JP2009149831A - Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet - Google Patents

Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet Download PDF

Info

Publication number
JP2009149831A
JP2009149831A JP2008028129A JP2008028129A JP2009149831A JP 2009149831 A JP2009149831 A JP 2009149831A JP 2008028129 A JP2008028129 A JP 2008028129A JP 2008028129 A JP2008028129 A JP 2008028129A JP 2009149831 A JP2009149831 A JP 2009149831A
Authority
JP
Japan
Prior art keywords
sheet
heat conductive
graphite particles
conductive sheet
major axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008028129A
Other languages
Japanese (ja)
Inventor
Yuka Yoshida
優香 吉田
Toru Yoshikawa
徹 吉川
Teiichi Inada
禎一 稲田
Tomoaki Yajima
倫明 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008028129A priority Critical patent/JP2009149831A/en
Publication of JP2009149831A publication Critical patent/JP2009149831A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoconductive sheet which has both the high thermoconductivity and the high flexibility; a manufacturing method which gives the thermoconductive sheet profitably and reliably in the view points of the productivity, the cost aspect and the energy efficiency; and a heat-radiating device having a high heat-radiating capacity. <P>SOLUTION: The thermoconductive sheet contains a composition containing graphite particles (A) that are of a flake form, an ellipsoidal form or a rod form and that the six-membered ring planes in a crystal are orientated to the surface direction of the flake, to a major axis direction of the ellipsoid or to the major direction of the rod, and containing an organic high molecular compound (B) having a Tg of 0°C or lower, and is formed in such a way that the graphite particles (A) have the surface direction of the flakes, the major axis direction of the ellipsoid or the major axis direction of the rod orientated to the thickness direction inside the sheet, and the graphite particles (A) in the tip parts are folded, at the surface part of the one side or both sides of the sheet, at an angle of 60-90°as an axis of the sheet thickness direction toward the direction along the surface of the sheet. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置に関する。   The present invention relates to a heat conductive sheet, a manufacturing method thereof, and a heat dissipation device using the heat conductive sheet.

近年、多層配線板、半導体パッケージに対する配線の高密度化や電子部品の搭載密度が大きくなり、また半導体素子も高集積化して単位面積あたりの発熱量が大きくなったため、半導体パッケージからの熱放散を良くすることが望まれるようになっている。   In recent years, the density of wiring and the mounting density of electronic components on multilayer wiring boards and semiconductor packages have increased, and the amount of heat generated per unit area has increased due to higher integration of semiconductor elements. There is a desire to improve.

半導体パッケージのような発熱体とアルミや銅等の放熱体との間に、熱伝導グリース又は熱伝導シートを挟んで密着させることにより熱を放散する放熱装置が、一般に簡便に使用されているが、熱伝導グリースよりは熱伝導シートの方が放熱装置を組み立てる際の作業性に優れている。熱放散性を良くするためには、熱伝導シートに高い熱伝導性が求められるが、従来の熱伝導シートの熱伝導性は必ずしも充分とは言えなかった。   A heat dissipation device that dissipates heat by sandwiching a heat conductive grease or a heat conductive sheet between a heat generator such as a semiconductor package and a heat radiator such as aluminum or copper is generally used in a simple manner. The heat conduction sheet is superior to the heat conduction grease in assembling the heat dissipation device. In order to improve heat dissipation, the heat conductive sheet is required to have high heat conductivity, but the heat conductivity of the conventional heat conductive sheet is not always sufficient.

そのため、熱伝導シートの熱伝導性をさらに向上させる目的で、マトリックス材料中に、一方向に熱伝導性の大きな黒鉛粉末を配合した、様々な熱伝導性複合材料組成物及びその成形加工品が提案されている。   Therefore, for the purpose of further improving the heat conductivity of the heat conductive sheet, various heat conductive composite compositions and molded products thereof, in which a matrix material is mixed with graphite powder having a large heat conductivity in one direction, are provided. Proposed.

例えば、特許文献1には黒鉛粉末を熱可塑性樹脂に充填した熱伝導性樹脂成形品が、特許文献2には黒鉛、カーボンブラック等を含有するポリエステル樹脂組成物が開示されている。   For example, Patent Document 1 discloses a thermally conductive resin molded product in which graphite powder is filled in a thermoplastic resin, and Patent Document 2 discloses a polyester resin composition containing graphite, carbon black, and the like.

また、特許文献3には粒径1〜20μmの人造黒鉛を配合したゴム組成物が、特許文献4には結晶面間隔が0.33〜0.34nmの球状黒鉛粉末をシリコーンゴムに配合した組成物が開示されている。   Patent Document 3 contains a rubber composition in which artificial graphite having a particle size of 1 to 20 μm is blended, and Patent Document 4 has a composition in which spherical graphite powder having a crystal plane spacing of 0.33 to 0.34 nm is blended in silicone rubber. Things are disclosed.

また、特許文献5には切断方向に対して垂直配向した炭素繊維とその形状を保持するための弾性体とを含有する成形体が、特許文献6には切断面に対して垂直方向に傾斜配向させた黒鉛化炭素繊維等の熱伝導性繊維を含有した高分子組成物が開示されている。   Further, Patent Document 5 discloses a molded body containing carbon fibers that are vertically aligned with respect to the cutting direction and an elastic body for maintaining the shape, and Patent Document 6 is inclined with respect to a direction perpendicular to the cutting surface. A polymer composition containing a thermally conductive fiber such as graphitized carbon fiber is disclosed.

さらに、特許文献7には、成形体中の黒鉛粉末の結晶構造におけるc軸が、熱伝導方向に対して直交方向に配向されている熱伝導性成形体及びその製造方法が開示されている。   Furthermore, Patent Document 7 discloses a thermally conductive molded body in which the c-axis in the crystal structure of the graphite powder in the molded body is oriented in a direction orthogonal to the thermal conduction direction, and a method for manufacturing the same.

一方、熱伝導シートには、前述のように放熱装置を組み立てる際の作業性が簡便であるという利点があり、この利点をさらに生かす使い方として、凹凸や曲面等の特殊な形状に対する追従性、応力緩和等の機能を持たせるニーズが生じてきている。   On the other hand, the heat conductive sheet has the advantage that the workability when assembling the heat dissipation device is simple as described above. As a way to further utilize this advantage, followability to special shapes such as irregularities and curved surfaces, stress There is a growing need for mitigation and other functions.

例えば、ディスプレイパネルのような大面積からの放熱においては、熱伝導シートに発熱体と放熱体の表面のゆがみや凹凸等の形状に対する追従性、熱膨張率の違いによって起こる熱応力緩和等の機能も要求され、ある程度厚い膜でも伝熱できる高い熱伝導性の他、高い柔軟性が要求されるようになってきた。   For example, in heat dissipation from a large area such as a display panel, the heat conduction sheet has functions such as the ability to follow the shape of the surface of the heat generator and the heat sink, such as distortion and unevenness, and thermal stress relaxation caused by the difference in coefficient of thermal expansion. In addition to high thermal conductivity that can transfer heat even to a somewhat thick film, high flexibility has been required.

しかし、このような柔軟性と熱伝導性を高いレベルで両立できる熱伝導シートは未だ得られていなかった。
前述のような、特定の黒鉛粉末を成形体中にランダムに分散させた成形体であっても、実際に要求され続ける高度な熱伝導特性に対しては、熱伝導性が未だ不足していた。
However, a thermal conductive sheet that can achieve both such flexibility and thermal conductivity at a high level has not yet been obtained.
Even in the case of a molded body in which a specific graphite powder is randomly dispersed in the molded body as described above, the thermal conductivity is still insufficient for the advanced thermal conductivity characteristics that are actually required. .

また、炭素繊維類が切断面に対して垂直配向した成形体は、柔軟性に対する配慮が必ずしも充分ではなく、また表面に露出している繊維端の被着物への接触性が必ずしも充分ではないため、接触抵抗が充分に低下しにくく、高い熱伝導性を得る上で確実性に欠ける。   In addition, a molded body in which carbon fibers are oriented perpendicular to the cut surface does not necessarily have sufficient consideration for flexibility, and the contact property of the fiber end exposed on the surface to the adherend is not always sufficient. The contact resistance is not sufficiently lowered, and lacks certainty in obtaining high thermal conductivity.

さらに、成形体中の黒鉛粉末の結晶構造におけるc軸が、熱伝導方向に対して直交方向に配向されている熱伝導性成形体の製造方法は、黒鉛粒子が表面に確実に露出しにくく、被着物への接触性が必ずしも充分でないため、高い熱伝導性を得る上で確実性に欠け、さらに、生産性、コスト面及びエネルギー効率等に関する配慮が充分ではなかった。   Furthermore, in the method for producing a thermally conductive molded body in which the c-axis in the crystal structure of the graphite powder in the molded body is oriented in a direction orthogonal to the heat conduction direction, the graphite particles are not reliably exposed on the surface, Since the contact property with the adherend is not always sufficient, there is no certainty in obtaining high thermal conductivity, and further, considerations such as productivity, cost and energy efficiency are not sufficient.

特開昭62−131033号公報JP-A-62-131033 特開平04−246456号公報Japanese Patent Laid-Open No. 04-246456 特開平05−247268号公報JP 05-247268 A 特開平10−298433号公報JP-A-10-298433 特開2001−250894号公報JP 2001-250894 A 特開2002−088171号公報JP 2002-088171 A 特開2003−321554号公報JP 2003-321554 A

本発明は、高い熱伝導性と高い柔軟性を併せもつ熱伝導シート、該熱伝導シートを生産性、コスト面及びエネルギー効率の点で有利に、かつ確実に得られる製造方法及び高い放熱熱能力をもつ放熱装置を提供することを目的とするものである。   The present invention relates to a heat conductive sheet having both high thermal conductivity and high flexibility, a method for producing the heat conductive sheet advantageously and reliably in terms of productivity, cost and energy efficiency, and high heat radiation heat capacity. An object of the present invention is to provide a heat dissipation device having

本発明者等は、上記課題を解決すべく鋭意検討した結果、黒鉛粒子をシート厚み方向に配向させることにより、高い熱伝導性を有し、且つシート表面の黒鉛粒子において、その黒鉛粒子の先端部分がシート表面に沿うように折れ曲がるように調整することで、表面に露出している黒鉛粒子が被着物への接触性に優れることを見出した。
すなわち、本発明は次の通りである。
(1)鱗片状、楕球状又は棒状であり、結晶中の6員環面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子(A)と、Tgが0℃以下である有機高分子化合物(B)とを含有する組成物を含む熱伝導シートであって、
前記黒鉛粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向がシート内部で厚み方向に配向しており、シートの片面又は両面における表面部分で、前記黒鉛粒子(A)の先端部分が、シートの表面に沿う方向にシートの厚み方向を軸として、60〜90度の角度で折れ曲がった熱伝導シート。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have high thermal conductivity by orienting the graphite particles in the sheet thickness direction, and in the graphite particles on the sheet surface, the tips of the graphite particles It was found that the graphite particles exposed on the surface are excellent in contact with the adherend by adjusting the portion to be bent along the sheet surface.
That is, the present invention is as follows.
(1) Graphite particles (A) that are scale-like, elliptical, or rod-shaped, and whose six-membered ring faces in the crystal are oriented in the plane direction of the scale, the major axis direction of the ellipsoid, or the major axis direction of the rod; A heat conductive sheet comprising a composition containing an organic polymer compound (B) having a Tg of 0 ° C. or less,
The surface direction of the scale of the graphite particles (A), the major axis direction of the ellipsoid or the major axis direction of the rod is oriented in the thickness direction inside the sheet, and the graphite particles ( A heat conductive sheet in which the tip portion of A) is bent at an angle of 60 to 90 degrees with the thickness direction of the sheet as an axis in a direction along the surface of the sheet.

(2)前記シートの表面部分で折れ曲がっている黒鉛粒子(A)の数が、シートの厚み方向の断面における横方向の長さ500μmあたり5〜20個である上記(1)記載の熱伝導シート。
(3)前記シートの表面部分で折れ曲がっている黒鉛粒子(A)の折れ曲がり点が、シートの表面からシート厚の10%以内の位置にある上記(1)又は(2)記載の熱伝導シート。
(2) The heat conductive sheet according to the above (1), wherein the number of graphite particles (A) bent at the surface portion of the sheet is 5 to 20 per 500 μm in the transverse direction in the cross section in the thickness direction of the sheet. .
(3) The heat conductive sheet according to (1) or (2), wherein the bending point of the graphite particles (A) bent at the surface portion of the sheet is located within 10% of the sheet thickness from the surface of the sheet.

