均値が60〜90度の範囲になる状態をいう。   In the present invention, “orientation in the thickness direction of the heat conduction sheet” means that a cross section in the thickness direction of the heat conduction sheet is observed using a SEM (scanning electron microscope), and any 50 graphite particles or hexagonal crystal nitride An angle with respect to the heat conduction sheet surface in the major axis direction from the direction in which the elementary particles are visible (a complementary angle is adopted when 90 degrees or more) is measured, and the average value is in a range of 60 to 90 degrees. .

また、本発明の熱伝導シートにおいて、粘着面を保護するために使用前の熱伝導シートの粘着面は保護フィルムで覆っておいてもよい。保護フィルムの材質としては、例えば、ポリエチレン、ポリエステル、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、ポリエーテルイミド、ポリエーテルナフタレート、メチルペンテンフィルム等の樹脂、コート紙、コート布、アルミ等の金属が使用できる。これらの保護フィルムは2種以上組み合わせて多層フィルムとしてもよく、保護フィルムの表面がシリコーン系、シリカ系等の離型剤などで処理されたものが好ましく用いられる。   Moreover, in the heat conductive sheet of this invention, in order to protect an adhesive surface, the adhesive surface of the heat conductive sheet before use may be covered with the protective film. Examples of the material for the protective film include resins such as polyethylene, polyester, polypropylene, polyethylene terephthalate, polyimide, polyetherimide, polyether naphthalate, and methylpentene film, and metals such as coated paper, coated cloth, and aluminum. Two or more kinds of these protective films may be combined to form a multilayer film, and a protective film whose surface is treated with a release agent such as silicone or silica is preferably used.

<熱伝導シートの製造方法>
本発明の熱伝導シートの製造方法は、一次シートを作製する工程、この一次シートを積層して成形体を得る工程、この成形体をスライスする工程、を含む。
本発明の熱伝導シートの製造方法は、下記工程(1a)〜(4)あるいは(1b)〜(5)を含む。また、下記工程(1a)〜(4)に(5)をさらに含む方法でもよい。
第一の方法:
(1a)鱗片状、楕球状又は棒状であり、結晶中の六角平面が、鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、ガラス転移温度が、50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)と、重量平均分子量が5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)と、を含有する組成物を、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下の厚みに圧延成形、プレス成形、押出成形又は塗工し、主たる面に関して平行な方向に黒鉛粒子又は六方晶窒化ほう素粒子(A)が配向した一次シートを作製する工程。
(2)前記一次シートを積層して成形体を得る工程。
(3)前記成形体を加熱して、前記ポリ(メタ)アクリル酸エステル系高分子化合物(B’)と硬化剤(b)とを反応させる工程。
(4)前記一次シート面から出る法線に対し、0〜30度の角度でスライスしてシートを得る工程。
<The manufacturing method of a heat conductive sheet>
The manufacturing method of the heat conductive sheet of this invention includes the process of producing a primary sheet, the process of obtaining this molded object by laminating | stacking this primary sheet, and the process of slicing this molded object.
The manufacturing method of the heat conductive sheet of this invention includes the following process (1a)-(4) or (1b)-(5). Further, the following steps (1a) to (4) may further include (5).
First method:
(1a) Graphite particles or hexagonal boron nitride having a scale shape, an elliptical shape, or a rod shape, and a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod Particle (A), poly (meth) acrylate polymer compound (B ′) having a glass transition temperature of 50 ° C. or less, a curing agent (b) for crosslinking and curing the same, and a weight average molecular weight of 5000 A composition containing a poly (meth) acrylate polymer compound (C) having a 100,000 or less and Tg of 0 ° C. or less and having no reactive functional group, the graphite particles or hexagonal crystals. Rolled, pressed, extruded or coated to a thickness of 20 times or less the mass average diameter of boron nitride particles (A), and graphite particles or hexagonal boron nitride particles (A) in a direction parallel to the main surface For producing a primary sheet oriented with .
(2) A step of laminating the primary sheets to obtain a molded body.
(3) The process which heats the said molded object and makes the said poly (meth) acrylic-ester type polymer compound (B ') and a hardening | curing agent (b) react.
(4) A step of obtaining a sheet by slicing at an angle of 0 to 30 degrees with respect to a normal line emerging from the primary sheet surface.

第2の方法:
(1b)鱗片状、楕球状又は棒状であり、結晶中の六角平面が、鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、ガラス転移温度が、50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)と、を含有する組成物を、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下の厚みに圧延成形、プレス成形、押出成形又は塗工し、主たる面に関して、平行な方向に黒鉛粒子又は六方晶窒化ほう素粒子(A)が配向した一次シートを作製する工程。
(5)前記シートの少なくとも一方の面に、重量平均分子量5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布又は含浸させる工程。
Second method:
(1b) Graphite particles or hexagonal boron nitride having a scale shape, an elliptical shape, or a rod shape, and a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod A composition comprising particles (A), a poly (meth) acrylate polymer compound (B ′) having a glass transition temperature of 50 ° C. or less, and a curing agent (b) for crosslinking and curing the same. Is rolled, press-molded, extruded or coated to a thickness of 20 times or less the mass average diameter of the graphite particles or hexagonal boron nitride particles (A), and the graphite particles or A step of producing a primary sheet in which hexagonal boron nitride particles (A) are oriented.
(5) On at least one surface of the sheet, a poly (meth) acrylate polymer compound (C) having a weight average molecular weight of 5,000 to 100,000 and a Tg of 0 ° C. or less and having no reactive functional group. ) Is applied or impregnated.

以下、各工程について説明する。
(1a)一次シートの作製工程
まず、黒鉛粒子又は六方晶窒化ほう素粒子(A)と、ポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)と、ポリ(メタ)アクリル酸エステル系高分子化合物(C)とを含有する組成物を得る。組成物は、これらを混合することにより得られるが、混合方法は特に制限されない。例えば、ポリ(メタ)アクリル酸エステル系高分子化合物(B’)を溶剤に溶かしておいて、そこに黒鉛粒子又は六方晶窒化ほう素粒子(A)及び他の成分を加え、攪拌した後に乾燥する方法、又は、ロール混練、ニーダーによる混合、ブラベンダによる混合、押出機による混合等を用いることができる。
なお、この混合においては、組成物中のポリ(メタ)アクリル酸エステル系高分子化合物(B’)と硬化剤(b)とが未反応である。
Hereinafter, each step will be described.
(1a) Production process of primary sheet First, graphite particles or hexagonal boron nitride particles (A), poly (meth) acrylate polymer compound (B '), and a curing agent (b) ) And a poly (meth) acrylic ester polymer compound (C). The composition can be obtained by mixing them, but the mixing method is not particularly limited. For example, a poly (meth) acrylate polymer compound (B ′) is dissolved in a solvent, graphite particles or hexagonal boron nitride particles (A) and other components are added thereto, and the mixture is stirred and dried. Or roll kneading, mixing by a kneader, mixing by a brabender, mixing by an extruder, or the like can be used.
In this mixing, the poly (meth) acrylate polymer compound (B ′) and the curing agent (b) in the composition are unreacted.

次いで前記組成物を、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下の厚みに圧延成形、プレス成形、押出成形又は塗工し、主たる面に関してほぼ平行な方向に黒鉛粒子又は六方晶窒化ほう素粒子(A)が配向した一次シートを作製する。
前記組成物を一次シートに成形する際の厚みは、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下、好ましくは2倍〜0.2倍とする。前記厚みが前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の長径の平均値の20倍を超える場合は、黒鉛粒子又は六方晶窒化ほう素粒子(A)の配向が不充分になり、結果として、最終的に得られる熱伝導シートの熱伝導性が悪くなる傾向がある。
Next, the composition is rolled, press-molded, extruded or coated to a thickness of 20 times or less the mass average diameter of the graphite particles or hexagonal boron nitride particles (A), and in a direction substantially parallel to the main surface. A primary sheet in which graphite particles or hexagonal boron nitride particles (A) are oriented is prepared.
The thickness when the composition is formed into a primary sheet is 20 times or less, preferably 2 to 0.2 times the mass average diameter of the graphite particles or hexagonal boron nitride particles (A). When the thickness exceeds 20 times the average value of the major axis of the graphite particles or hexagonal boron nitride particles (A), the orientation of the graphite particles or hexagonal boron nitride particles (A) becomes insufficient, resulting in As a result, the thermal conductivity of the finally obtained thermal conductive sheet tends to deteriorate.

前記組成物を、圧延成形、プレス成形、押出成形又は塗工することにより、黒鉛粒子又は六方晶窒化ほう素粒子(A)を主たる面に関してほぼ平行な方向に配向した一次シートを作製するが、圧延成形又はプレス成形が確実に黒鉛粒子又は六方晶窒化ほう素粒子(A)を配向させ易いので好ましい。
前記黒鉛粒子又は六方晶窒化ほう素粒子(A)がシートの主たる面に関してほぼ平行な方向に配向した状態とは、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)がシートの主たる面に関して寝ているように配向した状態をいう。シート面内での黒鉛粒子又は六方晶窒化ほう素粒子(A)の向きは、前記組成物を成形する際に、組成物の流れる方向を調整することによってコントロールされる。つまり、組成物を圧延ロールに通す方向、組成物を押出す方向、組成物を塗工する方向、組成物をプレスする方向を調整することで、黒鉛粒子又は六方晶窒化ほう素粒子(A)の向きがコントロールされる。
前記黒鉛粒子又は六方晶窒化ほう素粒子(A)は、基本的に異方性を有する粒子であるため、組成物を圧延成形、プレス成形、押出成形又は塗工することにより、通常、黒鉛粒子又は六方晶窒化ほう素粒子(A)の向きは揃って配置される。
The composition is rolled, pressed, extruded, or coated to produce a primary sheet in which graphite particles or hexagonal boron nitride particles (A) are oriented in a direction substantially parallel to the main surface, Roll forming or press forming is preferable because the graphite particles or hexagonal boron nitride particles (A) can be easily oriented.
The state in which the graphite particles or hexagonal boron nitride particles (A) are oriented in a direction substantially parallel to the main surface of the sheet means that the graphite particles or hexagonal boron nitride particles (A) are in contact with the main surface of the sheet. The state is oriented as shown. The orientation of the graphite particles or hexagonal boron nitride particles (A) in the sheet plane is controlled by adjusting the flowing direction of the composition when the composition is molded. That is, by adjusting the direction of passing the composition through a rolling roll, the direction of extruding the composition, the direction of coating the composition, and the direction of pressing the composition, graphite particles or hexagonal boron nitride particles (A) The direction of is controlled.
Since the graphite particles or the hexagonal boron nitride particles (A) are basically anisotropic particles, the graphite particles are usually formed by rolling, pressing, extrusion, or coating the composition. Alternatively, the hexagonal boron nitride particles (A) are arranged in the same direction.

また、一次シートを作製する際、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)とポリ(メタ)アクリル酸エステル系高分子化合物(B’)、これを架橋硬化させる硬化剤(b)、ポリ(メタ)アクリル酸エステル系高分子化合物(C)とを含有する組成物の成形前の形状が塊状物である場合は、塊状物の厚み(d0)に対し、成形後の一次シートの厚み(dp)がdp/d0<0.15になるよう圧延成形、プレス成形又は押出成形するか、押し出し機出口の一次シート断面形状に相当する形状調整によって、一次シートの横幅(W)に対し厚み(dp´)がdp´/W<0.15となるように押し出し成形することが好ましい。dp/d0<0.15となるよう成形することにより、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)がシートの主たる面に関してほぼ平行な方向に配向させ易くなる。   When producing the primary sheet, the graphite particles or hexagonal boron nitride particles (A) and the poly (meth) acrylate polymer compound (B ′), a curing agent (b) for crosslinking and curing the same, When the composition before molding of the composition containing the poly (meth) acrylate polymer compound (C) is a lump, the thickness of the primary sheet after moulding with respect to the lump thickness (d0) Thickness with respect to the lateral width (W) of the primary sheet by rolling, pressing or extruding so that (dp) becomes dp / d0 <0.15, or by adjusting the shape corresponding to the cross-sectional shape of the primary sheet at the exit of the extruder. Extrusion molding is preferably performed so that (dp ′) satisfies dp ′ / W <0.15. By shaping so that dp / d0 <0.15, the graphite particles or hexagonal boron nitride particles (A) can be easily oriented in a direction substantially parallel to the main surface of the sheet.

(1b)一次シートの作製工程
(1b)の場合は、ポリ(メタ)アクリル酸エステル系高分子化合物(C)を組成物に含まず組成物を得る以外は、前記(1a)工程と同様に一次シートを得る。
(1b) Production step of primary sheet In the case of (1b), except that the composition is obtained without containing the poly (meth) acrylate polymer compound (C) in the same manner as in the step (1a). Obtain a primary sheet.

(2)成形体を得る工程
次いで、前記一次シートを積層して成形体を得る。一次シートを積層する方法は、特に限定されず、例えば、複数枚の一次シートを積層する方法、一次シートを折り畳む方法等が挙げられる。積層する際は、シート面内での黒鉛粒子又は六方晶窒化ほう素粒子(A)の向きを揃えて積層する。積層する際の一次シートの形状は、特に限定されず、例えば矩形状の一次シートを積層した場合は、角柱状の成形体が得られ、円形状の一次シートを積層した場合は、円柱状の成形体が得られる。
複数の一次シートを積層する方法、一次シートを折り畳む方法に代えて、一次シートを捲回して、成形体を得ることも可能である。一次シートを捲回する方法も特に限定されず、前記一次シートを黒鉛粒子(A)の配向方向を軸にして捲回すればよい。捲回の形状は、特に限定されず、例えば円筒形でも角筒形でもよい。
(2) Step of obtaining a molded body Next, the primary sheet is laminated to obtain a molded body. The method of laminating the primary sheet is not particularly limited, and examples thereof include a method of laminating a plurality of primary sheets, a method of folding the primary sheet, and the like. When laminating, the orientation of graphite particles or hexagonal boron nitride particles (A) in the sheet plane is aligned. The shape of the primary sheet at the time of lamination is not particularly limited. For example, when a rectangular primary sheet is laminated, a prismatic shaped body is obtained, and when a circular primary sheet is laminated, a cylindrical shape is obtained. A molded body is obtained.
Instead of the method of laminating a plurality of primary sheets and the method of folding the primary sheet, it is possible to obtain a molded body by winding the primary sheet. The method for winding the primary sheet is not particularly limited, and the primary sheet may be wound around the orientation direction of the graphite particles (A). The shape of the winding is not particularly limited, and may be, for example, a cylindrical shape or a rectangular tube shape.

一次シートを積層する際の圧力は、この後の工程の一次シート面から出る法線に対し0〜30度の角度でスライスする都合上、スライス面がつぶれて所要面積を下回らない程度に弱く、かつシート間がうまく接着する程度に強くなるよう調整される。通常はこの調整で積層面間の接着力を充分に得られるが、不足する場合は溶剤又は接着剤等を薄く一次シートに塗布した上で積層を行ってもよい。また、積層は適宜加熱下に行ってもよい。   The pressure at the time of laminating the primary sheet is weak enough that the sliced surface is not crushed and falls below the required area for the convenience of slicing at an angle of 0 to 30 degrees with respect to the normal line coming out from the primary sheet surface in the subsequent process. And it adjusts so that it may become strong to such an extent that it adhere | attaches between sheets well. Usually, this adjustment can provide a sufficient adhesive force between the laminated surfaces, but if insufficient, lamination may be performed after thinly applying a solvent or an adhesive to the primary sheet. Moreover, you may perform lamination | stacking under a heating suitably.

(3)前記成形体を加熱する工程
次いで、前記成形体を加熱して、前記ポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)とを反応させ、ポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)とする。
好適な加熱条件は、具体的にはポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)との種類や濃度によって異なるが、硬化反応による弾性率変化が15%/h以下になるまで加熱を継続するのが好ましい。弾性率変化が、15%/hを越えている時点で加熱をやめた場合、使用時の加熱により反応が再発し、弾性率が顕著に上昇するため、得られるシートの使用時耐熱性が悪くなる傾向がある。
なお、前記弾性率の変化の測定は、以下のように行う。
前記弾性率の変化が15%以下となるような加熱条件の決定は、以下のように行う。シートと同じ組成物を少量サンプリングし、プレスして0.5mm厚のサンプルシートにし、これを1cm×5cmに打ち抜き、サンプルシートを温度・時間を振って硬化させる。具体的には、各加熱温度において硬化時間を1時間間隔で硬化させることで硬化サンプルシートを作製する。
複数の条件で架橋硬化させ作製した硬化サンプルシートをそれぞれ温度25±1℃の環境に1時間静置し、それぞれの硬化サンプルシートに対して引張弾性率試験を行い、弾性率を求める。1時間違いで硬化させて得られた2つの硬化サンプルシートの弾性率の差(「弾性率変化」ともいう)をそれぞれ求め、その差が15%以下となる硬化条件を、実際の熱伝導シート製造の際の架橋硬化条件として設定する。
このようにして、弾性率変化が15%以下となる加熱(硬化)条件を予め求めておき、その条件で成形体を加熱することで、架橋硬化条件を最適化できる。
なお、弾性率の測定は、例えば、株式会社東洋精機製作所製のSTROGRAPH E−Sを用い、温度:25℃、引張速度:5mm/分で行う。
(3) Step of heating the molded body Next, the molded body is heated, and the poly (meth) acrylate polymer compound (B ′) and a curing agent (b) that crosslinks and cures the poly (meth) acrylate polymer compound (B ′). It is made to react and it is set as the crosslinked hardened | cured material (B) of a poly (meth) acrylic-ester type | system | group polymer compound.
The preferred heating conditions vary depending on the type and concentration of the poly (meth) acrylic acid ester polymer compound (B ′) and the curing agent (b) that crosslinks and cures it. It is preferable to continue heating until the rate change becomes 15% / h or less. If the heating is stopped when the change in elastic modulus exceeds 15% / h, the reaction recurs due to heating during use, and the elastic modulus increases significantly, resulting in poor heat resistance when the resulting sheet is used. Tend.
The change in the elastic modulus is measured as follows.
The determination of the heating conditions such that the change in elastic modulus is 15% or less is performed as follows. A small amount of the same composition as the sheet is sampled and pressed into a 0.5 mm thick sample sheet, which is punched into 1 cm × 5 cm, and the sample sheet is cured by varying the temperature and time. Specifically, a cured sample sheet is produced by curing the curing time at 1 hour intervals at each heating temperature.
Each cured sample sheet prepared by crosslinking and curing under a plurality of conditions is left in an environment at a temperature of 25 ± 1 ° C. for 1 hour, and a tensile elastic modulus test is performed on each cured sample sheet to obtain an elastic modulus. The difference in elastic modulus (also referred to as “elastic modulus change”) of two cured sample sheets obtained by curing for one hour is obtained, and the curing conditions for which the difference is 15% or less are determined as the actual thermal conductive sheet. It is set as a cross-linking curing condition during production.
In this way, the crosslinking and curing conditions can be optimized by obtaining in advance the heating (curing) conditions at which the change in elastic modulus is 15% or less and heating the molded body under those conditions.
The elastic modulus is measured, for example, using STROGRAP ES manufactured by Toyo Seiki Seisakusho Co., Ltd. at a temperature of 25 ° C. and a tensile speed of 5 mm / min.

(4)スライス工程
次いで、前記成形体を一次シート面から出る法線に対し、0〜30度の角度で、好ましくは、0〜15度の角度でスライスして、所定の厚さを持った熱伝導シートを得る。スライスする角度が30度を超える場合は熱伝導率が低下する傾向がある。
前記成形体が積層体である場合は、一次シートの積層方向と垂直若しくはほぼ垂直となるようにスライスすればよい。また、前記成形体が捲回体である場合は捲回の軸に対して垂直もしくはほぼ垂直となるようにスライスすればよい。また、円形状の一次シートを積層した円柱状の成形体の場合は、上記角度の範囲内でかつら剥きのようにスライスしてもよい。
(4) Slicing step Next, the molded body was sliced at an angle of 0 to 30 degrees, preferably at an angle of 0 to 15 degrees with respect to the normal line coming out of the primary sheet surface, and had a predetermined thickness. A heat conductive sheet is obtained. When the slicing angle exceeds 30 degrees, the thermal conductivity tends to decrease.
When the molded body is a laminated body, it may be sliced so as to be perpendicular or substantially perpendicular to the lamination direction of the primary sheet. Further, when the molded body is a wound body, it may be sliced so as to be perpendicular or almost perpendicular to the winding axis. Further, in the case of a cylindrical molded body in which circular primary sheets are laminated, the molded body may be sliced like a wig within the above angle range.

スライスする方法は特に制限はなく、例えば、マルチブレード法、レーザー加工法、ウォータージェット法、ナイフ加工法などが挙げられるが、熱伝導シートの厚みの平行を保ちやすい点でナイフ加工法が好ましい。スライスする際の切断具は、特に制限はないが、鋭利な刃を備えたスライサー、カンナ等が得られる熱伝導シートの表面近傍の黒鉛粒子又は六方晶窒化ほう素粒子の配向を乱し難く、かつ薄い熱伝導シートも作製し易いので好ましい。   The slicing method is not particularly limited, and examples thereof include a multi-blade method, a laser processing method, a water jet method, and a knife processing method. The knife processing method is preferable because the thickness of the heat conductive sheet can be easily kept parallel. The cutting tool for slicing is not particularly limited, but it is difficult to disturb the orientation of the graphite particles or hexagonal boron nitride particles in the vicinity of the surface of the heat conductive sheet from which a slicer with a sharp blade, canna, etc. is obtained, And since a thin heat conductive sheet is also easy to produce, it is preferable.

スライスは、ポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)のTg+5℃〜Tg+50℃の温度範囲で行うのが好ましく、Tg+10℃〜Tg+40℃の温度範囲で行うのがより好ましい。前記スライスする際の温度がポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)のTg+50℃を超える場合は、成形体が柔軟になってスライスし難くなったり、黒鉛粒子又は六方晶窒化ほう素粒子の配向が乱れる傾向がある。逆にTg+5℃未満である場合は、成形体が固くもろくなってスライスし難くなったり、スライス直後にシートが割れ易くなる傾向がある。   The slicing is preferably performed in a temperature range of Tg + 5 ° C. to Tg + 50 ° C. of the crosslinked cured product (B) of the poly (meth) acrylate polymer compound, and is performed in a temperature range of Tg + 10 ° C. to Tg + 40 ° C. Is more preferable. When the temperature at the time of slicing exceeds Tg + 50 ° C. of the cross-linked cured product (B) of the poly (meth) acrylate polymer compound, the molded article becomes soft and difficult to slice, or graphite particles or hexagonal The orientation of the crystalline boron nitride particles tends to be disturbed. On the other hand, when the temperature is lower than Tg + 5 ° C., the molded body becomes hard and brittle, and it becomes difficult to slice, or the sheet tends to be easily broken immediately after slicing.

熱伝導シートの厚さは、用途等により適宜設定されるが、好ましくは0.05〜3mm、より好ましくは0.1〜1mmである。前記熱伝導シートの厚さが0.05mm未満である場合はシートとしての取り扱いが難しくなる傾向にあり、3mmを超える場合は放熱効果が低くなる傾向にある。前記成形体のスライス幅が熱伝導シートの厚さとなり、スライス面が熱伝導シートにおける発熱体や放熱体との当接面となる。   Although the thickness of a heat conductive sheet is suitably set by a use etc., Preferably it is 0.05-3 mm, More preferably, it is 0.1-1 mm. When the thickness of the heat conductive sheet is less than 0.05 mm, handling as a sheet tends to be difficult, and when it exceeds 3 mm, the heat dissipation effect tends to be low. The slice width of the molded body is the thickness of the heat conductive sheet, and the slice surface is a contact surface of the heat conductive sheet with the heat generating body or the heat radiating body.