(4)前記シートの表面部分で折れ曲がっている黒鉛粒子(A)の折れ曲がり部分の長さが、シート厚の5〜20%である上記(1)〜(3)のいずれか一つに記載の熱伝導シート。
(5)前記組成物中、前記黒鉛粒子(A)は10〜50体積%、前記有機高分子化合物(B)は10〜50体積%で配合されることを特徴とする上記(1)〜(4)のいずれか一つに記載の熱伝導シート。
(6)鱗片状、楕球状又は棒状であり、結晶中の6員環面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子(A)と、Tgが0℃以下である有機高分子化合物(B)とを含有した組成物を、前記組成物中の黒鉛粒子(A)の配向方向に対して平行方向に5〜10MPaの圧力で押し付け、主たる面に関してほぼ平行な方向に前記黒鉛粒子(A)が配向した一次シートを作製し、
前記一次シートを積層して成形体を得、
前記成形体を0.01〜0.5MPaの圧力で押し付けながら一次シート面から出る法線に対し0〜30度の角度でスライスし熱伝導シートを得、該熱伝導シートの片面又は両面における表面部分で、シートの表面に沿う方向に、シートの厚み方向を軸として60〜90度の角度で、前記黒鉛粒子(A)の先端部分が折れ曲がることを特徴とする熱伝導シートの製造方法。
(4) The length of the bent portion of the graphite particles (A) bent at the surface portion of the sheet is 5 to 20% of the sheet thickness, as described in any one of (1) to (3) above. Thermal conductive sheet.
(5) In the composition, the graphite particles (A) are blended in an amount of 10 to 50% by volume, and the organic polymer compound (B) is blended in an amount of 10 to 50% by volume. The heat conductive sheet as described in any one of 4).
(6) Graphite particles (A) that are scale-like, oval or rod-shaped, and whose six-membered ring surface in the crystal is oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod; A composition containing an organic polymer compound (B) having a Tg of 0 ° C. or less is pressed at a pressure of 5 to 10 MPa in a direction parallel to the orientation direction of the graphite particles (A) in the composition. Producing a primary sheet in which the graphite particles (A) are oriented in a direction substantially parallel to the surface;
Laminating the primary sheet to obtain a molded body,
While pressing the molded body at a pressure of 0.01 to 0.5 MPa, the sheet is sliced at an angle of 0 to 30 degrees with respect to the normal from the primary sheet surface to obtain a heat conductive sheet, and the surface on one or both sides of the heat conductive sheet A method for producing a heat conductive sheet, characterized in that the tip portion of the graphite particles (A) is bent at an angle of 60 to 90 degrees about the thickness direction of the sheet in a direction along the surface of the sheet.

(7)鱗片状、楕球状又は棒状であり、結晶中の6員環面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子(A)と、Tgが0℃以下である有機高分子化合物(B)とを含有した組成物を、前記組成物中の黒鉛粒子(A)の配向方向に対して平行方向に5〜10MPaの圧力で押し付け、主たる面に関してほぼ平行な方向に前記黒鉛粒子(A)が配向した一次シートを作製し、
前記一次シートを前記黒鉛粒子(A)の配向方向を軸にして捲回し成形体を得、
前記成形体を0.01〜0.5MPaの圧力で押し付けながら一次シート面から出る法線に対し0度〜30度の角度でスライスし熱伝導シートを得、該熱伝導シートの片面又は両面における表面部分で、シートの表面に沿う方向に、シートの厚み方向を軸として60〜90度の角度で、前記黒鉛粒子(A)の先端部分が折れ曲がることを特徴とする熱伝導シートの製造方法。
(7) Graphite particles (A) that are scale-like, elliptical, or rod-shaped, and in which the six-membered ring surface in the crystal is oriented in the plane direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod; A composition containing an organic polymer compound (B) having a Tg of 0 ° C. or less is pressed at a pressure of 5 to 10 MPa in a direction parallel to the orientation direction of the graphite particles (A) in the composition. Producing a primary sheet in which the graphite particles (A) are oriented in a direction substantially parallel to the surface;
The primary sheet is wound around the orientation direction of the graphite particles (A) to obtain a molded body,
The pressed body is sliced at an angle of 0 degree to 30 degrees with respect to the normal line coming out from the primary sheet surface while being pressed at a pressure of 0.01 to 0.5 MPa to obtain a heat conductive sheet, on one or both sides of the heat conductive sheet A method for producing a heat conductive sheet, characterized in that the tip portion of the graphite particles (A) is bent at an angle of 60 to 90 degrees about the thickness direction of the sheet in a direction along the surface of the sheet at the surface portion.

(8)前記成形体のスライスは、スリットを有する平滑な盤面と、該スリット部より突出した刃部と、を有するスライス部材を用いて行い、
前記刃部は、前記熱伝導シートの所望の厚みに応じて、前記スリット部からの突出長さが調節可能である上記(6)又は(7)に記載の熱伝導シートの製造方法。
(8) The slicing of the molded body is performed using a slicing member having a smooth board surface having a slit and a blade part protruding from the slit part,
The said blade part is a manufacturing method of the heat conductive sheet as described in said (6) or (7) whose protrusion length from the said slit part can be adjusted according to the desired thickness of the said heat conductive sheet.

(9)前記スライス部材は、カンナ又はスライサーである上記(8)に記載の熱伝導シートの製造方法。
(10)前記成形体を、−20〜10℃の温度範囲でスライスする上記(6)〜(9)のいずれか一つに記載の熱伝導シートの製造方法。
(11)上記(1)〜(5)のいずれか一つに記載の熱伝導シート又は上記(6)〜(10)のいずれか一つに記載の熱伝導シートの製造方法により得られた熱伝導シートを、発熱体と放熱体との間に介在させた放熱装置。
(9) The method for manufacturing a heat conductive sheet according to (8), wherein the slice member is a plane or a slicer.
(10) The manufacturing method of the heat conductive sheet as described in any one of said (6)-(9) which slices the said molded object in the temperature range of -20-10 degreeC.
(11) Heat obtained by the method for producing a heat conductive sheet according to any one of (1) to (5) or the heat conductive sheet according to any one of (6) to (10). A heat dissipation device in which a conductive sheet is interposed between a heating element and a heat dissipation element.

前記(1)記載の熱伝導シートは、シートの表面部分で黒鉛粒子(A)の先端部分が折れ曲がり、シートの表面における黒鉛粒子(A)の露出面積が大きくなるため、被着物への接触性が増し、高い熱伝導性を持ち、また高い柔軟性も併せもつので、放熱用途に好適である。   In the heat conductive sheet according to (1), the tip of the graphite particles (A) is bent at the surface portion of the sheet, and the exposed area of the graphite particles (A) on the surface of the sheet is increased, so that the contact property to the adherend is increased. Therefore, it has high thermal conductivity and high flexibility, and is suitable for heat dissipation applications.

また、前記(2)〜(5)のいずれかに記載の熱伝導シートは、前記(1)記載の発明の効果に加えて、さらに高い熱伝導性を達成できる。
また、前記(6)又は(7)記載の熱伝導シートの製造方法は、高い熱伝導性と高い柔軟性を併せ持つ熱伝導シートを、生産性、コスト面及びエネルギー効率の点で有利に、かつ確実に製造できる。
Moreover, in addition to the effect of the invention of the said (1), the heat conductive sheet in any one of said (2)-(5) can achieve still higher heat conductivity.
The method for producing a heat conductive sheet according to the above (6) or (7) is advantageous in that the heat conductive sheet having both high heat conductivity and high flexibility is advantageous in terms of productivity, cost, and energy efficiency. Can be manufactured reliably.

また、前記(8)〜(10)のいずれかに記載の熱伝導シートの製造方法は、前記(6)又は(7)記載の発明の効果に加えて、黒鉛粒子(A)がシートの表面部分で確実に折れ曲がるように製造できるので、高い熱伝導性を持つ熱伝導シートを製造できる。
さらに、前記(11)記載の放熱装置は、高い放熱能力を有する。
In addition to the effects of the invention described in (6) or (7) above, the method for producing a heat conductive sheet according to any one of (8) to (10) described above, wherein the graphite particles (A) are the surface of the sheet. Since it can manufacture so that it may bend in a part reliably, the heat conductive sheet with high heat conductivity can be manufactured.
Furthermore, the heat dissipation device described in (11) has a high heat dissipation capability.

以下に、本発明を詳細に説明する。
本発明の熱伝導シートは、鱗片状、楕球状又は棒状であり、結晶中の6員環面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子(A)と、Tgが0℃以下である有機高分子化合物(B)とを含有する組成物を含み、前記黒鉛粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向がシート内部で厚み方向に配向しており、シートの片面又は両面における表面部分で、前記黒鉛粒子(A)の先端部分が、シートの表面に沿う方向にシートの厚み方向を軸として、60〜90度の角度で折れ曲がっていることを特徴とする。
The present invention is described in detail below.
The heat conductive sheet of the present invention has a scaly shape, an elliptical shape, or a rod shape, and a graphite particle in which the six-membered ring surface in the crystal is oriented in the surface direction of the scale, the major axis direction of the ellipse, or the major axis direction of the rod. A composition containing (A) and an organic polymer compound (B) having a Tg of 0 ° C. or less, and the scale direction of the graphite particles (A), the long axis direction of the ellipsoid, or the length of the rod The axial direction is oriented in the thickness direction inside the sheet, and at the surface part on one side or both sides of the sheet, the tip part of the graphite particles (A) is oriented along the sheet thickness direction in the direction along the sheet surface, It is bent at an angle of 60 to 90 degrees.

本発明において、黒鉛粒子(A)の形状は、鱗片状、楕球状又は棒状のものが用いられ、中でも鱗片状が好ましい。前記黒鉛粒子(A)の形状が、球状や不定形の場合は、熱伝導性に劣り、繊維状の場合はシートに成形するのが困難であるため生産性に劣る傾向がある。黒鉛粒子(A)の結晶中の6員環面は、鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向しているものを用いる。これは、X線回折測定により確認することができる。   In the present invention, the graphite particles (A) have a scaly shape, an elliptical shape, or a rod-like shape, and a scaly shape is particularly preferable. When the shape of the graphite particles (A) is spherical or indefinite, the thermal conductivity is inferior, and when it is fibrous, it is difficult to form into a sheet, so that the productivity tends to be inferior. The 6-membered ring surface in the crystal of graphite particles (A) is oriented in the scale direction, the long axis direction of the ellipse, or the long axis direction of the rod. This can be confirmed by X-ray diffraction measurement.

具体的には、以下の方法で確認する。まず黒鉛粒子の鱗片の面方向、楕球の長軸方向又は棒の長軸方向がシート又はフィルムの面方向に対し実質的に平行に配向した測定用サンプルシートを作製する。測定用サンプルシート調製の具体的な方法としては、10体積%以上の黒鉛粒子と樹脂との混合物をシート化する。ここで用いる「樹脂」とは有機高分子化合物(B)に相当する樹脂を使用できるが、X線回折の妨げになるピークが現れない材料、例えば非晶質樹脂であれば良く、また形状が作ることが可能であれば樹脂でなくとも用いることができる。このシートが元の厚みの1/10以下となるようにプレスし、プレスしたシートを積層する。この積層体を更に1/10以下まで押しつぶす操作を3回以上繰り返す。この操作により調製した測定用サンプルシート中では、黒鉛粒子の鱗片の面方向、楕球の長軸方向又は棒の長軸方向がシート又はフィルムの面方向に対し実質的に平行に配向した状態になる。上記のように調製した測定用サンプルシートの表面に対しX線回折測定を行うと、2θ=77°付近に現れる黒鉛の(110)面に対応するピークの高さを2θ=27°付近に現れる黒鉛の(002)面に対応するピークの高さで割った値が0〜0.02となる。
このことより本発明において、「結晶中の6員環面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している」とは、黒鉛粒子、有機高分子化合物等の熱伝導シートの組成物をシート化したものの表面に対しX線回折測定を行い、2θ=77°付近に現れる黒鉛の(110)面に対応するピークの高さを2θ=27°付近に現れる黒鉛の(002)面に対応するピークの高さで割った値が0〜0.02となる状態をいう。
Specifically, the following method is used for confirmation. First, a measurement sample sheet is prepared in which the surface direction of the scale of graphite particles, the long axis direction of the ellipsoid, or the long axis direction of the rod is oriented substantially parallel to the surface direction of the sheet or film. As a specific method for preparing the measurement sample sheet, a mixture of 10% by volume or more of graphite particles and a resin is formed into a sheet. As the “resin” used here, a resin corresponding to the organic polymer compound (B) can be used, but any material that does not show a peak that interferes with X-ray diffraction, such as an amorphous resin, may be used. If it can be made, it can be used even if it is not a resin. This sheet is pressed so that it becomes 1/10 or less of the original thickness, and the pressed sheets are laminated. The operation of further crushing this laminate to 1/10 or less is repeated three or more times. In the sample sheet for measurement prepared by this operation, the surface direction of the graphite particle scale, the major axis direction of the ellipse, or the major axis direction of the rod is oriented substantially parallel to the surface direction of the sheet or film. Become. When the X-ray diffraction measurement is performed on the surface of the measurement sample sheet prepared as described above, the peak height corresponding to the (110) plane of graphite appearing near 2θ = 77 ° appears near 2θ = 27 °. The value divided by the height of the peak corresponding to the (002) plane of graphite is 0 to 0.02.
Accordingly, in the present invention, “the 6-membered ring surface in the crystal is oriented in the plane direction of the scale, the long axis direction of the ellipse or the long axis direction of the rod” means graphite particles, organic polymer compounds, etc. X-ray diffraction measurement is performed on the surface of the heat conductive sheet composition of the above, and the height of the peak corresponding to the (110) plane of graphite appearing in the vicinity of 2θ = 77 ° appears in the vicinity of 2θ = 27 °. A state in which the value divided by the height of the peak corresponding to the (002) plane of graphite is 0 to 0.02.

本発明に用いられる黒鉛粒子(A)としては、例えば、鱗片黒鉛粉末、人造黒鉛粉末、薄片化黒鉛粉末、酸処理黒鉛粉末、膨張黒鉛粉末、炭素繊維フレーク等の鱗片状、楕球状又は棒状の黒鉛粒子を用いることができる。特に、有機高分子化合物(B)と混合した際に鱗片状の黒鉛粒子になり易いものが好ましい。具体的には、鱗片黒鉛粉末、薄片化黒鉛粉末、膨張黒鉛粉末の鱗片状黒鉛粒子が配向させ易く、粒子間接触も保ち易く、高い熱伝導性を得易いためより好ましい。   Examples of the graphite particles (A) used in the present invention include flaky graphite powder, artificial graphite powder, exfoliated graphite powder, acid-treated graphite powder, expanded graphite powder, carbon fiber flakes, and other scaly, oval or rod-like particles. Graphite particles can be used. In particular, those that easily become scaly graphite particles when mixed with the organic polymer compound (B) are preferred. Specifically, the flaky graphite particles of the flaky graphite powder, the exfoliated graphite powder, and the expanded graphite powder are more preferable because they are easy to orient, maintain inter-particle contact, and easily obtain high thermal conductivity.

黒鉛粒子(A)の長径の平均値は特に制限されないが、熱伝導性の向上の観点で、好ましくは0.1〜5mm、より好ましくは0.2〜3mm、特に好ましくは0.2〜1mmである。
また、シート厚は、黒鉛粒子(A)の長径の平均値の1〜5倍が好ましく、さらには1〜3倍がより好ましい。
なお、本発明において「長径の平均値」とは、熱伝導シートを正八角形に切った各辺の厚み方向の断面をSEM(走査型電子顕微鏡)を用いて観察し、いずれか1辺の断面に関し、任意の50個の黒鉛粒子について見えている方向から長径を測定し、平均値を求めた結果をいう。
The average value of the major axis of the graphite particles (A) is not particularly limited, but is preferably 0.1 to 5 mm, more preferably 0.2 to 3 mm, and particularly preferably 0.2 to 1 mm from the viewpoint of improving thermal conductivity. It is.
The sheet thickness is preferably 1 to 5 times the average value of the major axis of the graphite particles (A), more preferably 1 to 3 times.
In the present invention, the “average value of the major axis” means that the cross section in the thickness direction of each side obtained by cutting the heat conductive sheet into a regular octagon is observed using an SEM (scanning electron microscope), and the cross section of any one side. , The major axis is measured from the direction seen for any 50 graphite particles, and the average value is obtained.

黒鉛粒子(A)の含有量は特に制限されないが、組成物全体積の10〜50体積%であることが好ましく、30〜45体積%であることがより好ましい。前記黒鉛粒子(A)の含有量が10体積%未満である場合は、熱伝導性が低下する傾向があり、50体積%を超える場合は、充分な柔軟性や密着性が得難くなる傾向がある。なお、本明細書における黒鉛粒子(A)の含有量(体積%)は次式により求めた値である。
黒鉛粒子(A)の含有量(体積%)=
(Aw/Ad)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)+・・・)×100
Aw:黒鉛粒子(A)の質量組成(重量%)
Bw:高分子化合物(B)の質量組成(重量%)
Cw:その他の任意成分(C)の質量組成(重量%)
Ad:黒鉛粒子(A)の比重(本発明においてAdは2.25で計算する。)
Bd:高分子化合物(B)の比重
Cd:その他の任意成分(C)の比重
Although content in particular of a graphite particle (A) is not restrict | limited, It is preferable that it is 10-50 volume% of the whole composition volume, and it is more preferable that it is 30-45 volume%. When the content of the graphite particles (A) is less than 10% by volume, the thermal conductivity tends to decrease, and when it exceeds 50% by volume, sufficient flexibility and adhesion tend to be difficult to obtain. is there. In addition, content (volume%) of the graphite particle (A) in this specification is the value calculated | required by following Formula.
Content of graphite particles (A) (volume%) =
(Aw / Ad) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd) +...) × 100
Aw: mass composition of graphite particles (A) (% by weight)
Bw: mass composition (% by weight) of polymer compound (B)
Cw: mass composition (% by weight) of other optional component (C)
Ad: Specific gravity of graphite particles (A) (In the present invention, Ad is calculated as 2.25)
Bd: Specific gravity of polymer compound (B) Cd: Specific gravity of other optional component (C)

本発明に用いられ有機高分子化合物(B)は、Tg(ガラス転移温度)が0℃以下、好ましくは−100〜0℃、より好ましくは−70〜−30℃である。前記Tgが0℃を超える場合は、柔軟性に劣り、発熱体及び放熱体に対する密着性が不良となる傾向がある。
また、Tgが0℃を超える場合は、柔軟性に劣ることより、熱伝導シートにおいて黒鉛粒子(A)の先端部分が、シートの表面に沿う方向にシートの厚み方向を軸として、60〜90度の角度で折れ曲がり難くなる。
The organic polymer compound (B) used in the present invention has a Tg (glass transition temperature) of 0 ° C. or lower, preferably −100 to 0 ° C., more preferably −70 to −30 ° C. When the Tg exceeds 0 ° C., the flexibility is inferior, and the adhesion to the heating element and the radiator tends to be poor.
Moreover, when Tg exceeds 0 degreeC, since it is inferior to a softness | flexibility, in the heat conductive sheet, the front-end | tip part of a graphite particle (A) is 60-90 centering on the thickness direction of a sheet | seat in the direction along the surface of a sheet | seat. It becomes difficult to bend at an angle of degrees.

本発明に用いられる有機高分子化合物(B)としては、Tgが0℃以下であれば特に制限はないが、例えば、アクリル酸ブチル、アクリル酸2−エチルヘキシル等を主要な原料成分としたポリ(メタ)アクリル酸エステル系高分子化合物(所謂アクリルゴム)、ポリジメチルシロキサン構造を主構造に有する高分子化合物(所謂シリコーン樹脂)、ポリイソプレン構造を主構造に有する高分子化合物(所謂イソプレンゴム、天然ゴム)、クロロプレンを主要な原料成分とした高分子化合物(所謂クロロプレンゴム)、ポリブタジエン構造を主構造に有する高分子化合物(所謂ブタジエンゴム)等、一般に「ゴム」と総称される柔軟な有機高分子化合物が挙げられる。   The organic polymer compound (B) used in the present invention is not particularly limited as long as Tg is 0 ° C. or lower. For example, poly (main component of butyl acrylate, 2-ethylhexyl acrylate, etc.) (Meth) acrylic acid ester polymer compound (so-called acrylic rubber), polymer compound having polydimethylsiloxane structure in main structure (so-called silicone resin), polymer compound having polyisoprene structure in main structure (so-called isoprene rubber, natural Rubber), polymer compounds containing chloroprene as a main raw material component (so-called chloroprene rubber), polymer compounds having a polybutadiene structure as a main structure (so-called butadiene rubber), etc., and flexible organic polymers generally referred to as “rubber” Compounds.

これらの中でも、アクリル酸ブチル、アクリル酸2−エチルヘキシル等を主な原料成分としたポリ(メタ)アクリル酸エステル系高分子化合物が、高い柔軟性を得易く、化学的安定性、加工性に優れ、粘着性をコントロールし易く、かつ比較的廉価であるため好ましい。
Tgが0℃以下の有機高分子化合物(B)として、具体的には、ナガセケムテックス株式会社製のアクリル酸ブチル/アクリル酸エチル/2−ヒドロキシエチルメタクリレート(商品名:HTR−811DR)、ナガセケムテックス株式会社製のアクリル酸ブチル/アクリロニトリル/アクリル酸(商品名:HTR−280DR)等が挙げられる。
有機高分子化合物(B)の含有量は特に制限されないが、組成物全体積に対して好ましくは10〜50体積%、より好ましくは30〜50体積%である。
本発明の熱伝導シートは、難燃剤を含有することができる。難燃剤としては特に限定されず、例えば、赤りん系難燃剤やりん酸エステル系難燃剤を含有することができる。
また、本発明の熱伝導シートは、さらに必要に応じてウレタンアクリレート等の靭性改良剤;酸化カルシウム、酸化マグネシウム等の吸湿剤;シランカップリング剤、チタンカップリング剤、酸無水物等の接着力向上剤;ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤;等を適宜添加することができる。
Among these, poly (meth) acrylic acid ester-based polymer compounds mainly composed of butyl acrylate, 2-ethylhexyl acrylate, etc. are easy to obtain high flexibility and excellent in chemical stability and workability. It is preferable because it is easy to control the tackiness and is relatively inexpensive.
Specific examples of the organic polymer compound (B) having a Tg of 0 ° C. or lower include butyl acrylate / ethyl acrylate / 2-hydroxyethyl methacrylate (trade name: HTR-811DR), Nagase manufactured by Nagase ChemteX Corporation. Examples include butyl acrylate / acrylonitrile / acrylic acid (trade name: HTR-280DR) manufactured by Chemtex Corporation.
Although content in particular of an organic polymer compound (B) is not restrict | limited, Preferably it is 10-50 volume% with respect to the composition whole volume, More preferably, it is 30-50 volume%.
The heat conductive sheet of this invention can contain a flame retardant. It does not specifically limit as a flame retardant, For example, a red phosphorus flame retardant and a phosphate ester flame retardant can be contained.
In addition, the heat conductive sheet of the present invention may further include a toughness improver such as urethane acrylate; a hygroscopic agent such as calcium oxide or magnesium oxide; an adhesive force such as a silane coupling agent, a titanium coupling agent, or an acid anhydride. An improvement agent; a wetting improvement agent such as a nonionic surfactant or a fluorine-based surfactant; an antifoaming agent such as silicone oil; an ion trapping agent such as an inorganic ion exchanger; or the like can be appropriately added.

本発明において、鱗片の面方向、楕球の長軸方向又は棒の長軸方向が「シート内部で厚み方向に配向」とは、まず熱伝導シートを正八角形に切った各辺の厚み方向の断面を、蛍光顕微鏡を用いて観察し、いずれか1辺の断面に関し、任意の50個の黒鉛粒子について見えている方向から黒鉛粒子の長軸方向の熱伝導シート表面に対する角度(90度以上の場合は補角を採用する)を測定し、その平均値が60〜90度の範囲になる状態をいう。   In the present invention, the surface direction of the scale, the major axis direction of the ellipsoid or the major axis direction of the rod is “oriented in the thickness direction inside the sheet” means that the heat conduction sheet is first cut into a regular octagon in the thickness direction of each side. The cross section is observed using a fluorescence microscope, and with respect to any one of the cross sections, an angle with respect to the heat conduction sheet surface in the major axis direction of the graphite particles from the direction seen for any 50 graphite particles (at least 90 degrees) In this case, a complementary angle is employed) and the average value is in the range of 60 to 90 degrees.

また、本発明において「黒鉛粒子(A)の先端部分が折れ曲がっている」とは、熱伝導シートを正八角形に切った各辺の厚み方向の断面を、蛍光顕微鏡を用いて観察し、いずれか1辺の断面に関し、シートの両面における表面部分で、先端部分が折れ曲がっている任意の30個の黒鉛粒子(A)について、シートの表面に沿う方向に、シートの厚み方向を軸として角度(90度以上の場合は補角を採用する)を測定し、その角度が60〜90度の範囲で折れ曲がっている状態をいう。折れ曲がり部分は必ずしも「角」である必要はなく、曲線的に曲がっていても良い。
黒鉛粒子(A)の先端部分が折れ曲がっている状態を具体的に図1に示す。図1に示されるように、シート表面部分で黒鉛粒子が折れ曲がっているのが確認できる。
Further, in the present invention, “the tip portion of the graphite particle (A) is bent” means that the cross section in the thickness direction of each side obtained by cutting the heat conductive sheet into a regular octagon is observed using a fluorescence microscope, Regarding an arbitrary 30 graphite particles (A) whose front end portions are bent at the surface portions on both sides of the sheet with respect to the cross section of one side, an angle (90 with respect to the thickness direction of the sheet) in the direction along the surface of the sheet When the angle is greater than or equal to a degree, a complementary angle is employed), and the angle is in a range of 60 to 90 degrees. The bent portion is not necessarily a “corner”, and may be curved.
FIG. 1 specifically shows a state where the tip portion of the graphite particle (A) is bent. As shown in FIG. 1, it can be confirmed that the graphite particles are bent at the sheet surface portion.

本発明の熱伝導シートにおいて、シート内部に配向した黒鉛粒子(A)がシート内部の高熱伝導化に寄与し、黒鉛粒子(A)の先端部分が上記角度で折れ曲がることによって、被着物との確実な接触に寄与する結果、全体として良好な熱伝導性が得られる。   In the heat conductive sheet of the present invention, the graphite particles (A) oriented inside the sheet contribute to high heat conductivity inside the sheet, and the tip portion of the graphite particles (A) bends at the above angle, so that the adherence to the adherend is ensured. As a result of contributing to proper contact, good thermal conductivity is obtained as a whole.