(5)ポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布又は含浸させる工程
一次シートを上記(1a)工程で得た場合も、上記(1b)工程で得た場合も、得られたシートの少なくとも一方の面に、ポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布又は含浸させると、片面のみに、あるいは両面とも強いタックを持つハンドリング性の良いシートが得られ、好ましい。塗布又は含浸させる方法に特に制約は無い。具体的には、スプレー塗布、印刷、塗工、転写、はけ塗り等種々の方法を取ることが可能である。但し、塗布し易くするために溶剤等で希釈する場合は、シート基材が侵されないものを選択する必要がある。この観点から、この場合、水を主体にした媒体に乳化して用いるのが好ましい。また、塗布後に塗布面を上にして50〜120℃程度に加熱する工程を行うと、塗布したポリ(メタ)アクリル酸エステル系高分子化合物(C)がレベリングし基材のボイドを埋めるため、熱伝導性の点で好ましい。
一方の面に含浸する方法としては、片面に含浸できれば方法に制限はないが、例えば、塗布のように片面に化合物を配置し含浸したり、片面のみ液面に浸したり、シートの周りに枠材を設け、片面のみに含浸したりする方法等が挙げられる。
(5) Step of applying or impregnating the poly (meth) acrylate polymer compound (C) Even when the primary sheet is obtained in the step (1a) or the step (1b), it is obtained. When at least one side of the sheet is coated or impregnated with the poly (meth) acrylic acid ester polymer compound (C), a sheet with good handling property having a strong tack only on one side or both sides is obtained. preferable. There are no particular restrictions on the method of application or impregnation. Specifically, various methods such as spray coating, printing, coating, transfer, and brushing can be used. However, when diluting with a solvent or the like for easy application, it is necessary to select one that does not attack the sheet substrate. From this viewpoint, in this case, it is preferable to emulsify in a medium mainly composed of water. Moreover, since the applied poly (meth) acrylic acid ester polymer compound (C) is leveled and fills the voids of the base material when a process of heating to about 50 to 120 ° C. is performed after coating, It is preferable in terms of thermal conductivity.
The method of impregnating one side is not limited as long as it can be impregnated on one side, but for example, a compound is placed on one side as in coating and impregnated, only one side is immersed in the liquid level, or a frame around the sheet Examples thereof include a method of providing a material and impregnating only one side.

<放熱装置>
本発明の放熱装置は、本発明の熱伝導シート又は本発明の製造方法により得られた熱伝導シートを発熱体と放熱体の間に介在させて得られる。発熱体としては少なくともその表面温度が200℃を超えないもの好ましい。前記表面温度が200℃を超える可能性が高いもの、例えば、ジェットエンジンのノズル近傍、窯陶釜内部周辺、溶鉱炉内部周辺、原子炉内部周辺、宇宙船外殻等に使用すると、本発明の熱伝導シート又は本発明の製造方法により得られた熱伝導シート中の有機高分子化合物が分解してしまう可能性が高いので適さない。本発明の熱伝導シート又は本発明の製造方法により製造された熱伝導シートが特に好適に使用できる温度範囲は−10〜120℃であり、半導体パッケージ、ディスプレイ、LED、電灯等が好適な発熱体の例として挙げられる。
<Heat dissipation device>
The heat radiating device of the present invention is obtained by interposing the heat conductive sheet of the present invention or the heat conductive sheet obtained by the manufacturing method of the present invention between the heat generating body and the heat radiating body. The heating element preferably has a surface temperature not exceeding 200 ° C. When the surface temperature is likely to exceed 200 ° C., for example, near the nozzle of a jet engine, around the inside of a kiln pot, around the inside of a blast furnace, around the inside of a nuclear reactor, the outer shell of a spacecraft, etc. It is not suitable because the organic polymer compound in the conductive sheet or the heat conductive sheet obtained by the production method of the present invention is likely to be decomposed. The temperature range in which the heat conductive sheet of the present invention or the heat conductive sheet manufactured by the manufacturing method of the present invention can be used particularly preferably is −10 to 120 ° C., and a heating element suitable for semiconductor packages, displays, LEDs, electric lamps, etc. As an example.

一方、放熱体としては、例えば、アルミ、銅のフィン・板等を利用したヒートシンク、ヒートパイプに接続されているアルミや銅のブロック、内部に冷却液体をポンプで循環させているアルミや銅のブロック、ペルチェ素子及びこれを備えたアルミや銅のブロック等が使用できる代表的なものである。   On the other hand, as a heat sink, for example, a heat sink using aluminum, copper fins, plates, etc., an aluminum or copper block connected to a heat pipe, an aluminum or copper that circulates cooling liquid with a pump inside A typical example is a block, a Peltier element, and an aluminum or copper block having the same.

本発明の放熱装置は、発熱体と放熱体に本発明の熱伝導シート又は本発明の製造方法により得られた熱伝導シートの各々の面を接触させることで成立する。発熱体、熱伝導シート及び放熱体を充分に密着させた状態で固定できる方法であれば、接触させる方法に制限はないが、密着を持続させる観点から、ばねを介してねじ止めする方法、クリップで挟む方法などのように押し付ける力が持続する接触方法が好ましい。   The heat dissipation device of the present invention is established by bringing each surface of the heat conductive sheet of the present invention or the heat conductive sheet obtained by the manufacturing method of the present invention into contact with the heat generator and the heat radiator. There is no limitation on the contact method as long as the heating element, the heat conductive sheet, and the heat dissipation element can be fixed in a sufficiently adhered state, but from the viewpoint of maintaining the adhesion, a method of screwing through a spring, a clip A contact method in which the pressing force is sustained, such as a method of pinching with a pin, is preferable.

以下、実施例により本発明を説明する。なお、各実施例において熱伝導性の指標とした熱伝導率は以下の方法により求めた。   Hereinafter, the present invention will be described by way of examples. In each example, the thermal conductivity as an index of thermal conductivity was determined by the following method.

(熱伝導率の測定)
1.0cm角の熱伝導シートをトランジスタ(2SC2233)と水冷銅ヒートシンクとの間に挟み、トランジスタを0.6Mpaの圧力で押しつけながら電流を通じた。トランジスタの温度:T1(℃)と、銅ヒートシンクの温度:T2(℃)を測定し、測定値と印可電力:W1(W)、膜厚(mm)から、次式によって熱伝導率:X(W/mK)を算出した。
(Measurement of thermal conductivity)
A 1.0 cm square heat conductive sheet was sandwiched between a transistor (2SC2233) and a water-cooled copper heat sink, and current was passed through the transistor while pressing it at a pressure of 0.6 Mpa. The temperature of the transistor: T1 (° C.) and the temperature of the copper heat sink: T2 (° C.) are measured. From the measured value and applied power: W1 (W) and film thickness (mm), the thermal conductivity: X ( W / mK) was calculated.

X=10×W1/(T1−T2)   X = 10 × W1 / (T1-T2)

(タック力の測定)
タック性の指標としたタック力は以下の装置・条件で測定した。
使用装置:RHESCA製タッキング試験機TAC2
温度:25℃
押し込み速度:120mm/分
引き上げ速度:600mm/分
荷重:50gf
時間:10秒
(Measurement of tack force)
The tack force as an index of tackiness was measured with the following equipment and conditions.
Equipment used: RHESCA tacking tester TAC2
Temperature: 25 ° C
Pushing speed: 120 mm / min Pulling speed: 600 mm / min Load: 50 gf
Time: 10 seconds

(引張強度の測定)
引張強度は、得られた熱伝導シートから1cm×5cmに打ち抜いたサンプルシートを用い、以下の装置・条件で測定した。
使用装置:東洋精機製 STROGRAPH E−S
温度:25℃
引張速度:5mm/分
(Measurement of tensile strength)
The tensile strength was measured with the following apparatus and conditions using a sample sheet punched out to 1 cm × 5 cm from the obtained heat conductive sheet.
Equipment used: STROGRAPH ES made by Toyo Seiki
Temperature: 25 ° C
Tensile speed: 5 mm / min

(アスカーC硬度の測定)
熱伝導シートを2cm角に打ち抜いたものを高さ5mm以上になるまで積層して、加熱して得られた成形体を25℃環境に1時間放置した後に、アスカー硬度計C型で測定する。
(Measurement of Asker C hardness)
A sheet obtained by punching out a 2 cm square heat conductive sheet is laminated until the height becomes 5 mm or more, and the molded body obtained by heating is left in a 25 ° C. environment for 1 hour, and then measured with an Asker hardness meter C type.

(実施例1)
黒鉛粒子(A)として鱗片状の膨張黒鉛粒子(日立化成工業株式会社製、商品名:HGF−L、質量平均径:450μm)555g、ポリ(メタ)アクリル酸エステル系高分子化合物(B’)としてアクリル酸ブチル/アクリル酸エチル/アクリロニトリル/アクリル酸共重合体(共重合質量比82/10/3/5、ナガセケムテックス製、重量平均分子量:53万、Tg:−39℃)145g、硬化剤(b)としてネオペンチルグリコールジグリシジルエーテル(ナガセケムテックス製、EX−211)9.7g、ポリ(メタ)アクリル酸エステル系高分子化合物(C)として、ARUFON UP−1170(東亞合成製、液状、重量平均分子量:8000、Tg:−57℃)103g、難燃剤としてビスフェノールAビス(ジフェニルホスフェート)(りん酸エステル系難燃剤、大八化学工業株式会社製、商品名:CR−741)218gをポリエチレン袋中で予備混合して組成物を得た。
Example 1
As graphite particles (A), flaky expanded graphite particles (manufactured by Hitachi Chemical Co., Ltd., trade name: HGF-L, mass average diameter: 450 μm), 555 g, poly (meth) acrylate polymer compound (B ′) 145 g, butyl acrylate / ethyl acrylate / acrylonitrile / acrylic acid copolymer (copolymerization mass ratio 82/10/3/5, manufactured by Nagase ChemteX, weight average molecular weight: 530,000, Tg: −39 ° C.), cured 9.7 g of neopentyl glycol diglycidyl ether (manufactured by Nagase ChemteX, EX-211) as the agent (b), and ARUFON UP-1170 (manufactured by Toagosei Co., Ltd.) as the poly (meth) acrylate polymer compound (C) Liquid, weight average molecular weight: 8000, Tg: −57 ° C. 103 g, bisphenol A bis (diphenylphos) as flame retardant Fate) (phosphate ester flame retardant, manufactured by Daihachi Chemical Industry Co., Ltd., trade name: CR-741) was premixed in a polyethylene bag to obtain a composition.

この組成物を温度80℃に設定したロール混練機(関西ロール(株)製、LABOLATRY MILL(8×20Tロール))を用いて混練し、混練シートを得た。
この混練シートの一部を直径1cmの球状に丸め、小型プレスで0.5mm厚のシート状にした。これを20枚に切り分けたものを積層して再度同様にプレスした。この操作を更にもう1回繰り返して得たシートの表面をX線回折により分析した。2θ=77°付近に黒鉛の(110)面に対応するピークが確認できず、用いた膨張黒鉛粉末(HGF−L)が「結晶中の6員環面が鱗片の面方向に配向している」ことを確認できた。
The composition was kneaded using a roll kneader (manufactured by Kansai Roll Co., Ltd., LABOLATRY MILL (8 × 20T roll)) set at a temperature of 80 ° C. to obtain a kneaded sheet.
A part of this kneaded sheet was rounded into a 1 cm diameter sphere and formed into a 0.5 mm thick sheet with a small press. This was cut into 20 sheets and laminated again and pressed in the same manner. The surface of the sheet obtained by repeating this operation one more time was analyzed by X-ray diffraction. A peak corresponding to the (110) plane of graphite could not be confirmed in the vicinity of 2θ = 77 °, and the expanded graphite powder used (HGF-L) was “the six-membered ring plane in the crystal is oriented in the plane direction of the scale. I was able to confirm.

得られた混練シートを2〜3mm角程度の大きさに刻んでペレット状にした。これを、(株)東洋精機製作所製、ラボプラストミルMODEL20C200を用い、100℃で幅60mm厚み1mmのシート状に押し出し一次シートを得た。
上記で得られた混練シート及び一次シートにおいて、成分(B’)と硬化剤(b)が硬化していないことを確認するため、予め、混練シート及び一次シートの一部分(0.2g程度)を切り取り、その10〜50倍量の酢酸n-ブチルの入ったサンプル瓶に投入、振り混ぜて樹脂が溶解することを目視確認する方法により、成分(B’)と硬化剤(b)が未反応であることを確認した。
The obtained kneaded sheet was cut into a size of about 2 to 3 mm square to form a pellet. This was extruded into a sheet having a width of 60 mm and a thickness of 1 mm at 100 ° C. using a Laboplast Mill MODEL20C200 manufactured by Toyo Seiki Seisakusho Co., Ltd. to obtain a primary sheet.
In the kneaded sheet and the primary sheet obtained above, in order to confirm that the component (B ′) and the curing agent (b) are not cured, a part of the kneaded sheet and the primary sheet (about 0.2 g) is previously added. The component (B ′) and the curing agent (b) are unreacted by cutting and putting into a sample bottle containing 10 to 50 times the amount of n-butyl acetate and shaking it to visually check that the resin is dissolved. It was confirmed that.