本発明の熱伝導シートは、シートの表面部分で折れ曲がっている黒鉛粒子(A)の数が、シートの厚み方向の断面における横方向の長さ500μmあたり5〜20個、好ましくは10〜20個、より好ましくは15〜20個である。熱伝導性の向上の観点から、前記黒鉛粒子(A)の数が多ければ多いほど良い。前記黒鉛粒子(A)の数が5個未満である場合は、充分な熱伝導性を得ることができない傾向がある。
シートの表面部分で折れ曲がっている黒鉛粒子(A)の数の測定は、熱伝導シートを正八角形に切った各辺の厚み方向の断面を、蛍光顕微鏡を用いて観察して行う。具体的には、シートを正八角形に切った各辺の厚み方向のいずれか1辺の断面における横方向の長さ500μmが撮影される蛍光顕微鏡写真を任意の5箇所について1枚づつ(計5枚)撮り、写真で見える範囲内(横方向の長さ500μm)で、シートの両面における表面部分で、先端部分が上記角度で折れ曲がっている黒鉛粒子(A)の合計数を測定し、その平均値をシートの表面部分で折れ曲がっている黒鉛粒子(A)の数とする。
In the heat conductive sheet of the present invention, the number of graphite particles (A) bent at the surface portion of the sheet is 5 to 20, preferably 10 to 20 per 500 μm in the transverse direction in the cross section in the thickness direction of the sheet. More preferably, it is 15-20. From the viewpoint of improving thermal conductivity, the larger the number of the graphite particles (A), the better. When the number of the graphite particles (A) is less than 5, there is a tendency that sufficient thermal conductivity cannot be obtained.
The number of graphite particles (A) bent at the surface portion of the sheet is measured by observing a cross section in the thickness direction of each side obtained by cutting the heat conductive sheet into a regular octagon using a fluorescence microscope. Specifically, one fluorescence micrograph is taken for any five locations (total 5) in which a transverse length of 500 μm is taken in the cross section of any one side in the thickness direction of each side obtained by cutting the sheet into a regular octagon. The total number of graphite particles (A) in which the tip portion is bent at the above angle at the surface portion on both sides of the sheet within the range that can be taken and photographed (500 μm in the lateral direction), and the average The value is defined as the number of graphite particles (A) bent at the surface portion of the sheet.

本発明の熱伝導シートは、シートの表面部分で折れ曲がっている黒鉛粒子(A)の折れ曲がり点が、シートの表面からシート厚の10%以下、好ましくは5%以下、より好ましくは3%以下である。前記黒鉛粒子(A)の折れ曲がり点が、シートの表面からシート厚の10%を超える場合は、充分な熱伝導性を得ることができない傾向がある。また、折れ曲がり部分が曲線的にまがっている場合は、各直線からの外挿により求めた点を折れ曲がり点とする。
シートの表面部分で折れ曲がっている黒鉛粒子(A)の折れ曲がり点の位置の測定は、熱伝導シートを正八角形に切った各辺の厚み方向の断面を、蛍光顕微鏡を用いて観察して行う。具体的には、いずれか1辺の断面に関し、シートの両面における表面部分で、先端部分が折れ曲がっている任意の30個の黒鉛粒子(A)について、シートの表面から折れ曲がり点の位置までの、シートの厚み方向における長さを測定し、その長さにおけるシートの厚みに対する割合を求める。
In the heat conductive sheet of the present invention, the bending point of the graphite particles (A) bent at the surface portion of the sheet is 10% or less, preferably 5% or less, more preferably 3% or less of the sheet thickness from the sheet surface. is there. When the bending point of the graphite particles (A) exceeds 10% of the sheet thickness from the surface of the sheet, there is a tendency that sufficient thermal conductivity cannot be obtained. In addition, when the bent portion is curved, a point obtained by extrapolation from each straight line is set as a bending point.
The position of the bending point of the graphite particles (A) bent at the surface portion of the sheet is measured by observing a cross section in the thickness direction of each side obtained by cutting the heat conductive sheet into a regular octagon using a fluorescence microscope. Specifically, for any 30 graphite particles (A) whose front end portions are bent at the surface portions on both sides of the sheet with respect to the cross section of any one side, from the surface of the sheet to the position of the bending point, The length in the thickness direction of the sheet is measured, and the ratio of the length to the thickness of the sheet is obtained.

本発明の熱伝導シートは、シートの表面部分で折れ曲がっている黒鉛粒子(A)の折れ曲がり部分の長さが、シート厚の5〜20%、好ましくは10〜20%、より好ましくは15〜20%である。前記黒鉛粒子(A)の折れ曲がり部分の長さが、シート厚の5%未満である場合は、充分な熱伝導性を得ることができず、逆に、20%を超える場合は、被着物との密着性に劣り、シートとしての役目を果たすことができない傾向がある。
シートの表面部分で折れ曲がっている黒鉛粒子(A)の折れ曲がり部分の長さの測定は、熱伝導シートを正八角形に切った各辺の厚み方向の断面を、蛍光顕微鏡を用いて観察して行う。具体的には、いずれか1辺の断面に関し、シートの両面における表面部分で、先端部分が折れ曲がっている任意の30個の黒鉛粒子(A)について、折れ曲がっている部分の長さを測定し、その長さにおけるシートの厚みに対する割合を求める。
In the heat conductive sheet of the present invention, the length of the bent portion of the graphite particles (A) bent at the surface portion of the sheet is 5 to 20%, preferably 10 to 20%, more preferably 15 to 20% of the sheet thickness. %. If the length of the bent portion of the graphite particles (A) is less than 5% of the sheet thickness, sufficient thermal conductivity cannot be obtained, and conversely, if it exceeds 20%, It tends to be inferior to the adhesiveness of the sheet and cannot serve as a sheet.
The length of the bent portion of the graphite particles (A) bent at the surface portion of the sheet is measured by observing a cross section in the thickness direction of each side obtained by cutting the heat conductive sheet into a regular octagon using a fluorescence microscope. . Specifically, for any 30 graphite particles (A) whose front end portions are bent at the surface portions on both sides of the sheet with respect to the cross section of any one side, the length of the bent portion is measured, The ratio of the length to the sheet thickness is obtained.

また、本発明の熱伝導シートの片面又は両面が粘着性を有している場合は、粘着面を保護するために、使用前の熱伝導シートの粘着面は保護フィルムで覆っておいてもよい。保護フィルムの材質としては、例えば、ポリエチレン、ポリエステル、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、ポリエーテルイミド、ポリエーテルナフタレート、メチルペンテンフィルム等の樹脂、コート紙、コート布、アルミ等の金属が使用できる。これらの保護フィルムは2種以上組み合わせて多層フィルムとしてもよく、保護フィルムの表面がシリコーン系、シリカ系等の離型剤等で処理されたものが好ましく用いられる。また、表面と裏面がそれぞれ剥離力の異なる保護フィルムでカバーされていると、最初に剥離力の弱い片面を剥がして被着物に貼ることで、もう一方の面の保護フィルムの脱落を抑制できるので、作業性に優れ、好ましい。
また、片面あるいは両面に絶縁性のフィルムを付設すると電気絶縁性が必要な部分にも使用することができるので好ましい。熱伝導シートが保護フィルムと絶縁性のフィルムを両方有する場合は、熱伝導シートを保護する観点から保護フィルムが最外層とするのが好ましい。
In addition, when one or both surfaces of the heat conductive sheet of the present invention has adhesiveness, the adhesive surface of the heat conductive sheet before use may be covered with a protective film in order to protect the adhesive surface. . Examples of the material for the protective film include resins such as polyethylene, polyester, polypropylene, polyethylene terephthalate, polyimide, polyetherimide, polyether naphthalate, and methylpentene film, and metals such as coated paper, coated cloth, and aluminum. Two or more kinds of these protective films may be combined to form a multilayer film, and a film obtained by treating the surface of the protective film with a release agent such as silicone or silica is preferably used. Also, if the front and back surfaces are covered with protective films with different peel strengths, it is possible to prevent the protective film on the other side from falling off by first peeling off one surface with weak peel strength and sticking it on the adherend. It is excellent in workability and preferable.
Further, it is preferable to provide an insulating film on one side or both sides because it can be used for a portion requiring electrical insulation. When the heat conductive sheet has both a protective film and an insulating film, the protective film is preferably the outermost layer from the viewpoint of protecting the heat conductive sheet.

本発明の熱伝導シートの製造方法は、一次シートを作製する工程、前記一次シートを積層又は捲回して成形体を得る工程、前記成形体をスライスして熱伝導シートを得る工程とを含む。
まず、鱗片状、楕球状又は棒状であり、結晶中の6員環面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子(A)と、Tgが0℃以下である有機高分子化合物(B)とを含有する組成物を、前記組成物中の黒鉛粒子(A)の配向方向に対して平行方向に5〜10MPaの圧力で押し付け、好ましくは黒鉛粒子の長径の平均値の20倍以下の厚みに圧延成形、プレス成形、押し出し成形又は塗工し、主たる面に関してほぼ平行方向に黒鉛粒子(A)が配向した一次シートを作製する。
The manufacturing method of the heat conductive sheet of this invention includes the process of producing a primary sheet, the process of obtaining the molded object by laminating or winding the primary sheet, and the process of obtaining the heat conductive sheet by slicing the molded object.
First, graphite particles (A) having a scaly shape, an elliptical shape, or a rod shape, in which the six-membered ring surface in the crystal is oriented in the scale direction, the major axis direction of the ellipse, or the major axis direction of the rod, and Tg Is pressed with a pressure of 5 to 10 MPa in a direction parallel to the orientation direction of the graphite particles (A) in the composition, Rolling molding, press molding, extrusion molding or coating is performed to a thickness of 20 times or less of the average value of the major axis of the graphite particles to produce a primary sheet in which the graphite particles (A) are oriented in a substantially parallel direction with respect to the main surface.

前記黒鉛粒子(A)と有機高分子化合物(B)とを含有する組成物は、両者を混合することにより得られるが、混合方法については特に制限はない。例えば、前記有機高分子化合物(B)を溶剤に溶かしておいて、そこに前記黒鉛粒子(A)及び他の成分を加え、攪拌した後に乾燥する方法又はロール混練、ニーダーによる混合、ブラベンダによる混合、押し出し機による混合等を用いることができる。   The composition containing the graphite particles (A) and the organic polymer compound (B) can be obtained by mixing both, but the mixing method is not particularly limited. For example, the organic polymer compound (B) is dissolved in a solvent, the graphite particles (A) and other components are added thereto, and the mixture is stirred and dried, or roll kneading, mixing by a kneader, mixing by a brabender Mixing with an extruder or the like can be used.

前記組成物を5〜10MPaの圧力で押し付け一次シートを作製する際の厚みは、前記黒鉛粒子(A)の長径の平均値の20倍以下、好ましくは2倍〜0.2倍とする。前記厚みが黒鉛粒子(A)の長径の平均値の20倍を超える場合は、黒鉛粒子(A)の配向が不充分になり、結果として、最終的に得られる熱伝導シートの熱伝導性が悪くなる可能性がある。厚みは、押し付ける圧力により調整できる。   The thickness at the time of producing the primary sheet by pressing the composition at a pressure of 5 to 10 MPa is 20 times or less, preferably 2 to 0.2 times the average value of the major axis of the graphite particles (A). When the thickness exceeds 20 times the average value of the major axis of the graphite particles (A), the orientation of the graphite particles (A) becomes insufficient, and as a result, the thermal conductivity of the finally obtained thermal conductive sheet is low. It can get worse. The thickness can be adjusted by the pressing pressure.

前記組成物を、圧延成形、プレス成形、押し出し成形又は塗工することにより、前記黒鉛粒子(A)を主たる面に関してほぼ平行な方向に配向した一次シートを作製するが、圧延成形又はプレス成形が確実に黒鉛粒子(A)を配向させ易いので好ましい。   The composition is rolled, press-formed, extruded or coated to produce a primary sheet in which the graphite particles (A) are oriented in a direction substantially parallel to the main surface. This is preferable because the graphite particles (A) can be surely oriented.

前記黒鉛粒子(A)がシートの主たる面に関してほぼ平行方向に配向した状態とは、黒鉛粒子(A)がシートの主たる面に関して寝ているように配向した状態をいう。シート面内での黒鉛粒子(A)の向きは、前記組成物を成形する際に、組成物の流れる方向を調整することによってコントロールされる。   The state in which the graphite particles (A) are oriented in a substantially parallel direction with respect to the main surface of the sheet refers to a state in which the graphite particles (A) are oriented so as to lie on the main surface of the sheet. The orientation of the graphite particles (A) in the sheet plane is controlled by adjusting the flowing direction of the composition when the composition is molded.

つまり、組成物を圧延ロールに通す方向、組成物を押し出す方向、組成物を塗工する方向、組成物をプレスする方向を調整することで、黒鉛粒子(A)の向きがコントロールされる。   That is, the direction of the graphite particles (A) is controlled by adjusting the direction in which the composition is passed through a rolling roll, the direction in which the composition is extruded, the direction in which the composition is applied, and the direction in which the composition is pressed.

前記黒鉛粒子(A)は、基本的に異方性を有する粒子であるため、組成物を圧延成形、プレス成形、押し出し成形又は塗工することにより、通常、黒鉛粒子(A)の向きは揃って配置される。   Since the graphite particles (A) are basically anisotropic particles, the orientation of the graphite particles (A) is usually aligned by rolling, press forming, extruding or coating the composition. Arranged.

また、一次シートを作製する際、前記黒鉛粒子(A)と有機高分子化合物(B)とを含有する組成物の成形前の形状が塊状物である場合は、塊状物の厚み(d0)に対し、成形後の一次シートの厚み(dp)がdp/d0<0.15になるよう圧延成形、プレス成形するか、押し出し機出口の一次シート断面形状に相当する形状調整によって、一次シートの横幅(W)に対し厚み(dp´)がdp´/W<0.15となるように押し出し成形することが好ましい。dp/d0<0.15又はdp´/W<0.15となるよう成形することにより、黒鉛粒子(A)がシートの主たる面に関してほぼ平行方向に配向させ易くなる。   Moreover, when producing the primary sheet, when the shape before molding of the composition containing the graphite particles (A) and the organic polymer compound (B) is a lump, the lump has a thickness (d0). On the other hand, the width of the primary sheet can be adjusted by rolling or pressing so that the thickness (dp) of the primary sheet after molding is dp / d0 <0.15, or by adjusting the shape corresponding to the cross-sectional shape of the primary sheet at the exit of the extruder. Extrusion molding is preferably performed so that the thickness (dp ′) is (dp ′ / W <0.15) with respect to (W). By molding so that dp / d0 <0.15 or dp ′ / W <0.15, the graphite particles (A) can be easily oriented in a substantially parallel direction with respect to the main surface of the sheet.

次いで、前記一次シートを積層又は捲回して成形体を得る。一次シートを積層する方法については特に制限はなく、例えば、複数枚の一次シートを積層する方法、一次シートを折り畳む方法等が挙げられる。   Next, the primary sheet is laminated or wound to obtain a molded body. There is no restriction | limiting in particular about the method of laminating | stacking a primary sheet, For example, the method of laminating | stacking several primary sheets, the method of folding a primary sheet, etc. are mentioned.

積層する際は、シート面内での黒鉛粒子(A)の向きを揃えて積層する。積層する際の一次シートの形状は、特に制限はなく、例えば矩形状の一次シートを積層した場合は角柱状の成形体が得られ、円形状の一次シートを積層した場合は円柱状の成形体が得られる。   When laminating, the orientation of the graphite particles (A) in the sheet plane is aligned. The shape of the primary sheet when laminating is not particularly limited. For example, when a rectangular primary sheet is laminated, a prismatic shaped body is obtained, and when a circular primary sheet is laminated, a cylindrical shaped body is obtained. Is obtained.

また、一次シートを捲回する方法も特に制限はなく、前記一次シートを黒鉛粒子(A)の配向方向を軸にして捲回すればよい。捲回の形状も特に制限はなく、例えば、円筒形でも角筒形でもよい。   The method for winding the primary sheet is not particularly limited, and the primary sheet may be wound around the orientation direction of the graphite particles (A). The shape of the winding is not particularly limited, and may be, for example, a cylindrical shape or a rectangular tube shape.

一次シートを積層する際の圧力や捲回する際の引っ張り力は、この後の工程の一次シート面から出る法線に対し0〜30度の角度でスライスする都合上、スライス面がつぶれて所要面積を下回らない程度に弱く、かつシート間がうまく接着する程度に強くなるよう調整される。好ましくは、1〜5MPaの圧力範囲で接着する。   The pressure at the time of laminating the primary sheet and the pulling force at the time of winding are required because the slice surface is crushed for convenience of slicing at an angle of 0 to 30 degrees with respect to the normal line coming out from the primary sheet surface in the subsequent process. It is adjusted so that it is weak enough not to be less than the area and strong enough to adhere well between the sheets. Preferably, it adheres in the pressure range of 1-5 MPa.

通常はこの調整で積層面又は捲回面間の接着力を充分に得られるが、不足する場合は溶剤又は接着剤等を薄く一次シートに塗布した上で積層又は捲回を行ってもよい。また積層又は捲回は適宜加熱下に行っても良い。   Usually, this adjustment can provide a sufficient adhesive force between the laminated surfaces or the wound surfaces. However, if insufficient, a solvent or an adhesive may be thinly applied to the primary sheet for lamination or winding. Lamination or winding may be performed under heating as appropriate.

次いで、前記成形体を0.01〜0.5MPaの圧力で押し付けながら、一次シート面から出る法線に対し0〜30度の角度で、好ましくは0〜15度の角度でスライスして、所定の厚さを持った熱伝導シートを得る。前記スライス角度が30度を超える場合は熱伝導率が低下する傾向がある。前記成形体を0.01〜0.5MPaの圧力で押し付けながらスライスすることにより、シートの片面又は両面における表面部分で、前記黒鉛粒子(A)の先端部分が折れ曲がった状態となる。
前記成形体が積層体である場合は、一次シートの積層方向とは垂直又はほぼ垂直となるようにスライスすれば良い。
Next, while pressing the molded body at a pressure of 0.01 to 0.5 MPa, it is sliced at an angle of 0 to 30 degrees, preferably an angle of 0 to 15 degrees, with respect to the normal line coming out from the primary sheet surface, A heat conductive sheet having a thickness of is obtained. When the slice angle exceeds 30 degrees, the thermal conductivity tends to decrease. By slicing the molded body while pressing it at a pressure of 0.01 to 0.5 MPa, the tip portion of the graphite particles (A) is bent at the surface portion on one or both sides of the sheet.
When the molded body is a laminated body, it may be sliced so as to be perpendicular or substantially perpendicular to the lamination direction of the primary sheet.

また、前記成形体が捲回体である場合は、捲回の軸に対して垂直もしくはほぼ垂直となるようにスライスすればよい。
さらに、円形状の一次シートを積層した円柱状の成形体の場合は、上記角度の範囲内でかつら剥きのようにスライスしても良い。
Further, when the molded body is a wound body, it may be sliced so as to be perpendicular or substantially perpendicular to the winding axis.
Furthermore, in the case of a cylindrical molded body in which circular primary sheets are laminated, the molded body may be sliced like a wig within the above angle range.

スライスする方法は、例えば、マルチブレード法、レーザー加工法、ウォータージェット法、ナイフ加工法等が挙げられるが、熱伝導シートの厚みの平行を保ちやすい点でナイフ加工法が好ましい。しかし、いずれにおいても0.01〜0.5MPaの圧力をかけて押し付ける盤面を有する必要がある。   Examples of the slicing method include a multi-blade method, a laser processing method, a water jet method, a knife processing method, and the like, but the knife processing method is preferable because the thickness of the heat conductive sheet can be easily maintained in parallel. However, in any case, it is necessary to have a panel surface that is pressed by applying a pressure of 0.01 to 0.5 MPa.

スライスする際の切断具は、特に制限はないが、スリットを有する平滑な盤面と、該スリット部より突出した刃部と、を有するカンナ様の部位を有するスライス部材であって、前記刃部が、前記熱伝導シートの所望の厚みに応じて、前記スリット部からの突出長さが調節可能であるものを使用すると、得られる熱伝導シートの表面近傍の黒鉛粒子の配向を乱し難く、かつ所望の厚みの薄いシートも作製し易いので好ましい。
具体的には、上記スライス部材は、鋭利な刃を備えたカンナ又はスライサーを用いることが好ましい。これらの刃は、熱伝導シートの所望の厚みに応じて、前記スリット部からの突出長さが調節可能とすることで、容易に所望の厚みとすることが可能である。
これらで切断することにより、シートの表面部分で黒鉛粒子(A)の先端部分を折り曲げることが容易となる。また薄いシートも作製し易い。
The cutting tool for slicing is not particularly limited, but is a slice member having a canna-like portion having a smooth board surface having a slit and a blade protruding from the slit, and the blade is If the protrusion length from the slit portion is adjustable according to the desired thickness of the heat conductive sheet, it is difficult to disturb the orientation of the graphite particles near the surface of the obtained heat conductive sheet, and It is preferable because a sheet having a desired thickness can be easily produced.
Specifically, it is preferable to use a plane or slicer with a sharp blade as the slice member. These blades can be easily made to have a desired thickness by allowing the protrusion length from the slit portion to be adjusted according to the desired thickness of the heat conductive sheet.
By cutting with these, it becomes easy to bend the front-end | tip part of a graphite particle (A) in the surface part of a sheet | seat. Moreover, it is easy to produce a thin sheet.

スライスする際の成形体の温度範囲は、−20〜10℃であることが好ましく、−10〜0℃であることがより好ましい。前記スライスする際の温度が10℃を超える場合は、成形体が柔軟になってスライスし難く、黒鉛粒子の配向が乱れる傾向がある。   The temperature range of the molded body when slicing is preferably −20 to 10 ° C., more preferably −10 to 0 ° C. When the temperature at the time of slicing exceeds 10 ° C., the molded body becomes soft and difficult to slice, and the orientation of the graphite particles tends to be disturbed.

逆に−20℃未満である場合は、成形体が固くもろくなってスライスし難く、シートの表面部分で黒鉛粒子(A)の先端部分を折り曲げることができない。またスライス直後にシートが割れ易くなる傾向がある。   On the other hand, when the temperature is lower than −20 ° C., the molded body is hard and fragile and difficult to slice, and the tip portion of the graphite particles (A) cannot be bent at the surface portion of the sheet. In addition, the sheet tends to break immediately after slicing.

熱伝導シートの厚さは、用途等により適宜設定されるが、好ましくは0.05〜3mm、より好ましくは0.1〜1mmである。前記熱伝導シートの厚さが0.05mm未満である場合はシートとしての取り扱いが難しくなる傾向があり、3mmを超える場合は放熱効果が低くなる傾向がある。前記成形体のスライス幅が熱伝導シートの厚さとなり、スライス面が熱伝導シートにおける発熱体や放熱体との当接面となる。   Although the thickness of a heat conductive sheet is suitably set by a use etc., Preferably it is 0.05-3 mm, More preferably, it is 0.1-1 mm. When the thickness of the heat conductive sheet is less than 0.05 mm, handling as a sheet tends to be difficult, and when it exceeds 3 mm, the heat dissipation effect tends to be low. The slice width of the molded body is the thickness of the heat conductive sheet, and the slice surface is a contact surface of the heat conductive sheet with the heat generating body or the heat radiating body.

本発明の放熱装置は、本発明の熱伝導シート又は本発明の熱伝導シートの製造方法により得られた熱伝導シートを、発熱体と放熱体の間に介在させて得られる。発熱体としては、少なくともその表面温度が200℃を超えないもの好ましい。   The heat radiating device of the present invention is obtained by interposing the heat conductive sheet of the present invention or the heat conductive sheet obtained by the method for producing the heat conductive sheet of the present invention between the heat generator and the heat radiator. As a heat generating body, that whose surface temperature does not exceed 200 degreeC at least is preferable.

前記表面温度が200℃を超える可能性が高いもの、例えば、ジェットエンジンのノズル近傍、窯陶釜内部周辺、溶鉱炉内部周辺、原子炉内部周辺、宇宙船外殻等に使用すると、本発明になる熱伝導シート又は本発明になる製造方法により得られた熱伝導シート中の有機高分子化合物が分解してしまう可能性が高いので適さない。   When the surface temperature is likely to exceed 200 ° C., for example, near the nozzle of a jet engine, around the inside of a kiln pot, around the inside of a blast furnace, around the inside of a nuclear reactor, the outer shell of a spacecraft, etc. It is not suitable because the organic polymer compound in the heat conductive sheet or the heat conductive sheet obtained by the production method according to the present invention is likely to be decomposed.

本発明の熱伝導シート又は本発明の熱伝導シートの製造方法により製造された熱伝導シートが、特に好適に使用できる温度範囲は−10〜120℃であり、半導体パッケージ、ディスプレイ、LED、電灯等が好適な発熱体の例として挙げられる。   The temperature range in which the heat conductive sheet of the present invention or the heat conductive sheet manufactured by the method of manufacturing the heat conductive sheet of the present invention can be used particularly preferably is −10 to 120 ° C., such as semiconductor package, display, LED, electric lamp, etc. Is an example of a suitable heating element.

一方、放熱体としては、例えば、アルミ、銅のフィン・板等を利用したヒートシンク、ヒートパイプに接続されているアルミや銅のブロック、内部に冷却液体をポンプで循環させているアルミや銅のブロック、ペルチェ素子及びこれを備えたアルミや銅のブロック等が使用できる代表的なものである。   On the other hand, as a heat sink, for example, a heat sink using aluminum, copper fins, plates, etc., an aluminum or copper block connected to a heat pipe, an aluminum or copper that circulates cooling liquid with a pump inside A typical example is a block, a Peltier element, and an aluminum or copper block having the same.

本発明の放熱装置は、発熱体と放熱体に、本発明の熱伝導シート又は本発明の熱伝導シートの製造方法により得られた熱伝導シートの各々の面を接触させることで成立する。発熱体、熱伝導シート及び放熱体を充分に密着させた状態で固定できる方法であれば、接触させる方法に制限はないが、密着を持続させる観点から、ばねを介してねじ止めする方法、クリップで挟む方法等のように押し付ける力が持続する接触方法が好ましい。   The heat radiating device of the present invention is established by bringing each surface of the heat conductive sheet of the present invention or the heat conductive sheet obtained by the method of manufacturing the heat conductive sheet of the present invention into contact with the heat generating body and the heat radiating body. There is no limitation on the contact method as long as the heating element, the heat conductive sheet, and the heat dissipation element can be fixed in a sufficiently adhered state, but from the viewpoint of maintaining the adhesion, a method of screwing through a spring, a clip A contact method in which the pressing force is sustained, such as a method of pinching with a pin, is preferable.