弾性率の変化が15%以下となるような加熱条件を決定するために、上記一次シートを少量サンプリングし、プレスして0.5mm厚のサンプルシートにし、これを1cm×5cmに打ち抜き、サンプルシートを温度・時間(1時間間隔)を振って硬化させた。その結果、170℃で6時間加熱した硬化サンプルシートと5時間加熱した硬化サンプルシートの、温度25±1℃の環境に1時間静置した後の弾性率の差は3%の変化であった。よって、170℃、6時間を加熱(硬化)条件とした。   In order to determine the heating conditions such that the change in elastic modulus is 15% or less, a small amount of the above primary sheet is sampled and pressed into a 0.5 mm thick sample sheet, which is punched out to 1 cm × 5 cm, and sample sheet Was cured by shaking the temperature and time (1 hour interval). As a result, the difference in elastic modulus between the cured sample sheet heated at 170 ° C. for 6 hours and the cured sample sheet heated for 5 hours after standing in an environment at a temperature of 25 ± 1 ° C. for 1 hour was a change of 3%. . Therefore, the heating (curing) condition was 170 ° C. for 6 hours.

この一次シートを4cm×20cmの大きさにカッターで切り出し、40枚積層し、手で軽く押さえてシート間を接着させ、さらに3kgの重石を載せた上170℃の熱風乾燥機で6時間処理してシート間を良く接着させ、かつ組成物中でポリ(メタ)アクリル酸エステル系高分子化合物(B’)と硬化剤(b)とを反応させてポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)に変成させ、厚さ4cmの成形体を得た。
次いで、この成形体をドライアイスで−20℃に冷却した後、4cm×20cmの積層断面を超仕上げカンナ盤((株)丸仲鐵工所製 商品名:スーパーメカ(スリット部からの刀部の突出長さ:0.19mm))を用いてスライスし(一次シート面から出る法線に対し0度の角度でスライス)、縦4cm×横20cm×厚さ0.25mmの熱伝導シート(I)を得た。
This primary sheet is cut into a size of 4cm x 20cm with a cutter, laminated 40 sheets, lightly pressed by hand to adhere between the sheets, and further treated with a hot air dryer at 170 ° C for 6 hours with 3kg of heavy stones placed on it. And the poly (meth) acrylic acid ester polymer compound (B ′) and the curing agent (b) are reacted in the composition. To a cross-linked cured product (B) to obtain a molded product having a thickness of 4 cm.
Next, this molded body was cooled to −20 ° C. with dry ice, and then a 4 cm × 20 cm laminated cross section was superfinished on a cannula board (manufactured by Marunaka Co., Ltd., trade name: Super Mecha Projecting length: 0.19 mm)) (slice at an angle of 0 degree with respect to the normal line coming out from the primary sheet surface), and a heat conduction sheet (I 4 cm long x 20 cm wide x 0.25 mm thick) )

熱伝導シート(I)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定しその平均値を求めたところ90度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。   The cross section of the heat conductive sheet (I) was observed using an SEM (scanning electron microscope), and the angle from the direction seen for any 50 graphite particles to the surface of the heat conductive sheet was measured. The average value was found to be 90 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet.

熱伝導シート(I)を2cm角に打ち抜いたものを高さ5mm以上になるまで積層した上、25℃においてアスカー硬度計C型で測定したところ、アスカーC硬度は60と柔軟なゴムシートであることが確認できた。   A heat-conductive sheet (I) punched into a 2 cm square was laminated to a height of 5 mm or more, and when measured with an Asker hardness tester C type at 25 ° C., it was a flexible rubber sheet with an Asker C hardness of 60. I was able to confirm.

この熱伝導シート(I)の熱伝導率を測定したところ、70W/mKと良好な値を示した。また、熱伝導シート(I)のトランジスタと銅ヒートシンクに対する密着性も良好であった。   When the heat conductivity of this heat conductive sheet (I) was measured, it showed a good value of 70 W / mK. Moreover, the adhesiveness with respect to the transistor and copper heat sink of heat conductive sheet (I) was also favorable.

この熱伝導シート(I)のタック力を測定したところ、25gfと仮固定に充分な値を示した。
この熱伝導シート(I)の引張強度を測定したところ、0.32MPaとハンドリングに充分な値を示した。
When the tack force of this heat conductive sheet (I) was measured, it was 25 gf and a value sufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (I) was measured, it was 0.32 MPa, which was a value sufficient for handling.

次に、この熱伝導シート(I)の耐熱性を確認するため、熱風乾燥機を用いて170℃で3h熱処理した。熱処理後のタック力を測定したところ、22gfと充分にタック力を保持していた。また、熱処理前後の引張弾性率の変化は5%と少なく耐熱性が高いことが確認できた。結果を表1に示す。   Next, in order to confirm the heat resistance of this heat conductive sheet (I), it heat-processed at 170 degreeC for 3 h using the hot air dryer. When the tack force after the heat treatment was measured, the tack force was sufficiently maintained at 22 gf. Further, it was confirmed that the change in the tensile modulus before and after the heat treatment was as small as 5% and the heat resistance was high. The results are shown in Table 1.

(実施例2)
ポリ(メタ)アクリル酸エステル系高分子化合物(C)として、ARUFON UP−1080(東亞合成(株)製、液状、重量平均分子量:6000、Tg:−61℃)103gを用いた以外は、実施例1と同様に操作し、熱伝導シート(II)を得た。
(Example 2)
Implementation was carried out except that 103 g of ARUFON UP-1080 (manufactured by Toagosei Co., Ltd., liquid, weight average molecular weight: 6000, Tg: −61 ° C.) was used as the poly (meth) acrylate polymer compound (C). By operating in the same manner as in Example 1, a heat conductive sheet (II) was obtained.

以下、実施例1と同様に操作して熱伝導シート(II)の性状を求めた。熱伝導シート(II)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ88度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は62と柔軟なゴムシートであることが確認できた。   Hereinafter, the properties of the heat conductive sheet (II) were obtained by operating in the same manner as in Example 1. Observe the cross section of the heat conductive sheet (II) using SEM (scanning electron microscope), measure the angle of the surface of the scale from the direction seen for any 50 graphite particles to the surface of the heat conductive sheet, The average value was found to be 88 degrees, and it was recognized that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. It was confirmed that the Asker C hardness was 62 and was a flexible rubber sheet.

実施例1と同様に操作して熱伝導シート(II)の熱伝導率を測定したところ、65W/mKと良好な値を示した。また、熱伝導シート(II)のトランジスタと銅ヒートシンクに対する密着性も良好であった。   When the heat conductivity of the heat conductive sheet (II) was measured in the same manner as in Example 1, it showed a good value of 65 W / mK. Moreover, the adhesiveness with respect to the transistor and copper heat sink of heat conductive sheet (II) was also favorable.

この熱伝導シート(II)のタック力を測定したところ、22gfと仮固定に充分な値を示した。
この熱伝導シート(II)の引張強度を測定したところ、0.28MPaとハンドリングに充分な値を示した。
When the tack force of this heat conductive sheet (II) was measured, it was 22 gf, which was a value sufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (II) was measured, it was 0.28 MPa, which was a value sufficient for handling.

この熱伝導シート(II)の熱処理後のタック力を測定したところ、20gfと充分にタック力を保持していた。また、熱処理前後の引張弾性率の変化は6%と少なく耐熱性が高いことが確認できた。結果を表1に示す。   When the tack force after heat treatment of this heat conductive sheet (II) was measured, the tack force was sufficiently maintained at 20 gf. It was also confirmed that the change in tensile modulus before and after the heat treatment was as small as 6% and the heat resistance was high. The results are shown in Table 1.

(実施例3)
黒鉛粒子(A)として鱗片状の膨張黒鉛粉末(日立化成工業(株)製、商品名:HGF−L、質量平均径:420μm)538g、ポリ(メタ)アクリル酸エステル系高分子化合物(B’)としてアクリル酸エチル/アクリル酸ブチル/アクリロニトリル/アクリル酸共重合体(共重合質量比10/82/3/5、ナガセケムテックス製、重量平均分子量:53万、Tg:−39℃)257g、硬化剤(b)としてビスフェノールF型エポキシ樹脂(東都化成(株)製、YDF−8170C)21g、難燃剤としてビスフェノールAビス(ジフェニルホスフェート)(りん酸エステル系難燃剤、大八化学工業(株)製、商品名:CR−741)184gをステンレス匙で予備混合し、以下実施例1と同様の方法で混練シートを得た。
なお、弾性率の変化が15%以下となるような加熱条件を決定するために実施例1と同様にサンプルシートを作製して硬化させ、加熱条件を170℃、8時間に決定した(弾性率変化が2%となる条件)。
(Example 3)
As graphite particles (A), flaky expanded graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name: HGF-L, mass average diameter: 420 μm), 538 g, poly (meth) acrylate polymer compound (B ′ ) 257 g of ethyl acrylate / butyl acrylate / acrylonitrile / acrylic acid copolymer (copolymerization mass ratio 10/82/3/5, manufactured by Nagase ChemteX, weight average molecular weight: 530,000, Tg: −39 ° C.) 21 g of bisphenol F type epoxy resin (manufactured by Toto Kasei Co., Ltd., YDF-8170C) as the curing agent (b), bisphenol A bis (diphenyl phosphate) (phosphate ester flame retardant, Daihachi Chemical Industry Co., Ltd.) as the flame retardant Manufactured, trade name: CR-741) 184 g was premixed in a stainless steel bowl, and a kneaded sheet was obtained in the same manner as in Example 1 below.
In order to determine the heating conditions such that the change in elastic modulus is 15% or less, a sample sheet was prepared and cured in the same manner as in Example 1, and the heating conditions were determined at 170 ° C. for 8 hours (elastic modulus). The condition that the change is 2%).

以下実施例1と同様の方法で縦4cm×横20cm×厚さ0.25mmのスライスシートを得た。   Thereafter, a slice sheet having a length of 4 cm, a width of 20 cm, and a thickness of 0.25 mm was obtained in the same manner as in Example 1.

PETフィルム上に、ポリ(メタ)アクリル酸エステル系高分子化合物(C)としてARUFON UP−1170(東亞合成(株)製、液状、重量平均分子量:8000、Tg:−57℃)をスキージで塗り伸ばした。
ここに得られたスライスシートを貼りつけた後剥がすことで、スライスシートの片面にポリ(メタ)アクリル酸エステル系高分子化合物(C)を転写、塗布した。
貼り付け前後のシートの質量差から求めたポリ(メタ)アクリル酸エステル系高分子化合物(C)の塗布量は1.75mg/cm2であった。このシートを塗布面を上にして100℃のホットプレート上に載せ10分間熱処理することで、ポリ(メタ)アクリル酸エステル系高分子化合物(C)のレベリング処理を行った。これを冷却し熱伝導シート(III)を得た。
ARFUFON UP-1170 (manufactured by Toagosei Co., Ltd., liquid, weight average molecular weight: 8000, Tg: -57 ° C.) is applied with a squeegee as a poly (meth) acrylate polymer compound (C) on a PET film. extended.
By attaching and detaching the slice sheet obtained here, the poly (meth) acrylate polymer compound (C) was transferred and applied to one side of the slice sheet.
The coating amount of the poly (meth) acrylic acid ester polymer compound (C) obtained from the mass difference between the sheets before and after pasting was 1.75 mg / cm 2 . The sheet was placed on a hot plate at 100 ° C. with the coated surface facing upward and heat-treated for 10 minutes to perform leveling treatment of the poly (meth) acrylate polymer compound (C). This was cooled to obtain a heat conductive sheet (III).

以下、実施例1と同様に操作して熱伝導シート(III)の性状を求めた。熱伝導シート(III)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ88度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は65と柔軟なゴムシートであることが確認できた。   Thereafter, the properties of the heat conductive sheet (III) were obtained by operating in the same manner as in Example 1. The cross section of the heat conductive sheet (III) is observed using an SEM (scanning electron microscope), and the angle with respect to the surface of the heat conductive sheet in the direction of the scale from the direction seen for any 50 graphite particles is measured, The average value was found to be 88 degrees, and it was recognized that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. It was confirmed that the Asker C hardness was 65 and the rubber sheet was flexible.