以下、実施例により本発明を詳細に説明する。なお、各実施例において熱伝導性の指標とした熱伝導率は以下の方法により求めた。この方法は、接触抵抗の影響を受けるので、本発明の効果を確認し易い。   Hereinafter, the present invention will be described in detail by way of examples. In each example, the thermal conductivity as an index of thermal conductivity was determined by the following method. Since this method is affected by contact resistance, it is easy to confirm the effect of the present invention.

(熱伝導率の測定)
縦1cm×横1.5cmの熱伝導シートをトランジスタ(2SC2233)とアルミニウム放熱ブロックとの間に挟み、トランジスタを押し付けながら電流を通じた。トランジスタの温度:T1(℃)と、放熱ブロックの温度:T2(℃)を測定し、測定値と印可電力:W1(W)から、次式(I)によって熱抵抗:X(℃/W)を算出した。
(Measurement of thermal conductivity)
A heat conductive sheet of 1 cm in length and 1.5 cm in width was sandwiched between the transistor (2SC2233) and the aluminum heat dissipation block, and current was passed through the transistor while pressing it. The transistor temperature: T1 (° C.) and the heat dissipation block temperature: T2 (° C.) are measured. From the measured value and applied power: W1 (W), the thermal resistance: X (° C./W) according to the following equation (I) Was calculated.

X=(T1−T2)/W1 式(I)
上記の式の熱抵抗:X(℃/W)と熱伝導シートの厚さ:d(μm)、熱伝導率既知試料による補正係数:Cから、次式(II)により熱伝導率:Tc(W/mK)を見積もった。
X = (T1-T2) / W1 Formula (I)
From the thermal resistance of the above formula: X (° C./W) and the thickness of the thermal conductive sheet: d (μm), the correction coefficient by a sample with a known thermal conductivity: C, the thermal conductivity: Tc ( W / mK) was estimated.

Tc=C×d/X 式(II)   Tc = C × d / X Formula (II)

(実施例1)
有機高分子化合物(B)としてアクリル酸エステル共重合樹脂(2−エチルヘキシルアクリレート/2−ヒドロキシエチルアクリレート/アクリル酸共重合体、日立化成工業株式会社製、重量平均分子量:43万7000、Tg−64.11℃、25質量%水溶液)20.48g、黒鉛粒子(A)として鱗片状の膨張黒鉛粉末(日立化成工業株式会社製、商品名:HGF−L、平均粒子径250μm)5.93g、難燃剤として酸処理黒鉛粉末(エア・ウォーター株式会社製、商品名:モエヘンZ、平均粒子径:120μm)1.94g及び芳香族縮合リン酸エステル(リン酸エステル系難燃剤、大八化学工業株式会社製、商品名:CR−733S)1.69gを、ステンレス匙で良くかき混ぜた。
Example 1
As the organic polymer compound (B), an acrylic ester copolymer resin (2-ethylhexyl acrylate / 2-hydroxyethyl acrylate / acrylic acid copolymer, manufactured by Hitachi Chemical Co., Ltd., weight average molecular weight: 437,000, Tg-64 .11 ° C., 25% by mass aqueous solution) 20.48 g, scale-like expanded graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name: HGF-L, average particle size 250 μm) as graphite particles (A), 5.93 g, difficult 1.94 g of acid-treated graphite powder (trade name: Moehen Z, average particle size: 120 μm) as a flame retardant and aromatic condensed phosphate ester (phosphate ester flame retardant, Daihachi Chemical Industry Co., Ltd.) 1.69 g (manufactured, trade name: CR-733S) was well mixed with a stainless steel bowl.

これを離型処理したPET(ポリエチレンテレフタレート)フィルムに塗り延ばし、ドラフト中で室温下3時間風乾後、120℃の熱風乾燥機で1時間乾燥し、組成物を得た。組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、黒鉛粒子(A)が30.0体積%、有機高分子化合物(B)が45.3体積%及び難燃剤が24.7体積%であった。
この組成物の一部を直径1cmの球状に丸め、小型プレスで0.5mm厚のシート状にした。これを20枚に切り分けたものを積層して再度同様にプレスした。この操作を更にもう1回繰り返して得たシートの表面をX線回折により分析した。2θ=77°付近に黒鉛の(110)面に対応するピークが確認できず、用いた膨張黒鉛粉末(HGF-L)が「結晶中の6員環面が鱗片の面方向に配向している」ことを確認できた。
This was spread on a release-treated PET (polyethylene terephthalate) film, air-dried in a draft at room temperature for 3 hours, and then dried in a hot air dryer at 120 ° C. for 1 hour to obtain a composition. When the compounding ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the graphite particles (A) were 30.0% by volume, the organic polymer compound (B) was 45.3% by volume, and the flame retardant was It was 24.7% by volume.
A part of this composition was rounded into a sphere having a diameter of 1 cm and formed into a sheet having a thickness of 0.5 mm with a small press. This was cut into 20 sheets and laminated again and pressed in the same manner. The surface of the sheet obtained by repeating this operation one more time was analyzed by X-ray diffraction. A peak corresponding to the (110) plane of graphite could not be confirmed in the vicinity of 2θ = 77 °, and the expanded graphite powder (HGF-L) used was “the six-membered ring plane in the crystal is oriented in the plane direction of the scale. I was able to confirm.

この組成物1gを離型処理したPETフィルムにはさみ、5cm×10cmのツール面をもつプレスを用いて、ツール圧10MPa、ツール温度120℃の条件で10秒間プレスして、厚さ0.3mmの一次シートを得た。この操作を繰り返して多数枚の一次シートを作製した。   This composition 1g was sandwiched between release-treated PET films and pressed with a tool surface of 5 cm × 10 cm for 10 seconds under the conditions of a tool pressure of 10 MPa and a tool temperature of 120 ° C., and a thickness of 0.3 mm A primary sheet was obtained. This operation was repeated to produce a large number of primary sheets.

得られた一次シートを2cm×2cmの寸法にカッターで切りだし、黒鉛粒子の向きを揃えて37枚積層し、手で軽く押さえてシート間を接着させ、厚さ1.1cmの成形体を得た。   The obtained primary sheet was cut out to a size of 2 cm × 2 cm with a cutter, and 37 sheets were laminated with the orientation of the graphite particles aligned, and lightly pressed by hand to adhere between the sheets to obtain a molded article having a thickness of 1.1 cm. It was.

次いで、この成形体をドライアイスで−5℃に冷却した後、1.1cm×2cmの積層断面を、7MPaの圧力で押し付けながら、カンナ(スリット部からの刀部の突出長さ:3mm)を用いてスライスし(一次シート面から出る法線に対して0度、すなわち、黒鉛粒子(A)の配向方向に対して90度の角度でスライス)、縦1.1cm×横2cm×厚さ0.58mmの熱伝導シート(I)を得た。   Next, after cooling this molded body to −5 ° C. with dry ice, a 1.1 cm × 2 cm laminated section was pressed with a pressure of 7 MPa, and a canna (projection length of the sword portion from the slit portion: 3 mm) was used. And sliced at 0 degrees with respect to the normal line coming out from the primary sheet surface, that is, at an angle of 90 degrees with respect to the orientation direction of the graphite particles (A), and the length is 1.1 cm × width 2 cm × thickness 0 A heat conductive sheet (I) of .58 mm was obtained.

この熱伝導シート(I)を液体窒素で−50℃に冷却し、ミクロトーム(大和工機株式会社製)を用いてシートの厚み方向の断面が見えるように切り、縦0.58mm×横1.1cmの断面を得た。これを、蛍光顕微鏡を用いて観察し、シートの表面部分で黒鉛粒子が折れ曲がっていることを確認した(シートの厚み方向を軸として角度60〜90度の範囲であった)。また折れ曲がっている黒鉛粒子数を数えたところ、横方向の長さ500μmあたり12個であった。   This heat conductive sheet (I) is cooled to −50 ° C. with liquid nitrogen and cut using a microtome (manufactured by Daiwa Koki Co., Ltd.) so that the cross section in the thickness direction of the sheet can be seen. A 1 cm cross section was obtained. This was observed using a fluorescence microscope, and it was confirmed that the graphite particles were bent at the surface portion of the sheet (the angle was in the range of 60 to 90 degrees with the thickness direction of the sheet as an axis). Further, when the number of bent graphite particles was counted, it was 12 per 500 μm in the horizontal direction.

熱伝導シート(I)の断面を、蛍光顕微鏡を用いて観察し、シートの表面から黒鉛粒子の折れ曲がり点までの長さを測定し、その平均値を求めたところ12μmであり、シート厚の5%であった。また折れ曲がり部分の長さを測定し、その平均値を求めたところ25μmであり、シート厚の10%であった。
熱伝導シート(I)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から長径を測定し、平均値を求めたところ、黒鉛粒子の長径の平均値は255μmであった。
熱伝導シート(I)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ90度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。
The cross section of the heat conductive sheet (I) was observed using a fluorescence microscope, the length from the surface of the sheet to the bending point of the graphite particles was measured, and the average value thereof was 12 μm. %Met. Moreover, when the length of the bent part was measured and the average value was calculated | required, it was 25 micrometers and was 10% of sheet | seat thickness.
The cross section of the heat conductive sheet (I) was observed using an SEM (scanning electron microscope), the major axis was measured from the direction in which about 50 arbitrary graphite particles were seen, and the average value was obtained. The average value of the major axis was 255 μm.
The cross section of the heat conductive sheet (I) is observed using an SEM (scanning electron microscope), and the angle with respect to the heat conductive sheet surface in the direction of the scale from the direction seen for any 50 graphite particles is measured, The average value was found to be 90 degrees, and it was confirmed that the surface direction of the scale of the graphite particles was oriented in the thickness direction of the heat conductive sheet.

この熱伝導シート(I)の熱伝導率を測定したところ、50W/mKと良好な値を示した。また熱伝導シート(I)のトランジスタとアルミニウム放熱ブロックに対する密着性も良好であった。   When the thermal conductivity of this thermal conductive sheet (I) was measured, it showed a good value of 50 W / mK. Further, the adhesion of the heat conductive sheet (I) to the transistor and the aluminum heat dissipation block was also good.

(実施例2)
有機高分子化合物(B)としてアクリル酸エステル共重合樹脂(2−エチルヘキシルアクリレート/2−ヒドロキシエチルアクリレート/アクリル酸共重合体、日立化成工業株式会社製、重量平均分子量:43万7000、Tg−64.11℃、25質量%水溶液)1400g、黒鉛粒子(A)として鱗片状の膨張黒鉛粉末(日立化成工業株式会社製、商品名:HGF−L、平均粒子径250μm)400g、難燃剤として酸処理黒鉛(日立化成工業株式会社製、商品名:CR−733S)130g及び芳香族縮合リン酸エステル(リン酸エステル系難燃剤、大八化学工業株式会社製、商品名:CR−733S)110gをかき混ぜた上、100℃の2本ロール(関西ロール社製、試験用ロール機(8×20Tロール))で混練し、組成物を混練シートの形態で得た。
(Example 2)
As the organic polymer compound (B), an acrylic ester copolymer resin (2-ethylhexyl acrylate / 2-hydroxyethyl acrylate / acrylic acid copolymer, manufactured by Hitachi Chemical Co., Ltd., weight average molecular weight: 437,000, Tg-64 .11 ° C., 25 mass% aqueous solution) 1400 g, scale-like expanded graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name: HGF-L, average particle size 250 μm) as graphite particles (A), acid treatment as flame retardant Agitate 130 g of graphite (trade name: CR-733S, manufactured by Hitachi Chemical Co., Ltd.) and 110 g of aromatic condensed phosphate ester (phosphate ester flame retardant, manufactured by Daihachi Chemical Industry Co., Ltd., trade name: CR-733S). In addition, the composition was mixed by kneading with two rolls at 100 ° C. (manufactured by Kansai Roll Co., Ltd., test roll machine (8 × 20T roll)). Obtained in the form of a kneaded sheet.

組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、黒鉛粒子(A)が30.0体積%、有機高分子化合物(B)が45.9体積%及び難燃剤が24.1体積%であった。   When the compounding ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the graphite particles (A) were 30.0% by volume, the organic polymer compound (B) was 45.9% by volume, and the flame retardant was It was 24.1% by volume.

得られた混練シートを2〜3mm角程度の大きさに刻み、厚み15〜20mmのペレット状にしたものを、東洋精機製、ラボプラストミルMODEL20C200を用い、170℃で幅60mm厚み2mmのシート状に押し出し、一次シートを得た。   The obtained kneaded sheet was chopped into a size of about 2 to 3 mm square and formed into a pellet shape having a thickness of 15 to 20 mm, using a Labo Plast Mill MODEL20C200 manufactured by Toyo Seiki, at 170 ° C. and a sheet shape having a width of 60 mm and a thickness of 2 mm. To obtain a primary sheet.

得られた一次シートを5cm×5cmの寸法にカッターで切りだし、アセトンを薄くシート表面に塗って150枚積層し、手で軽く押さえてシート間を接着させ、厚さ30cmの成形体を得た。   The obtained primary sheet was cut to a size of 5 cm × 5 cm with a cutter, and acetone was thinly applied to the surface of the sheet to laminate 150 sheets, and lightly pressed by hand to adhere the sheets to obtain a molded body having a thickness of 30 cm. .