実施例1と同様に操作して熱伝導シート(III)の熱伝導率を測定したところ、65W/mKと良好な値を示した。また、熱伝導シート(III)のトランジスタと銅ヒートシンクに対する密着性も良好であった。   When the heat conductivity of the heat conductive sheet (III) was measured in the same manner as in Example 1, it showed a good value of 65 W / mK. Moreover, the adhesiveness with respect to the transistor of a heat conductive sheet (III) and a copper heat sink was also favorable.

この熱伝導シート(III)のタック力を測定したところ、ポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布した面が70gfと固定に充分な値を示し、無塗布面は5gfと微弱な粘着性であった。   When the tack force of the heat conductive sheet (III) was measured, the surface coated with the poly (meth) acrylate polymer compound (C) showed 70 gf and a sufficient value for fixing, and the non-coated surface was 5 gf. It was slightly sticky.

熱伝導シート(III)を2cm角に打ち抜き、ノート型パソコン(NEC製PC−GL22ESYAA型)の冷却モジュールのCPU部パッドにポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布した面側を貼り付け、ノート型パソコンに装着した。これを再びはずし、また装着する操作を10回繰り返したが、常にシートは冷却モジュール側に貼りついた状態で剥がれ、無塗布面側が当るCPUチップ側に残渣が残らなかったので、リペア時のハンドリングに優れたシートであることが確認できた。   The side of the heat conductive sheet (III) punched into a 2cm square and coated with the poly (meth) acrylate polymer compound (C) on the CPU part pad of the cooling module of a notebook PC (NEC PC-GL22ESYAA type) Was attached to a notebook computer. This operation was removed again, and the mounting operation was repeated 10 times. However, the sheet was always peeled off while stuck to the cooling module side, and no residue remained on the CPU chip side where the uncoated surface hits. It was confirmed that the sheet was excellent.

この熱伝導シート(III)の引張強度を測定したところ、0.45MPaとハンドリングに充分な値を示した。   When the tensile strength of this heat conductive sheet (III) was measured, it was 0.45 MPa, which was a value sufficient for handling.

この熱伝導シート(III)の熱処理後のタック力を測定したところ、ポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布した面が60gfと充分にタック力を保持していた。無塗布面は5gfと微弱な粘着性を保持していた。また、熱処理前後の引張弾性率の変化は6%と少なく耐熱性が高いことが確認できた。結果を表1に示す。   When the tack force after heat treatment of the heat conductive sheet (III) was measured, the surface coated with the poly (meth) acrylic acid ester polymer compound (C) had a sufficient tack force of 60 gf. The non-coated surface maintained weak adhesiveness of 5 gf. It was also confirmed that the change in tensile modulus before and after the heat treatment was as small as 6% and the heat resistance was high. The results are shown in Table 1.

(実施例4)
六方晶窒化ほう素粒子(A)として鱗片状の窒化ほう素粒子(モーメンティブパフォーマンスマテリアル製、商品名:PT−110、質量平均径:45μm)742g、ポリ(メタ)アクリル酸エステル系高分子化合物(B’)としてアクリル酸ブチル/アクリル酸エチル/アクリル酸共重合体(共重合質量比19/76/5、ナガセケムテックス製、重量平均分子量:60万、Tg:−41℃)100g、硬化剤(b)としてビスフェノールF型エポキシ樹脂(東都化成(株)製、YDF−8170C)8.1g、ポリ(メタ)アクリル酸エステル系高分子化合物(C)として、ARUFON UP−1170(東亞合成(株)製、液状、重量平均分子量:8000、Tg:−57℃)54g、難燃剤としてビスフェノールAビス(ジフェニルホスフェート)(りん酸エステル系難燃剤、大八化学工業株式会社製、商品名:CR−741)95gを用い、以下、実施例1と同様の方法にて縦4cm×横20cm×厚さ0.25mmの熱伝導シート(IV)を得た。
なお、弾性率の変化が15%以下となるような加熱条件を決定するために実施例1と同様にサンプルシートを作製して硬化させ、加熱条件を170℃、8時間に決定している(弾性率変化が3%となる条件)。
Example 4
Scale-like boron nitride particles (product name: PT-110, mass average diameter: 45 μm) 742 g as hexagonal boron nitride particles (A), poly (meth) acrylate polymer compound (B ′) 100 g of butyl acrylate / ethyl acrylate / acrylic acid copolymer (copolymerization mass ratio 19/76/5, manufactured by Nagase ChemteX, weight average molecular weight: 600,000, Tg: −41 ° C.), cured As the agent (b), 8.1 g of a bisphenol F type epoxy resin (manufactured by Toto Kasei Co., Ltd., YDF-8170C), and as a poly (meth) acrylate polymer compound (C), ARUFON UP-1170 (Toagosei Co., Ltd.) Co., Ltd., liquid, weight average molecular weight: 8000, Tg: −57 ° C., 54 g, bisphenol A bis (diphenyl) as flame retardant Phosphate (phosphate ester flame retardant, manufactured by Daihachi Chemical Industry Co., Ltd., trade name: CR-741) was used in the same manner as in Example 1 below, and the length was 4 cm × width 20 cm × thickness 0. A 25 mm heat conductive sheet (IV) was obtained.
In order to determine the heating conditions such that the change in elastic modulus is 15% or less, a sample sheet is prepared and cured in the same manner as in Example 1, and the heating conditions are determined at 170 ° C. for 8 hours ( Conditions under which the elastic modulus change is 3%).

以下、実施例1と同様に操作して熱伝導シート(IV)の性状を求めた。熱伝導シート(IV)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ90度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は65と柔軟なゴムシートであることが確認できた。   Thereafter, the properties of the heat conductive sheet (IV) were obtained by operating in the same manner as in Example 1. Observe the cross section of the heat conductive sheet (IV) using SEM (scanning electron microscope), measure the angle of the surface of the scale from the direction seen for any 50 graphite particles to the surface of the heat conductive sheet, The average value was found to be 90 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. It was confirmed that the Asker C hardness was 65 and the rubber sheet was flexible.

実施例1と同様に操作して熱伝導シート(IV)の熱伝導率を測定したところ、20W/mKと良好な値を示した。また、熱伝導シート(IV)のトランジスタと銅ヒートシンクに対する密着性も良好であった。   When the heat conductivity of the heat conductive sheet (IV) was measured in the same manner as in Example 1, it showed a good value of 20 W / mK. Further, the adhesion of the heat conductive sheet (IV) to the transistor and the copper heat sink was also good.

この熱伝導シート(IV)のタック力を測定したところ、30gfと仮固定に充分な値を示した。
この熱伝導シート(IV)の引張強度を測定したところ、0.32MPaとハンドリングに充分な値を示した。
When the tack force of this heat conductive sheet (IV) was measured, it was 30 gf, which was a value sufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (IV) was measured, it was 0.32 MPa, which was a value sufficient for handling.

この熱伝導シート(IV)の熱処理後のタック力を測定したところ、26gfと充分にタック力を保持していた。また、熱処理前後の引張弾性率の変化は6%と少なく耐熱性が高いことが確認できた。結果を表1に示す。   When the tack force after heat treatment of this heat conductive sheet (IV) was measured, the tack force was sufficiently maintained at 26 gf. It was also confirmed that the change in tensile modulus before and after the heat treatment was as small as 6% and the heat resistance was high. The results are shown in Table 1.

Figure 0005423455
Figure 0005423455

(比較例1)
実施例1においてポリ(メタ)アクリル酸エステル系高分子化合物(C)を配合しないこととし、ポリ(メタ)アクリル酸エステル系高分子化合物(B’)の量を242g、硬化剤(b)の量を16.2gとした以外は同様にして熱伝導シート(V)を得た。
なお、弾性率の変化が15%以下となるような加熱条件を決定するために実施例1と同様にサンプルシートを作製して硬化させ、加熱条件を170℃、6時間に決定している(弾性率変化が2%となる条件)。
(Comparative Example 1)
In Example 1, the poly (meth) acrylate polymer compound (C) is not blended, the amount of the poly (meth) acrylate polymer compound (B ′) is 242 g, and the curing agent (b) A heat conductive sheet (V) was obtained in the same manner except that the amount was 16.2 g.
In order to determine the heating conditions such that the change in elastic modulus is 15% or less, a sample sheet is prepared and cured in the same manner as in Example 1, and the heating conditions are determined at 170 ° C. for 6 hours ( Conditions under which the elastic modulus change is 2%).

以下、実施例1と同様に操作して熱伝導シート(V)の性状を求めた。熱伝導シート(V)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ89度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は65と柔軟なゴムシートであることが確認できた。   Thereafter, the properties of the heat conductive sheet (V) were determined in the same manner as in Example 1. Observe the cross section of the heat conductive sheet (V) using SEM (scanning electron microscope), measure the angle of the surface of the scale from the direction seen for any 50 graphite particles to the surface of the heat conductive sheet, The average value was found to be 89 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. It was confirmed that the Asker C hardness was 65 and the rubber sheet was flexible.

実施例1と同様に操作して熱伝導シート(V)の熱伝導率を測定したところ、66W/mKと良好な値を示した。また、熱伝導シート(V)のトランジスタと銅ヒートシンクに対する密着性も良好であった。   When the heat conductivity of the heat conductive sheet (V) was measured in the same manner as in Example 1, it showed a good value of 66 W / mK. Moreover, the adhesiveness with respect to the transistor of a heat conductive sheet (V) and a copper heat sink was also favorable.

この熱伝導シート(V)のタック力を測定したところ、10gfと仮固定に不充分な値であった。
この熱伝導シート(V)の引張強度を測定したところ、0.35MPaとハンドリングに充分な値を示した。
When the tack force of this heat conductive sheet (V) was measured, it was 10 gf, which was insufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (V) was measured, it was 0.35 MPa, which was a value sufficient for handling.

この熱伝導シート(V)の熱処理後のタック力を測定したところ、6gfと一層不充分になった。なお、熱処理前後の引張弾性率の変化は6%と少なく耐熱性は高いことが確認できた。結果を表2に示す。   When the tack force after heat treatment of this heat conductive sheet (V) was measured, it was further insufficient as 6 gf. It was confirmed that the change in tensile modulus before and after the heat treatment was as small as 6% and the heat resistance was high. The results are shown in Table 2.

(比較例2)
実施例1においてポリ(メタ)アクリル酸エステル系高分子化合物(C)の代わりにアルキルフェノール系タッキファイヤ(昭和高分子(株)製、CKM−9273、軟化点:80℃以上)を用いた以外は同様にして熱伝導シート(VI)を得た。アルキルフェノール系タッキファイヤはフェノール性水酸基を有している。
(Comparative Example 2)
In Example 1, instead of the poly (meth) acrylate polymer compound (C), an alkylphenol tackifier (Showa Polymer Co., Ltd., CKM-9273, softening point: 80 ° C. or higher) was used. Similarly, a heat conductive sheet (VI) was obtained. The alkylphenol tackifier has a phenolic hydroxyl group.

以下、実施例1と同様に操作して熱伝導シート(VI)の性状を求めた。熱伝導シート(VI)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ89度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は70とやや硬いゴムシートとなった。   Thereafter, the properties of the heat conductive sheet (VI) were determined by operating in the same manner as in Example 1. The cross section of the heat conductive sheet (VI) is observed using an SEM (scanning electron microscope), and the angle from the direction seen for any 50 graphite particles to the surface of the heat conductive sheet in the surface direction of the scale is measured, The average value was found to be 89 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. The Asker C hardness was 70, which was a slightly hard rubber sheet.

実施例1と同様に操作して熱伝導シート(VI)の熱伝導率を測定したところ、60W/mKと良好な値を示した。熱伝導シート(VI)のトランジスタと銅ヒートシンクに対する密着性はやや悪かった。   When the thermal conductivity of the thermal conductive sheet (VI) was measured in the same manner as in Example 1, it showed a good value of 60 W / mK. The adhesion of the heat conductive sheet (VI) to the transistor and the copper heat sink was slightly poor.

この熱伝導シート(VI)のタック力を測定したところ、6gfと仮固定に不充分な値であった。
この熱伝導シート(VI)の引張強度を測定したところ、0.23MPaとハンドリング時にやや破れ易い値を示した。
When the tack force of this heat conductive sheet (VI) was measured, it was 6 gf, which was insufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (VI) was measured, it was 0.23 MPa, which was a value that was easily broken during handling.

この熱伝導シート(VI)の熱処理後のタック力を測定したところ、0gfとタック性を失った。なお、熱処理前後の引張弾性率の変化は20%とやや多く耐熱性が低かった。結果を表2に示す。   When the tack force after heat treatment of this heat conductive sheet (VI) was measured, the tackiness was lost as 0 gf. Note that the change in tensile elastic modulus before and after heat treatment was a little 20%, and the heat resistance was low. The results are shown in Table 2.

(比較例3)
実施例1においてポリ(メタ)アクリル酸エステル系高分子化合物(C)の代わりに、代表的可塑剤であるアジピン酸ビス(2−エチルヘキシル)(和光純薬工業(株)製、試薬1級、分子量:370)を用いた以外は同様にして熱伝導シート(VII)を得た。
(Comparative Example 3)
In Example 1, instead of the poly (meth) acrylate polymer compound (C), bis (2-ethylhexyl) adipate which is a representative plasticizer (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1, A heat conductive sheet (VII) was obtained in the same manner except that molecular weight: 370) was used.

以下、実施例1と同様に操作して熱伝導シート(VII)の性状を求めた。熱伝導シート(VII)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ90度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は50と柔軟なゴムシートとなった。   Thereafter, the properties of the heat conductive sheet (VII) were obtained by operating in the same manner as in Example 1. The cross section of the heat conductive sheet (VII) is observed using a SEM (scanning electron microscope), and the angle of the surface direction of the scale from the direction seen for any 50 graphite particles is measured with respect to the surface of the heat conductive sheet. The average value was found to be 90 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. The Asker C hardness was 50, which was a flexible rubber sheet.

実施例1と同様に操作して熱伝導シート(VII)の熱伝導率を測定したところ、70W/mKと良好な値を示した。熱伝導シート(VII)のトランジスタと銅ヒートシンクに対する密着性は良好であった。   When the heat conductivity of the heat conductive sheet (VII) was measured in the same manner as in Example 1, it showed a good value of 70 W / mK. The adhesion of the heat conductive sheet (VII) to the transistor and the copper heat sink was good.

この熱伝導シート(VII)のタック力を測定したところ、9gfと仮固定に不充分な値であった。
この熱伝導シート(VII)の引張強度を測定したところ、0.09MPaとハンドリング時に極めて破れ易い値を示した。
When the tack force of this heat conductive sheet (VII) was measured, it was 9 gf, which was insufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (VII) was measured, it was 0.09 MPa, which was a value that was very easy to tear during handling.

この熱伝導シート(VII)の熱処理後のタック力を測定したところ、6gfと一層タック性が不充分となった。なお、熱処理前後の引張弾性率の変化は9%と比較的耐熱性は高かった。結果を表2に示す。   When the tack force after heat treatment of this heat conductive sheet (VII) was measured, the tackiness was 6 gf, which was further insufficient. The change in tensile elastic modulus before and after heat treatment was 9%, which was relatively high in heat resistance. The results are shown in Table 2.

(比較例4)
実施例3において塗布したポリ(メタ)アクリル酸エステル系高分子化合物(C)の代わりにアクリルゴムラテックス(一方社油脂工業(株)製、AE−150GFT、重量平均分子量:100万以上)を用いた以外は同様にして熱伝導シート(VIII)を得た。塗布量は1.2mg/cm2であった。
(Comparative Example 4)
Instead of the poly (meth) acrylic acid ester polymer compound (C) applied in Example 3, acrylic rubber latex (manufactured by Yushi Kogyo Co., Ltd., AE-150GFT, weight average molecular weight: 1 million or more) is used. A heat conductive sheet (VIII) was obtained in the same manner except that. The coating amount was 1.2 mg / cm 2 .

以下、実施例1と同様に操作して熱伝導シート(VIII)の性状を求めた。熱伝導シート(VIII)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ89度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は65と柔軟なゴムシートであることが確認できた。   Thereafter, the properties of the heat conductive sheet (VIII) were obtained by operating in the same manner as in Example 1. Observe the cross section of the heat conductive sheet (VIII) using SEM (scanning electron microscope), measure the angle of the surface of the scale from the direction seen for any 50 graphite particles to the surface of the heat conductive sheet, The average value was found to be 89 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. It was confirmed that the Asker C hardness was 65 and the rubber sheet was flexible.

実施例1と同様に操作して熱伝導シート(VIII)の熱伝導率を測定したところ、15W/mKと低い値を示した。また、熱伝導シート(VIII)のトランジスタと銅ヒートシンクに対する密着性は良好であった。   When the heat conductivity of the heat conductive sheet (VIII) was measured in the same manner as in Example 1, it showed a low value of 15 W / mK. Further, the adhesion of the heat conductive sheet (VIII) to the transistor and the copper heat sink was good.

この熱伝導シート(VIII)のタック力を測定したところ、アクリルゴムラテックスを塗布した面が101gfと固定に充分な値を示し、無塗布面は5gfと微弱な粘着性であった。   When the tack force of this heat conductive sheet (VIII) was measured, the surface coated with acrylic rubber latex showed 101 gf, which was a sufficient value for fixing, and the non-coated surface was weakly tacky, 5 gf.

熱伝導シート(VIII)を2cm角に打ち抜き、ノート型パソコン(NEC製、PC−GL22ESYAA型)の冷却モジュールのCPU部パッドにアクリルゴムラテックスを塗布した面側を貼り付け、ノート型パソコンに装着した。これを再びはずし、また装着する操作を10回繰り返したが、常にシートは冷却モジュール側に貼りついた状態で剥がれ、無塗布面側が当るCPUチップ側に残渣が残らなかったので、リペア時のハンドリングに優れたシートであることが確認できた。   The thermal conductive sheet (VIII) was punched into a 2 cm square, and the surface side coated with acrylic rubber latex was attached to the CPU part pad of the cooling module of a notebook computer (NEC, PC-GL22ESYAA model), and attached to the notebook computer. . This operation was removed again, and the mounting operation was repeated 10 times. However, the sheet was always peeled off while stuck to the cooling module side, and no residue remained on the CPU chip side where the uncoated surface hits. It was confirmed that the sheet was excellent.

この熱伝導シート(VIII)の引張強度を測定したところ、0.44MPaとハンドリングに充分な値を示した。   When the tensile strength of this heat conductive sheet (VIII) was measured, it showed 0.44 MPa and a value sufficient for handling.

この熱伝導シート(VIII)の熱処理後のタック力を測定したところ、アクリルゴムラテックスを塗布した面が25gfと初期に比べ大幅に低下したものの必要なタック力は保持していた。無塗布面は5gfと微弱な粘着性を保持していた。また、熱処理前後の引張弾性率の変化は6%と少なく、耐熱性が高いことが確認できた。結果を表2に示す。   When the tack force after heat treatment of the heat conductive sheet (VIII) was measured, the surface to which the acrylic rubber latex was applied was 25 gf, which was significantly lower than the initial value, but the necessary tack force was maintained. The non-coated surface maintained weak adhesiveness of 5 gf. Further, the change in tensile modulus before and after the heat treatment was as small as 6%, and it was confirmed that the heat resistance was high. The results are shown in Table 2.

(比較例5)
実施例1においてポリ(メタ)アクリル酸エステル系高分子化合物(C)の代わりに、液状NBRゴム(日本ゼオン(株)製、Nipol DN601)を用いた以外は同様にして熱伝導シート(IX)を得た。なお、DN601はカルボキシル基を有している。
(Comparative Example 5)
In Example 1, instead of the poly (meth) acrylate polymer compound (C), a heat conductive sheet (IX) was similarly used except that liquid NBR rubber (Nipol DN601, manufactured by Nippon Zeon Co., Ltd.) was used. Got. DN601 has a carboxyl group.

以下、実施例1と同様に操作して熱伝導シート(IX)の性状を求めた。熱伝導シート(IX)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ89度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は60と柔軟なゴムシートとなった。   Thereafter, the properties of the heat conductive sheet (IX) were obtained by operating in the same manner as in Example 1. The cross section of the thermal conductive sheet (IX) is observed using an SEM (scanning electron microscope), and the angle of the surface direction of the scale from the direction seen for any 50 graphite particles is measured with respect to the thermal conductive sheet surface, The average value was found to be 89 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. The Asker C hardness was 60, which was a flexible rubber sheet.

実施例1と同様に操作して熱伝導シート(IX)の熱伝導率を測定したところ、70W/mKと良好な値を示した。熱伝導シート(IX)のトランジスタと銅ヒートシンクに対する密着性は良好であった。   When the thermal conductivity of the thermal conductive sheet (IX) was measured in the same manner as in Example 1, it showed a good value of 70 W / mK. The adhesion of the heat conductive sheet (IX) to the transistor and the copper heat sink was good.

この熱伝導シート(IX)のタック力を測定したところ、32gfと仮固定に充分な値であった。
この熱伝導シート(IX)の引張強度を測定したところ、0.31MPaとハンドリングに充分な値を示した。
When the tack force of this heat conductive sheet (IX) was measured, it was 32 gf, which was a value sufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (IX) was measured, it was 0.31 MPa, which was a value sufficient for handling.

この熱伝導シート(IX)の熱処理後のタック力を測定したところ、5gfと不充分なタック性になった。なお、熱処理前後の引張弾性率の変化は30%と多く耐熱性が低かった。結果を表2に示す。   When the tack force after heat treatment of this heat conductive sheet (IX) was measured, it became an insufficient tack property of 5 gf. The change in tensile modulus before and after heat treatment was as high as 30% and the heat resistance was low. The results are shown in Table 2.

(比較例6)
実施例1において積層して成形した成形品に対して行った170℃の熱風乾燥機での6時間処理を、実施例1において作製した未積層の一次シートに対して行ったものを、そのまま熱伝導シート(X)として評価した。
以下、実施例1と同様に操作して熱伝導シート(X)の性状を求めた。熱伝導シート(X)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ1度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向には配向していなかった。
(Comparative Example 6)
What was applied to the non-laminated primary sheet produced in Example 1 for 6 hours in a hot air dryer at 170 ° C. performed on the molded article laminated and molded in Example 1 was heated as it was. The conductive sheet (X) was evaluated.
Thereafter, the properties of the heat conductive sheet (X) were obtained by operating in the same manner as in Example 1. Observe the cross section of the heat conductive sheet (X) using SEM (scanning electron microscope), measure the angle of the surface direction of the scale from the direction seen for any 50 graphite particles to the surface of the heat conductive sheet, When the average value was calculated | required, it was 1 degree | times and the surface direction of the scale of graphite particle | grains was not oriented in the thickness direction of a heat conductive sheet.

実施例1と同様に操作して熱伝導シート(X)の熱伝導率を測定したところ、3.0W/mKと極めて低い値を示した。また、熱伝導シート(X)のトランジスタと銅ヒートシンクに対する密着性は良好であった。   When the heat conductivity of the heat conductive sheet (X) was measured in the same manner as in Example 1, it showed a very low value of 3.0 W / mK. Moreover, the adhesiveness with respect to the transistor and copper heat sink of heat conductive sheet (X) was favorable.

この熱伝導シート(X)のタック力を測定したところ、100gfと仮固定に充分な値を示した。
この熱伝導シート(X)の引張強度を測定したところ、0.39MPaとハンドリングに充分な値を示した。
When the tack force of this heat conductive sheet (X) was measured, it was 100 gf and a value sufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (X) was measured, it was 0.39 MPa, which was a value sufficient for handling.

この熱伝導シート(X)の熱処理後のタック力を測定したところ、90gfと充分にタック力を保持していた。また、熱処理前後の引張弾性率の変化は6%と少なく耐熱性は高かった。結果を表2に示す。   When the tack force after heat treatment of this heat conductive sheet (X) was measured, the tack force was sufficiently maintained at 90 gf. Further, the change in tensile modulus before and after the heat treatment was as small as 6%, and the heat resistance was high. The results are shown in Table 2.