次いで、この成形体をドライアイスで−10℃に冷却した後、5cm×30cmの積層断面を、10MPaの圧力で押し付けながら、株式会社丸仲鉄工所製、超仕上げかんな盤スーパーメカ(スリット部からの刀部の突出長さ:0.11mm)を用いてスライスし(一次シート面から出る法線に対して0度、すなわち、黒鉛粒子(A)の配向方向に対して90度の角度でスライス)、縦5cm×横30cm×厚さ0.55mmの熱伝導シート(II)を得た。   Next, this molded body was cooled to −10 ° C. with dry ice, and then a 5 cm × 30 cm laminated section was pressed with a pressure of 10 MPa while being manufactured by Marunaka Iron Works Co., Ltd. (Slipping length: 0.11 mm) (slice at 0 degree with respect to the normal line coming out from the primary sheet surface, that is, at an angle of 90 degrees with respect to the orientation direction of the graphite particles (A)) ), A heat conductive sheet (II) having a length of 5 cm × width of 30 cm × thickness of 0.55 mm was obtained.

以下、実施例1と同様に操作して熱伝導シート(II)の性状を求めた。黒鉛粒子の長径の平均値は254μmであった。シートの厚み方向の断面を、蛍光顕微鏡を用いて観察し、シートの表面部分で黒鉛粒子が折れ曲がっていることを確認した(シートの厚み方向を軸として角度60〜90度)。シートの表面部分で折れ曲がっている黒鉛粒子数は、横方向の長さ500μmあたり15個、シート表面から折れ曲がり点までの長さの平均値は10μmであり、シート厚の4%であった。また折れ曲がり部分の長さの平均値は28μmであり、シート厚の11%であった。
また、熱伝導シート(II)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ90度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。
Thereafter, the properties of the heat conductive sheet (II) were determined in the same manner as in Example 1. The average value of the major axis of the graphite particles was 254 μm. The cross section in the thickness direction of the sheet was observed using a fluorescence microscope, and it was confirmed that the graphite particles were bent at the surface portion of the sheet (angle of 60 to 90 degrees with the thickness direction of the sheet as an axis). The number of graphite particles bent at the surface portion of the sheet was 15 per 500 μm in the lateral direction, and the average length from the sheet surface to the bending point was 10 μm, which was 4% of the sheet thickness. The average value of the length of the bent portion was 28 μm, which was 11% of the sheet thickness.
In addition, the cross section of the heat conductive sheet (II) is observed using an SEM (scanning electron microscope), and the angle from the direction in which about 50 arbitrary graphite particles are viewed to the surface of the heat conductive sheet is measured. And when the average value was calculated | required, it was 90 degree | times, and it was recognized that the surface direction of the scale of a graphite particle is orientating in the thickness direction of a heat conductive sheet.

実施例1と同様に操作して熱伝導シート(II)の熱伝導率を測定したところ、45W/mKと良好な値を示した。また、熱伝導シート(II)のトランジスタとアルミニウム放熱ブロックに対する密着性も良好であった。   When the heat conductivity of the heat conductive sheet (II) was measured in the same manner as in Example 1, it showed a good value of 45 W / mK. Moreover, the adhesiveness with respect to the transistor and aluminum heat dissipation block of heat conductive sheet (II) was also favorable.

(比較例1)
黒鉛粒子(A)として鱗片状の膨張黒鉛粉末(日立化成工業株式会社製、商品名:HGF−L、平均粒子径250μm)の代わりに、球状の天然黒鉛(平均粒子径20μm)を用いたこと以外は実施例1と同様に操作にして、縦1.1cm×横2cm×厚さ0.56mmの熱伝導シート(III)を得た。
(Comparative Example 1)
Spherical natural graphite (average particle diameter of 20 μm) was used instead of scale-like expanded graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name: HGF-L, average particle diameter of 250 μm) as graphite particles (A). The heat conducting sheet (III) having a length of 1.1 cm, a width of 2 cm and a thickness of 0.56 mm was obtained in the same manner as in Example 1.

組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、黒鉛粒子(A)が30.0体積%、有機高分子化合物(B)が45.9体積%及び難燃剤が24.1体積%であった。   When the compounding ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the graphite particles (A) were 30.0% by volume, the organic polymer compound (B) was 45.9% by volume, and the flame retardant was It was 24.1% by volume.

以下、実施例1と同様に操作して熱伝導シート(III)の性状を求めた。黒鉛粒子の長径の平均値は22μmであった。シートの厚み方向の断面を蛍光顕微鏡を用いて観察したが、黒鉛粒子の長軸方向の熱伝導シート表面に対する角度が明確でないため割り出しがたく、シートの厚み方向への配向が認められなかった。   Thereafter, the properties of the heat conductive sheet (III) were obtained by operating in the same manner as in Example 1. The average value of the major axis of the graphite particles was 22 μm. The cross section in the thickness direction of the sheet was observed using a fluorescence microscope. However, since the angle of the graphite particles with respect to the surface of the heat conductive sheet in the major axis direction was not clear, the indexing was difficult and no orientation in the thickness direction of the sheet was observed.

実施例1と同様に操作して熱伝導シート(III)の熱伝導率を測定したところ、1.2W/mKと非常に低い値を示した。なお、熱伝導シート(III)のトランジスタとアルミニウム放熱ブロックに対する密着性は良好であった。   When the heat conductivity of the heat conductive sheet (III) was measured in the same manner as in Example 1, it showed a very low value of 1.2 W / mK. In addition, the adhesiveness with respect to the transistor and aluminum heat dissipation block of heat conductive sheet (III) was favorable.

(比較例2)
有機高分子化合物(B)としてアクリル酸エステル共重合樹脂(2−エチルヘキシルアクリレート/2−ヒドロキシエチルアクリレート/アクリル酸共重合体、日立化成工業株式会社製、重量平均分子量:43万7000、Tg−64.11℃、25質量%水溶液)20.48gの代わりに、異なる配合のアクリル酸エステル共重合樹脂(メチルメタクリレート/エチルアクリレート/ブチルアクリレート/アクリロニトリル/アクリル酸共重合体、ナガセケムテックス株式会社製、商品名:SG−P−26DR、重量平均分子量:20万、Tg28℃)5.12gを用いた以外は、実施例1と同様の操作で作製して、縦1.1cm×横2cm×厚さ0.6mmの熱伝導シート(IV)を得た。
(Comparative Example 2)
As the organic polymer compound (B), an acrylic ester copolymer resin (2-ethylhexyl acrylate / 2-hydroxyethyl acrylate / acrylic acid copolymer, manufactured by Hitachi Chemical Co., Ltd., weight average molecular weight: 437,000, Tg-64 .11 ° C., 25% by mass aqueous solution) 20.48 g instead of acrylic ester copolymer resin (methyl methacrylate / ethyl acrylate / butyl acrylate / acrylonitrile / acrylic acid copolymer, manufactured by Nagase ChemteX Corporation) (Product name: SG-P-26DR, weight average molecular weight: 200,000, Tg 28 ° C.) Except for using 5.12 g, the same operation as in Example 1 was performed, and the length was 1.1 cm × width 2 cm × thickness. A 0.6 mm heat conductive sheet (IV) was obtained.

組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、黒鉛粒子(A)が30.0体積%、有機高分子化合物(B)が45.9体積%及び難燃剤が24.1体積%であった。   When the compounding ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the graphite particles (A) were 30.0% by volume, the organic polymer compound (B) was 45.9% by volume, and the flame retardant was It was 24.1% by volume.

以下、実施例1と同様に操作して熱伝導シート(IV)の性状を求めた。黒鉛粒子の長径の平均値は258μmであった。シートの厚み方向の断面を、蛍光顕微鏡を用いて観察し、シートの表面部分で黒鉛粒子が折れ曲がっていないことを確認した。
また、熱伝導シート(IV)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ90度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。
Thereafter, the properties of the heat conductive sheet (IV) were determined in the same manner as in Example 1. The average value of the major axis of the graphite particles was 258 μm. The cross section in the thickness direction of the sheet was observed using a fluorescence microscope, and it was confirmed that the graphite particles were not bent at the surface portion of the sheet.
In addition, the cross section of the heat conductive sheet (IV) is observed using an SEM (scanning electron microscope), and the angle of the surface direction of the scale from the direction seen for any 50 graphite particles is measured with respect to the surface of the heat conductive sheet. And when the average value was calculated | required, it was 90 degree | times, and it was recognized that the surface direction of the scale of a graphite particle is orientating in the thickness direction of a heat conductive sheet.

実施例1と同様に操作して熱伝導シート(IV)の熱伝導率を測定したところ、15W/mKと低い値を示した。また熱伝導シート(IV)のトランジスタとアルミニウム放熱ブロックに対する密着性も不良であった。   When the heat conductivity of the heat conductive sheet (IV) was measured in the same manner as in Example 1, it showed a low value of 15 W / mK. Further, the adhesion of the heat conductive sheet (IV) to the transistor and the aluminum heat dissipation block was also poor.

(比較例3)
実施例1と同様の操作で作製した縦2cm×横2cm×厚さ1cmの成形体をドライアイスで−5℃に冷却した後、1.1cm×2cmの積層断面を、カッターナイフを用いて切断し(一次シート面から出る法線に対して0度、すなわち、黒鉛粒子(A)の配向方向に対して90度の角度で切断)、縦1.1cm×横2cm×厚さ0.60mmの熱伝導シート(V)を得た。このとき、成形体を押し付ける操作は行わなかった。
(Comparative Example 3)
A molded body of 2 cm long × 2 cm wide × 1 cm thick produced in the same manner as in Example 1 was cooled to −5 ° C. with dry ice, and then a 1.1 cm × 2 cm laminated section was cut using a cutter knife. (Cut at an angle of 0 degrees with respect to the normal line coming out of the primary sheet surface, that is, 90 degrees with respect to the orientation direction of the graphite particles (A)), 1.1 cm long × 2 cm wide × 0.60 mm thick A heat conductive sheet (V) was obtained. At this time, the operation of pressing the molded body was not performed.

以下、実施例1と同様に操作して熱伝導シート(V)の性状を求めた。黒鉛粒子の長径の平均値は254μmであった。シートの厚み方向の断面を、蛍光顕微鏡を用いて観察し、シートの表面部分で黒鉛粒子が折れ曲がっていないことを確認した。
また、熱伝導シート(V)の断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から鱗片の面方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ90度であり、黒鉛粒子の鱗片の面方向は熱伝導シートの厚み方向に配向していることが認められた。
Thereafter, the properties of the heat conductive sheet (V) were determined in the same manner as in Example 1. The average value of the major axis of the graphite particles was 254 μm. The cross section in the thickness direction of the sheet was observed using a fluorescence microscope, and it was confirmed that the graphite particles were not bent at the surface portion of the sheet.
In addition, the cross section of the heat conductive sheet (V) is observed using an SEM (scanning electron microscope), and the angle from the direction in which the arbitrary 50 graphite particles are viewed to the surface of the heat conductive sheet is measured. And when the average value was calculated | required, it was 90 degree | times, and it was recognized that the surface direction of the scale of a graphite particle is orientating in the thickness direction of a heat conductive sheet.

実施例1と同様に操作して熱伝導シート(V)の熱伝導率を測定したところ、12W/mKと低い値を示した。なお、熱伝導シート(V)のトランジスタとアルミニウム放熱ブロックに対する密着性は良好であった。   When the heat conductivity of the heat conductive sheet (V) was measured in the same manner as in Example 1, it showed a low value of 12 W / mK. In addition, the adhesiveness with respect to the transistor and aluminum heat dissipation block of a heat conductive sheet (V) was favorable.

熱伝導シート表面部分で、黒鉛粒子(A)先端部分の折れ曲がりを示す図。The figure which shows the bending of the graphite particle (A) front-end | tip part in the heat conductive sheet surface part.

Claims (11)

鱗片状、楕球状又は棒状であり、結晶中の6員環面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子(A)と、Tgが0℃以下である有機高分子化合物(B)とを含有する組成物を含む熱伝導シートであって、
前記黒鉛粒子(A)の鱗片の面方向、楕球の長軸方向又は棒の長軸方向がシート内部で厚み方向に配向しており、シートの片面又は両面における表面部分で、前記黒鉛粒子(A)の先端部分が、シートの表面に沿う方向にシートの厚み方向を軸として、60〜90度の角度で折れ曲がった熱伝導シート。
Graphite particles (A) that are scale-like, elliptical, or rod-shaped, with the six-membered ring surface in the crystal oriented in the plane direction of the scale, the major axis of the ellipse, or the major axis of the rod, and Tg of 0 A heat conductive sheet comprising a composition containing an organic polymer compound (B) having a temperature of ℃ or less,
The surface direction of the scale of the graphite particles (A), the major axis direction of the ellipsoid or the major axis direction of the rod is oriented in the thickness direction inside the sheet, and the graphite particles ( A heat conductive sheet in which the tip portion of A) is bent at an angle of 60 to 90 degrees with the thickness direction of the sheet as an axis in a direction along the surface of the sheet.
前記シートの表面部分で折れ曲がっている黒鉛粒子(A)の数が、シートの厚み方向の断面における横方向の長さ500μmあたり5〜20個である請求項1記載の熱伝導シート。   2. The heat conductive sheet according to claim 1, wherein the number of graphite particles (A) bent at the surface portion of the sheet is 5 to 20 per 500 μm in a lateral length in a cross section in the thickness direction of the sheet. 前記シートの表面部分で折れ曲がっている黒鉛粒子(A)の折れ曲がり点が、シートの表面からシート厚の10%以内の位置にある請求項1又は2記載の熱伝導シート。   The heat conductive sheet according to claim 1 or 2, wherein the bending point of the graphite particles (A) bent at the surface portion of the sheet is located within 10% of the sheet thickness from the surface of the sheet. 前記シートの表面部分で折れ曲がっている黒鉛粒子(A)の折れ曲がり部分の長さが、シート厚の5〜20%である請求項1〜3のいずれか一項に記載の熱伝導シート。   The heat conductive sheet according to any one of claims 1 to 3, wherein the bent portion of the graphite particles (A) bent at the surface portion of the sheet has a length of 5 to 20% of the sheet thickness. 前記組成物中、前記黒鉛粒子(A)は10〜50体積%、前記有機高分子化合物(B)は10〜50体積%で配合されることを特徴とする請求項1〜4のいずれか一項に記載の熱伝導シート。   5. The composition according to claim 1, wherein the graphite particles (A) are blended in an amount of 10 to 50% by volume, and the organic polymer compound (B) is blended in an amount of 10 to 50% by volume. The heat conductive sheet according to item. 鱗片状、楕球状又は棒状であり、結晶中の6員環面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子(A)と、Tgが0℃以下である有機高分子化合物(B)とを含有した組成物を、前記組成物中の黒鉛粒子(A)の配向方向に対して平行方向に5〜10MPaの圧力で押し付け、主たる面に関してほぼ平行な方向に前記黒鉛粒子(A)が配向した一次シートを作製し、
前記一次シートを積層して成形体を得、
前記成形体を0.01〜0.5MPaの圧力で押し付けながら一次シート面から出る法線に対し0〜30度の角度でスライスし熱伝導シートを得、該熱伝導シートの片面又は両面における表面部分で、シートの表面に沿う方向に、シートの厚み方向を軸として60〜90度の角度で、前記黒鉛粒子(A)の先端部分が折れ曲がることを特徴とする熱伝導シートの製造方法。
Graphite particles (A) that are scale-like, elliptical, or rod-shaped, with the six-membered ring surface in the crystal oriented in the plane direction of the scale, the major axis of the ellipse, or the major axis of the rod, and Tg of 0 The composition containing the organic polymer compound (B) having a temperature of not more than 0 ° C. is pressed at a pressure of 5 to 10 MPa in a direction parallel to the orientation direction of the graphite particles (A) in the composition, and the main surface is almost Producing a primary sheet in which the graphite particles (A) are oriented in parallel directions;
Laminating the primary sheet to obtain a molded body,
While pressing the molded body at a pressure of 0.01 to 0.5 MPa, the sheet is sliced at an angle of 0 to 30 degrees with respect to the normal from the primary sheet surface to obtain a heat conductive sheet, and the surface on one or both sides of the heat conductive sheet A method for producing a heat conductive sheet, characterized in that the tip portion of the graphite particles (A) is bent at an angle of 60 to 90 degrees about the thickness direction of the sheet in a direction along the surface of the sheet.
鱗片状、楕球状又は棒状であり、結晶中の6員環面が鱗片の面方向、楕球の長軸方向又は棒の長軸方向に配向している黒鉛粒子(A)と、Tgが0℃以下である有機高分子化合物(B)とを含有した組成物を、前記組成物中の黒鉛粒子(A)の配向方向に対して平行方向に5〜10MPaの圧力で押し付け、主たる面に関してほぼ平行な方向に前記黒鉛粒子(A)が配向した一次シートを作製し、
前記一次シートを前記黒鉛粒子(A)の配向方向を軸にして捲回し成形体を得、
前記成形体を0.01〜0.5MPaの圧力で押し付けながら一次シート面から出る法線に対し0〜30度の角度でスライスし熱伝導シートを得、該熱伝導シートの片面又は両面における表面部分で、シートの表面に沿う方向に、シートの厚み方向を軸として60〜90度の角度で、前記黒鉛粒子(A)の先端部分が折れ曲がることを特徴とする熱伝導シートの製造方法。
Graphite particles (A) that are scale-like, elliptical, or rod-shaped, with the six-membered ring surface in the crystal oriented in the plane direction of the scale, the major axis of the ellipse, or the major axis of the rod, and Tg of 0 The composition containing the organic polymer compound (B) having a temperature of not more than 0 ° C. is pressed at a pressure of 5 to 10 MPa in a direction parallel to the orientation direction of the graphite particles (A) in the composition, and the main surface is almost Producing a primary sheet in which the graphite particles (A) are oriented in parallel directions;
The primary sheet is wound around the orientation direction of the graphite particles (A) to obtain a molded body,
While pressing the molded body at a pressure of 0.01 to 0.5 MPa, the sheet is sliced at an angle of 0 to 30 degrees with respect to the normal from the primary sheet surface to obtain a heat conductive sheet, and the surface on one or both sides of the heat conductive sheet A method for producing a heat conductive sheet, characterized in that the tip portion of the graphite particles (A) is bent at an angle of 60 to 90 degrees about the thickness direction of the sheet in a direction along the surface of the sheet.
前記成形体のスライスは、スリットを有する平滑な盤面と、該スリット部より突出した刃部と、を有するスライス部材を用いて行い、
前記刃部は、前記熱伝導シートの所望の厚みに応じて、前記スリット部からの突出長さが調節可能である請求項6又は7に記載の熱伝導シートの製造方法。
Slicing the molded body is performed using a slice member having a smooth board surface having a slit and a blade portion protruding from the slit portion,
The said blade part is a manufacturing method of the heat conductive sheet of Claim 6 or 7 which can adjust the protrusion length from the said slit part according to the desired thickness of the said heat conductive sheet.
前記スライス部材は、カンナ又はスライサーである請求項8に記載の熱伝導シートの製造方法。   The method for manufacturing a heat conductive sheet according to claim 8, wherein the slice member is a plane or a slicer. 前記成形体を、−20〜10℃の温度範囲でスライスする請求項6〜9のいずれか一項に記載の熱伝導シートの製造方法。   The manufacturing method of the heat conductive sheet as described in any one of Claims 6-9 which slices the said molded object in the temperature range of -20-10 degreeC. 請求項1〜5のいずれか一項に記載の熱伝導シート又は請求項6〜10のいずれか一項に記載の熱伝導シートの製造方法により得られた熱伝導シートを、発熱体と放熱体との間に介在させた放熱装置。   A heat conductive sheet according to any one of claims 1 to 5 or a heat conductive sheet obtained by the method for producing a heat conductive sheet according to any one of claims 6 to 10, comprising a heating element and a radiator. Heat dissipation device interposed between the two.
JP2008028129A 2007-11-26 2008-02-07 Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet Pending JP2009149831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028129A JP2009149831A (en) 2007-11-26 2008-02-07 Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007304254 2007-11-26
JP2008028129A JP2009149831A (en) 2007-11-26 2008-02-07 Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet

Publications (1)

Publication Number Publication Date
JP2009149831A true JP2009149831A (en) 2009-07-09

Family

ID=40919342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028129A Pending JP2009149831A (en) 2007-11-26 2008-02-07 Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet

Country Status (1)

Country Link
JP (1) JP2009149831A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116806A (en) * 2009-11-30 2011-06-16 Polymatech Co Ltd Method for producing thermally conductive sheet, and thermally conductive sheet
JP2011162642A (en) * 2010-02-09 2011-08-25 Hitachi Chem Co Ltd Thermally conductive sheet, method for manufacturing the same and heat-dissipating device using thermally conductive sheet
JP2012049493A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Imaging part
JP2012049495A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Light-emitting diode device
JP2012158695A (en) * 2011-02-01 2012-08-23 Hitachi Chemical Co Ltd Heat conductive sheet and heat dissipation plate
WO2013077178A1 (en) * 2011-11-24 2013-05-30 積水化学工業株式会社 Resin composite material and method for manufacturing resin composite material
WO2013118848A1 (en) * 2012-02-08 2013-08-15 日東電工株式会社 Method for producing thermal conductive sheet
WO2013118849A1 (en) * 2012-02-08 2013-08-15 日東電工株式会社 Thermal conductive sheet
JP2013176979A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Thermal conductive sheet
JPWO2013133181A1 (en) * 2012-03-07 2015-07-30 株式会社カネカ Thermally conductive resin molded body and method for producing the thermally conductive resin molded body
JP2015193735A (en) * 2014-03-31 2015-11-05 東洋インキScホールディングス株式会社 resin composition and molded article
CN114214021A (en) * 2022-01-14 2022-03-22 宁波惠之星新材料科技有限公司 Raw material composition for preparing optical adhesive, optical adhesive and optical adhesive film
US11322773B2 (en) * 2016-03-10 2022-05-03 Nec Corporation Lithium secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088249A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
JP2005306967A (en) * 2004-04-20 2005-11-04 Achilles Corp Flame-retardant heat-conductive sheet
JP2006328213A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Heat-conductive sheet
JP2007533818A (en) * 2004-04-23 2007-11-22 アドバンスド、エナジー、テクノロジー、インコーポレーテッド Resin impregnated flexible graphite products
WO2008053843A1 (en) * 2006-11-01 2008-05-08 Hitachi Chemical Co., Ltd. Heat conducting sheet, process for producing the same, and radiator utilizing the sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088249A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
JP2005306967A (en) * 2004-04-20 2005-11-04 Achilles Corp Flame-retardant heat-conductive sheet
JP2007533818A (en) * 2004-04-23 2007-11-22 アドバンスド、エナジー、テクノロジー、インコーポレーテッド Resin impregnated flexible graphite products
JP2006328213A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Heat-conductive sheet
WO2008053843A1 (en) * 2006-11-01 2008-05-08 Hitachi Chemical Co., Ltd. Heat conducting sheet, process for producing the same, and radiator utilizing the sheet

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116806A (en) * 2009-11-30 2011-06-16 Polymatech Co Ltd Method for producing thermally conductive sheet, and thermally conductive sheet
JP2012049493A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Imaging part
JP2012049495A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Light-emitting diode device
JP2011162642A (en) * 2010-02-09 2011-08-25 Hitachi Chem Co Ltd Thermally conductive sheet, method for manufacturing the same and heat-dissipating device using thermally conductive sheet
JP2012158695A (en) * 2011-02-01 2012-08-23 Hitachi Chemical Co Ltd Heat conductive sheet and heat dissipation plate
JP5323270B1 (en) * 2011-11-24 2013-10-23 積水化学工業株式会社 Manufacturing method of resin composite material
JP2013129843A (en) * 2011-11-24 2013-07-04 Sekisui Chem Co Ltd Resin composite material and method for manufacturing resin composite material
WO2013077178A1 (en) * 2011-11-24 2013-05-30 積水化学工業株式会社 Resin composite material and method for manufacturing resin composite material
US20140178670A1 (en) * 2011-11-24 2014-06-26 Sekisui Chemical Co., Ltd Resin composite material and method for manufacturing resin composite material
WO2013118848A1 (en) * 2012-02-08 2013-08-15 日東電工株式会社 Method for producing thermal conductive sheet
WO2013118849A1 (en) * 2012-02-08 2013-08-15 日東電工株式会社 Thermal conductive sheet
JP2013176979A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Thermal conductive sheet
JP2013177565A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Method of manufacturing heat conductive sheet
JP2013176980A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Thermal conductive sheet
JPWO2013133181A1 (en) * 2012-03-07 2015-07-30 株式会社カネカ Thermally conductive resin molded body and method for producing the thermally conductive resin molded body
JP2015193735A (en) * 2014-03-31 2015-11-05 東洋インキScホールディングス株式会社 resin composition and molded article
US11322773B2 (en) * 2016-03-10 2022-05-03 Nec Corporation Lithium secondary battery
CN114214021A (en) * 2022-01-14 2022-03-22 宁波惠之星新材料科技有限公司 Raw material composition for preparing optical adhesive, optical adhesive and optical adhesive film

Similar Documents

Publication Publication Date Title
JP6341303B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING THE HEAT CONDUCTIVE SHEET
JP2009149831A (en) Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet
JP5882581B2 (en) Thermally conductive sheet, method for producing the same, and heat dissipation device
JP5407120B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME
JP5423455B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP5316254B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
TWI507516B (en) Heat sink and heat sink
TWI577959B (en) Thermal conductive sheet, method of producing thermal conductive sheet and radiator
JP5740864B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP5560630B2 (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP5516034B2 (en) Highly insulating heat conductive sheet and heat dissipation device using the same
JP5454300B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING SAME
JP5678596B2 (en) Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device
JP2012015273A (en) Thermal conductive sheet, method of manufacturing thermal conductive sheet and heat radiation device using thermal conductive sheet
JP2015061924A (en) Thermal conductive sheet, method of manufacturing thermal conductive sheet and heat radiation device using thermal conductive sheet
JP2011184663A (en) Heat conductive sheet, method for producing the same, and heat radiation device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122