(比較例7)
ポリ(メタ)アクリル酸エステル系高分子化合物(C)の代わりに、ARUFON UP−1000(東亞合成製、液状、重量平均分子量:3000、Tg:−77℃)103gを用いた以外は、実施例1と同様に操作し、熱伝導シート(XI)を得た。
(Comparative Example 7)
Example except that 103 g of ARUFON UP-1000 (manufactured by Toagosei Co., Ltd., liquid, weight average molecular weight: 3000, Tg: −77 ° C.) was used instead of the poly (meth) acrylate polymer compound (C). In the same manner as in No. 1, a heat conductive sheet (XI) was obtained.

以下、実施例1と同様に操作して熱伝導シート(XI)の性状を求めた。熱伝導シート(XI)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ89度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は58と柔軟なゴムシートとなった。   Thereafter, the properties of the heat conductive sheet (XI) were determined in the same manner as in Example 1. The cross section of the heat conductive sheet (XI) is observed using an SEM (scanning electron microscope), and the angle with respect to the surface of the heat conductive sheet in the direction of the scale from the direction seen for any 50 graphite particles is measured, The average value was found to be 89 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. The Asker C hardness was 58, which was a flexible rubber sheet.

実施例1と同様に操作して熱伝導シート(XI)の熱伝導率を測定したところ、69W/mKと良好な値を示した。また、熱伝導シート(XI)のトランジスタと銅ヒートシンクに対する密着性は良好であった。   When the heat conductivity of the heat conductive sheet (XI) was measured in the same manner as in Example 1, it showed a good value of 69 W / mK. Moreover, the adhesiveness with respect to the transistor and copper heat sink of heat conductive sheet (XI) was favorable.

この熱伝導シート(XI)のタック力を測定したところ、11gfと仮固定に不充分な値であった。
この熱伝導シート(XI)の引張強度を測定したところ、0.18MPaとハンドリングに不充分な値を示した。
When the tack force of this heat conductive sheet (XI) was measured, it was 11 gf, which was insufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (XI) was measured, it was 0.18 MPa, which was insufficient for handling.

この熱伝導シート(XI)の熱処理後のタック力を測定したところ、9gfと仮固定に不充分な値であった。また、熱処理前後の引張弾性率の変化は5%と少なく耐熱性は高かった。結果を表2に示す。   When the tack force after heat treatment of this heat conductive sheet (XI) was measured, it was 9 gf, which was insufficient for temporary fixing. Further, the change in tensile elastic modulus before and after the heat treatment was as small as 5%, and the heat resistance was high. The results are shown in Table 2.

(比較例8)
ポリ(メタ)アクリル酸エステル系高分子化合物(C)として、アクリル酸エチル/アクリル酸ブチル/メタクリル酸ヒドロキシエチル共重合体(共重合質量比19/76/5、ナガセケムテックス製、HTR811DR、重量平均分子量:42万、Tg:−43℃、OH基含有)103gを用いた以外は、実施例1と同様に操作し、熱伝導シート(XII)を得た。
(Comparative Example 8)
As the poly (meth) acrylate polymer compound (C), an ethyl acrylate / butyl acrylate / hydroxyethyl methacrylate copolymer (copolymerization mass ratio 19/76/5, manufactured by Nagase ChemteX, HTR811DR, weight) Except that 103 g (average molecular weight: 420,000, Tg: −43 ° C., OH group-containing) was used, the same operation as in Example 1 was carried out to obtain a heat conductive sheet (XII).

以下、実施例1と同様に操作して熱伝導シート(XII)の性状を求めた。熱伝導シート(XII)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ89度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。アスカーC硬度は70とやや硬めなゴムシートとなった。   Thereafter, the properties of the heat conductive sheet (XII) were determined by operating in the same manner as in Example 1. The cross section of the heat conduction sheet (XII) is observed using an SEM (scanning electron microscope), and the angle of the surface direction of the scale from the direction seen with respect to any 50 graphite particles is measured with respect to the surface of the heat conduction sheet. The average value was found to be 89 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet. The Asker C hardness was 70, which was a slightly hard rubber sheet.

実施例1と同様に操作して熱伝導シート(XII)の熱伝導率を測定したところ、58W/mKと良好な値を示した。また、熱伝導シート(XII)のトランジスタと銅ヒートシンクに対する密着性は少し悪かった。   When the thermal conductivity of the heat conductive sheet (XII) was measured in the same manner as in Example 1, it showed a good value of 58 W / mK. Also, the adhesion of the heat conductive sheet (XII) to the transistor and the copper heat sink was a little bad.

この熱伝導シート(XII)のタック力を測定したところ、9gfと仮固定に不充分な値であった。
この熱伝導シート(XII)の引張強度を測定したところ、0.38MPaとハンドリングに充分な値を示した。
When the tack force of this heat conductive sheet (XII) was measured, it was 9 gf, which was insufficient for temporary fixing.
When the tensile strength of this heat conductive sheet (XII) was measured, it was 0.38 MPa, which was a value sufficient for handling.

この熱伝導シート(XII)の熱処理後のタック力を測定したところ、3gfとほとんどタック力が無くなった。また、熱処理前後の引張弾性率の変化は22%と大きく耐熱性は低かった。結果を表2に示す。   When the tack force after heat treatment of this heat conductive sheet (XII) was measured, the tack force almost disappeared to 3 gf. The change in tensile modulus before and after the heat treatment was as large as 22% and the heat resistance was low. The results are shown in Table 2.

Figure 0005423455
Figure 0005423455

Claims (11)

鱗片状、楕球状又は棒状であり、結晶中の六角平面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、Tgが50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)と、重量平均分子量が5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)と、を含有し、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の含有量が40質量%以上85質量%以下である組成物を含む熱伝導シートであって、
前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が熱伝導シートの厚み方向に配向していることを特徴とする熱伝導シート。
Graphite particles or hexagonal boron nitride particles (A) having a scale shape, an elliptical shape, or a rod shape, and a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod A crosslinked cured product (B) of a poly (meth) acrylate polymer compound having a Tg of 50 ° C. or less, a weight average molecular weight of 5,000 to 100,000, and a Tg of 0 ° C. or less. A poly (meth) acrylic acid ester-based polymer compound (C) having no group, and the content of the graphite particles or hexagonal boron nitride particles (A) is 40% by mass or more and 85% by mass or less. A heat conductive sheet comprising the composition of
The heat conduction characterized in that the surface direction of the scale of the graphite particles or hexagonal boron nitride particles (A), the major axis direction of the ellipsoid or the major axis direction of the rod are oriented in the thickness direction of the heat conductive sheet. Sheet.
前記ポリ(メタ)アクリル酸エステル系高分子化合物の架橋硬化物(B)と前記ポリ(メタ)アクリル酸エステル系高分子化合物(C)の質量配合比率が、(B):(C)=5:5〜7:3の範囲であり、
前記ポリ(メタ)アクリル酸エステル系高分子化合物(C)が内部添加によりシート材全体に存在させてあるか、又は前記ポリ(メタ)アクリル酸エステル系高分子化合物(C)が0.1mg/cm2以上4mg/cm2以下の量で表面に塗布又は含浸されていることを特徴とする請求項1記載の熱伝導シート。
The mass blending ratio of the poly (meth) acrylate polymer compound (B) to the poly (meth) acrylate polymer compound (C) is (B) :( C) = 5. : In the range of 5-7: 3,
The poly (meth) acrylate polymer compound (C) is present throughout the sheet material by internal addition, or the poly (meth) acrylate polymer compound (C) is 0.1 mg / heat conducting sheet according to claim 1, characterized in that it is coated or impregnated on the surface in an amount of cm 2 or more 4 mg / cm 2 or less.
前記黒鉛粒子(A)が膨張黒鉛であることを特徴とする請求項1又は2記載の熱伝導シート。 Thermally conductive sheet according to claim 1 or 2, wherein the said graphite particles (A) is expanded graphite. 前記六方晶窒化ほう素粒子(A)が鱗片状の六方晶窒化ほう素粒子であることを特徴とする請求項1又は2記載の熱伝導シート。 Claim 1 or 2 thermal conducting sheet, wherein said hexagonal boron nitride particles (A) is a scaly hexagonal boron nitride particles. 前記組成物が、りん酸エステル系難燃剤(D)を10質量%〜40質量%の範囲で含有することを特徴とする請求項1〜4のいずれか一項に記載の熱伝導シート。   The said composition contains a phosphate ester type flame retardant (D) in 10 mass%-40 mass%, The heat conductive sheet as described in any one of Claims 1-4 characterized by the above-mentioned. 前記ポリ(メタ)アクリル酸エステル系高分子化合物(C)が、一方の面に塗布されている又は一方の面に含浸されていることを特徴とする請求項1〜5のいずれか一項に記載の熱伝導シート。   6. The poly (meth) acrylic acid ester polymer compound (C) is applied on one surface or impregnated on one surface, according to any one of claims 1 to 5. The heat conductive sheet as described. 下記工程(1a)〜(4)を含む、黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に配向している熱伝導シートの製造方法。
(1a)鱗片状、楕球状又は棒状であり、結晶中の六角平面が、鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、Tgが50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させ硬化剤(b)と、重量平均分子量が5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)と、を含有し、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の含有量が40質量%以上85質量%以下である組成物を、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下の厚みに圧延成形、プレス成形、押出成形又は塗工し、主たる面に関して、ほぼ平行な方向に黒鉛粒子又は六方晶窒化ほう素粒子(A)が配向した一次シートを作製する工程、
(2)前記一次シートを積層して成形体を得る工程、
(3)前記成形体を加熱して、前記ポリ(メタ)アクリル酸エステル系高分子化合物(B’)と硬化剤(b)とを反応させる工程、
(4)前記一次シート面から出る法線に対し、0〜30度の角度でスライスしてシートを得る工程。
The scale direction of the graphite particles or hexagonal boron nitride particles (A) including the following steps (1a) to (4), the major axis direction of the ellipse, or the major axis direction of the rod is the thickness direction of the heat conductive sheet. The manufacturing method of the heat conductive sheet orientated.
(1a) Graphite particles or hexagonal boron nitride having a scale shape, an elliptical shape, or a rod shape, and a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod and particles (a), Tg is 50 ° C. or less of poly (meth) acrylic ester-based polymer compound and (B '), a curing agent Ru is crosslinked and cured to as (b), the weight average molecular weight of 5,000 to 100,000 And a poly (meth) acrylic acid ester polymer compound (C) having a Tg of 0 ° C. or less and having no reactive functional group, and the graphite particles or hexagonal boron nitride particles ( A composition having a content of A) of 40% by mass or more and 85% by mass or less is rolled, press-molded to a thickness of 20 times or less the mass average diameter of the graphite particles or hexagonal boron nitride particles (A), Extruded or coated, almost parallel with respect to the main surface Producing a primary sheet in which graphite particles or hexagonal boron nitride particles (A) are oriented in any direction,
( 2a ) A step of obtaining a molded body by laminating the primary sheet,
(3) heating the molded body to react the poly (meth) acrylate polymer compound (B ′) with the curing agent (b);
(4) A step of obtaining a sheet by slicing at an angle of 0 to 30 degrees with respect to a normal line emerging from the primary sheet surface.
下記工程(1a)〜(4)を含む、黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に配向している熱伝導シートの製造方法。  The scale direction of the graphite particles or hexagonal boron nitride particles (A) including the following steps (1a) to (4), the major axis direction of the ellipse, or the major axis direction of the rod is the thickness direction of the heat conductive sheet. The manufacturing method of the heat conductive sheet orientated.
(1a)鱗片状、楕球状又は棒状であり、結晶中の六角平面が、鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、Tgが50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)と、重量平均分子量が5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)と、を含有し、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の含有量が40質量%以上85質量%以下である組成物を、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下の厚みに圧延成形、プレス成形、押出成形又は塗工し、主たる面に関して、ほぼ平行な方向に黒鉛粒子又は六方晶窒化ほう素粒子(A)が配向した一次シートを作製する工程、(1a) Graphite particles or hexagonal boron nitride having a scale shape, an elliptical shape, or a rod shape, and a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod Particle (A), poly (meth) acrylate polymer compound (B ′) having a Tg of 50 ° C. or less, a curing agent (b) for crosslinking and curing the same, and a weight average molecular weight of 5,000 to 100,000 And a poly (meth) acrylate polymer compound (C) having a Tg of 0 ° C. or less and having no reactive functional group, and the graphite particles or hexagonal boron nitride particles (A ) In a thickness of 20 times or less the mass average diameter of the graphite particles or hexagonal boron nitride particles (A). Molded or coated, with the main surface almost flat Process direction graphite particles or hexagonal boron nitride particles (A) to produce a primary sheet oriented such,
(2b)前記一次シートを、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の配向方向を軸にして捲回して成形体を得る工程と、(2b) winding the primary sheet around the orientation direction of the graphite particles or hexagonal boron nitride particles (A) to obtain a molded body;
(3)前記成形体を加熱して、前記ポリ(メタ)アクリル酸エステル系高分子化合物(B’)と硬化剤(b)とを反応させる工程、(3) heating the molded body to react the poly (meth) acrylate polymer compound (B ′) with the curing agent (b);
(4)前記一次シート面から出る法線に対し、0〜30度の角度でスライスしてシートを得る工程。(4) A step of obtaining a sheet by slicing at an angle of 0 to 30 degrees with respect to a normal line emerging from the primary sheet surface.
下記工程(1b)〜(5)を含む、黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に配向している熱伝導シートの製造方法。
(1b)鱗片状、楕球状又は棒状であり、結晶中の六角平面が、鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、Tgが50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)と、を含有する組成物を、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下の厚みに圧延成形、プレス成形、押出成形又は塗工し、主たる面に関して、平行な方向に黒鉛粒子又は六方晶窒化ほう素粒子(A)が配向した一次シートを作製する工程、
(2)前記一次シートを積層して成形体を得る工程、
(3)前記成形体を加熱して、前記ポリ(メタ)アクリル酸エステル系高分子化合物(B’)と硬化剤(b)とを反応させる工程、
(4)前記一次シート面から出る法線に対し、0〜30度の角度でスライスしてシートを得る工程、
(5)前記シートの少なくとも一方の面に、重量平均分子量5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布又は含浸させる工程。
The scale direction of the graphite particles or hexagonal boron nitride particles (A) including the following steps (1b) to (5), the major axis direction of the ellipse or the major axis direction of the rod is the thickness direction of the heat conductive sheet. The manufacturing method of the heat conductive sheet orientated.
(1b) Graphite particles or hexagonal boron nitride having a scale shape, an elliptical shape, or a rod shape, and a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod A composition containing particles (A), a poly (meth) acrylate polymer compound (B ′) having a Tg of 50 ° C. or less, and a curing agent (b) for crosslinking and curing the composition, Rolled, pressed, extruded or coated to a thickness of 20 times or less the mass average diameter of the graphite particles or hexagonal boron nitride particles (A), and the graphite particles or hexagonal nitriding in a parallel direction with respect to the main surface Producing a primary sheet in which the boron particles (A) are oriented;
( 2a ) A step of obtaining a molded body by laminating the primary sheet,
(3) heating the molded body to react the poly (meth) acrylate polymer compound (B ′) with the curing agent (b);
(4) A step of obtaining a sheet by slicing at an angle of 0 to 30 degrees with respect to a normal line emerging from the primary sheet surface;
(5) On at least one surface of the sheet, a poly (meth) acrylate polymer compound (C) having a weight average molecular weight of 5,000 to 100,000 and a Tg of 0 ° C. or less and having no reactive functional group. ) Is applied or impregnated.
下記工程(1b)〜(5)を含む、黒鉛粒子又は六方晶窒化ほう素粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に配向している熱伝導シートの製造方法。  The scale direction of the graphite particles or hexagonal boron nitride particles (A) including the following steps (1b) to (5), the major axis direction of the ellipse or the major axis direction of the rod is the thickness direction of the heat conductive sheet. The manufacturing method of the heat conductive sheet orientated.
(1b)鱗片状、楕球状又は棒状であり、結晶中の六角平面が、鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子又は六方晶窒化ほう素粒子(A)と、Tgが50℃以下であるポリ(メタ)アクリル酸エステル系高分子化合物(B’)と、これを架橋硬化させる硬化剤(b)と、を含有する組成物を、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の質量平均径の20倍以下の厚みに圧延成形、プレス成形、押出成形又は塗工し、主たる面に関して、平行な方向に黒鉛粒子又は六方晶窒化ほう素粒子(A)が配向した一次シートを作製する工程、(1b) Graphite particles or hexagonal boron nitride having a scale shape, an elliptical shape, or a rod shape, and a hexagonal plane in the crystal oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod A composition containing particles (A), a poly (meth) acrylate polymer compound (B ′) having a Tg of 50 ° C. or less, and a curing agent (b) for crosslinking and curing the composition, Rolled, pressed, extruded or coated to a thickness of 20 times or less the mass average diameter of the graphite particles or hexagonal boron nitride particles (A), and the graphite particles or hexagonal nitriding in a parallel direction with respect to the main surface Producing a primary sheet in which the boron particles (A) are oriented;
(2b)前記一次シートを、前記黒鉛粒子又は六方晶窒化ほう素粒子(A)の配向方向を軸にして捲回して成形体を得る工程と、(2b) winding the primary sheet around the orientation direction of the graphite particles or hexagonal boron nitride particles (A) to obtain a molded body;
(3)前記成形体を加熱して、前記ポリ(メタ)アクリル酸エステル系高分子化合物(B’)と硬化剤(b)とを反応させる工程、(3) heating the molded body to react the poly (meth) acrylate polymer compound (B ′) with the curing agent (b);
(4)前記一次シート面から出る法線に対し、0〜30度の角度でスライスしてシートを得る工程、(4) A step of obtaining a sheet by slicing at an angle of 0 to 30 degrees with respect to a normal line emerging from the primary sheet surface;
(5)前記シートの少なくとも一方の面に、重量平均分子量5000以上100000以下、かつTgが0℃以下であり、反応性官能基を有さないポリ(メタ)アクリル酸エステル系高分子化合物(C)を塗布又は含浸させる工程。(5) On at least one surface of the sheet, a poly (meth) acrylate polymer compound (C) having a weight average molecular weight of 5,000 to 100,000 and a Tg of 0 ° C. or less and having no reactive functional group. ) Is applied or impregnated.
請求項1〜6のいずれか一項に記載の熱伝導シート又は請求項7〜10のいずれか一項に記載の製造方法により得られた熱伝導シートを発熱体と放熱体の間に介在させてなることを特徴とする放熱装置。 The heat conductive sheet according to any one of claims 1 to 6 or the heat conductive sheet obtained by the production method according to any one of claims 7 to 10 is interposed between a heating element and a heat radiator. A heat dissipation device.
JP2010026240A 2010-02-09 2010-02-09 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET Expired - Fee Related JP5423455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026240A JP5423455B2 (en) 2010-02-09 2010-02-09 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026240A JP5423455B2 (en) 2010-02-09 2010-02-09 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET

Publications (2)

Publication Number Publication Date
JP2011162642A JP2011162642A (en) 2011-08-25
JP5423455B2 true JP5423455B2 (en) 2014-02-19

Family

ID=44593719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026240A Expired - Fee Related JP5423455B2 (en) 2010-02-09 2010-02-09 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET

Country Status (1)

Country Link
JP (1) JP5423455B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323270B1 (en) * 2011-11-24 2013-10-23 積水化学工業株式会社 Manufacturing method of resin composite material
CN104040712A (en) * 2011-12-22 2014-09-10 日东电工株式会社 Semiconductor device, optical semiconductor device, and heat-dissipating member
CN104302474B (en) * 2012-05-16 2016-09-21 荒川化学工业株式会社 Retractility fin and the article being pasted with this retractility fin
WO2014080743A1 (en) * 2012-11-21 2014-05-30 株式会社高木化学研究所 Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article
EP2953164A1 (en) 2013-02-01 2015-12-09 Sumitomo Bakelite Company Limited Heat conducting sheet and structure
WO2015060090A1 (en) * 2013-10-25 2015-04-30 日本ゼオン株式会社 Thermally conductive multilayer sheet, method for producing thermally conductive multilayer sheet, and electronic device
KR102244404B1 (en) 2014-02-24 2021-04-26 헨켈 아이피 앤드 홀딩 게엠베하 Thermally conductive pre-applied underfill formulations and uses thereof
JP2017037833A (en) * 2015-08-06 2017-02-16 国立大学法人豊橋技術科学大学 Composite insulation sheet and manufacturing method of composite insulation sheet
US20180231337A1 (en) * 2015-08-24 2018-08-16 Zeon Corporation Heat conductive sheet and method of manufacturing the same
EP3422831B1 (en) * 2016-02-25 2021-12-01 Zeon Corporation Heat conductive sheet and a heat dissipation device
CN108701662B (en) * 2016-02-25 2020-06-09 日本瑞翁株式会社 Heat-conducting sheet, method for producing same, and heat-dissipating device
JP6881429B2 (en) * 2016-02-25 2021-06-02 日本ゼオン株式会社 Laminated body and its manufacturing method, and secondary sheet and secondary sheet manufacturing method
US20190181070A1 (en) * 2016-06-28 2019-06-13 Zeon Corporation Heat radiation device
KR20190039943A (en) * 2016-08-08 2019-04-16 세키스이가가쿠 고교가부시키가이샤 Heat conductive sheet and manufacturing method thereof
JP6866610B2 (en) * 2016-10-21 2021-04-28 日本ゼオン株式会社 Method of manufacturing heat conductive sheet
JP6746540B2 (en) 2017-07-24 2020-08-26 積水化学工業株式会社 Heat conduction sheet
WO2019097852A1 (en) * 2017-11-14 2019-05-23 株式会社高木化学研究所 Filler-filled highly thermally conductive dispersion composition having excellent segregation stability, method for producing said dispersion composition, filler-filled highly thermally conductive material using said dispersion composition, method for producing said material, and molded article obtained using said material
JP7234560B2 (en) * 2018-09-28 2023-03-08 日本ゼオン株式会社 Heat-conducting sheet and manufacturing method thereof
JPWO2020153377A1 (en) * 2019-01-22 2021-12-02 積水化学工業株式会社 Thermally conductive resin sheet
JP7278998B2 (en) * 2020-08-04 2023-05-22 積水化学工業株式会社 thermal conductive sheet
JP6999054B1 (en) 2021-02-10 2022-01-18 デクセリアルズ株式会社 Supply form of heat conductive sheet and heat conductive sheet
CN114479774B (en) * 2022-01-20 2023-09-26 国网河北省电力有限公司电力科学研究院 Preparation method and preparation equipment of heat-conducting insulating material GBN

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009224B2 (en) * 2003-05-19 2007-11-14 株式会社日本触媒 Resin composition for heat dissipation material
JP2007291344A (en) * 2006-03-28 2007-11-08 Achilles Corp Acrylic resin composition and sheet-like molded product using the same
CN102433105B (en) * 2006-11-01 2014-07-30 日立化成株式会社 Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
JP2008163126A (en) * 2006-12-27 2008-07-17 Nippon Shokubai Co Ltd Resin composition for heat-release material
JP5407120B2 (en) * 2007-04-11 2014-02-05 日立化成株式会社 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME
JP2009149831A (en) * 2007-11-26 2009-07-09 Hitachi Chem Co Ltd Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet

Also Published As

Publication number Publication date
JP2011162642A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5423455B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP5560630B2 (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
KR101550083B1 (en) Heat radiation sheet and heat radiation device
JP6341303B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING THE HEAT CONDUCTIVE SHEET
JP6156337B2 (en) HEAT CONDUCTIVE SHEET AND METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET
JP5882581B2 (en) Thermally conductive sheet, method for producing the same, and heat dissipation device
JP5915525B2 (en) Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device
JP5407120B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME
JP5740864B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
KR20160149201A (en) Thermally conductive polymer composition and thermally conductive molded object
JP2012015273A (en) Thermal conductive sheet, method of manufacturing thermal conductive sheet and heat radiation device using thermal conductive sheet
JP5678596B2 (en) Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device
JP5454300B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING SAME
JP2015061924A (en) Thermal conductive sheet, method of manufacturing thermal conductive sheet and heat radiation device using thermal conductive sheet
JP5879782B2 (en) HEAT CONDUCTIVE COMPOSITE SHEET, PROCESS FOR PRODUCING THE SAME, AND HEAT DISSULATING DEVICE
JP2011184663A (en) Heat conductive sheet, method for producing the same, and heat radiation device using the same
JP7172031B2 (en) Method for manufacturing thermally conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees