WO2013118848A1 - Method for producing thermal conductive sheet - Google Patents

Method for producing thermal conductive sheet Download PDF

Info

Publication number
WO2013118848A1
WO2013118848A1 PCT/JP2013/052953 JP2013052953W WO2013118848A1 WO 2013118848 A1 WO2013118848 A1 WO 2013118848A1 JP 2013052953 W JP2013052953 W JP 2013052953W WO 2013118848 A1 WO2013118848 A1 WO 2013118848A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
conductive sheet
less
rolling member
heat conductive
Prior art date
Application number
PCT/JP2013/052953
Other languages
French (fr)
Japanese (ja)
Inventor
義治 畠山
沙織 山本
山口 美穂
誠治 泉谷
憲一 藤川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013012654A external-priority patent/JP2013176981A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR20147020109A priority Critical patent/KR20140127808A/en
Priority to US14/375,865 priority patent/US20140367883A1/en
Priority to CN201380008693.2A priority patent/CN104125976A/en
Publication of WO2013118848A1 publication Critical patent/WO2013118848A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/18Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets by squeezing between surfaces, e.g. rollers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for manufacturing a heat conductive sheet, and more particularly, to a method for manufacturing a heat conductive sheet used in power electronics technology.
  • a heat conductive sheet containing a plate-like boron nitride powder and an acrylate copolymer resin has been proposed (for example, see Patent Document 1).
  • Patent Document 1 a composition comprising a boron nitride powder and an acrylate copolymer resin is pressed into a sheet shape.
  • the heat conductive sheet obtained by the method proposed in Patent Document 1 has a high porosity, and therefore has a problem that the heat conductivity cannot be sufficiently improved.
  • Patent Document 1 is a method of simply pressing the composition, there is a problem that the plate-like boron nitride powder is easily crushed and the thermal conductivity in a specific direction is lowered.
  • Patent Document 1 is a method of simply pressing the composition, there is a problem that the production efficiency cannot be sufficiently improved.
  • An object of the present invention is to provide a thermally conductive sheet that can sufficiently reduce the porosity and is excellent in thermal conductivity and flexibility in the plane direction, while effectively preventing crushing of plate-like boron nitride particles.
  • An object of the present invention is to provide a method for producing a heat conductive sheet that can be produced with excellent production efficiency.
  • the method for producing a thermally conductive sheet according to the present invention includes a step of preparing a raw material component containing plate-like boron nitride particles and a polymer matrix, and a long sheet is formed from the raw material component by a calendar. And a step of pressing the long sheet.
  • the calendar includes a plurality of rolls arranged so that a plurality of nip portions are formed, and the nip portions on the upstream side adjacent to each other in the conveying direction of the long sheet. It is preferable that the distance between the downstream nip portions is smaller than the distance between the upstream nip portions.
  • a gap between the downstream nip portion is an interval between the upstream nip portion. In contrast, it is preferably 0.9 times or less.
  • the calender is provided with at least three nip portions.
  • a porosity of the heat conductive sheet is 3.0% by volume or less.
  • the calender includes a plurality of pairs of rolls arranged opposite to each other along the transport direction.
  • the heat conductive sheet is measured by dynamic viscoelasticity measurement in accordance with JIS K7244-10 (2005) according to dynamic viscoelasticity measurement at a frequency of 10 Hz and a heating rate of 2 ° C./min. It is preferable that the complex shear viscosity ⁇ * at a temperature of 20 to 150 ° C. to be obtained is 300 Pa ⁇ s or more and 10,000 Pa ⁇ s or less.
  • the average particle diameter measured by the dynamic light scattering method of the said boron nitride particle is 20 micrometers or more
  • the said boron nitride particle in the said heat conductive sheet The volume ratio is preferably 60% by volume or more.
  • the heat conductivity in the direction perpendicular to the thickness direction of the heat conductive sheet is 6 W / m ⁇ K or more.
  • the heat conductive sheet of the present invention is prepared by a step of preparing a raw material component containing plate-like boron nitride particles and a polymer matrix, by rolling the raw material component with a calender provided with at least one pair of rolls.
  • the said calender is provided with two or more rolling members which consist of a pair of roll mutually opposingly arranged,
  • the said several rolling members are the conveyance direction upstream of the said elongate sheet
  • the long sheet is formed by the plurality of first rolled members, and the plurality of first sheets are formed by the second rolled member. It is preferable that a plurality of the long sheets formed by one rolling member are rolled together.
  • the method for producing a heat conductive sheet of the present invention is characterized in that the step of laminating a plurality of the long sheets is performed twice or more.
  • a heat conductive sheet of the present invention since a long sheet is formed from a raw material component by a calender, a heat conductive sheet can be obtained with excellent production efficiency.
  • the thermally conductive sheet is oriented while aligning the plate-like boron nitride along the plane direction perpendicular to the thickness direction in the polymer matrix.
  • the porosity of can be reduced.
  • a heat conductive sheet having excellent surface direction heat conductivity and flexibility can be manufactured with excellent manufacturing efficiency.
  • FIG. 1 shows the schematic block diagram of the calendar
  • FIG. 2 shows the schematic perspective view of the press process of the manufacturing method of the heat conductive sheet of 1st Embodiment of this invention.
  • FIG. 3 shows a perspective view of a thermally conductive sheet obtained by the method for producing a thermally conductive sheet according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view of a type I test apparatus (before the bending resistance test) of the bending resistance test.
  • FIG. 1 shows the schematic block diagram of the calendar
  • FIG. 2 shows the schematic perspective view of the press process of the manufacturing
  • FIG. 5 is a perspective view of a type I test apparatus (in the middle of the bending resistance test) for the bending resistance test.
  • FIG. 6 shows the schematic block diagram (a mode provided with five rolling members by horizontal arrangement
  • FIG. 7 shows a schematic configuration diagram (a mode in which three rolls are arranged upright) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 8 shows a schematic configuration diagram (a mode in which four rolls are arranged upright) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 6 shows the schematic block diagram (a mode provided with five rolling members by horizontal arrangement
  • FIG. 7 shows a schematic configuration diagram (a mode in which three rolls are
  • FIG. 9 shows a schematic configuration diagram (a mode in which five rolls are arranged upright) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 10 shows a schematic configuration diagram of a calendar (an aspect in which three rolls are arranged in an inclined manner) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 11 is a schematic configuration diagram of a calendar used in another embodiment of the long sheet forming step of the manufacturing method of the heat conductive sheet of the present invention (the upper two of the three rolls are arranged in an inclined manner. Embodiment).
  • FIG. 10 shows a schematic configuration diagram of a calendar (an aspect in which three rolls are arranged in an inclined manner) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 11 is a schematic configuration diagram of a calendar used in another embodiment of the long sheet forming step of the manufacturing method of
  • FIG. 12 is a schematic configuration diagram of a calendar (an aspect in which four rolls are arranged in an inverted L shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 13 shows the schematic block diagram (form which four rolls are arrange
  • FIG. 14 shows the schematic block diagram (form which four rolls are arrange
  • FIG. 13 shows the schematic block diagram (form which four rolls are arrange
  • FIG. 14 shows the schematic block diagram (form which four rolls are arrange
  • FIG. 15 is a schematic configuration diagram of a calendar (an aspect in which four rolls are arranged in an S shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 16 is a schematic configuration diagram (a mode in which five rolls are arranged in an inverted L shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 17 is a schematic configuration diagram of a calendar (an aspect in which five rolls are arranged in a 7-shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. Show.
  • FIG. 16 is a schematic configuration diagram (a mode in which five rolls are arranged in an inverted L shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 17 is a schematic configuration diagram of a calendar (an aspect in which
  • FIG. 18 shows a schematic configuration diagram (a mode in which five rolls are arranged in an M-shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention.
  • FIG. 19 shows a schematic configuration diagram of a calendar used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention (a mode in which a pair of rolls are arranged opposite to each other in the left-right direction).
  • FIG. 20 shows a schematic configuration diagram of a calendar used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention (a mode in which a pair of rolls are arranged opposite to each other in the vertical direction). .
  • FIG. 21 is an image processing diagram of an SEM photograph of the thermally conductive sheet of Example 1.
  • FIG. 22 is an image processing diagram of an SEM photograph of the thermally conductive sheet of Example 4.
  • FIG. 23 shows an image processing diagram of an SEM photograph of boron nitride particles.
  • B1 shows the schematic block diagram of the calendar
  • FIG. B2 is a modification of the calendar of FIG. B1, and shows a mode in which the sheet stacking portion is a single stage.
  • FIG. B3 shows an image processing diagram of an SEM photograph of the thermally conductive sheet of Example B10.
  • FIG. B4 shows an image processing diagram of an SEM photograph of boron nitride particles.
  • FIG. B5 shows a schematic configuration diagram of calendars of Comparative Example B8, Comparative Example B13, and Comparative Example B15.
  • 1st Embodiment of the manufacturing method of the heat conductive sheet of 1st Embodiment is the process (raw material preparation process) of preparing a raw material component, and the process of forming a long sheet from a raw material component with a calendar (long sheet forming process). And a step of pressing the long sheet (pressing step).
  • the raw material component contains boron nitride particles and a polymer matrix.
  • the boron nitride particles are formed in a plate shape (or scale shape).
  • the plate shape only needs to include at least a flat plate shape having an aspect ratio, and includes a disk shape and a hexagonal flat plate shape when viewed from the thickness direction of the plate.
  • the plate shape may be laminated in multiple layers, and in the case of being laminated, a plate-like structure with different sizes is laminated and a step shape, and a shape in which the end face is cleaved Is included.
  • the plate shape includes a linear shape (see FIG. 3) when viewed from a direction (plane direction) orthogonal to the thickness direction of the plate, and further includes a shape in which the middle of the linear shape is slightly bent.
  • Boron nitride particles have an average length in the longitudinal direction (maximum length in the direction perpendicular to the thickness direction of the plate) occupying 60% or more by volume ratio, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, particularly preferably 30 ⁇ m or more, most preferably 40 ⁇ m or more, and for example, 300 ⁇ m or less.
  • the average of the thickness (length in the thickness direction of the plate, that is, the length in the short direction of the particle) of the particles occupying 60% or more by the volume ratio of the boron nitride particles is 0.01 ⁇ m or more, preferably 0 .1 ⁇ m or more, and for example, 20 ⁇ m or less, preferably 15 ⁇ m or less.
  • the aspect ratio (length / thickness in the longitudinal direction) of the particles occupying 60% or more by the volume ratio of the boron nitride particles is, for example, 2 or more, preferably 3 or more, more preferably 4 or more. For example, it is 10,000 or less, preferably 5,000 or less, and more preferably 2,000 or less.
  • the form, thickness, longitudinal length and aspect ratio of boron nitride particles are measured and calculated by an image analysis method. For example, it can be obtained by SEM, X-ray CT, particle size distribution image analysis method, or the like.
  • the boron nitride particles have an average particle size measured by a light scattering method of, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, particularly preferably 30 ⁇ m or more, and most preferably 40 ⁇ m or more. In addition, for example, it is 200 ⁇ m or less.
  • the average particle diameter measured by the light scattering method is a volume average particle diameter measured by a dynamic light scattering method using a dynamic light scattering particle size distribution measuring apparatus.
  • the thermal conductivity may decrease.
  • the bulk density (JIS K 5101, apparent density) of the boron nitride particles is, for example, 0.1 g / cm 3 or more, preferably 0.15 g / cm 3 or more, and more preferably 0.2 g / cm 3 or more. Particularly preferably, it is 0.2 g / cm 3 , and for example, 2.3 g / cm 3 or less, preferably 2.0 g / cm 3 or less, more preferably 1.8 g / cm 3 or less, Preferably, it is 1.5 g / cm 3 or less.
  • boron nitride particles a commercially available product or a processed product obtained by processing it can be used.
  • examples of commercially available boron nitride particles include the “PT” series (for example, “PT-110”, etc.) manufactured by Momentive Performance Materials Japan, and the “Shobi N UHP” series (manufactured by Showa Denko) ( For example, “ShowBN UHP-1” and the like.
  • the raw material component may contain other inorganic fine particles in addition to the boron nitride particles described above.
  • examples of other inorganic fine particles include carbides such as silicon carbide, nitrides such as silicon nitride (excluding boron nitride), oxides such as silicon oxide (silica), aluminum oxide (alumina), and the like. Examples thereof include metals such as copper and silver, for example, carbon-based particles such as carbon black.
  • the other inorganic fine particles may be functional particles having, for example, flame retardancy performance, animal cooling performance, antistatic performance, magnetism, refractive index adjustment performance, dielectric constant adjustment performance, and the like.
  • the raw material component may contain, for example, fine boron nitride or irregularly shaped boron nitride particles that are not included in the boron nitride particles described above.
  • These other inorganic fine particles can be used alone or in combination of two or more at an appropriate ratio.
  • polymer matrix examples include polymer components such as a thermosetting resin component, a thermoplastic resin component, and a rubber component.
  • thermosetting resin component examples include epoxy resin, thermosetting polyimide, phenol resin, urea resin, melamine resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, thermosetting urethane resin, and the like.
  • thermosetting resin components an epoxy resin is preferable.
  • the epoxy resin is in a liquid, semi-solid or solid form at normal temperature.
  • the epoxy resin for example, bisphenol type epoxy resin (for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin (including crystalline bisphenol type epoxy resin), bisphenol S type epoxy resin, water-added bisphenol, etc.
  • novolac type epoxy resin for example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, etc.
  • naphthalene type epoxy resin for example, bisarylfluorene type epoxy resin, etc.
  • aromatic epoxy such as triphenylmethane type epoxy resin (eg, trishydroxyphenylmethane type epoxy resin, etc.)
  • Fats for example, nitrogen-containing ring epoxy resins such as triepoxypropyl isocyanurate (triglycidyl isocyanurate), hydantoin epoxy resins, for example, aliphatic epoxy resins, alicyclic epoxy resin
  • epoxy resins can be used alone or in combination of two or more.
  • a semi-solid epoxy resin is used alone, or a combination of a solid epoxy resin and a liquid epoxy resin is used.
  • aromatic epoxy resins and alicyclic epoxy resins are used.
  • the epoxy resin has an epoxy equivalent of, for example, 100 g / eqiv. As mentioned above, Preferably, it is 180 g / eqiv. Or more and 1000 g / eqiv. Hereinafter, preferably 700 g / eqiv. It is as follows.
  • the epoxy resin can be prepared as an epoxy resin composition by containing a curing agent and a curing accelerator.
  • the curing agent is a latent curing agent (epoxy resin curing agent) that can cure the epoxy resin by heating.
  • a latent curing agent epoxy resin curing agent
  • an imidazole compound, an amine compound, an acid anhydride compound, an amide compound, a hydrazide compound, an imidazoline compound, A phenol compound etc. are mentioned.
  • urea compounds, polysulfide compounds, and the like are also included.
  • imidazole compound examples include 2-phenylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and the like.
  • amine compound examples include polyamines such as ethylenediamine, propylenediamine, diethylenetriamine, and triethylenetetramine, and amine adducts thereof such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.
  • Examples of the acid anhydride compound include phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, methyl nadic acid anhydride, and pyromellitic acid.
  • Anhydride, dodecenyl succinic anhydride, dichlorosuccinic anhydride, benzophenone tetracarboxylic acid anhydride, chlorendic acid anhydride and the like can be mentioned.
  • amide compound examples include dicyandiamide and polyamide.
  • Examples of the hydrazide compound include adipic acid dihydrazide.
  • imidazoline compound examples include methyl imidazoline, 2-ethyl-4-methyl imidazoline, ethyl imidazoline, isopropyl imidazoline, 2,4-dimethyl imidazoline, phenyl imidazoline, undecyl imidazoline, heptadecyl imidazoline, 2-phenyl-4-methyl.
  • phenol compound examples include a novolak type phenol resin obtained by condensing phenol and formaldehyde under an acidic catalyst, for example, a phenol aralkyl resin synthesized from phenol and dimethoxyparaxylene or bis (methoxymethyl) biphenyl. Can be mentioned.
  • These curing agents can be used alone or in combination of two or more.
  • Preferred examples of the curing agent include imidazole compounds and phenol compounds.
  • the curing accelerator examples include tertiary amine compounds such as triethylenediamine and tri-2,4,6-dimethylaminomethylphenol, such as triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium- Phosphorus compounds such as o, o-diethyl phosphorodithioate, for example, triazine compounds such as 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct Examples thereof include quaternary ammonium salt compounds such as organometallic salt compounds such as derivatives thereof. These curing accelerators can be used alone or in combination of two or more. Preferably, a triazine compound is used.
  • tertiary amine compounds such as triethylenediamine and tri-2,4,6-dimethylaminomethylphenol
  • the mixing ratio of the curing agent in the epoxy resin composition is, for example, 0.5 parts by mass or more, preferably 1 part by mass or more, and, for example, 1000 parts by mass or less, preferably 100 parts by mass of the epoxy resin. Is 500 parts by mass or less, and the blending ratio of the curing accelerator is, for example, 0.1 parts by mass or less, preferably 0.2 parts by mass or less, and for example, 10 parts by mass or less, preferably 5 parts by mass or less.
  • the above-mentioned curing agent and / or curing accelerator can be prepared and used as a solvent solution and / or a solvent dispersion dissolved and / or dispersed with a solvent, if necessary.
  • the solvent examples include organic solvents such as ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, and amides such as N, N-dimethylformamide.
  • organic solvents such as ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, and amides such as N, N-dimethylformamide.
  • examples of the solvent also include aqueous solvents such as water, for example, alcohols such as methanol, ethanol, propanol, and isopropanol.
  • the solvent is preferably an organic solvent, more preferably a ketone.
  • thermoplastic resin component examples include polyolefin (for example, polyethylene, polypropylene, ethylene-propylene copolymer, etc.), acrylic resin (for example, polymethyl methacrylate, etc.), polyvinyl acetate, ethylene-vinyl acetate copolymer, Polyvinyl chloride, polystyrene, polyacrylonitrile, polyamide (nylon (registered trademark)), polycarbonate, polyacetal, polyethylene terephthalate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyallylsulfone, thermoplastic polyimide, Thermoplastic urethane resin, polyaminobismaleimide, polyamideimide, polyetherimide, bismaleimide triazine resin, polymethylpentene, Resin, liquid crystal polymer, an olefin - vinyl alcohol copolymer, ionomer, polyarylate, acryl
  • the rubber component is a polymer that exhibits rubber elasticity, and includes, for example, an elastomer.
  • urethane rubber acrylic rubber, silicone rubber, vinyl alkyl ether rubber, polyvinyl alcohol rubber, polyvinyl pyrrolidone rubber, polyacrylamide rubber , Cellulose rubber, natural rubber, butadiene rubber, chloroprene rubber, styrene / butadiene rubber (SBR), acrylonitrile / butadiene rubber (NBR), styrene / ethylene / butadiene / styrene rubber, styrene / isoprene / styrene rubber, styrene / isobutylene rubber, Examples include isoprene rubber, polyisobutylene rubber, and butyl rubber.
  • acrylic rubber is preferable.
  • Acrylic rubber is a synthetic rubber obtained by polymerization of monomers containing (meth) acrylic acid alkyl ester.
  • the (meth) acrylic acid alkyl ester is a methacrylic acid alkyl ester and / or an acrylic acid alkyl ester.
  • methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) Examples include hexyl acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate and the like, and linear or branched (meth) acrylic acid alkyl esters having an alkyl moiety of 1 to 10 carbon atoms are preferable. Includes a linear (meth) acrylic acid alkyl ester having an alkyl moiety of 2 to 8 carbon atoms.
  • the blending ratio of the (meth) acrylic acid alkyl ester is, for example, 50% by mass or more, preferably 75% by mass or more, for example, 99% by mass or less with respect to the monomer.
  • the monomer can also include a copolymerizable monomer that can be polymerized with an alkyl (meth) acrylate.
  • the copolymerizable monomer contains a vinyl group, and examples thereof include cyano group-containing vinyl monomers such as (meth) acrylonitrile, and aromatic vinyl monomers such as styrene.
  • the blending ratio of the copolymerizable monomer is, for example, 50% by mass or less, preferably 25% by mass or less, for example, 1% by mass or more based on the monomer.
  • copolymerizable monomers can be used alone or in combination of two or more.
  • the acrylic rubber may contain a functional group bonded to the end of the main chain or in the middle in order to increase the adhesive force.
  • a functional group a carboxyl group, a hydroxyl group, an epoxy group, an amide group etc. are mentioned, for example, Preferably, an epoxy group is mentioned.
  • the weight average molecular weight of the acrylic rubber is, for example, 10,000 or more, preferably 50,000 or more, more preferably 100,000 or more, and for example, 10,000,000 or less, preferably 5, It is 3,000,000 or less, more preferably 3,000,000 or less, and most preferably 1,000,000 or less.
  • the weight average molecular weight (standard polystyrene equivalent value) of acrylic rubber is calculated by GPC.
  • the glass transition temperature of the acrylic rubber is, for example, ⁇ 100 ° C. or higher, preferably ⁇ 80 ° C. or higher, more preferably ⁇ 50 ° C. or higher, still more preferably ⁇ 40 ° C. or higher, and for example, 200 ° C. or lower.
  • the temperature is preferably 100 ° C. or lower, more preferably 100 ° C. or lower, still more preferably 50 ° C. or lower, and most preferably 40 ° C. or lower.
  • the glass transition temperature of the acrylic rubber is calculated by, for example, a midpoint glass transition temperature after heat treatment measured based on JIS K7121-1987 or a theoretical calculated value. When measured based on JIS K7121-1987, the glass transition temperature is specifically calculated at a temperature rising rate of 10 ° C./min in differential scanning calorimetry (heat flow rate DSC).
  • Rubber components can be used alone or in combination of two or more.
  • the rubber component can be prepared and used as a rubber component solution dissolved in the above-described solvent, if necessary.
  • the content ratio of the rubber component is, for example, 1% by mass or more, preferably 2% by mass or more, more preferably 5% by mass or more with respect to the rubber component solution.
  • it is 99 mass% or less, Preferably, it is 90 mass% or less, More preferably, it is 80 mass% or less.
  • These polymer components can be used alone or in combination of two or more.
  • thermosetting resin component a thermosetting resin component and a rubber component are preferable.
  • the blending ratio of the thermosetting resin component is, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and, for example, 100% by mass with respect to the polymer matrix. % Or less, preferably 99.9% by mass or less, and more preferably 99% by mass or less.
  • the blending ratio of the rubber component is, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and, for example, 100% by mass or less with respect to the polymer matrix. Preferably, it is 99.9 mass% or less, More preferably, it is 99 mass% or less.
  • the blending ratio of the boron nitride particles based on the mass of the raw material components (total solid content) of 100 parts by mass is, for example, 40 parts by mass or more, preferably 65 parts by mass or more, and for example, 95 parts by mass or less, preferably , 90 parts by mass or less, and the blending ratio of the polymer matrix based on 100 parts by mass of the total amount of the raw material components is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, and, for example, 60 parts by mass or less, Preferably, it is 35 parts by mass or less.
  • the mixing ratio of the boron nitride particles based on 100 parts by mass of the polymer matrix is, for example, 60 parts by mass or more, preferably 185 parts by mass or more, for example, 1900 parts by mass or less, preferably 900 parts by mass. It is as follows.
  • the polymer matrix includes, for example, a polymer precursor (for example, a low molecular weight polymer including an oligomer) and / or a monomer in addition to the above-described components (polymerized products).
  • a polymer precursor for example, a low molecular weight polymer including an oligomer
  • a monomer in addition to the above-described components (polymerized products).
  • the above-described components components including boron nitride particles and a polymer matrix
  • a solvent a solvent
  • the above-described components components including boron nitride particles and a polymer matrix
  • a solvent a solvent
  • the raw material components as raw material powders.
  • the solvent examples include the same solvents as those used in the curing agent and / or the curing accelerator described above.
  • the mixing ratio of the solvent is, for example, 20 parts by mass or more, preferably 50 parts by mass or more, and, for example, 2000 parts by mass or less, preferably 100 parts by mass of the total amount of the boron nitride particles and the polymer matrix. It is 500 parts by mass or less.
  • the drying method is, for example, 0 ° C. or higher, preferably 10 ° C. or higher, 80 ° C. or lower, preferably 40 ° C. or lower, for example, 0.01 Pa or higher, preferably 0.1 Pa or higher,
  • a vacuum drying method in which vacuum heating is performed at 300 Pa or less, preferably 100 Pa or less is employed.
  • the raw material powder can also be prepared from the raw material components by a known rolling fluidized bed granulation method or the like.
  • a calendar 1 is a calendar forming apparatus including a plurality of rolls 3 arranged so that a plurality of nip portions 2 are formed.
  • the calendar 1 has a conveying direction (vertical direction, vertical direction in FIG. 1) of the long sheet 20 (specifically, the long sheet 20 before the heat conductive sheet 100 is formed by pressing).
  • the rolling member 4 which consists of a pair of rolls 5 and 6 mutually opposingly arranged in the direction (right-and-left direction in FIG. 1) orthogonal to is provided.
  • a plurality of rolling members 4 are arranged and arranged at intervals along the conveying direction. That is, the rolling member 4 includes a plurality of pairs of rolls 5 and 6 arranged in the transport direction.
  • Each of the plurality of rolling members 4 includes a first roll 5 and a second roll 6 facing the first roll 5, and a nip portion 2 (that is, a gap between the first roll 5 and the second roll 6). Is formed.
  • the 1st roll 5 and the 2nd roll 6 consist of metal rolls, such as stainless steel, iron, copper, for example. Preferably, it consists of stainless steel.
  • the first roll 5 and the second roll 6 are provided to rotate in the same direction (downward) in the nip portion 2 so that the long sheet 20 can be transported downstream (downward) in the transport direction. .
  • the rotation speeds of the first roll 5 and the second roll 6 are set to, for example, 50 m / min or less, preferably 10 m / min or less, and for example, 0.01 m / min or more.
  • the surface temperature is those B stage, for example, when a polymer matrix contains a thermosetting resin component. It is set to a temperature that will be in a state.
  • the surface temperature of the 1st roll 5 and the 2nd roll 6 is 20 degreeC or more, for example, Preferably, it is 40 degreeC or more, for example, 150 degrees C or less, Preferably, it sets to the range of 80 degrees C or less. Has been.
  • the diameters of the first roll 5 and the second roll 6 are, for example, 80 mm or more, preferably 100 mm or more, for example, 1000 mm or less, preferably 700 mm or less, and their axial lengths. However, it is formed, for example, as 100 mm or more, preferably 200 mm or more, for example, 3000 mm or less, preferably 2000 mm or less.
  • the plurality of rolling members 4 include a first rolling member 7, a second rolling member 8 that is disposed at an interval on the downstream side in the transport direction of the first rolling member 7, and the second rolling member 8.
  • the 3rd rolling member 9 arrange
  • the 4th rolling member 10 arrange
  • the fifth rolling member 11 is allocated to the downstream side in the transport direction with an interval.
  • the 1st rolling member 7, the 2nd rolling member 8, the 3rd rolling member 9, the 4th rolling member 10, and the 5th rolling member 11 are arrange
  • the gap G of the nip portion 2 between the first roll 5 and the second roll 6 in each of the plurality of rolling members 4 is set so as to be gradually reduced toward the downstream side in the transport direction.
  • the gap G1 of the nip part 2 of the first rolling member 7, the gap G2 of the nip part 2 of the second rolling member 8, the gap G3 of the nip part 2 of the third rolling member 9, and the fourth rolling member 10 The gap G4 of the nip portion 2 and the gap G5 of the nip portion 2 of the fifth rolled member 11 satisfy, for example, the following formula (1).
  • the gap (gap, hereinafter agreed) G ′ of the nip portion 2 of the downstream rolling member 4 is the upstream rolling member.
  • the distance G of the nip portion 2 of 4 is 0.99 times or less, preferably 0.95 times or less, more preferably 0.9 times or less, for example, 0.1 times or more. .
  • the ratio R (G ′ / G) of the gap G ′ of the nip portion 2 of the downstream rolling member 4 to the gap G of the nip portion 2 of the upstream rolling member 4 is preferably 0.99 or less, preferably Is 0.95 or less, more preferably 0.9 or less, for example, 0.1 times or more.
  • R 2/1 ⁇ R 3/2 ⁇ R 4/3 ⁇ R 5/4 (2)
  • R 2/1 is G2 / G1
  • R 3/2 is G3 / G2
  • R 4/3 is G4 / G3
  • R 5/4 is G5 / G4.
  • the following formula (3) is satisfied.
  • the gap G1 of the nip portion 2 of the first rolling member 7 is, for example, 0.2 mm or more, preferably 0.3 mm or more, and, for example, 5 mm or less, preferably 3 mm or less.
  • the gap G2 of the nip portion 2 of the second rolling member 8 is, for example, 0.1 mm or more, and, for example, 4 mm or less, preferably 3 mm or less.
  • the gap G3 of the nip portion 2 of the third rolling member 9 is, for example, 0.1 mm or more, for example, 3 mm or less, preferably 2 mm or less.
  • the gap G4 of the nip portion 2 of the fourth rolled member 10 is, for example, 0.1 mm or more, and, for example, 2 mm or less, preferably 1 mm or less.
  • the gap G5 of the nip portion 2 of the fifth rolled member 11 is, for example, 0.1 mm or more, and, for example, 1 mm or less, preferably 0.8 mm or less.
  • R 2/1 , R 3/2 , R 4/3 and R 5/4 are, for example, 0.1 or more, preferably 0.2 or more, and for example, 0.9 or less, preferably Is 0.8 or less.
  • the calendar 1 is provided with winding rolls (not shown) on the downstream side in the transport direction of the fifth rolling member 11 with an interval, if necessary.
  • the raw material component 27 is introduced from above the nip portion 2 of the first rolling member 7.
  • the input amount of the raw material component 27 is, for example, 0.01 kg / min or more, preferably 0.02 kg / min or more, and for example, 50 kg / min or less, preferably 5 kg / min or less.
  • the raw material component 27 introduced into the nip portion 2 of the first rolling member 7 is moved downstream in the conveying direction (downward) by the rotation of the first roll 5 and the second roll 6 in the nip portion 2 of the first rolling member 7.
  • the long sheet 20 is fed from the first rolling member 7 toward the second rolling member 8.
  • the thickness T1 of the long sheet 20 formed by the first rolling member 7 is, for example, 0.2 mm or more, preferably 0.25 mm or more, and, for example, 5 mm or less, preferably 4 mm or less.
  • the long sheet 20 sent out from the first rolling member 7 reaches the nip portion 2 of the second rolling member 8 by the rotation of the first roll 5 and the second roll 6 of the second rolling member 8 thereafter.
  • the second rolling member 8 is rolled while being conveyed downstream (downward) in the conveying direction by the rotation of the first roll 5 and the second roll 6 of the second rolling member 8, and sent out from the nip portion 2 of the second rolling member 8. .
  • the thickness T2 of the long sheet 20 formed by the second rolling member 8 is thinner than the thickness T1 of the long sheet 20 formed by rolling of the first rolling member 7, and the thickness T1 is, for example, It is 99% or less, preferably 95% or less, more preferably 90% or less, and 10% or more.
  • the thickness T2 of the long sheet 20 formed by the second rolling member 8 is, for example, 0.1 mm or more, preferably 0.2 mm or more, and, for example, 4 mm or less, preferably 3 mm or less.
  • the long sheet 20 sent out from the second rolling member 8 reaches the nip portion 2 of the third rolling member 9 by the rotation of the third rolling member 9 and then enters the third rolling member 9.
  • the first roll 5 and the second roll 6 are rotated while being transported downstream (downward) in the transport direction, and are sent out from the nip portion 2 of the third rolling member 9.
  • the thickness T3 of the long sheet 20 formed by the third rolling member 9 is thinner than the thickness T2 of the long sheet 20 formed by rolling the second rolling member 8, and the thickness T2 is, for example, It is 99% or less, preferably 95% or less, more preferably 90% or less, and 10% or more.
  • the thickness T3 of the long sheet 20 formed by the third rolling member 9 is, for example, 0.1 mm or more, and, for example, 3 mm or less, preferably 2 mm or less.
  • the long sheet 20 fed out from the third rolling member 9 reaches the nip portion 2 of the fourth rolling member 10 by the rotation of the fourth rolling member 10 and then enters the fourth rolling member 10.
  • the first roll 5 and the second roll 6 are rotated while being transported downstream (downward) in the transport direction, and are sent out from the nip portion 2 of the fourth rolling member 10.
  • the thickness T4 of the long sheet 20 formed by the fourth rolling member 10 is thinner than the thickness T3 of the long sheet 20 formed by rolling the third rolling member 9, and the thickness T3 is, for example, It is 99% or less, preferably 95% or less, more preferably 90% or less, and 10% or more.
  • the thickness T4 of the long sheet 20 formed by the fourth rolling member 10 is, for example, 0.1 mm or more, and, for example, 2 mm or less, preferably 1 mm or less.
  • the long sheet 20 fed out from the fourth rolling member 10 reaches the nip portion 2 of the fifth rolling member 11 by the rotation of the fifth rolling member 11 and then enters the fifth rolling member 11.
  • the first roll 5 and the second roll 6 are rotated while being transported downstream (downward) in the transport direction, and are sent out from the nip portion 2 of the fifth rolling member 11.
  • the thickness T5 of the long sheet 20 formed by the fifth rolling member 11 is thinner than the thickness T4 of the long sheet 20 formed by rolling the fourth rolling member 10, and the thickness T4 is, for example, It is 99% or less, preferably 95% or less, more preferably 90% or less, and 10% or more.
  • the thickness T5 of the long sheet 20 formed by the fifth rolling member 11 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 1 mm or less, preferably 0.8 mm or less.
  • the long sheet 20 sent out from the fifth rolling member 11 is wound up by a winding roll (not shown).
  • a release sheet may be provided and rolled by the calendar 1.
  • the raw material component 27 is sandwiched between two release sheets (not shown), and a laminate composed of them is rolled by the calendar 1.
  • release sheet examples include resin sheets such as polyester (specifically, polyethylene terephthalate (PET)) sheet, polyolefin sheet, silicone rubber sheet, and metal foil such as stainless steel and iron.
  • resin sheets such as polyester (specifically, polyethylene terephthalate (PET)) sheet, polyolefin sheet, silicone rubber sheet, and metal foil such as stainless steel and iron.
  • PET polyethylene terephthalate
  • a resin sheet is used.
  • a well-known mold release process can also be given to the surface of a mold release sheet.
  • the thickness of the release sheet is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 250 ⁇ m or less.
  • a commercially available product can be used.
  • a PET sheet specifically, a diamond foil MRF series, a diamond foil MRX series, a diamond foil MRN series (above, manufactured by Mitsubishi Plastics), a panapeel series SG series (manufactured by PANAC) is used.
  • the pressing process is performed after the long sheet forming process.
  • the long sheet 20 formed by the long sheet forming step is cut into a predetermined size to form the sheet 21, and then the sheet 21 is, for example, a vacuum as shown in FIG.
  • a heat conductive sheet is obtained by pressing with a press such as a press.
  • the long sheet 20 is cut into a rectangular shape to form a sheet 21, a release sheet (not shown) is peeled off from the sheet 21 as necessary, and then another release sheet 44 (long The long sheet 20 is sandwiched with a release sheet (different from the release sheet used in the long sheet forming step) interposed, and pressed under vacuum as necessary.
  • the release sheet 44 can also use the release sheet (not shown) used in the elongate sheet formation process as it is.
  • a plurality of release sheets 44 can be stacked and used.
  • a frame-shaped spacer can be provided around the sheet 21 in the press.
  • the spacer is made of, for example, a metal and has a thickness of, for example, 0.05 to 1 mm.
  • the vacuum pressure of the vacuum press machine is, for example, 100 Pa or less, preferably 50 Pa or less, more preferably 20 Pa or less, still more preferably 10 Pa or less, for example 0.01 Pa or more.
  • the sheet 21 can be set in a vacuum press, the inside of the vacuum press can be evacuated, and then the press can be started.
  • the vacuum press is evacuated and the press is started.
  • the time is, for example, 0.1 minute or more, preferably 0.5 minute or more, more preferably 1 minute or more, further preferably 2 minutes or more, and for example, 1 hour or less, preferably 30 For 10 minutes or less, more preferably for 10 minutes or less, and even more preferably for 5 minutes or less.
  • the press pressure is an effective pressure, for example, 0.5 MPa or more, preferably 1 MPa or more, more preferably 3 MPa or more, further preferably 5 MPa or more, and particularly preferably 10 MPa or more. For example, it is 100 MPa or less.
  • the pressing time is, for example, 1 minute or more, preferably 3 minutes or more, more preferably 5 minutes or more, and further preferably 10 minutes or more, for example, 5 hours or less, preferably 2 hours or less, More preferably, it is 1 hour or less, More preferably, it is 30 minutes or less.
  • the temperature of the hot press is, for example, 20 ° C. or more, preferably 30 ° C. or more, more preferably 40 ° C. or more, and for example, 150 ° C. or less, preferably 120 ° C. or less, more preferably 80 ° C. It is as follows.
  • the heat conductive sheet 100 obtained by the pressing process is a B stage when the polymer matrix contains a thermosetting resin component.
  • the thickness T0 (see FIG. 3) of the obtained heat conductive sheet 100 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 1 mm or less, preferably 0.8 mm or less. Preferably, it is 0.6 mm or less, more preferably 0.4 mm or less.
  • the volume-based content ratio of the boron nitride particles 23 in the heat conductive sheet 100 is, for example, 35% by volume or more, preferably 50% by volume or more, more preferably 60% by volume or more, and further preferably 65% by volume or more. Moreover, it is 95 volume% or less, for example, Preferably, it is 90 volume% or less.
  • the boron nitride particles 23 When the content ratio of the boron nitride particles 23 is less than the above range, the boron nitride particles 23 may not be oriented in the plane direction PD (described later) in the thermally conductive sheet 100. Moreover, when the content ratio of the boron nitride particles exceeds the above range, the flexibility of the heat conductive sheet 100 may be lowered.
  • the longitudinal direction LD of the boron nitride particles 23 intersects (orthogonally) the thickness direction TD of the heat conductive sheet 100. It is oriented along the plane direction PD.
  • the arithmetic average of the angles formed by the longitudinal direction LD of the boron nitride particles 23 in the plane direction PD of the thermally conductive sheet 100 is, for example, 25 degrees or less, Preferably, it is 20 degrees or less, for example, 0 degrees or more.
  • the thermal conductivity of the surface direction PD of the heat conductive sheet 100 is, for example, 6 W / m ⁇ K or more, preferably 10 W / m ⁇ K or more, more preferably 15 W / m ⁇ K or more, particularly preferably. Is 20 W / m ⁇ K or more, for example, 200 W / m ⁇ K or less.
  • thermal conductivity in the surface direction PD of the thermal conductive sheet 100 is substantially the same before and after thermal curing (complete curing) described later.
  • the thermal conductivity of the surface direction PD of the thermal conductive sheet 100 is less than the above range, the thermal conductivity of the surface direction PD is not sufficient. It may not be used.
  • the thermal conductivity in the surface direction PD of the thermal conductive sheet 100 is measured by a pulse heating method.
  • a xenon flash analyzer “LFA-447 type” manufactured by NETZSCH is used.
  • the thermal conductivity in the thickness direction TD of the heat conductive sheet 100 is, for example, 0.5 W / m ⁇ K or more, preferably 1 W / m ⁇ K or more, and, for example, 15 W / m ⁇ K or less. Preferably, it is 10 W / m ⁇ K or less.
  • the thermal conductivity in the thickness direction TD of the thermal conductive sheet 100 is measured by a pulse heating method, a laser flash method, or a TWA method.
  • a pulse heating method the same one as described above is used
  • the laser flash method “TC-9000” (manufactured by ULVAC-RIKO)
  • the TWA method “ai-Phase mobile” (manufactured by Eye Phase). Is used.
  • the ratio of the thermal conductivity in the plane direction PD of the thermal conductive sheet 100 to the thermal conductivity in the thickness direction TD of the thermal conductive sheet 100 Is, for example, 1.5 or more, preferably 3 or more, more preferably 4 or more, and for example 50 or less.
  • the density of the heat conductive sheet 100 is, for example, 1.5 g / cm 2 or more, preferably 1.55 g / cm 2 or more, more preferably 1.6 g / cm 2 or more, and particularly preferably 1. 65 g / cm 2 or more, most preferably 1.7 g / cm 2 or more, for example, 4 g / cm 2 or less.
  • a gap (gap) 28 may be formed in the heat conductive sheet 100.
  • the ratio of the voids 28 in the thermally conductive sheet 100 is, for example, 3.0% by volume or less, preferably 2.5% by volume or less, more preferably 2.0% by volume or less. More preferably 1.5% by volume or less, and for example, 0% by volume or more.
  • the porosity P is first determined by cutting the thermally conductive sheet 100 along the thickness direction with a cross section polisher (CP), and the resulting cross section is measured with a scanning electron microscope (SEM) 200. An image is obtained by observing the image at a magnification, and from the obtained image, the void 28 portion and the other portion are binarized, and then the area of the void 28 portion with respect to the entire cross-sectional area of the heat conductive sheet 100 It is measured by calculating the ratio.
  • SEM scanning electron microscope
  • a thermally conductive sheet 100 in a B-stage (semi-cured) state is used.
  • the thermal conductivity of the thermal conductive sheet 100 and the step following ability (when the thermal conductive sheet 100 is provided on a stepped installation target, The characteristic of following so as to adhere closely along the step can be improved.
  • the complex shear viscosity ⁇ * of the heat conductive sheet 100 is at least at any temperature within a temperature range of 20 to 150 ° C. obtained by dynamic viscoelasticity measurement (particularly preferably at 70 ° C.). 300 Pa ⁇ s or more, preferably 500 Pa ⁇ s or more, more preferably 800 Pa ⁇ s or more, and for example, 5 ⁇ 10 4 Pa ⁇ s or less, preferably 3 ⁇ 10 4 Pa ⁇ s or less, More preferably, it is 1 ⁇ 10 4 Pa ⁇ s or less.
  • the dynamic viscoelasticity is measured according to JIS K7244-10 (2005) in a shear mode with a frequency of 10 Hz and a heating rate of 2 ° C./min.
  • the processability (formability) of the raw material components can be improved.
  • thermal conductive sheet 100 is evaluated under the following test conditions in a bending resistance test based on the cylindrical mandrel method of JIS K 5600-5-1, for example, no fracture is observed.
  • Test equipment Type I Mandrel: 1mm diameter, 5mm, 10mm Bending angle: 90 ° to 180 °
  • the thickness of the heat conductive sheet 100 0.1 to 2 mm (specifically, 0.2 mm)
  • FIGS. 4 and 5 A perspective view of the type I test apparatus is shown in FIGS. 4 and 5, and the type I test apparatus will be described below.
  • the type I test apparatus 30 relatively rotates the first flat plate 31, the second flat plate 32 arranged in parallel with the first flat plate 31, and the first flat plate 31 and the second flat plate 32.
  • a mandrel (rotary shaft) 33 is provided.
  • the first flat plate 31 is formed in a substantially rectangular flat plate shape.
  • a stopper 34 is provided at one end (free end) of the first flat plate 31.
  • the stopper 34 is formed on the surface of the first flat plate 31 so as to extend along one end portion of the first flat plate 31.
  • the second flat plate 32 has a substantially rectangular flat plate shape, and one side thereof is one side of the first flat plate 31 (one side of the other end (base end) opposite to the one end where the stopper 34 is provided). It arrange
  • the mandrel 33 is formed so as to extend along one side of the first flat plate 31 and the second flat plate 32 adjacent to each other.
  • the surface of the first flat plate 31 and the surface of the second flat plate 32 are flush with each other before the bending resistance test is started.
  • the heat conductive sheet 100 is mounted on the surface of the first flat plate 31 and the surface of the second flat plate 32.
  • the heat conductive sheet 100 is placed so that one side thereof is in contact with the stopper 34.
  • the first flat plate 31 and the second flat plate 32 are relatively rotated. Specifically, the free end portion of the first flat plate 31 and the free end portion of the second flat plate 32 are rotated about the mandrel 33 by a predetermined angle. Specifically, the first flat plate 31 and the second flat plate 32 are rotated so that the surfaces of their free end portions are close (opposed).
  • the heat conductive sheet 100 bends around the mandrel 33 while following the rotation of the first flat plate 31 and the second flat plate 32.
  • the thermal conductive sheet 100 is not observed to break even when the bending angle is set to 180 degrees under the test conditions described above.
  • the heat conductive sheet 100 may not be provided with excellent flexibility.
  • the thermally conductive sheet 100 in the B stage state is used.
  • this heat conductive sheet 100 is affixed on the heat dissipation object used as a to-be-adhered body, and after that, when a polymer matrix contains a thermosetting resin component, it heat-hardens by heating (it is set as a C stage state). ) To adhere to the heat dissipation object.
  • the heat conductive sheet 100 In order to thermally cure the heat conductive sheet 100, for example, 60 ° C. or more, preferably 80 ° C. or more, for example, 250 ° C. or less, preferably 200 ° C. or less, for example, 5 minutes or more, preferably The heat conductive sheet 100 is heated for 10 minutes or longer, for example, 300 minutes or shorter, preferably 200 minutes or shorter.
  • the heat conductive sheet 100 is formed from the raw material component 27 with the calendar 1, the heat conductive sheet 100 can be obtained with excellent manufacturing efficiency.
  • the raw material component 27 is passed through the upstream nip portion 2 and the downstream nip portion 2 adjacent to each other in the vertical direction, that is, through the rolling member 4.
  • the interval G 'between the downstream nip portions 2 is set to be smaller than the interval G between the upstream nip portions.
  • the gap G2 of the nip part 2 of the second rolling member 8 is smaller than the gap G1 of the nip part 2 of the first rolling member 7, and the gap G3 of the nip part 2 of the third rolling member 9 is 2 is smaller than the gap G2 of the nip portion 2 of the rolling member 8, the gap G4 of the nip portion 2 of the fourth rolling member 10 is smaller than the gap G3 of the nip portion 2 of the third rolling member 9, and is the nip of the fifth rolling member 8.
  • the interval G5 of the portion 2 is set smaller than the interval G4 of the nip portion 2 of the first rolling member 7.
  • the gaps G1 to G5 of the nip portion 2 of the rolling member 4 are set so as to decrease sequentially toward the downstream side in the transport direction.
  • the porosity P can be reduced while the plate-like boron nitride particles 23 are efficiently oriented in the polymer matrix 24 along the plane direction PD.
  • the heat conductive sheet 100 having excellent heat conductivity and flexibility in the surface direction PD can be manufactured with excellent manufacturing efficiency.
  • the heat conductive sheet 100 having excellent flexibility and thermal conductivity in the surface direction PD can be used for various heat dissipation applications.
  • the heat of the electronic element can be efficiently conducted while protecting the electronic element.
  • the electronic element coated on the heat conductive sheet 100 is not particularly limited, and examples thereof include an IC (integrated circuit) chip, a capacitor, a coil, a resistor, and a light emitting diode. These electronic elements are usually provided on a substrate, and are arranged at intervals in a plane direction (plane direction of the substrate).
  • the heat conductive sheet 100 can be prevented from being deteriorated by heat, and the heat conductive sheet can be prevented.
  • the heat of the electronic component and / or the mounting board can be dissipated along the surface direction PD.
  • Electronic components used in power electronics include, for example, IC (integrated circuit) chips (especially narrow electrode terminal portions in IC chips), thyristors (rectifiers), motor parts, inverters, power transmission parts, capacitors, coils , Resistors, light emitting diodes, and the like.
  • IC integrated circuit
  • the electronic component described above is mounted on the surface (one surface) of the mounting substrate, and in such a mounting substrate, the electronic components are arranged at intervals in the surface direction (surface direction of the mounting substrate). Yes.
  • the heat conductive sheet 100 excellent in heat resistance can be provided on, for example, an LED heat dissipation board or a battery heat dissipation material.
  • the raw material component containing the solvent is dried to prepare the raw material powder, which is put into the calendar 1.
  • the raw material sheet 26 can be put into the calendar 1.
  • the calendar 1 has a vertical arrangement in which a plurality of rolling members 4 are arranged in series in a vertical manner so that the plurality of rolling members 4 extend in the vertical direction. It can also be set as the horizontal type arrangement
  • the manufacturing method of the heat conductive sheet using the calendar 1 of FIG. 6 has the same effect as the manufacturing method of the heat conductive sheet using the calendar 1 of FIG.
  • the 1st roll 5 and the 2nd roll 6 are each arrange
  • positioning is not limited to it.
  • the calendar 1 can also be constituted by a rolling member 4 made of rolls 3 formed in various arrangements.
  • the path of the long sheet 20 is formed in a bent shape, the long sheet 20 is rolled while being bent, and the heat conductive sheet 100 is manufactured.
  • a plurality (three) of the rolls 3 are arranged in an inclined manner with respect to the vertical direction.
  • the upper two rolls 3 are arranged to face each other in the inclination direction with respect to the vertical direction.
  • the rolling member 4 is composed of four rolls 3.
  • the roll 3 is in an inverted L shape in FIG. 12, in an L shape in FIG. 13, and in FIG. In FIG. 15, it is arranged in an S shape in a Z shape.
  • the rolling member 4 comprises five rolls 3.
  • the roll 3 has an inverted L shape in FIG. 16, a 7 shape in FIG. 17, and a roll shape in FIG. Are arranged in an M-shape.
  • the manufacturing method of the heat conductive sheet 100 using the calendar 1 shown in FIG. 1 and FIG. 6 is mentioned.
  • this method since the rolling member 4 is arranged in a straight line and the path of the long sheet 20 is formed to extend in a straight line, a stress for bending the plate-like boron nitride particles 23 is generated. This can be prevented, whereby the breakage of the boron nitride particles 23 can be more effectively prevented.
  • the number is not particularly limited as long as it is plural so that a plurality of nip portions 2 are formed.
  • the number can be set (excluding 5), preferably 3 to 7 (excluding 5).
  • three or more rolling members 4 are provided. Thereby, the long sheet 20 can be rolled sufficiently efficiently.
  • a calendar forming apparatus including a plurality of rolling members 4 is used as the calendar 1.
  • a calendar including a single rolling member 4 is used.
  • a molding apparatus can also be used.
  • a pair of rolls 3 constitutes a single rolled member 4 and are arranged to face each other in the left-right direction.
  • the manufacturing method of the heat conductive sheet of 2nd Embodiment is the process of preparing a raw material component (raw material preparation process), the process of forming a long sheet by rolling a raw material component with a calendar (long sheet forming process), And the process (press process) of pressing a long sheet is provided.
  • the raw material preparation process of the second embodiment is the same as the raw material preparation process of the first embodiment.
  • a calendar B1 includes a sheet forming portion B3 that forms the first long sheet B2 from the raw material component B9, and the first long sheet B2 in the thickness direction (the thickness direction of the first long sheet B2, the same applies hereinafter). And a sheet lamination part B4 for laminating a plurality of sheets.
  • the sheet forming section B3 is arranged on the most upstream side in the conveying direction of the first long sheet B2 in the calendar B1 (the vertical direction in FIG. B1, hereinafter simply referred to as the conveying direction), and includes a plurality of rolling members B5.
  • the sheet stacking part B4 is arranged on the downstream side in the transport direction with respect to the sheet forming part B3.
  • the sheet stacking part B4 is composed of multiple stages or single stages (n stages (n is an integer of 1 or more)), for example, 1 to 9 stages, preferably 2 to 6 stages (specifically, 4 stages) in the conveying direction. Has been.
  • the sheet forming unit B3 includes a plurality ( 2n , specifically, 16) of rolling members B5 arranged in parallel in a direction orthogonal to the conveying direction.
  • Each of the rolling members B5 is a pair arranged to face each other so as to form a nip portion (hereinafter referred to as a first nip portion B8 in the sheet forming portion and a second nip portion B14 in the sheet stacking portion). It is equipped with a roll.
  • the pair of rolls includes a first roll B6 disposed on one side in the parallel direction (a direction intersecting the transport direction) and a second roll B7 disposed opposite to the other side in the parallel direction with respect to the first roll B6. I have.
  • the first roll B6 and the second roll B7 are made of, for example, a roll made of metal such as stainless steel, iron, or copper.
  • the first roll B6 and the second roll B7 are preferably made of stainless steel. Further, the surface of the first roll B6 and the second roll B7 can be subjected to mold release treatment.
  • the first roll B6 and the second roll B7 have a diameter of, for example, 80 mm or more, preferably 100 mm or more, for example, 1000 mm or less, preferably 700 mm or less, and an axial direction thereof.
  • the length is, for example, 100 mm or more, preferably 200 mm or more, for example, 3000 mm or less, preferably 2000 mm or less.
  • the gap G1 between the first nip portion B8 of the first roll B6 and the second roll B7 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 10 mm or less, preferably 0. .5 mm or less.
  • the rotation speeds of the first roll B6 and the second roll B7 are set, for example, in a range of 50 m / min or less, preferably 10 m / min or less, for example, 0.01 m / min or more.
  • the 1st roll B6 and the 2nd roll B7 are heated by the heat source which is not shown in figure as needed,
  • the surface temperature is 20 degreeC or more, for example, Preferably, it is 40 degreeC or more, for example, 150 degreeC or less, Preferably Is set to a range of 80 ° C. or lower.
  • the first roll B6 and the second roll B7 are provided so as to rotate in the same direction at the first nip portion B8 so that the first long sheet B2 can be transported downstream in the transport direction.
  • the rolled member B5 forms the first long sheet B2 by rolling the raw material component B9 into a sheet shape.
  • the sheet lamination part B4 includes a first stage lamination part, and if necessary, a plurality of intermediate stage lamination parts and a final stage lamination part.
  • the sheet stacking part B4 is composed of n stages, for example, the first sheet stacking part (first stage stacking part), if necessary, the second sheet stacking part (intermediate stage stacking part), ..., and The nth sheet lamination part (final stage lamination part) is provided.
  • the sheet stacking section B4 includes a first sheet stacking section B10 (first stage stacking section), a second sheet stacking section B11 (intermediate stage stacking section), and a third sheet stacking section B12 (intermediate stage stacking section). Laminating part) and a fourth sheet laminating part B13 (final stage laminating part).
  • the first sheet stacking unit B10 is disposed on the downstream side in the transport direction with respect to the sheet forming unit B3, and is disposed on the most upstream side in the transport direction in the sheet stacking unit B4. Moreover, 1st sheet
  • stacking part B10 is orthogonal to a conveyance direction in the conveyance direction downstream with respect to several rolling member B5 (equivalent to a 1st rolling member) in sheet
  • One rolling member B5 (corresponding to a second rolling member) arranged in parallel in the direction to be provided.
  • one rolling member B5 of the first sheet stacking part B10 is provided corresponding to the two rolling members B5 in the sheet forming part B3.
  • half of the rolling members B5 of the first sheet stacking portion B10 are provided with respect to the number of rolling members B5 of the sheet forming portion B3.
  • the first sheet stacking portion B10 includes 2 n-1 (specifically, 8) rolling members B5.
  • the material, size, rotation speed, surface temperature, and rotation direction of the first roll B6 and the second roll B7 that form each rolling member B5 in the first sheet lamination portion B10 are the same as those of the rolling member B5 in the sheet forming portion B3. It is.
  • the gap G2 between the second nip portion B14 of the first roll B6 and the second roll B7 in the first sheet lamination portion B10 is, for example, 50% with respect to the first gap G1 of the first nip portion B8 in the sheet forming portion B3.
  • the gap G2 of the second nip portion B14 in the first sheet lamination part B10 is, for example, 0.05 mm or more, preferably 0.05 mm or more, more preferably 0.1 mm or more, and further preferably For example, it is 1.5 mm or less, preferably 1 mm or less, more preferably 0.8 mm or less, and still more preferably 0.6 mm or less.
  • the second sheet stacking part B11 is arranged on the downstream side in the transport direction with respect to the first sheet stacking part B10.
  • stacking part B11 is a conveyance direction in the conveyance direction downstream with respect to several rolling member B5 (equivalent to a 1st rolling member) in 1st sheet
  • one rolling member B5 of the second sheet lamination portion B11 is provided corresponding to the two rolling members B5 in the first sheet lamination portion B10.
  • half of the rolling members B5 of the second sheet lamination portion B11 are provided with respect to the number of rolling members B5 of the first sheet lamination portion B10.
  • the second sheet stacking part B11 is provided with 2 n ⁇ 2 (specifically, four) rolling members B5.
  • 1st roll B6 and 2nd roll B7 which form each rolling member B5 in 2nd sheet lamination part B11 are the same as those in 1st sheet lamination part B10.
  • the third sheet stacking part B12 is arranged on the downstream side in the transport direction with respect to the second sheet stacking part B11.
  • the third sheet stacking portion B12 is in the transport direction on the downstream side in the transport direction with respect to the plurality of rolling members B5 (corresponding to the first rolling member) in the second sheet stacking portion B11 arranged on the upstream side in the transport direction. Is provided with one rolling member B5 (corresponding to a second rolling member) arranged in parallel in a direction orthogonal to the direction.
  • one rolling member B5 of the third sheet lamination portion B12 is provided corresponding to the two rolling members B5 in the second sheet lamination portion B11.
  • half of the rolling members B5 of the third sheet lamination part B12 are provided with respect to the number of rolling members B5 of the second sheet lamination part B11.
  • the third sheet stacking part B12 includes 2 n ⁇ 3 (specifically, two) rolling members B5.
  • 1st roll B6 and 2nd roll B7 which form each rolling member B5 in 3rd sheet lamination part B12 are the same as those in 1st sheet lamination part B10.
  • the fourth sheet stacking part B13 is disposed on the downstream side in the transport direction with respect to the third sheet stacking part B12, and is disposed on the most downstream side in the transport direction in the sheet stacking part B4. Further, the fourth sheet stacking portion B13 is in the transport direction on the downstream side in the transport direction with respect to the plurality of rolling members B5 (corresponding to the first rolling member) in the third sheet stacking portion B12 arranged on the upstream side in the transport direction. Is provided with one rolling member B5 (corresponding to a second rolling member) arranged in parallel in a direction orthogonal to the direction.
  • one rolling member B5 of the fourth sheet lamination part B13 is provided corresponding to the two rolling members B5 in the third sheet lamination part B12.
  • half of the rolling members B5 of the fourth sheet lamination portion B13 are provided with respect to the number of rolling members B5 of the third sheet lamination portion B12.
  • the fourth sheet stacking portion B13 includes 2 n ⁇ 4 (specifically, one) rolling members B5.
  • 1st roll B6 and 2nd roll B7 which form each rolling member B5 in 4th sheet lamination part B13 are the same as those in 1st sheet lamination part B10.
  • a winding roll (not shown) is a rolling member in the fourth sheet lamination portion B13 (or the nth sheet lamination portion when the sheet lamination portion B4 is composed of n stages). It is provided at an interval on the downstream side in the conveyance direction of B5.
  • the raw material component B9 is charged into each first nip portion B8 of the plurality of rolling members B5 in the sheet forming portion B3.
  • the input amount of the raw material component B9 is, for example, 0.01 kg / min or more, preferably 0.02 kg / min or more, and, for example, 50 kg / min or less, 5 kg / min or less.
  • the raw material component B9 introduced into each first nip portion B8 of the plurality of rolling members B5 in the sheet forming portion B3 is conveyed in the conveying direction by the rotation of the first roll B6 and the second roll B7 in the first nip portion B8.
  • Each of the first long sheets B2 is rolled out while being conveyed to the downstream side and formed on the first long sheet B2, and the first long sheets B2 are sent out from the respective rolling members B5 in the sheet forming portion B3.
  • the thickness TB1 of the first long sheet B2 formed by the rolling member B5 in the sheet forming portion B3 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and for example, 1 mm or less, preferably It is 0.8 mm or less, More preferably, it is 0.6 mm or less, More preferably, it is 0.4 mm or less.
  • the two first long sheets B2 rolled by the two rolling members B5 adjacent to each other in the parallel direction in the sheet forming portion B3 are one rolling member in the first sheet stacking portion B10 corresponding to these two. It is sent out to B5. Then, the two first long sheets B2 then reach the second nip portion B14 of the rolling member B5 in the first sheet stacking portion B10, and are joined together and stacked in the second sheet in the first sheet stacking portion B10. The nip portion B14 is entered. Next, the two first long sheets B2 that have entered the second nip portion B14 are rolled together while being transported downstream (downward) in the transport direction by the rotation of the first roll B6 and the second roll B7. It is formed on one second long sheet B15 composed of two layers, and is sent out from the rolling member B5 in the first sheet lamination part B10.
  • the thickness TB2 of the second long sheet B15 formed by the rolling member B5 in the first sheet lamination part B10 is compared with the thickness TB1 of the first long sheet B2 formed by rolling of the rolling member B5 in the sheet forming part B3.
  • it is 150% or less, preferably 130% or less, more preferably 120% or less, and for example, 50% or more, preferably 70% or more, and more preferably 80% or more.
  • the thickness TB2 of the second long sheet B15 formed by the rolling member B5 in the first sheet stacking portion B10 is, for example, 0.05 mm or more, preferably 0.1 mm or more, 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less, and further preferably 0.4 mm or less.
  • the two second long sheets B15 rolled by the two rolling members B5 adjacent to each other in the parallel direction in the first sheet lamination part B10 correspond to one of the two in the second sheet lamination part B11. It is sent out toward the rolling member B5. Then, the two second long sheets B15 then reach the second nip portion B14 of the rolling member B5 in the second sheet lamination portion B11 and are united and laminated while being second in the second sheet lamination portion B11. The nip portion B14 is entered. Next, the two second long sheets B15 that have entered the second nip portion B14 are rolled together while being conveyed downstream (downward) in the conveyance direction by the rotation of the first roll B6 and the second roll B7. It is formed on one third long sheet B16 composed of four layers, and is fed out from the rolling member B5 in the second sheet lamination part B11.
  • the thickness TB3 of the third long sheet B16 formed by the rolling member B5 in the second sheet lamination part B11 is the thickness TB2 of the second long sheet B15 formed by rolling of the rolling member B5 in the first sheet lamination part B10.
  • 150% or less preferably 130% or less, more preferably 120% or less, and for example, 50% or more, preferably 70% or more, more preferably 80% or more. is there.
  • the thickness TB3 of the third long sheet B16 formed by the rolling member B5 in the second sheet lamination portion B11 is, for example, 0.05 mm or more, preferably 0.1 mm or more, 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less, and further preferably 0.4 mm or less.
  • the thickness TB4 of the fourth long sheet B17 formed by the rolling member B5 in the third sheet lamination part B12 is the thickness TB3 of the third long sheet B16 formed by rolling of the rolling member B5 in the second sheet lamination part B11.
  • 150% or less, preferably 130% or less, more preferably 120% or less, and for example, 50% or more, preferably 70% or more, more preferably 80% or more. is there.
  • the thickness TB4 of the fourth long sheet B17 formed by the rolling member B5 in the third sheet lamination portion B12 is, for example, 0.05 mm or more, preferably 0.1 mm or more, 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less, and further preferably 0.4 mm or less.
  • Two fourth long sheets B17 rolled by two rolling members B5 adjacent to each other in the parallel direction in the third sheet stacking portion B12 correspond to one of the two in the fourth sheet stacking portion B13. It is sent out toward the rolling member B5. Then, the two fourth long sheets B17 then reach the second nip portion B14 of the rolling member B5 in the fourth sheet stacking portion B13, and the second sheet in the fourth sheet stacking portion B13 is stacked while being united. The nip portion B14 is entered. Next, the two fourth long sheets B17 that have entered the second nip portion B14 are rolled together while being conveyed downstream (downward) in the conveyance direction by the rotation of the first roll B6 and the second roll B7. , Formed in one fifth long sheet B18 composed of 16 layers, and fed out from the rolling member B5 in the fourth sheet lamination part B13.
  • the thickness TB5 of the fifth long sheet B18 formed by the rolling member B5 in the fourth sheet lamination part B13 is the thickness TB4 of the fourth long sheet B17 formed by rolling of the rolling member B5 in the third sheet lamination part B12.
  • 150% or less, preferably 130% or less, more preferably 120% or less, and for example, 50% or more, preferably 70% or more, more preferably 80% or more. is there.
  • the thickness TB5 of the fifth long sheet B18 formed by the rolling member B5 in the fourth sheet lamination portion B13 is, for example, 0.05 mm or more, preferably 0.1 mm or more, It is 1 mm or less, for example, 0.8 mm or less, More preferably, it is 0.6 mm or less, More preferably, it is 0.4 mm or less.
  • the fifth long sheet B18 fed from the rolling member B5 in the fourth sheet stacking part B13 is wound up by a winding roll (not shown).
  • the pressing process of the second embodiment is the same as the pressing process of the first embodiment.
  • the physical properties and the like of the sheet B21 and the heat conductive sheet B100 of the second embodiment are the same as those of the heat conductive sheet 100 of the first embodiment.
  • this heat conductive sheet B100 is affixed on the heat dissipation object used as a to-be-adhered body, and after that, when a polymer matrix contains a thermosetting resin component, it is thermoset by heating (it is set as a C stage state). ) To adhere to the heat dissipation object.
  • the heat conductive sheet B100 In order to thermally cure the heat conductive sheet B100, for example, 60 ° C. or more, preferably 80 ° C. or more, for example, 250 ° C. or less, preferably 200 ° C. or less, for example, 5 minutes or more, preferably The heat conductive sheet B100 is heated for 10 minutes or longer, for example, 300 minutes or shorter, preferably 200 minutes or shorter.
  • the plate-like boron nitride particles B23 can be effectively prevented from being crushed.
  • the first long sheet B2 is formed by rolling the raw material component B9 with the first roll B6 and the second roll B7 in the sheet forming section B3, and then the first sheet stacking section B10 in the sheet stacking section B4.
  • a plurality of third long sheets B16 and fourth long sheets B17 are stacked in the thickness direction TD and rolled. Thereafter, in order to further press the long sheet, the porosity P can be reduced while orienting the plate-like boron nitride 23 along the surface direction PD orthogonal to the thickness direction TD in the polymer matrix B24.
  • the porosity P can be reduced while the plate-like boron nitride particles B23 are efficiently oriented along the plane direction PD in the polymer matrix B24.
  • the thermal conductive sheet B100 having excellent thermal conductivity and flexibility in the surface direction PD can be manufactured with excellent manufacturing efficiency.
  • the heat conductive sheet B100 having excellent flexibility and thermal conductivity in the surface direction PD can be used for various heat dissipation applications.
  • the electronic element can be efficiently conducted while protecting the electronic element.
  • the electronic element covered with the heat conductive sheet B100 is not particularly limited, and examples thereof include an IC (integrated circuit) chip, a capacitor, a coil, a resistor, and a light emitting diode. These electronic elements are usually provided on a substrate, and are arranged at intervals in a plane direction (plane direction of the substrate).
  • the heat conductive sheet B100 covers an electronic component employed in power electronics and / or a mounting substrate on which the electronic component is mounted, the heat conductive sheet B100 can be prevented from being deteriorated by heat, and the heat conductive sheet B100 can be prevented. With B100, the heat of the electronic component and / or the mounting substrate can be radiated along the surface direction PD.
  • Electronic components used in power electronics include, for example, IC (integrated circuit) chips (especially narrow electrode terminal portions in IC chips), thyristors (rectifiers), motor parts, inverters, power transmission parts, capacitors, coils , Resistors, light emitting diodes, and the like.
  • IC integrated circuit
  • the electronic component described above is mounted on the surface (one surface) of the mounting substrate, and in such a mounting substrate, the electronic components are arranged at intervals in the surface direction (surface direction of the mounting substrate). Yes.
  • the heat conductive sheet B100 having excellent heat resistance can be provided on, for example, an LED heat dissipation board or a battery heat dissipation material.
  • the raw material component containing the solvent is dried to prepare the raw material powder, which is put into the calendar B1, but for example, shown by the phantom line in FIG.
  • the raw material sheet B26 can be put into the calendar B1.
  • positioned relatively downstream in a conveyance direction is provided corresponding to two rolling members B5 arrange
  • the rolling member B5 that is relatively disposed on the downstream side in the conveying direction corresponds to three or more rolling members B5 that are relatively disposed on the upstream side in the conveying direction.
  • the step of laminating two long sheets is performed four times, but the number of times of laminating the long sheets is not particularly limited, for example, once (that is, The embodiment in which the sheet lamination part is a single stage (see FIG. B2)) or more, preferably 2 times or more, more preferably 3 times or more, for example, 10 times or less, preferably 7 times or less. .
  • the porosity may not be sufficiently reduced.
  • Example 1 [Raw material component preparation process] After mixing and stirring each component based on the formulation described in Table 1, the raw material component was prepared as a raw powder by distilling off methyl ethyl ketone (solvent) by vacuum drying at 25 ° C. (mixing) ⁇ Vacuum drying method).
  • the raw material component When the raw material component was introduced into the rolled member, the raw material component was sandwiched between two long release sheets (trade name “Panapeel TP-03”, PET, thickness 188 ⁇ m, manufactured by PANAC). .
  • the two release sheets sandwiched the raw material components so that their processing surfaces face each other, that is, face the inside.
  • the long sheet was in the B stage state.
  • a plate-like silicone rubber sheet (release sheet) was first placed in a vacuum press, and a laminate was placed thereon. Further, a silicone rubber sheet was placed thereon, and subsequently vacuuming was performed at 70 ° C. for 5 minutes at 50 Pa or less with a vacuum heating press. Next, the effective pressure was adjusted to 10 MPa, and after performing hot pressing for 10 minutes, the pressure was released to obtain a heat conductive sheet.
  • the thermally conductive sheet was in a B-stage state, and its thickness was 258 ⁇ m.
  • Examples 2 to 8 and Comparative Examples 1 to 15 Based on the formulations and conditions described in Tables 1 to 6, the same treatment as in Example 1 was performed to obtain thermally conductive sheets of Examples 2 to 8 and Comparative Examples 1 to 15.
  • Comparative Examples 1 to 7 the long sheet forming process was not performed by a calendar. That is, in Comparative Examples 1, 3, and 5, the raw material powder was pressed. In Comparative Examples 2 and 4, the raw material powder was kneaded and then pressed. Further, in Comparative Example 6, the raw material powder was kneaded and extruded. In Comparative Example 7, the raw material powder was kneaded and extruded, and then pressed.
  • Comparative Examples 8 to 15 did not perform the pressing process. That is, only the long sheet forming step was performed, and the obtained long sheet was obtained as it was as a heat conductive sheet.
  • the thermal conductivity in the plane direction (PD) was measured by a pulse heating method using a xenon flash analyzer “LFA-447 type” (manufactured by NETZSCH). Further, the thermal conductivity in the thickness direction (TD) was measured by the TWA method using “ai-Phase mobile” (manufactured by Eye Phase).
  • boron nitride particles (PT-110) were also observed with an electron microscope (SEM). The image processing diagram is shown in FIG.
  • the bending resistance (flexibility) of the thermal conductive sheets of the respective examples in the B stage state and the comparative examples was evaluated under the following test conditions.
  • Test equipment Type I Mandrel: 10mm diameter, 5mm diameter, or 1mm diameter Then, from the diameter of the mandrel of the test apparatus that causes each thermal conductive sheet in the B-stage state to bend at a bending angle of more than 90 degrees and 180 degrees or less and cause the thermal conductive sheet to break (damage), It was evaluated as follows.
  • Measuring method of porosity First, the volume and weight of the heat conductive sheet were measured, and the density was calculated. Furthermore, the density of 2.28 g / cm 3 of boron nitride particles, assuming the density of the resin and 1.2 g / cm 3, when calculating the theoretical density of the thermal conductive sheet (a 70vol%, 1.956g / cm 3 ).
  • Example B1 [Raw material component preparation process] After mixing and stirring each component based on the formulation described in Table B1, methyl ethyl ketone (solvent) was distilled off by vacuum drying at 25 ° C. to prepare a raw material component as a raw powder (mixing) ⁇ Vacuum drying method).
  • the long sheet was in the B stage state.
  • a plate-like silicone rubber sheet was first placed in a vacuum press, and a laminate was placed thereon. Further, a silicone rubber sheet was placed thereon, and subsequently vacuuming was performed at 70 ° C. for 5 minutes at 50 Pa or less with a vacuum heating press. Next, the effective pressure was adjusted to 10 MPa, and after pressing for 10 minutes, the pressure was released to obtain a heat conductive sheet.
  • the thermally conductive sheet was in a B-stage state, and its thickness was 258 ⁇ m.
  • Example B2 to Example B10 and Comparative Example B1 to Comparative Example B20 Based on the formulation and conditions described in Tables B1 ⁇ Table B6, was treated in the same manner as in Example B1, to obtain a thermally conductive sheet.
  • Comparative Examples B1 to B7 the long sheet forming process was not performed by a calendar. That is, Comparative Example B1, Comparative Example B3, and Comparative Example B5 pressed the raw material powder. In Comparative Example B2 and Comparative Example B4, the raw material powder was kneaded and then pressed. Further, in Comparative Example B6, the raw material powder was kneaded and extruded. In Comparative Example B7, the raw material powder was kneaded and extruded, and then pressed.
  • Comparative Example B8 to Comparative Example B20 did not perform the pressing step. That is, only the long sheet forming step was performed, and the obtained long sheet was obtained as it was as a heat conductive sheet.
  • Comparative Example B8, Comparative Example B13, and Comparative Example B15 use a calendar that does not include a sheet stacking unit, that is, a calendar B1 that includes only a sheet forming unit B3 including a pair of rolls B6 and B7 shown in FIG. The long sheet B20 was formed and obtained as a heat conductive sheet as it was.
  • the thermal conductivity in the plane direction (PD) was measured by a pulse heating method using a xenon flash analyzer “LFA-447 type” (manufactured by NETZSCH). Further, the thermal conductivity in the thickness direction (TD) was measured by the TWA method using “ai-Phase mobile” (manufactured by Eye Phase).
  • boron nitride particles (PT-110) were also observed with an electron microscope (SEM).
  • SEM electron microscope
  • the bending resistance (flexibility) of the thermal conductive sheets of Examples B and Comparative Examples B in the B-stage state was evaluated under the following test conditions.
  • Test equipment Type I Mandrel: 10mm diameter, 5mm diameter, or 1mm diameter Then, from the diameter of the mandrel of the test apparatus that causes each thermal conductive sheet in the B-stage state to bend at a bending angle of more than 90 degrees and 180 degrees or less and cause the thermal conductive sheet to break (damage), It was evaluated as follows.
  • Measuring method of porosity First, the volume and weight of the heat conductive sheet were measured, and the density was calculated. Furthermore, the density of 2.28 g / cm 3 of boron nitride particles, assuming the density of the resin and 1.2 g / cm 3, when calculating the theoretical density of the thermal conductive sheet (a 70vol%, 1.956g / cm 3 ).
  • Example B and Comparative Example B are classified into prescription B1 to prescription B3, and the complex shear viscosity (complex viscosity) of the heat conductive sheet in each prescription conforms to JIS K7244-10 (2005).
  • the measurement was performed by dynamic viscoelasticity measurement in a shear mode at a frequency of 10 Hz and a heating rate of 2 ° C./min.
  • PT-110 trade name, plate-like boron nitride particles, average particle size (light scattering method) 45 ⁇ m, manufactured by Momentive Performance Materials
  • Japan EG-200 trade name “Ogsol EG-200”, bisarylfluorene Type epoxy resin, semi-solid, epoxy equivalent 292 g / eqiv. Normal temperature semi-solid, manufactured by Osaka Gas Chemical Co., Ltd.
  • EXA-1000 Trade name “Epicron EXA-4850-1000”, bisphenol A type epoxy resin, epoxy equivalent of 310 to 370 g / eqiv.
  • 2P4MHZ-PW manufactured by Meiwa Kasei Co., Ltd .: Trade name “Cureazole 2P4MHZ-PW” (curing agent, imidazole compound, Shikoku Kasei Co., Ltd.) 5 mass% methyl ethyl ketone dispersion SG-P3 (15 mass% MEK solution): Trade name “Taisan” Resin SG-P3 ", epoxy-modified ethyl acrylate-butyl acrylate-acrylonitrile copolymer, solvent: methyl ethyl ketone, rubber component content 15 mass%, weight average molecular weight 850,000, epoxy equivalent 210 eqiv.
  • the heat conductive sheet is used by covering electronic elements such as an IC (integrated circuit) chip, a capacitor, a coil, a resistor, and a light emitting diode.
  • electronic elements such as an IC (integrated circuit) chip, a capacitor, a coil, a resistor, and a light emitting diode.

Abstract

A thermal conductive sheet of which the porosity is sufficiently reduced and which exhibits excellent flexibility and thermal conductivity in the plane direction. Said thermal conductive sheet is produced by employing a method which involves: preparing a starting material component (27) containing plate-like boron nitride particles (23) and a polymer matrix (24); forming a long sheet (20) from the starting material component (27) by means of a calender (1); and pressing the long sheet (20). As a consequence, the thermal conductive sheet is produced with excellent production efficiency while effectively preventing the plate-like boron nitride particles (23) from being crushed.

Description

熱伝導性シートの製造方法Manufacturing method of heat conductive sheet
 本発明は、熱伝導性シートの製造方法、詳しくは、パワーエレクトロニクス技術に用いられる熱伝導性シートの製造方法に関する。 The present invention relates to a method for manufacturing a heat conductive sheet, and more particularly, to a method for manufacturing a heat conductive sheet used in power electronics technology.
 近年、ハイブリッドデバイス、高輝度LEDデバイス、電磁誘導加熱デバイスなどでは、半導体素子により電力を変換・制御するパワーエレクトロニクス技術が採用されている。パワーエレクトロニクス技術では、大電流を熱などに変換するため、半導体素子に配置される材料には、高い放熱性(高熱伝導性)が要求されている。 In recent years, power electronics technology that converts and controls electric power using a semiconductor element has been adopted in hybrid devices, high-brightness LED devices, electromagnetic induction heating devices, and the like. In power electronics technology, in order to convert a large current into heat or the like, a material disposed in a semiconductor element is required to have high heat dissipation (high thermal conductivity).
 そのような材料として、例えば、板状の窒化ホウ素粉末およびアクリル酸エステル共重合樹脂を含有する熱伝導シートが提案されている(例えば、特許文献1参照。)。 As such a material, for example, a heat conductive sheet containing a plate-like boron nitride powder and an acrylate copolymer resin has been proposed (for example, see Patent Document 1).
 特許文献1では、窒化ホウ素粉末およびアクリル酸エステル共重合樹脂からなる組成物をプレスすることにより、シート状に成形している。 In Patent Document 1, a composition comprising a boron nitride powder and an acrylate copolymer resin is pressed into a sheet shape.
特開2008-280496号公報JP 2008-280496 A
 しかし、特許文献1で提案される方法により得られる熱伝導性シートは、空隙率が高く、そのため、熱伝導性を十分に向上させることができないという不具合がある。 However, the heat conductive sheet obtained by the method proposed in Patent Document 1 has a high porosity, and therefore has a problem that the heat conductivity cannot be sufficiently improved.
 また、特許文献1の熱伝導性シートは空隙率が高いことから、柔軟性が低下して、そのため、半導体素子の外形形状に追従させることができず、容易に破損するという不具合がある。 Moreover, since the heat conductive sheet of Patent Document 1 has a high porosity, the flexibility is lowered, and therefore, there is a problem that it cannot follow the outer shape of the semiconductor element and is easily damaged.
 また、特許文献1の方法は、組成物を単にプレスする方法であるため、板状の窒化ホウ素粉末が容易に破砕されて、特定方向の熱伝導性が低下するという不具合がある。 Further, since the method of Patent Document 1 is a method of simply pressing the composition, there is a problem that the plate-like boron nitride powder is easily crushed and the thermal conductivity in a specific direction is lowered.
 さらに、特許文献1の方法は、組成物を単にプレスする方法であるため、製造効率を十分に向上させることができないという不具合がある。 Furthermore, since the method of Patent Document 1 is a method of simply pressing the composition, there is a problem that the production efficiency cannot be sufficiently improved.
 本発明の目的は、空隙率を十分に低下させることができ、かつ、面方向の熱伝導性および柔軟性に優れる熱伝導性シートを、板状の窒化ホウ素粒子の破砕を有効に防止しながら、優れた製造効率で製造することができる、熱伝導性シートの製造方法を提供することにある。 An object of the present invention is to provide a thermally conductive sheet that can sufficiently reduce the porosity and is excellent in thermal conductivity and flexibility in the plane direction, while effectively preventing crushing of plate-like boron nitride particles. An object of the present invention is to provide a method for producing a heat conductive sheet that can be produced with excellent production efficiency.
 上記目的を達成するために、本発明の熱伝導性シートの製造方法は、板状の窒化ホウ素粒子およびポリマーマトリクスを含有する原料成分を調製する工程、前記原料成分からカレンダーによって長尺シートを形成する工程、および、前記長尺シートをプレスする工程を備えることを特徴としている。 In order to achieve the above object, the method for producing a thermally conductive sheet according to the present invention includes a step of preparing a raw material component containing plate-like boron nitride particles and a polymer matrix, and a long sheet is formed from the raw material component by a calendar. And a step of pressing the long sheet.
 また、熱伝導性シートの製造方法では、前記カレンダーは、複数のニップ部分が形成されるように配置される複数のロールを備え、前記長尺シートの搬送方向に互いに隣接する上流側のニップ部分と下流側のニップ部分とにおいて、前記下流側のニップ部分の間隔が、前記上流側のニップ部分の間隔より小さいことが好適である。 In the method for manufacturing a heat conductive sheet, the calendar includes a plurality of rolls arranged so that a plurality of nip portions are formed, and the nip portions on the upstream side adjacent to each other in the conveying direction of the long sheet. It is preferable that the distance between the downstream nip portions is smaller than the distance between the upstream nip portions.
 また、熱伝導性シートの製造方法では、前記上流側のニップ部分と前記下流側のニップ部分との2つのニップ部分において、前記下流側のニップ部分の隙間が、前記上流側のニップ部分の間隔に対して、0.9倍以下であることが好適である。 Further, in the method for manufacturing a heat conductive sheet, in the two nip portions of the upstream nip portion and the downstream nip portion, a gap between the downstream nip portion is an interval between the upstream nip portion. In contrast, it is preferably 0.9 times or less.
 また、本発明の熱伝導性シートの製造方法では、前記カレンダーには、ニップ部分が、少なくとも3つ設けられていることが好適である。 In the method for producing a heat conductive sheet of the present invention, it is preferable that the calender is provided with at least three nip portions.
 また、本発明の熱伝導性シートの製造方法では、前記熱伝導性シートの空隙率が、3.0体積%以下であることが好適である。 In the method for producing a heat conductive sheet of the present invention, it is preferable that a porosity of the heat conductive sheet is 3.0% by volume or less.
 また、本発明の熱伝導性シートの製造方法では、前記カレンダーは、互いに対向配置される1対のロールを前記搬送方向に沿って複数備えていることが好適である。 In the method for producing a heat conductive sheet of the present invention, it is preferable that the calender includes a plurality of pairs of rolls arranged opposite to each other along the transport direction.
 また、本発明の熱伝導性シートの製造方法では、前記熱伝導性シートは、JIS K7244-10(2005年)に準拠し、周波数10Hz、昇温速度2℃/分の動的粘弾性測定により得られる温度20~150℃のいずれかにおける複素剪断粘度ηが、300Pa・s以上、10000Pa・s以下であることが好適である。 Further, in the method for producing a heat conductive sheet of the present invention, the heat conductive sheet is measured by dynamic viscoelasticity measurement in accordance with JIS K7244-10 (2005) according to dynamic viscoelasticity measurement at a frequency of 10 Hz and a heating rate of 2 ° C./min. It is preferable that the complex shear viscosity η * at a temperature of 20 to 150 ° C. to be obtained is 300 Pa · s or more and 10,000 Pa · s or less.
 また、本発明の熱伝導性シートの製造方法では、前記窒化ホウ素粒子の動的光散乱法にて測定される平均粒子径が、20μm以上であり、前記熱伝導性シートにおける前記窒化ホウ素粒子の体積割合が、60体積%以上であることが好適である。 Moreover, in the manufacturing method of the heat conductive sheet of this invention, the average particle diameter measured by the dynamic light scattering method of the said boron nitride particle is 20 micrometers or more, The said boron nitride particle in the said heat conductive sheet The volume ratio is preferably 60% by volume or more.
 また、本発明の熱伝導性シートの製造方法では、前記熱伝導性シートの厚み方向に対する直交方向の熱伝導率が、6W/m・K以上であることが好適である。 In the method for producing a heat conductive sheet of the present invention, it is preferable that the heat conductivity in the direction perpendicular to the thickness direction of the heat conductive sheet is 6 W / m · K or more.
 また、本発明の熱伝導性シートは、板状の窒化ホウ素粒子およびポリマーマトリクスを含有する原料成分を調製する工程、前記原料成分を、少なくとも1対のロールを備えるカレンダーで圧延することにより、長尺シートを形成する工程、および、前記長尺シートをプレスする工程を備え、前記長尺シートを形成する工程は、前記原料成分を1対のロールで圧延することによって、前記長尺シートを形成する工程、および、前記長尺シートを厚み方向に複数積層し、1対のロールによって圧延する工程を備えることを特徴としている。 Further, the heat conductive sheet of the present invention is prepared by a step of preparing a raw material component containing plate-like boron nitride particles and a polymer matrix, by rolling the raw material component with a calender provided with at least one pair of rolls. A step of forming a long sheet, and a step of pressing the long sheet, wherein the step of forming the long sheet forms the long sheet by rolling the raw material components with a pair of rolls. And a step of laminating a plurality of the long sheets in the thickness direction and rolling with a pair of rolls.
 また、本発明の熱伝導性シートの製造方法では、前記カレンダーは、互いに対向配置される1対のロールからなる圧延部材を複数備え、前記複数の圧延部材は、前記長尺シートの搬送方向上流側に配置される第1圧延部材と、前記第1圧延部材の前記搬送方向下流側に配置される第2圧延部材とのいずれかに対応し、前記第2圧延部材が、複数の前記第1圧延部材に対応して、1個設けられ、前記長尺シートを形成する工程では、前記複数の第1圧延部材によって、前記長尺シートを形成し、前記第2圧延部材によって、前記複数の第1圧延部材によって形成された複数の前記長尺シートをまとめて圧延することが好適である。 Moreover, in the manufacturing method of the heat conductive sheet of this invention, the said calender is provided with two or more rolling members which consist of a pair of roll mutually opposingly arranged, The said several rolling members are the conveyance direction upstream of the said elongate sheet | seat. One of the first rolling members disposed on the side and the second rolling member disposed on the downstream side in the transport direction of the first rolling member, wherein the second rolling member includes a plurality of the first rolling members. In the step of forming one long sheet corresponding to a rolled member, the long sheet is formed by the plurality of first rolled members, and the plurality of first sheets are formed by the second rolled member. It is preferable that a plurality of the long sheets formed by one rolling member are rolled together.
 また、本発明の熱伝導性シートの製造方法は、前記長尺シートを複数積層する工程を2回以上実施することを特徴とすることが好適である。 Moreover, it is preferable that the method for producing a heat conductive sheet of the present invention is characterized in that the step of laminating a plurality of the long sheets is performed twice or more.
 本発明の熱伝導性シートの製造方法では、原料成分からカレンダーによって長尺シートを形成するので、優れた製造効率で熱伝導性シートを得ることができる。 In the method for producing a heat conductive sheet of the present invention, since a long sheet is formed from a raw material component by a calender, a heat conductive sheet can be obtained with excellent production efficiency.
 しかも、カレンダーによって長尺シートを形成するので、板状の窒化ホウ素粒子の破砕を有効に防止することができる。 Moreover, since the long sheet is formed by the calendar, it is possible to effectively prevent the plate-like boron nitride particles from being crushed.
 さらに、原料成分からカレンダーによって長尺シートを形成し、長尺シートをプレスするので、板状の窒化ホウ素をポリマーマトリクス中で厚み方向に直交する面方向に沿って配向させながら、熱伝導性シートの空隙率を低減させることができる。 Furthermore, since a long sheet is formed from a raw material component by a calendar and the long sheet is pressed, the thermally conductive sheet is oriented while aligning the plate-like boron nitride along the plane direction perpendicular to the thickness direction in the polymer matrix. The porosity of can be reduced.
 そのため、面方向の熱伝導性および柔軟性に優れる熱伝導性シートを、優れた製造効率で製造することができる。 Therefore, a heat conductive sheet having excellent surface direction heat conductivity and flexibility can be manufactured with excellent manufacturing efficiency.
図1は、本発明の第1実施形態の熱伝導性シートの製造方法の長尺シート形成工程(5個の圧延部材を縦型配置で備える態様)で用いられるカレンダーの概略構成図を示す。FIG. 1: shows the schematic block diagram of the calendar | calender used at the elongate sheet formation process (a mode provided with five rolling members by a vertical arrangement | positioning) of the manufacturing method of the heat conductive sheet of 1st Embodiment of this invention. 図2は、本発明の第1実施形態の熱伝導性シートの製造方法のプレス工程の概略斜視図を示す。FIG. 2: shows the schematic perspective view of the press process of the manufacturing method of the heat conductive sheet of 1st Embodiment of this invention. 図3は、本発明の第1実施形態の熱伝導性シートの製造方法により得られる熱伝導性シートの斜視図を示す。FIG. 3 shows a perspective view of a thermally conductive sheet obtained by the method for producing a thermally conductive sheet according to the first embodiment of the present invention. 図4は、耐屈曲性試験のタイプIの試験装置(耐屈曲性試験前)の斜視図を示す。FIG. 4 is a perspective view of a type I test apparatus (before the bending resistance test) of the bending resistance test. 図5は、耐屈曲性試験のタイプIの試験装置(耐屈曲性試験途中)の斜視図を示す。FIG. 5 is a perspective view of a type I test apparatus (in the middle of the bending resistance test) for the bending resistance test. 図6は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(5個の圧延部材を横型配置で備える態様)を示す。FIG. 6: shows the schematic block diagram (a mode provided with five rolling members by horizontal arrangement | positioning) used in other embodiment of the elongate sheet formation process of the manufacturing method of the heat conductive sheet of this invention. 図7は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(3個のロールが直立配置される態様)を示す。FIG. 7 shows a schematic configuration diagram (a mode in which three rolls are arranged upright) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. 図8は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(4個のロールが直立配置される態様)を示す。FIG. 8 shows a schematic configuration diagram (a mode in which four rolls are arranged upright) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. 図9は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(5個のロールが直立配置される態様)を示す。FIG. 9 shows a schematic configuration diagram (a mode in which five rolls are arranged upright) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. 図10は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(3個のロールが傾斜状に配置される態様)を示す。FIG. 10 shows a schematic configuration diagram of a calendar (an aspect in which three rolls are arranged in an inclined manner) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. 図11は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(3個のロールのうち、上側の2個が傾斜状に配置される態様)を示す。FIG. 11 is a schematic configuration diagram of a calendar used in another embodiment of the long sheet forming step of the manufacturing method of the heat conductive sheet of the present invention (the upper two of the three rolls are arranged in an inclined manner. Embodiment). 図12は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(4個のロールが逆L字形状に配置される態様)を示す。FIG. 12 is a schematic configuration diagram of a calendar (an aspect in which four rolls are arranged in an inverted L shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. Show. 図13は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(4個のロールがL字形状に配置される態様)を示す。FIG. 13: shows the schematic block diagram (form which four rolls are arrange | positioned in L shape) used in other embodiment of the elongate sheet formation process of the manufacturing method of the heat conductive sheet of this invention. . 図14は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(4個のロールがZ字形状に配置される態様)を示す。FIG. 14: shows the schematic block diagram (form which four rolls are arrange | positioned in Z shape) used in other embodiment of the elongate sheet formation process of the manufacturing method of the heat conductive sheet of this invention. . 図15は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(4個のロールがS字形状に配置される態様)を示す。FIG. 15 is a schematic configuration diagram of a calendar (an aspect in which four rolls are arranged in an S shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. . 図16は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(5個のロールが逆L字形状に配置される態様)を示す。FIG. 16 is a schematic configuration diagram (a mode in which five rolls are arranged in an inverted L shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. Show. 図17は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(5個のロールが7の字形状に配置される態様)を示す。FIG. 17 is a schematic configuration diagram of a calendar (an aspect in which five rolls are arranged in a 7-shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. Show. 図18は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(5個のロールがM字形状に配置される態様)を示す。FIG. 18 shows a schematic configuration diagram (a mode in which five rolls are arranged in an M-shape) used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention. . 図19は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(1対のロールが左右方向に対向配置される態様)を示す。FIG. 19 shows a schematic configuration diagram of a calendar used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention (a mode in which a pair of rolls are arranged opposite to each other in the left-right direction). . 図20は、本発明の熱伝導性シートの製造方法の長尺シート形成工程の他の実施形態で用いられるカレンダーの概略構成図(1対のロールが上下方向に対向配置される態様)を示す。FIG. 20 shows a schematic configuration diagram of a calendar used in another embodiment of the long sheet forming step of the method for producing a heat conductive sheet of the present invention (a mode in which a pair of rolls are arranged opposite to each other in the vertical direction). . 図21は、実施例1の熱伝導性シートのSEM写真の画像処理図を示す。FIG. 21 is an image processing diagram of an SEM photograph of the thermally conductive sheet of Example 1. 図22は、実施例4の熱伝導性シートのSEM写真の画像処理図を示す。FIG. 22 is an image processing diagram of an SEM photograph of the thermally conductive sheet of Example 4. 図23は、窒化ホウ素粒子のSEM写真の画像処理図を示す。FIG. 23 shows an image processing diagram of an SEM photograph of boron nitride particles. 図B1は、本発明の第2実施形態の熱伝導性シートの製造方法の長尺シート形成工程で用いられるカレンダーの概略構成図を示す。B1 shows the schematic block diagram of the calendar | calender used at the elongate sheet formation process of the manufacturing method of the heat conductive sheet of 2nd Embodiment of this invention. 図B2は、図B1のカレンダーの変形例であって、シート積層部が単段である態様を示す。FIG. B2 is a modification of the calendar of FIG. B1, and shows a mode in which the sheet stacking portion is a single stage. 図B3は、実施例B10の熱伝導性シートのSEM写真の画像処理図を示す。FIG. B3 shows an image processing diagram of an SEM photograph of the thermally conductive sheet of Example B10. 図B4は、窒化ホウ素粒子のSEM写真の画像処理図を示す。FIG. B4 shows an image processing diagram of an SEM photograph of boron nitride particles. 図B5は、比較例B8、比較例B13および比較例B15のカレンダーの概略構成図を示す。FIG. B5 shows a schematic configuration diagram of calendars of Comparative Example B8, Comparative Example B13, and Comparative Example B15.
発明の実施形態Embodiments of the Invention
 本発明を第1実施形態および第2実施形態を例示して説明する。以下、各実施形態毎に詳説する。
[第1実施形態]
 第1実施形態の熱伝導性シートの製造方法の第1実施形態は、原料成分を調製する工程(原料調製工程)、原料成分からカレンダーによって長尺シートを形成する工程(長尺シート形成工程)、および、長尺シートをプレスする工程(プレス工程)を備えている。
The present invention will be described by exemplifying the first embodiment and the second embodiment. Hereinafter, each embodiment will be described in detail.
[First Embodiment]
1st Embodiment of the manufacturing method of the heat conductive sheet of 1st Embodiment is the process (raw material preparation process) of preparing a raw material component, and the process of forming a long sheet from a raw material component with a calendar (long sheet forming process). And a step of pressing the long sheet (pressing step).
 以下、各工程を詳述する。 Hereinafter, each process will be described in detail.
 <原料調製工程>
 原料成分は、窒化ホウ素粒子およびポリマーマトリクスを含有する。
<Raw material preparation process>
The raw material component contains boron nitride particles and a polymer matrix.
 窒化ホウ素粒子は、板状(あるいは鱗片状)に形成されている。また、板状は、アスペクト比のある平板状の形状を少なくとも含んでいればよく、板の厚み方向から見て円板状、および、六角形平板状を含んでいる。また、板状は、多層に積層されていてもよく、積層されている場合には、大きさの異なる板状の構造を積層して段状になっている形状、および、端面が劈開した形状を含んでいる。また、板状は、板の厚み方向と直交する方向(面方向)から見て直線形状(図3参照)、さらには、直線形状の途中がやや屈曲する形状を含んでいる。 The boron nitride particles are formed in a plate shape (or scale shape). The plate shape only needs to include at least a flat plate shape having an aspect ratio, and includes a disk shape and a hexagonal flat plate shape when viewed from the thickness direction of the plate. In addition, the plate shape may be laminated in multiple layers, and in the case of being laminated, a plate-like structure with different sizes is laminated and a step shape, and a shape in which the end face is cleaved Is included. Further, the plate shape includes a linear shape (see FIG. 3) when viewed from a direction (plane direction) orthogonal to the thickness direction of the plate, and further includes a shape in which the middle of the linear shape is slightly bent.
 窒化ホウ素粒子は、体積比で60%以上を占める粒子の長手方向長さ(板の厚み方向に対する直交方向における最大長さ)の平均が、例えば、5μm以上、好ましくは、10μm以上、さらに好ましくは、20μm以上、とりわけ好ましくは、30μm以上、最も好ましくは、40μm以上であり、また、例えば、例えば、300μm以下である。 Boron nitride particles have an average length in the longitudinal direction (maximum length in the direction perpendicular to the thickness direction of the plate) occupying 60% or more by volume ratio, for example, 5 μm or more, preferably 10 μm or more, more preferably 20 μm or more, particularly preferably 30 μm or more, most preferably 40 μm or more, and for example, 300 μm or less.
 また、窒化ホウ素粒子の体積比で60%以上を占める粒子の厚み(板の厚み方向長さ、つまり、粒子の短手方向長さ)の平均は、例えば、0.01μm以上、好ましくは、0.1μm以上であり、また、例えば、20μm以下、好ましくは、15μm以下である。 Moreover, the average of the thickness (length in the thickness direction of the plate, that is, the length in the short direction of the particle) of the particles occupying 60% or more by the volume ratio of the boron nitride particles is 0.01 μm or more, preferably 0 .1 μm or more, and for example, 20 μm or less, preferably 15 μm or less.
 また、窒化ホウ素粒子の体積比で60%以上を占める粒子のアスペクト比(長手方向長さ/厚み)は、例えば、2以上、好ましくは、3以上、より好ましくは、4以上であり、また、例えば、10,000以下、好ましくは、5,000以下、さらに好ましくは、2,000以下である。 The aspect ratio (length / thickness in the longitudinal direction) of the particles occupying 60% or more by the volume ratio of the boron nitride particles is, for example, 2 or more, preferably 3 or more, more preferably 4 or more. For example, it is 10,000 or less, preferably 5,000 or less, and more preferably 2,000 or less.
 窒化ホウ素粒子の形態、厚み、長手方向の長さおよびアスペクト比は、画像解析的手法により測定および算出される。例えば、SEM、X線CT、粒度分布画像解析法などにより求めることができる。 The form, thickness, longitudinal length and aspect ratio of boron nitride particles are measured and calculated by an image analysis method. For example, it can be obtained by SEM, X-ray CT, particle size distribution image analysis method, or the like.
 そして、窒化ホウ素粒子は、光散乱法によって測定される平均粒子径が、例えば、5μm以上、好ましくは、10μm以上、さらに好ましくは、20μm以上、とりわけ好ましくは、30μm以上、最も好ましくは、40μm以上であり、また、例えば、200μm以下である。 The boron nitride particles have an average particle size measured by a light scattering method of, for example, 5 μm or more, preferably 10 μm or more, more preferably 20 μm or more, particularly preferably 30 μm or more, and most preferably 40 μm or more. In addition, for example, it is 200 μm or less.
 なお、光散乱法によって測定される平均粒子径は、動的光散乱式粒度分布測定装置を用いる動的光散乱法にて測定される体積平均粒子径である。 The average particle diameter measured by the light scattering method is a volume average particle diameter measured by a dynamic light scattering method using a dynamic light scattering particle size distribution measuring apparatus.
 窒化ホウ素粒子の光散乱法によって測定される平均粒子径が上記範囲に満たないと、同じ体積の窒化ホウ素粒子を混合した場合でも熱伝導率が低下する場合がある。 If the average particle diameter measured by the light scattering method of boron nitride particles is less than the above range, even when boron nitride particles having the same volume are mixed, the thermal conductivity may decrease.
 また、窒化ホウ素粒子の嵩密度(JIS K 5101、見かけ密度)は、例えば、0.1g/cm以上、好ましくは、0.15g/cm以上、さらに好ましくは、0.2g/cm以上、とりわけ好ましくは、0.2g/cmであり、また、例えば、2.3g/cm以下、好ましくは、2.0g/cm以下、より好ましくは、1.8g/cm以下、さらに好ましくは、1.5g/cm以下である。 Further, the bulk density (JIS K 5101, apparent density) of the boron nitride particles is, for example, 0.1 g / cm 3 or more, preferably 0.15 g / cm 3 or more, and more preferably 0.2 g / cm 3 or more. Particularly preferably, it is 0.2 g / cm 3 , and for example, 2.3 g / cm 3 or less, preferably 2.0 g / cm 3 or less, more preferably 1.8 g / cm 3 or less, Preferably, it is 1.5 g / cm 3 or less.
 また、窒化ホウ素粒子は、市販品またはそれを加工した加工品を用いることができる。窒化ホウ素粒子の市販品としては、例えば、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製の「PT」シリーズ(例えば、「PT-110」など)、昭和電工社製の「ショービーエヌUHP」シリーズ(例えば、「ショービーエヌUHP-1」など)などが挙げられる。 Further, as the boron nitride particles, a commercially available product or a processed product obtained by processing it can be used. Examples of commercially available boron nitride particles include the “PT” series (for example, “PT-110”, etc.) manufactured by Momentive Performance Materials Japan, and the “Shobi N UHP” series (manufactured by Showa Denko) ( For example, “ShowBN UHP-1” and the like.
 また、原料成分は、上記した窒化ホウ素粒子以外に、他の無機微粒子を含でいてもよい。他の無機微粒子としては、例えば、炭化ケイ素などの炭化物、例えば、窒化ケイ素などの窒化物(窒化ホウ素を除く)、例えば、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)などの酸化物、例えば、銅、銀などの金属、例えば、カーボンブラックなどの炭素系粒子が挙げられる。他の無機微粒子は、例えば難燃性能や畜冷性能、帯電防止性能、磁性、屈折率調節性能、誘電率調節性能などを有する機能性の粒子であってもよい。 In addition, the raw material component may contain other inorganic fine particles in addition to the boron nitride particles described above. Examples of other inorganic fine particles include carbides such as silicon carbide, nitrides such as silicon nitride (excluding boron nitride), oxides such as silicon oxide (silica), aluminum oxide (alumina), and the like. Examples thereof include metals such as copper and silver, for example, carbon-based particles such as carbon black. The other inorganic fine particles may be functional particles having, for example, flame retardancy performance, animal cooling performance, antistatic performance, magnetism, refractive index adjustment performance, dielectric constant adjustment performance, and the like.
 また、原料成分は、例えば、上記した窒化ホウ素粒子に含まれない微細な窒化ホウ素や異形状の窒化ホウ素粒子を含んでいてもよい。 In addition, the raw material component may contain, for example, fine boron nitride or irregularly shaped boron nitride particles that are not included in the boron nitride particles described above.
 これらの他の無機微粒子は、適宜の割合で、単独使用または2種以上併用することができる。 These other inorganic fine particles can be used alone or in combination of two or more at an appropriate ratio.
 ポリマーマトリクスとしては、例えば、熱硬化性樹脂成分、熱可塑性樹脂成分、ゴム成分などのポリマー成分が挙げられる。 Examples of the polymer matrix include polymer components such as a thermosetting resin component, a thermoplastic resin component, and a rubber component.
 熱硬化性樹脂成分としては、例えば、エポキシ樹脂、熱硬化性ポリイミド、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、熱硬化性ウレタン樹脂などが挙げられる。 Examples of the thermosetting resin component include epoxy resin, thermosetting polyimide, phenol resin, urea resin, melamine resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, thermosetting urethane resin, and the like.
 熱硬化性樹脂成分のうち、好ましくは、エポキシ樹脂が挙げられる。 Among the thermosetting resin components, an epoxy resin is preferable.
 エポキシ樹脂は、常温において、液状、半固形状および固形状のいずれかの形態である。 The epoxy resin is in a liquid, semi-solid or solid form at normal temperature.
 具体的には、エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂(例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂(結晶性ビスフェノール型エポキシ樹脂を含む)、ビスフェノールS型エポキシ樹脂、水添加ビスフェノールA型エポキシ樹脂、ダイマー酸変性ビスフェノール型エポキシ樹脂など)、ノボラック型エポキシ樹脂(例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂など)、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂(例えば、ビスアリールフルオレン型エポキシ樹脂など)、トリフェニルメタン型エポキシ樹脂(例えば、トリスヒドロキシフェニルメタン型エポキシ樹脂など)などの芳香族系エポキシ樹脂、例えば、トリエポキシプロピルイソシアヌレート(トリグリシジルイソシアヌレート)、ヒダントインエポキシ樹脂などの含窒素環エポキシ樹脂、例えば、脂肪族系エポキシ樹脂、脂環式エポキシ樹脂(例えば、ジシクロペンタジエン型エポキシ樹脂などのジシクロ環型エポキシ樹脂など)、グリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などが挙げられる。 Specifically, as the epoxy resin, for example, bisphenol type epoxy resin (for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin (including crystalline bisphenol type epoxy resin), bisphenol S type epoxy resin, water-added bisphenol, etc. A type epoxy resin, dimer acid-modified bisphenol type epoxy resin, etc.), novolac type epoxy resin (for example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, etc.), naphthalene type epoxy resin, fluorene type epoxy resin (For example, bisarylfluorene type epoxy resin, etc.), aromatic epoxy such as triphenylmethane type epoxy resin (eg, trishydroxyphenylmethane type epoxy resin, etc.) Fats, for example, nitrogen-containing ring epoxy resins such as triepoxypropyl isocyanurate (triglycidyl isocyanurate), hydantoin epoxy resins, for example, aliphatic epoxy resins, alicyclic epoxy resins (for example, dicyclopentadiene type epoxy resins) And a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, and the like.
 これらエポキシ樹脂は、単独使用または2種以上併用することができる。好ましくは、半固形状のエポキシ樹脂の単独使用、あるいは、固形状のエポキシ樹脂および液体状のエポキシ樹脂の併用が挙げられる。 These epoxy resins can be used alone or in combination of two or more. Preferably, a semi-solid epoxy resin is used alone, or a combination of a solid epoxy resin and a liquid epoxy resin is used.
 好ましくは、芳香族系エポキシ樹脂、脂環式エポキシ樹脂が挙げられる。 Preferably, aromatic epoxy resins and alicyclic epoxy resins are used.
 また、エポキシ樹脂は、エポキシ当量が、例えば、100g/eqiv.以上、好ましくは、180g/eqiv.以上であり、また、1000g/eqiv.以下、好ましくは、700g/eqiv.以下である。 Moreover, the epoxy resin has an epoxy equivalent of, for example, 100 g / eqiv. As mentioned above, Preferably, it is 180 g / eqiv. Or more and 1000 g / eqiv. Hereinafter, preferably 700 g / eqiv. It is as follows.
 また、エポキシ樹脂に、例えば、硬化剤および硬化促進剤を含有させて、エポキシ樹脂組成物として調製することができる。 Further, for example, the epoxy resin can be prepared as an epoxy resin composition by containing a curing agent and a curing accelerator.
 硬化剤は、加熱によりエポキシ樹脂を硬化させることができる潜在性硬化剤(エポキシ樹脂硬化剤)であって、例えば、イミダゾール化合物、アミン化合物、酸無水物化合物、アミド化合物、ヒドラジド化合物、イミダゾリン化合物、フェノール化合物などが挙げられる。また、上記の他に、ユリア化合物、ポリスルフィド化合物なども挙げられる。 The curing agent is a latent curing agent (epoxy resin curing agent) that can cure the epoxy resin by heating. For example, an imidazole compound, an amine compound, an acid anhydride compound, an amide compound, a hydrazide compound, an imidazoline compound, A phenol compound etc. are mentioned. In addition to the above, urea compounds, polysulfide compounds, and the like are also included.
 イミダゾール化合物としては、例えば、2-フェニルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどが挙げられる。 Examples of the imidazole compound include 2-phenylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and the like.
 アミン化合物としては、例えば、エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、トリエチレンテトラミンなどのポリアミン、または、これらのアミンアダクトなど、例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどが挙げられる。 Examples of the amine compound include polyamines such as ethylenediamine, propylenediamine, diethylenetriamine, and triethylenetetramine, and amine adducts thereof such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.
 酸無水物化合物としては、例えば、無水フタル酸、無水マレイン酸、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、4-メチル-ヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ピロメリット酸無水物、ドデセニルコハク酸無水物、ジクロロコハク酸無水物、ベンゾフェノンテトラカルボン酸無水物、クロレンディック酸無水物などが挙げられる。 Examples of the acid anhydride compound include phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, methyl nadic acid anhydride, and pyromellitic acid. Anhydride, dodecenyl succinic anhydride, dichlorosuccinic anhydride, benzophenone tetracarboxylic acid anhydride, chlorendic acid anhydride and the like can be mentioned.
 アミド化合物としては、例えば、ジシアンジアミド、ポリアミドなどが挙げられる。 Examples of the amide compound include dicyandiamide and polyamide.
 ヒドラジド化合物としては、例えば、アジピン酸ジヒドラジドなどが挙げられる。 Examples of the hydrazide compound include adipic acid dihydrazide.
 イミダゾリン化合物としては、例えば、メチルイミダゾリン、2-エチル-4-メチルイミダゾリン、エチルイミダゾリン、イソプロピルイミダゾリン、2,4-ジメチルイミダゾリン、フェニルイミダゾリン、ウンデシルイミダゾリン、ヘプタデシルイミダゾリン、2-フェニル-4-メチルイミダゾリンなどが挙げられる。 Examples of the imidazoline compound include methyl imidazoline, 2-ethyl-4-methyl imidazoline, ethyl imidazoline, isopropyl imidazoline, 2,4-dimethyl imidazoline, phenyl imidazoline, undecyl imidazoline, heptadecyl imidazoline, 2-phenyl-4-methyl. Examples include imidazoline.
 フェノール化合物としては、例えば、フェノールとホルムアルデヒドとを酸性触媒下で縮合させて得られるノボラック型フェノール樹脂、例えば、フェノールとジメトキシパラキシレンまたはビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂などが挙げられる。 Examples of the phenol compound include a novolak type phenol resin obtained by condensing phenol and formaldehyde under an acidic catalyst, for example, a phenol aralkyl resin synthesized from phenol and dimethoxyparaxylene or bis (methoxymethyl) biphenyl. Can be mentioned.
 これら硬化剤は、単独使用または2種類以上併用することができる。 These curing agents can be used alone or in combination of two or more.
 硬化剤として、好ましくは、イミダゾール化合物、フェノール化合物が挙げられる。 Preferred examples of the curing agent include imidazole compounds and phenol compounds.
 硬化促進剤としては、例えば、トリエチレンジアミン、トリ-2,4,6-ジメチルアミノメチルフェノールなどの3級アミン化合物、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエートなどのリン化合物、例えば、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物などのトリアジン化合物、例えば、4級アンモニウム塩化合物、例えば、有機金属塩化合物、例えば、それらの誘導体などが挙げられる。これら硬化促進剤は、単独使用または2種類以上併用することができる。好ましくは、トリアジン化合物が挙げられる。 Examples of the curing accelerator include tertiary amine compounds such as triethylenediamine and tri-2,4,6-dimethylaminomethylphenol, such as triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium- Phosphorus compounds such as o, o-diethyl phosphorodithioate, for example, triazine compounds such as 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct Examples thereof include quaternary ammonium salt compounds such as organometallic salt compounds such as derivatives thereof. These curing accelerators can be used alone or in combination of two or more. Preferably, a triazine compound is used.
 エポキシ樹脂組成物における硬化剤の配合割合は、エポキシ樹脂100質量部に対して、例えば、0.5質量部以上、好ましくは、1質量部以上であり、また、例えば、1000質量部以下、好ましくは、500質量部以下であり、硬化促進剤の配合割合は、例えば、0.1質量部以下、好ましくは、0.2質量部以下であり、また、例えば、10質量部以下、好ましくは、5質量部以下である。 The mixing ratio of the curing agent in the epoxy resin composition is, for example, 0.5 parts by mass or more, preferably 1 part by mass or more, and, for example, 1000 parts by mass or less, preferably 100 parts by mass of the epoxy resin. Is 500 parts by mass or less, and the blending ratio of the curing accelerator is, for example, 0.1 parts by mass or less, preferably 0.2 parts by mass or less, and for example, 10 parts by mass or less, preferably 5 parts by mass or less.
 上記した硬化剤および/または硬化促進剤は、必要により、溶媒により溶解および/または分散された溶媒溶液および/または溶媒分散液として調製して用いることができる。 The above-mentioned curing agent and / or curing accelerator can be prepared and used as a solvent solution and / or a solvent dispersion dissolved and / or dispersed with a solvent, if necessary.
 溶媒としては、例えば、アセトン、メチルエチルケトンなどケトン、例えば、酢酸エチルなどのエステル、例えば、N,N-ジメチルホルムアミドなどのアミドなどの有機溶媒などが挙げられる。また、溶媒として、例えば、水、例えば、メタノール、エタノール、プロパノール、イソプロパノールなどのアルコールなどの水系溶媒も挙げられる。溶媒として、好ましくは、有機溶媒、さらに好ましくは、ケトンが挙げられる。 Examples of the solvent include organic solvents such as ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, and amides such as N, N-dimethylformamide. Examples of the solvent also include aqueous solvents such as water, for example, alcohols such as methanol, ethanol, propanol, and isopropanol. The solvent is preferably an organic solvent, more preferably a ketone.
 熱可塑性樹脂成分としては、例えば、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体など)、アクリル樹脂(例えば、ポリメタクリル酸メチルなど)、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、ポリスチレン、ポリアクリロニトリル、ポリアミド(ナイロン(登録商標))、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアリルスルホン、熱可塑性ポリイミド、熱可塑性ウレタン樹脂、ポリアミノビスマレイミド、ポリアミドイミド、ポリエーテルイミド、ビスマレイミドトリアジン樹脂、ポリメチルペンテン、フッ化樹脂、液晶ポリマー、オレフィン-ビニルアルコール共重合体、アイオノマー、ポリアリレート、アクリロニトリル-エチレン-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体などが挙げられる。 Examples of the thermoplastic resin component include polyolefin (for example, polyethylene, polypropylene, ethylene-propylene copolymer, etc.), acrylic resin (for example, polymethyl methacrylate, etc.), polyvinyl acetate, ethylene-vinyl acetate copolymer, Polyvinyl chloride, polystyrene, polyacrylonitrile, polyamide (nylon (registered trademark)), polycarbonate, polyacetal, polyethylene terephthalate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyallylsulfone, thermoplastic polyimide, Thermoplastic urethane resin, polyaminobismaleimide, polyamideimide, polyetherimide, bismaleimide triazine resin, polymethylpentene, Resin, liquid crystal polymer, an olefin - vinyl alcohol copolymer, ionomer, polyarylate, acrylonitrile - ethylene - styrene copolymers, acrylonitrile - butadiene - styrene copolymer, acrylonitrile - styrene copolymer.
 ゴム成分は、ゴム弾性を発現するポリマーであって、例えば、エラストマーを含み、具体的には、ウレタンゴム、アクリルゴム、シリコーンゴム、ビニルアルキルエーテルゴム、ポリビニルアルコールゴム、ポリビニルピロリドンゴム、ポリアクリルアミドゴム、セルロースゴム、天然ゴム、ブタジエンゴム、クロロプレンゴム、スチレン・ブタジエンゴム(SBR)、アクリロニトリル・ブタジエンゴム(NBR)、スチレン・エチレン・ブタジエン・スチレンゴム、スチレン・イソプレン・スチレンゴム、スチレン・イソブチレンゴム、イソプレンゴム、ポリイソブチレンゴム、ブチルゴムなどが挙げられる。 The rubber component is a polymer that exhibits rubber elasticity, and includes, for example, an elastomer. Specifically, urethane rubber, acrylic rubber, silicone rubber, vinyl alkyl ether rubber, polyvinyl alcohol rubber, polyvinyl pyrrolidone rubber, polyacrylamide rubber , Cellulose rubber, natural rubber, butadiene rubber, chloroprene rubber, styrene / butadiene rubber (SBR), acrylonitrile / butadiene rubber (NBR), styrene / ethylene / butadiene / styrene rubber, styrene / isoprene / styrene rubber, styrene / isobutylene rubber, Examples include isoprene rubber, polyisobutylene rubber, and butyl rubber.
 ゴム成分として、好ましくは、アクリルゴムが挙げられる。 As the rubber component, acrylic rubber is preferable.
 アクリルゴムは、(メタ)アクリル酸アルキルエステルを含むモノマーの重合により得られる合成ゴムである。 Acrylic rubber is a synthetic rubber obtained by polymerization of monomers containing (meth) acrylic acid alkyl ester.
 (メタ)アクリル酸アルキルエステルは、メタクリル酸アルキルエステルおよび/またはアクリル酸アルキルエステルであって、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニルなどの、アルキル部分が炭素数1~10の直鎖状または分岐状の(メタ)アクリル酸アルキルエステルが挙げられ、好ましくは、アルキル部分が炭素数2~8の直鎖状の(メタ)アクリル酸アルキルエステルが挙げられる。 The (meth) acrylic acid alkyl ester is a methacrylic acid alkyl ester and / or an acrylic acid alkyl ester. For example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) Examples include hexyl acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate and the like, and linear or branched (meth) acrylic acid alkyl esters having an alkyl moiety of 1 to 10 carbon atoms are preferable. Includes a linear (meth) acrylic acid alkyl ester having an alkyl moiety of 2 to 8 carbon atoms.
 (メタ)アクリル酸アルキルエステルの配合割合は、モノマーに対して、例えば、50質量%以上、好ましくは、75質量%以上であり、例えば、99質量%以下である。 The blending ratio of the (meth) acrylic acid alkyl ester is, for example, 50% by mass or more, preferably 75% by mass or more, for example, 99% by mass or less with respect to the monomer.
 モノマーは、(メタ)アクリル酸アルキルエステルと重合可能な共重合性モノマーを含むこともできる。 The monomer can also include a copolymerizable monomer that can be polymerized with an alkyl (meth) acrylate.
 共重合性モノマーは、ビニル基を含有し、例えば、(メタ)アクリロニトリルなどのシアノ基含有ビニルモノマー、例えば、スチレンなどの芳香族ビニルモノマーなどが挙げられる。 The copolymerizable monomer contains a vinyl group, and examples thereof include cyano group-containing vinyl monomers such as (meth) acrylonitrile, and aromatic vinyl monomers such as styrene.
 共重合性モノマーの配合割合は、モノマーに対して、例えば、50質量%以下、好ましくは、25質量%以下であり、例えば、1質量%以上である。 The blending ratio of the copolymerizable monomer is, for example, 50% by mass or less, preferably 25% by mass or less, for example, 1% by mass or more based on the monomer.
 これら共重合性モノマーは、単独または2種以上併用することができる。 These copolymerizable monomers can be used alone or in combination of two or more.
 アクリルゴムは、接着力を増大させるために、主鎖の末端または途中に結合する官能基を含んでいてもよい。官能基としては、例えば、カルボキシル基、ヒドロキシル基、エポキシ基、アミド基などが挙げられ、好ましくは、エポキシ基が挙げられる。 The acrylic rubber may contain a functional group bonded to the end of the main chain or in the middle in order to increase the adhesive force. As a functional group, a carboxyl group, a hydroxyl group, an epoxy group, an amide group etc. are mentioned, for example, Preferably, an epoxy group is mentioned.
 アクリルゴムの重量平均分子量は、例えば、10,000以上、好ましくは、50,000以上、より好ましくは、100,000以上であり、また、例えば、10,000,000以下、好ましくは、5,000,000以下、より好ましくは、3,000,000以下、最も好ましくは、1,000,000以下である。アクリルゴムの重量平均分子量(標準ポリスチレン換算値)は、GPCによって算出される。 The weight average molecular weight of the acrylic rubber is, for example, 10,000 or more, preferably 50,000 or more, more preferably 100,000 or more, and for example, 10,000,000 or less, preferably 5, It is 3,000,000 or less, more preferably 3,000,000 or less, and most preferably 1,000,000 or less. The weight average molecular weight (standard polystyrene equivalent value) of acrylic rubber is calculated by GPC.
 アクリルゴムのガラス転移温度は、例えば、-100℃以上、好ましくは、-80℃以上、より好ましくは、-50℃以上、さらに好ましくは、-40℃以上であり、また、例えば、200℃以下、好ましくは、100℃以下、より好ましくは、100℃以下、さらに好ましくは、50℃以下、最も好ましくは、40℃以下である。 The glass transition temperature of the acrylic rubber is, for example, −100 ° C. or higher, preferably −80 ° C. or higher, more preferably −50 ° C. or higher, still more preferably −40 ° C. or higher, and for example, 200 ° C. or lower. The temperature is preferably 100 ° C. or lower, more preferably 100 ° C. or lower, still more preferably 50 ° C. or lower, and most preferably 40 ° C. or lower.
 アクリルゴムのガラス転移温度は、例えば、JIS K7121-1987に基づいて測定される熱処理後の中間点ガラス転移温度または理論上の計算値によって算出される。JIS K7121-1987に基づいて測定される場合には、ガラス転移温度は、具体的には、示差走査熱量測定(熱流速DSC)において昇温速度10℃/分にて算出される。 The glass transition temperature of the acrylic rubber is calculated by, for example, a midpoint glass transition temperature after heat treatment measured based on JIS K7121-1987 or a theoretical calculated value. When measured based on JIS K7121-1987, the glass transition temperature is specifically calculated at a temperature rising rate of 10 ° C./min in differential scanning calorimetry (heat flow rate DSC).
 これらゴム成分は、単独使用または2種以上併用することができる。 These rubber components can be used alone or in combination of two or more.
 なお、ゴム成分は、必要により、上記した溶媒により溶解されたゴム成分溶液として調製して用いることができる。 The rubber component can be prepared and used as a rubber component solution dissolved in the above-described solvent, if necessary.
 ゴム成分をゴム成分溶液として調製する場合、ゴム成分の含有割合は、ゴム成分溶液に対して、例えば、1質量%以上、好ましくは、2質量%以上、さらに好ましくは、5質量%以上であり、また、例えば、99質量%以下、好ましくは、90質量%以下、より好ましくは、80質量%以下である。 When the rubber component is prepared as a rubber component solution, the content ratio of the rubber component is, for example, 1% by mass or more, preferably 2% by mass or more, more preferably 5% by mass or more with respect to the rubber component solution. For example, it is 99 mass% or less, Preferably, it is 90 mass% or less, More preferably, it is 80 mass% or less.
 これらポリマー成分は、単独使用または2種類以上併用することができる。 These polymer components can be used alone or in combination of two or more.
 ポリマー成分のうち、好ましくは、熱硬化性樹脂成分、ゴム成分が挙げられる。 Among the polymer components, a thermosetting resin component and a rubber component are preferable.
 熱硬化性樹脂成分の配合割合は、ポリマーマトリクスに対して、例えば、0.1質量%以上、好ましくは、1質量%以上、さらに好ましくは、5質量%以上であり、また、例えば、100質量%以下、好ましくは、99.9質量%以下、さらに好ましくは、99質量%以下である。 The blending ratio of the thermosetting resin component is, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and, for example, 100% by mass with respect to the polymer matrix. % Or less, preferably 99.9% by mass or less, and more preferably 99% by mass or less.
 ゴム成分の配合割合は、ポリマーマトリクスに対して、例えば、0.1質量%以上、好ましくは、1質量%以上、さらに好ましくは、5質量%以上であり、また、例えば、100質量%以下、好ましくは、99.9質量%以下、さらに好ましくは、99質量%以下である。 The blending ratio of the rubber component is, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and, for example, 100% by mass or less with respect to the polymer matrix. Preferably, it is 99.9 mass% or less, More preferably, it is 99 mass% or less.
 原料成分の総量(固形分総量)100質量部に対する窒化ホウ素粒子の質量基準の配合割合は、例えば、40質量部以上、好ましくは、65質量部以上、また、例えば、95質量部以下、好ましくは、90質量部以下であり、原料成分の総量100質量部に対するポリマーマトリクスの質量基準の配合割合は、例えば、5質量部以上、好ましくは、10質量部以上、また、例えば、60質量部以下、好ましくは、35質量部以下である。なお、窒化ホウ素粒子の、ポリマーマトリクス100質量部に対する質量基準の配合割合は、例えば、60質量部以上、好ましくは、185質量部以上、また、例えば、1900質量部以下、好ましくは、900質量部以下である。 The blending ratio of the boron nitride particles based on the mass of the raw material components (total solid content) of 100 parts by mass is, for example, 40 parts by mass or more, preferably 65 parts by mass or more, and for example, 95 parts by mass or less, preferably , 90 parts by mass or less, and the blending ratio of the polymer matrix based on 100 parts by mass of the total amount of the raw material components is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, and, for example, 60 parts by mass or less, Preferably, it is 35 parts by mass or less. The mixing ratio of the boron nitride particles based on 100 parts by mass of the polymer matrix is, for example, 60 parts by mass or more, preferably 185 parts by mass or more, for example, 1900 parts by mass or less, preferably 900 parts by mass. It is as follows.
 なお、ポリマーマトリクスには、上記した各成分(重合物)の他に、例えば、ポリマー前駆体(例えば、オリゴマーを含む低分子量ポリマーなど)、および/または、モノマーが含まれる。 The polymer matrix includes, for example, a polymer precursor (for example, a low molecular weight polymer including an oligomer) and / or a monomer in addition to the above-described components (polymerized products).
 原料成分を調製するには、上記した各成分(窒化ホウ素粒子およびポリマーマトリクスを含む成分)と溶媒とを配合して、攪拌した後、乾燥させて、原料成分を原料粉体として得る。 In order to prepare the raw material components, the above-described components (components including boron nitride particles and a polymer matrix) and a solvent are mixed, stirred, and dried to obtain the raw material components as raw material powders.
 溶媒としては、例えば、上記した硬化剤および/または硬化促進剤に配合される溶媒と同様の溶媒が挙げられる。溶媒の配合割合は、窒化ホウ素粒子およびポリマーマトリクスの総量100質量部に対して、例えば、20質量部以上、好ましくは、50質量部以上であり、また、例えば、2000質量部以下、好ましくは、500質量部以下である。 Examples of the solvent include the same solvents as those used in the curing agent and / or the curing accelerator described above. The mixing ratio of the solvent is, for example, 20 parts by mass or more, preferably 50 parts by mass or more, and, for example, 2000 parts by mass or less, preferably 100 parts by mass of the total amount of the boron nitride particles and the polymer matrix. It is 500 parts by mass or less.
 乾燥方法として、例えば、0℃以上、好ましくは、10℃以上であり、また、80℃以下、好ましくは、40℃以下で、例えば、0.01Pa以上、好ましくは、0.1Pa以上、また、例えば、300Pa以下、好ましくは、100Pa以下で真空加熱する真空乾燥方法が採用される。 The drying method is, for example, 0 ° C. or higher, preferably 10 ° C. or higher, 80 ° C. or lower, preferably 40 ° C. or lower, for example, 0.01 Pa or higher, preferably 0.1 Pa or higher, For example, a vacuum drying method in which vacuum heating is performed at 300 Pa or less, preferably 100 Pa or less is employed.
 あるいは、原料成分から、公知の転動流動層造粒法などによって、原料粉体を調製することもできる。 Alternatively, the raw material powder can also be prepared from the raw material components by a known rolling fluidized bed granulation method or the like.
 <長尺シート形成工程>
 次いで、この方法では、上記した原料成分からカレンダーによって熱伝導性シートを形成する。
<Long sheet forming process>
Next, in this method, a heat conductive sheet is formed from the above-described raw material components by a calendar.
 次に、長尺シート形成工程で用いられるカレンダーについて図1を参照して説明する。 Next, a calendar used in the long sheet forming process will be described with reference to FIG.
 図1において、カレンダー1は、複数のニップ部分2が形成されるように配置される複数のロール3を備えるカレンダー成形装置である。 1, a calendar 1 is a calendar forming apparatus including a plurality of rolls 3 arranged so that a plurality of nip portions 2 are formed.
 具体的には、カレンダー1は、長尺シート20(具体的には、熱伝導性シート100がプレスにより成形される前の長尺シート20)の搬送方向(図1における上下方向、鉛直方向)に直交する方向(図1における左右方向)に互いに対向配置される1対のロール5および6からなる圧延部材4を備えている。 Specifically, the calendar 1 has a conveying direction (vertical direction, vertical direction in FIG. 1) of the long sheet 20 (specifically, the long sheet 20 before the heat conductive sheet 100 is formed by pressing). The rolling member 4 which consists of a pair of rolls 5 and 6 mutually opposingly arranged in the direction (right-and-left direction in FIG. 1) orthogonal to is provided.
 圧延部材4は、搬送方向に沿って間隔を隔てて複数整列配置されている。すなわち、圧延部材4は、1対のロール5および6が搬送方向に沿ってそれぞれ複数配置されている。 A plurality of rolling members 4 are arranged and arranged at intervals along the conveying direction. That is, the rolling member 4 includes a plurality of pairs of rolls 5 and 6 arranged in the transport direction.
 また、複数の圧延部材4のそれぞれは、第1ロール5と、それに対向する第2ロール6とを備え、それらのニップ部分2(すなわち、第1ロール5および第2ロール6間の隙間)が形成されている。 Each of the plurality of rolling members 4 includes a first roll 5 and a second roll 6 facing the first roll 5, and a nip portion 2 (that is, a gap between the first roll 5 and the second roll 6). Is formed.
 第1ロール5および第2ロール6は、例えば、ステンレス、鉄、銅などの金属製のロールからなる。好ましくは、ステンレスからなる。 The 1st roll 5 and the 2nd roll 6 consist of metal rolls, such as stainless steel, iron, copper, for example. Preferably, it consists of stainless steel.
 第1ロール5および第2ロール6は、長尺シート20を搬送方向下流側(下方)に搬送できるように、それらのニップ部分2において、同一方向(下方)に回転するように設けられている。 The first roll 5 and the second roll 6 are provided to rotate in the same direction (downward) in the nip portion 2 so that the long sheet 20 can be transported downstream (downward) in the transport direction. .
 第1ロール5および第2ロール6の回転速度は、例えば、50m/分以下、好ましくは、10m/分以下、また、例えば、0.01m/分以上の範囲に設定されている。 The rotation speeds of the first roll 5 and the second roll 6 are set to, for example, 50 m / min or less, preferably 10 m / min or less, and for example, 0.01 m / min or more.
 また、第1ロール5および第2ロール6は、必要により、図示しない熱源により加熱されており、その表面温度は、例えば、ポリマーマトリクスが熱硬化性樹脂成分を含有する場合には、それらBステージ状態となる温度に設定されている。具体的には、第1ロール5および第2ロール6の表面温度は、例えば、20℃以上、好ましくは、40℃以上、また、例えば、150℃以下、好ましくは、80℃以下の範囲に設定されている。 Moreover, the 1st roll 5 and the 2nd roll 6 are heated by the heat source which is not shown in figure as needed, The surface temperature is those B stage, for example, when a polymer matrix contains a thermosetting resin component. It is set to a temperature that will be in a state. Specifically, the surface temperature of the 1st roll 5 and the 2nd roll 6 is 20 degreeC or more, for example, Preferably, it is 40 degreeC or more, for example, 150 degrees C or less, Preferably, it sets to the range of 80 degrees C or less. Has been.
 また、第1ロール5および第2ロール6は、その直径が、例えば、80mm以上、好ましくは、100mm以上であり、また、例えば、1000mm以下、好ましくは、700mm以下であり、その軸方向長さが、例えば、100mm以上、好ましくは、200mm以上、また、例えば、3000mm以下、好ましくは、2000mm以下として形成されている。 Moreover, the diameters of the first roll 5 and the second roll 6 are, for example, 80 mm or more, preferably 100 mm or more, for example, 1000 mm or less, preferably 700 mm or less, and their axial lengths. However, it is formed, for example, as 100 mm or more, preferably 200 mm or more, for example, 3000 mm or less, preferably 2000 mm or less.
 複数の圧延部材4は、具体的には、第1圧延部材7と、第1圧延部材7の搬送方向下流側に間隔を隔てて配置される第2圧延部材8と、第2圧延部材8の搬送方向下流側に間隔を隔てて配置される第3圧延部材9と、第3圧延部材9の搬送方向下流側に間隔を隔てて配置される第4圧延部材10と、第4圧延部材10の搬送方向下流側に間隔を隔てて配置される第5圧延部材11とに割り当てられている。 Specifically, the plurality of rolling members 4 include a first rolling member 7, a second rolling member 8 that is disposed at an interval on the downstream side in the transport direction of the first rolling member 7, and the second rolling member 8. Of the 3rd rolling member 9 arrange | positioned at intervals in the conveyance direction downstream, the 4th rolling member 10 arrange | positioned at intervals in the conveyance direction downstream of the 3rd rolling member 9, and the 4th rolling member 10 The fifth rolling member 11 is allocated to the downstream side in the transport direction with an interval.
 第1圧延部材7、第2圧延部材8、第3圧延部材9、第4圧延部材10および第5圧延部材11は、搬送方向(上下方向)に延びる直線状(I字形状)に配置されている。 The 1st rolling member 7, the 2nd rolling member 8, the 3rd rolling member 9, the 4th rolling member 10, and the 5th rolling member 11 are arrange | positioned at the linear form (I shape) extended in a conveyance direction (up-down direction). Yes.
 また、複数の圧延部材4のそれぞれにおける第1ロール5および第2ロール6間のニップ部分2の間隔Gは、搬送方向下流側に向かって順次小さくなるように、設定されている。 Further, the gap G of the nip portion 2 between the first roll 5 and the second roll 6 in each of the plurality of rolling members 4 is set so as to be gradually reduced toward the downstream side in the transport direction.
 具体的には、第1圧延部材7のニップ部分2の間隔G1、第2圧延部材8のニップ部分2の間隔G2、第3圧延部材9のニップ部分2の間隔G3、第4圧延部材10のニップ部分2の間隔G4、および、第5圧延部材11のニップ部分2の間隔G5は、例えば、下記式(1)を満足する。 Specifically, the gap G1 of the nip part 2 of the first rolling member 7, the gap G2 of the nip part 2 of the second rolling member 8, the gap G3 of the nip part 2 of the third rolling member 9, and the fourth rolling member 10 The gap G4 of the nip portion 2 and the gap G5 of the nip portion 2 of the fifth rolled member 11 satisfy, for example, the following formula (1).
  G1>G2>G3>G4>G5               (1)
 また、搬送方向に隣接する上流側の圧延部材4と下流側の圧延部材4とにおいて、下流側の圧延部材4のニップ部分2の間隔(ギャップ、以下同意)G’は、上流側の圧延部材4のニップ部分2の間隔Gに対して、例えば、0.99倍以下、好ましくは、0.95倍以下、さらに好ましくは、0.9倍以下であり、例えば、0.1倍以上である。
G1>G2>G3>G4> G5 (1)
Further, in the upstream rolling member 4 and the downstream rolling member 4 adjacent to each other in the conveying direction, the gap (gap, hereinafter agreed) G ′ of the nip portion 2 of the downstream rolling member 4 is the upstream rolling member. For example, the distance G of the nip portion 2 of 4 is 0.99 times or less, preferably 0.95 times or less, more preferably 0.9 times or less, for example, 0.1 times or more. .
 換言すれば、下流側の圧延部材4のニップ部分2の間隔G’の、上流側の圧延部材4のニップ部分2の間隔Gに対する比R(G’/G)は、0.99以下、好ましくは、0.95以下、さらに好ましくは、0.9以下であり、例えば、0.1倍以上である。 In other words, the ratio R (G ′ / G) of the gap G ′ of the nip portion 2 of the downstream rolling member 4 to the gap G of the nip portion 2 of the upstream rolling member 4 is preferably 0.99 or less, preferably Is 0.95 or less, more preferably 0.9 or less, for example, 0.1 times or more.
 詳しくは、第2圧延部材8のニップ部分2の間隔G2の、第1圧延部材7のニップ部分2の間隔G1に対する比R2/1、第3圧延部材9のニップ部分2の間隔G3の、第2圧延部材8のニップ部分2の間隔G2に対する比R3/2、第4圧延部材10のニップ部分2の間隔G4の、第3圧延部材9のニップ部分2の間隔G3に対する比R4/3、および、第5圧延部材11のニップ部分2の間隔G5の、第3圧延部材11のニップ部分2の間隔G4に対する比R5/4は、例えば、下記式(2)を満足する。 Specifically, the ratio R 2/1 of the gap G2 of the nip portion 2 of the second rolling member 8 to the gap G1 of the nip portion 2 of the first rolling member 7, the gap G3 of the nip portion 2 of the third rolling member 9, Ratio R 3/2 of the second rolling member 8 to the gap G2 of the nip portion 2 and ratio R 4 / of the gap G4 of the nip portion 2 of the fourth rolling member 10 to the gap G3 of the nip portion 2 of the third rolling member 9 3 and the ratio R 5/4 of the gap G5 of the nip portion 2 of the fifth rolling member 11 to the gap G4 of the nip portion 2 of the third rolling member 11 satisfy, for example, the following formula (2).
  R2/1≧R3/2≧R4/3≧R5/4               (2)
 (式中、R2/1は、G2/G1、R3/2は、G3/G2、R4/3は、G4/G3、R5/4は、G5/G4である。)
 好ましくは、下記式(3)を満足する。
R 2/1 ≧ R 3/2 ≧ R 4/3 ≧ R 5/4 (2)
(In the formula, R 2/1 is G2 / G1, R 3/2 is G3 / G2, R 4/3 is G4 / G3, and R 5/4 is G5 / G4.)
Preferably, the following formula (3) is satisfied.
  R2/1>R3/2>R4/3>R5/4               (3)
 (式中、R2/1、R3/2、R4/3およびR5/4は、上記と同義である。)
 具体的には、第1圧延部材7のニップ部分2の間隔G1は、例えば、0.2mm以上、好ましくは、0.3mm以上、また、例えば、5mm以下、好ましくは、3mm以下である。また、第2圧延部材8のニップ部分2の間隔G2は、例えば、0.1mm以上、また、例えば、4mm以下、好ましくは、3mm以下である。また、第3圧延部材9のニップ部分2の間隔G3は、例えば、0.1mm以上、また、例えば、例えば、3mm以下、好ましくは、2mm以下である。また、第4圧延部材10のニップ部分2の間隔G4は、例えば、0.1mm以上、また、例えば、2mm以下、好ましくは、1mm以下である。また、第5圧延部材11のニップ部分2の間隔G5は、例えば、0.1mm以上、また、例えば、1mm以下、好ましくは、0.8mm以下である。
R 2/1 > R 3/2 > R 4/3 > R 5/4 (3)
(In the formula, R 2/1 , R 3/2 , R 4/3 and R 5/4 are as defined above.)
Specifically, the gap G1 of the nip portion 2 of the first rolling member 7 is, for example, 0.2 mm or more, preferably 0.3 mm or more, and, for example, 5 mm or less, preferably 3 mm or less. Further, the gap G2 of the nip portion 2 of the second rolling member 8 is, for example, 0.1 mm or more, and, for example, 4 mm or less, preferably 3 mm or less. Further, the gap G3 of the nip portion 2 of the third rolling member 9 is, for example, 0.1 mm or more, for example, 3 mm or less, preferably 2 mm or less. Further, the gap G4 of the nip portion 2 of the fourth rolled member 10 is, for example, 0.1 mm or more, and, for example, 2 mm or less, preferably 1 mm or less. Further, the gap G5 of the nip portion 2 of the fifth rolled member 11 is, for example, 0.1 mm or more, and, for example, 1 mm or less, preferably 0.8 mm or less.
 また、R2/1、R3/2、R4/3およびR5/4は、例えば、0.1以上、好ましくは、0.2以上、また、例えば、例えば、0.9以下、好ましくは、0.8以下である。 R 2/1 , R 3/2 , R 4/3 and R 5/4 are, for example, 0.1 or more, preferably 0.2 or more, and for example, 0.9 or less, preferably Is 0.8 or less.
 なお、カレンダー1には、必要により、巻取ロール(図示せず)が、第5圧延部材11の搬送方向下流側に間隔を隔てて設けられている。 Note that the calendar 1 is provided with winding rolls (not shown) on the downstream side in the transport direction of the fifth rolling member 11 with an interval, if necessary.
 そして、長尺シート形成工程において、カレンダー1によって原料成分から長尺シート20を形成するには、まず、第1圧延部材7のニップ部分2の上方から、原料成分27を投入する。 In the long sheet forming step, in order to form the long sheet 20 from the raw material components by the calendar 1, first, the raw material component 27 is introduced from above the nip portion 2 of the first rolling member 7.
 原料成分27の投入量は、例えば、0.01kg/分以上、好ましくは、0.02kg/分以上であり、また、例えば、50kg/分以下、好ましくは、5kg/分以下である。 The input amount of the raw material component 27 is, for example, 0.01 kg / min or more, preferably 0.02 kg / min or more, and for example, 50 kg / min or less, preferably 5 kg / min or less.
 次いで、第1圧延部材7のニップ部分2に投入された原料成分27は、第1圧延部材7のニップ部分2において、第1ロール5および第2ロール6の回転によって、搬送方向下流側(下側)に搬送されながら圧延されて長尺シート20に成形され、長尺シート20が第1圧延部材7から第2圧延部材8に向けて送り出される。 Next, the raw material component 27 introduced into the nip portion 2 of the first rolling member 7 is moved downstream in the conveying direction (downward) by the rotation of the first roll 5 and the second roll 6 in the nip portion 2 of the first rolling member 7. The long sheet 20 is fed from the first rolling member 7 toward the second rolling member 8.
 第1圧延部材7により成形された長尺シート20の厚みT1は、例えば、0.2mm以上、好ましくは、0.25mm以上、また、例えば、5mm以下、好ましくは、4mm以下である。 The thickness T1 of the long sheet 20 formed by the first rolling member 7 is, for example, 0.2 mm or more, preferably 0.25 mm or more, and, for example, 5 mm or less, preferably 4 mm or less.
 次いで、第1圧延部材7から送り出された長尺シート20は、その後、第2圧延部材8の第1ロール5および第2ロール6の回転によって、第2圧延部材8のニップ部分2に到達して進入し、第2圧延部材8の第1ロール5および第2ロール6の回転によって、搬送方向下流側(下側)に搬送されながら圧延され、第2圧延部材8のニップ部分2から送り出される。 Subsequently, the long sheet 20 sent out from the first rolling member 7 reaches the nip portion 2 of the second rolling member 8 by the rotation of the first roll 5 and the second roll 6 of the second rolling member 8 thereafter. The second rolling member 8 is rolled while being conveyed downstream (downward) in the conveying direction by the rotation of the first roll 5 and the second roll 6 of the second rolling member 8, and sent out from the nip portion 2 of the second rolling member 8. .
 第2圧延部材8により成形された長尺シート20の厚みT2は、第1圧延部材7の圧延により成形された長尺シート20の厚みT1に比べて、薄く、厚みT1に対して、例えば、99%以下、好ましくは、95%以下、さらに好ましくは、90%以下であり、また、10%以上である。 The thickness T2 of the long sheet 20 formed by the second rolling member 8 is thinner than the thickness T1 of the long sheet 20 formed by rolling of the first rolling member 7, and the thickness T1 is, for example, It is 99% or less, preferably 95% or less, more preferably 90% or less, and 10% or more.
 具体的には、第2圧延部材8により成形された長尺シート20の厚みT2は、例えば、0.1mm以上、好ましくは、0.2mm以上であり、また、例えば、4mm以下、好ましくは、3mm以下である。 Specifically, the thickness T2 of the long sheet 20 formed by the second rolling member 8 is, for example, 0.1 mm or more, preferably 0.2 mm or more, and, for example, 4 mm or less, preferably 3 mm or less.
 次いで、第2圧延部材8から送り出された長尺シート20は、その後、第3圧延部材9の回転によって、第3圧延部材9のニップ部分2に到達して進入し、第3圧延部材9の第1ロール5および第2ロール6の回転によって、搬送方向下流側(下側)に搬送されながら圧延され、第3圧延部材9のニップ部分2から送り出される。 Subsequently, the long sheet 20 sent out from the second rolling member 8 reaches the nip portion 2 of the third rolling member 9 by the rotation of the third rolling member 9 and then enters the third rolling member 9. The first roll 5 and the second roll 6 are rotated while being transported downstream (downward) in the transport direction, and are sent out from the nip portion 2 of the third rolling member 9.
 第3圧延部材9により成形された長尺シート20の厚みT3は、第2圧延部材8の圧延により成形された長尺シート20の厚みT2に比べて、薄く、厚みT2に対して、例えば、99%以下、好ましくは、95%以下、さらに好ましくは、90%以下であり、また、10%以上である。 The thickness T3 of the long sheet 20 formed by the third rolling member 9 is thinner than the thickness T2 of the long sheet 20 formed by rolling the second rolling member 8, and the thickness T2 is, for example, It is 99% or less, preferably 95% or less, more preferably 90% or less, and 10% or more.
 具体的には、第3圧延部材9により成形された長尺シート20の厚みT3は、例えば、0.1mm以上であり、また、例えば、3mm以下、好ましくは、2mm以下である。 Specifically, the thickness T3 of the long sheet 20 formed by the third rolling member 9 is, for example, 0.1 mm or more, and, for example, 3 mm or less, preferably 2 mm or less.
 次いで、第3圧延部材9から送り出された長尺シート20は、その後、第4圧延部材10の回転によって、第4圧延部材10のニップ部分2に到達して進入し、第4圧延部材10の第1ロール5および第2ロール6の回転によって、搬送方向下流側(下側)に搬送されながら圧延され、第4圧延部材10のニップ部分2から送り出される。 Subsequently, the long sheet 20 fed out from the third rolling member 9 reaches the nip portion 2 of the fourth rolling member 10 by the rotation of the fourth rolling member 10 and then enters the fourth rolling member 10. The first roll 5 and the second roll 6 are rotated while being transported downstream (downward) in the transport direction, and are sent out from the nip portion 2 of the fourth rolling member 10.
 第4圧延部材10により成形された長尺シート20の厚みT4は、第3圧延部材9の圧延により成形された長尺シート20の厚みT3に比べて、薄く、厚みT3に対して、例えば、99%以下、好ましくは、95%以下、さらに好ましくは、90%以下であり、また、10%以上である。 The thickness T4 of the long sheet 20 formed by the fourth rolling member 10 is thinner than the thickness T3 of the long sheet 20 formed by rolling the third rolling member 9, and the thickness T3 is, for example, It is 99% or less, preferably 95% or less, more preferably 90% or less, and 10% or more.
 具体的には、第4圧延部材10により成形された長尺シート20の厚みT4は、例えば、0.1mm以上であり、また、例えば、2mm以下、好ましくは、1mm以下である。 Specifically, the thickness T4 of the long sheet 20 formed by the fourth rolling member 10 is, for example, 0.1 mm or more, and, for example, 2 mm or less, preferably 1 mm or less.
 次いで、第4圧延部材10から送り出された長尺シート20は、その後、第5圧延部材11の回転によって、第5圧延部材11のニップ部分2に到達して進入し、第5圧延部材11の第1ロール5および第2ロール6の回転によって、搬送方向下流側(下側)に搬送されながら圧延され、第5圧延部材11のニップ部分2から送り出される。 Subsequently, the long sheet 20 fed out from the fourth rolling member 10 reaches the nip portion 2 of the fifth rolling member 11 by the rotation of the fifth rolling member 11 and then enters the fifth rolling member 11. The first roll 5 and the second roll 6 are rotated while being transported downstream (downward) in the transport direction, and are sent out from the nip portion 2 of the fifth rolling member 11.
 第5圧延部材11により成形された長尺シート20の厚みT5は、第4圧延部材10の圧延により成形された長尺シート20の厚みT4に比べて、薄く、厚みT4に対して、例えば、99%以下、好ましくは、95%以下、さらに好ましくは、90%以下であり、また、10%以上である。 The thickness T5 of the long sheet 20 formed by the fifth rolling member 11 is thinner than the thickness T4 of the long sheet 20 formed by rolling the fourth rolling member 10, and the thickness T4 is, for example, It is 99% or less, preferably 95% or less, more preferably 90% or less, and 10% or more.
 具体的には、第5圧延部材11により成形された長尺シート20の厚みT5は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1mm以下、好ましくは、0.8mm以下である。 Specifically, the thickness T5 of the long sheet 20 formed by the fifth rolling member 11 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 1 mm or less, preferably 0.8 mm or less.
 その後、第5圧延部材11から送り出された長尺シート20は、図示しない巻取ロールによって巻き取られる。 Thereafter, the long sheet 20 sent out from the fifth rolling member 11 is wound up by a winding roll (not shown).
 これにより、長尺シート20を得ることができる。 Thereby, the long sheet 20 can be obtained.
 なお、長尺シート20の表面(左面および右面)には、例えば、図1において図示しないが、離型シートを設けて、カレンダー1によって圧延することもできる。具体的には、原料成分27を2枚の離型シート(図示せず)で挟み込み、それらからなる積層体を、カレンダー1によって圧延する。 In addition, although not shown in FIG. 1 on the surface (left surface and right surface) of the long sheet 20, for example, a release sheet may be provided and rolled by the calendar 1. Specifically, the raw material component 27 is sandwiched between two release sheets (not shown), and a laminate composed of them is rolled by the calendar 1.
 離型シートとしては、例えば、ポリエステル(具体的には、ポリエチレンテレフタレート(PET)など)シート、ポリオレフィンシート、シリコーンゴムシートなどの樹脂シート、例えば、ステンレス、鉄などの金属箔などが挙げられる。好ましくは、樹脂シートが挙げられる。また、離型シートの表面には、公知の離型処理を施すこともできる。 Examples of the release sheet include resin sheets such as polyester (specifically, polyethylene terephthalate (PET)) sheet, polyolefin sheet, silicone rubber sheet, and metal foil such as stainless steel and iron. Preferably, a resin sheet is used. Moreover, a well-known mold release process can also be given to the surface of a mold release sheet.
 離型シートの厚みは、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、300μm以下、好ましくは、250μm以下である。 The thickness of the release sheet is, for example, 10 μm or more, preferably 30 μm or more, and for example, 300 μm or less, preferably 250 μm or less.
 離型シートは、市販品を用いることができ、例えば、PETシートとして、具体的には、ダイヤホイルMRFシリーズ、ダイヤホイルMRXシリーズ、ダイヤホイルMRNシリーズ(以上、三菱樹脂社製)、パナピールシリーズ、SGシリーズ(以上、PANAC社製)などが用いられる。 As the release sheet, a commercially available product can be used. For example, as a PET sheet, specifically, a diamond foil MRF series, a diamond foil MRX series, a diamond foil MRN series (above, manufactured by Mitsubishi Plastics), a panapeel series SG series (manufactured by PANAC) is used.
 <プレス工程>
 プレス工程を、長尺シート形成工程後に実施する。
<Pressing process>
The pressing process is performed after the long sheet forming process.
 具体的には、長尺シート形成工程によって成形された長尺シート20を、所定の大きさに裁断してシート21を成形し、その後、シート21を、図2に示すように、例えば、真空プレス機などのプレス機によりプレスして、熱伝導性シートを得る。 Specifically, the long sheet 20 formed by the long sheet forming step is cut into a predetermined size to form the sheet 21, and then the sheet 21 is, for example, a vacuum as shown in FIG. A heat conductive sheet is obtained by pressing with a press such as a press.
 具体的には、例えば、長尺シート20を、矩形状に切り取ってシート21を成形し、シート21から、必要により、図示しない離型シートを剥離し、その後、別の離型シート44(長尺シート形成工程で用いた離型シートと異なる離型シート)を介在させながら、長尺シート20を挟み込んで、必要により、真空下で、プレスする。なお、離型シート44は、長尺シート形成工程において使用した離型シート(図示せず)をそのまま利用することもできる。 Specifically, for example, the long sheet 20 is cut into a rectangular shape to form a sheet 21, a release sheet (not shown) is peeled off from the sheet 21 as necessary, and then another release sheet 44 (long The long sheet 20 is sandwiched with a release sheet (different from the release sheet used in the long sheet forming step) interposed, and pressed under vacuum as necessary. In addition, the release sheet 44 can also use the release sheet (not shown) used in the elongate sheet formation process as it is.
 あるいは、離型シート44は、複数積層して用いることもできる。 Alternatively, a plurality of release sheets 44 can be stacked and used.
 さらに、プレスにおいて、シート21の周囲に、枠形状のスペーサーを設けることもできる。スペーサーは、例えば、金属からなり、厚みが、例えば、0.05~1mmである。 Furthermore, a frame-shaped spacer can be provided around the sheet 21 in the press. The spacer is made of, for example, a metal and has a thickness of, for example, 0.05 to 1 mm.
 真空プレス機の真空圧は、例えば、100Pa以下、好ましくは、50Pa以下、より好ましくは、20Pa以下、さらに好ましくは、10Pa以下であり、例えば、0.01Pa以上である。 The vacuum pressure of the vacuum press machine is, for example, 100 Pa or less, preferably 50 Pa or less, more preferably 20 Pa or less, still more preferably 10 Pa or less, for example 0.01 Pa or more.
 真空プレスにおいて、シート21を真空プレス機にセットし、真空プレス機内を真空にし、その後、プレスを開始することができ、その場合において、真空プレス機内を真空にした後、プレスを開始するまでの時間は、例えば、0.1分間以上、好ましくは、0.5分間以上、より好ましくは、1分間以上、さらに好ましくは、2分間以上であり、また、例えば、1時間以下、好ましくは、30分間以下、より好ましくは、10分間以下、さらに好ましくは、5分間以下である。 In the vacuum press, the sheet 21 can be set in a vacuum press, the inside of the vacuum press can be evacuated, and then the press can be started. In this case, the vacuum press is evacuated and the press is started. The time is, for example, 0.1 minute or more, preferably 0.5 minute or more, more preferably 1 minute or more, further preferably 2 minutes or more, and for example, 1 hour or less, preferably 30 For 10 minutes or less, more preferably for 10 minutes or less, and even more preferably for 5 minutes or less.
 また、プレス圧は、実効圧力で、例えば、0.5MPa以上、好ましくは、1MPa以上、より好ましくは、3MPa以上、さらに好ましくは、5MPa以上であり、とりわけ好ましくは、10MPa以上であり、また、例えば、100MPa以下である。 The press pressure is an effective pressure, for example, 0.5 MPa or more, preferably 1 MPa or more, more preferably 3 MPa or more, further preferably 5 MPa or more, and particularly preferably 10 MPa or more. For example, it is 100 MPa or less.
 また、プレス時間は、例えば、1分間以上、好ましくは、3分間以上、より好ましくは、5分間以上、さらに好ましくは、10分間以上であり、例えば、5時間以下、好ましくは、2時間以下、より好ましくは、1時間以下、さらに好ましくは、30分間以下である。 The pressing time is, for example, 1 minute or more, preferably 3 minutes or more, more preferably 5 minutes or more, and further preferably 10 minutes or more, for example, 5 hours or less, preferably 2 hours or less, More preferably, it is 1 hour or less, More preferably, it is 30 minutes or less.
 また、プレスを加熱しながら、実施すること、つまり、熱プレスすることもできる。 Also, it can be carried out while heating the press, that is, it can be hot pressed.
 熱プレスの温度は、例えば、20℃以上、好ましくは、30℃以上、より好ましくは、40℃以上であり、また、例えば、150℃以下、好ましくは、120℃以下、より好ましくは、80℃以下である。 The temperature of the hot press is, for example, 20 ° C. or more, preferably 30 ° C. or more, more preferably 40 ° C. or more, and for example, 150 ° C. or less, preferably 120 ° C. or less, more preferably 80 ° C. It is as follows.
 プレス工程によって得られる熱伝導性シート100は、ポリマーマトリクスが熱硬化性樹脂成分を含有する場合には、Bステージである。 The heat conductive sheet 100 obtained by the pressing process is a B stage when the polymer matrix contains a thermosetting resin component.
 得られる熱伝導性シート100の厚みT0(図3参照)は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1mm以下、好ましくは、0.8mm以下、より好ましくは、0.6mm以下、さらに好ましくは、0.4mm以下である。 The thickness T0 (see FIG. 3) of the obtained heat conductive sheet 100 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 1 mm or less, preferably 0.8 mm or less. Preferably, it is 0.6 mm or less, more preferably 0.4 mm or less.
 熱伝導性シート100における窒化ホウ素粒子23の体積基準の含有割合は、例えば、35体積%以上、好ましくは、50体積%以上、より好ましくは、60体積%以上、さらに好ましくは、65体積%以上であり、また、例えば、95体積%以下、好ましくは、90体積%以下である。 The volume-based content ratio of the boron nitride particles 23 in the heat conductive sheet 100 is, for example, 35% by volume or more, preferably 50% by volume or more, more preferably 60% by volume or more, and further preferably 65% by volume or more. Moreover, it is 95 volume% or less, for example, Preferably, it is 90 volume% or less.
 窒化ホウ素粒子23の含有割合が上記した範囲に満たない場合には、窒化ホウ素粒子23を熱伝導性シート100において面方向PD(後述)に配向させることできない場合がある。また、窒化ホウ素粒子の含有割合が上記した範囲を超える場合には、熱伝導性シート100の柔軟性が低下する場合がある。 When the content ratio of the boron nitride particles 23 is less than the above range, the boron nitride particles 23 may not be oriented in the plane direction PD (described later) in the thermally conductive sheet 100. Moreover, when the content ratio of the boron nitride particles exceeds the above range, the flexibility of the heat conductive sheet 100 may be lowered.
 そして、このようにして得られた熱伝導性シート100において、図3が参照されるように、窒化ホウ素粒子23の長手方向LDが、熱伝導性シート100の厚み方向TDに交差(直交)する面方向PDに沿って配向している。 In the heat conductive sheet 100 thus obtained, as shown in FIG. 3, the longitudinal direction LD of the boron nitride particles 23 intersects (orthogonally) the thickness direction TD of the heat conductive sheet 100. It is oriented along the plane direction PD.
 また、窒化ホウ素粒子23の長手方向LDが熱伝導性シート100の面方向PDに成す角度の算術平均(窒化ホウ素粒子23の熱伝導性シート100に対する配向角度α)は、例えば、25度以下、好ましくは、20度以下であり、例えば、0度以上である。 In addition, the arithmetic average of the angles formed by the longitudinal direction LD of the boron nitride particles 23 in the plane direction PD of the thermally conductive sheet 100 (the orientation angle α of the boron nitride particles 23 with respect to the thermally conductive sheet 100) is, for example, 25 degrees or less, Preferably, it is 20 degrees or less, for example, 0 degrees or more.
 これにより、熱伝導性シート100の面方向PDの熱伝導率は、例えば、6W/m・K以上、好ましくは、10W/m・K以上、さらに好ましくは、15W/m・K以上、とりわけ好ましくは、20W/m・K以上であり、例えば、200W/m・K以下である。 Thereby, the thermal conductivity of the surface direction PD of the heat conductive sheet 100 is, for example, 6 W / m · K or more, preferably 10 W / m · K or more, more preferably 15 W / m · K or more, particularly preferably. Is 20 W / m · K or more, for example, 200 W / m · K or less.
 また、熱伝導性シート100の面方向PDの熱伝導率は、後述する熱硬化(完全硬化)の前後において、実質的に同一である。 Further, the thermal conductivity in the surface direction PD of the thermal conductive sheet 100 is substantially the same before and after thermal curing (complete curing) described later.
 熱伝導性シート100の面方向PDの熱伝導率が上記範囲に満たないと、面方向PDの熱伝導性が十分でないため、そのような面方向PDの熱伝導性が要求される放熱用途に用いることができない場合がある。 If the thermal conductivity of the surface direction PD of the thermal conductive sheet 100 is less than the above range, the thermal conductivity of the surface direction PD is not sufficient. It may not be used.
 なお、熱伝導性シート100の面方向PDの熱伝導率は、パルス加熱法により測定する。パルス加熱法では、キセノンフラッシュアナライザー「LFA-447型」(NETZSCH社製)が用いられる。 In addition, the thermal conductivity in the surface direction PD of the thermal conductive sheet 100 is measured by a pulse heating method. In the pulse heating method, a xenon flash analyzer “LFA-447 type” (manufactured by NETZSCH) is used.
 また、熱伝導性シート100の厚み方向TDの熱伝導率は、例えば、0.5W/m・K以上、好ましくは、1W/m・K以上であり、また、例えば、15W/m・K以下、好ましくは、10W/m・K以下である。 The thermal conductivity in the thickness direction TD of the heat conductive sheet 100 is, for example, 0.5 W / m · K or more, preferably 1 W / m · K or more, and, for example, 15 W / m · K or less. Preferably, it is 10 W / m · K or less.
 なお、熱伝導性シート100の厚み方向TDの熱伝導率は、パルス加熱法、レーザーフラッシュ法またはTWA法により測定する。パルス加熱法では、上記と同様のものが用いられ、レーザーフラッシュ法では、「TC-9000」(アルバック理工社製)が用いられ、TWA法では、「ai-Phase mobile」(アイフェイズ社製)が用いられる。 The thermal conductivity in the thickness direction TD of the thermal conductive sheet 100 is measured by a pulse heating method, a laser flash method, or a TWA method. In the pulse heating method, the same one as described above is used, in the laser flash method, “TC-9000” (manufactured by ULVAC-RIKO) is used, and in the TWA method, “ai-Phase mobile” (manufactured by Eye Phase). Is used.
 これにより、熱伝導性シート100の面方向PDの熱伝導率の、熱伝導性シート100の厚み方向TDの熱伝導率に対する比(面方向PDの熱伝導率/厚み方向TDの熱伝導率)は、例えば、1.5以上、好ましくは、3以上、さらに好ましくは、4以上であり、また、例えば、50以下である。 Thereby, the ratio of the thermal conductivity in the plane direction PD of the thermal conductive sheet 100 to the thermal conductivity in the thickness direction TD of the thermal conductive sheet 100 (thermal conductivity in the plane direction PD / thermal conductivity in the thickness direction TD). Is, for example, 1.5 or more, preferably 3 or more, more preferably 4 or more, and for example 50 or less.
 また、熱伝導性シート100の密度は、例えば、1.5g/cm以上、好ましくは、1.55g/cm以上、さらに好ましくは、1.6g/cm以上、とりわけ好ましくは、1.65g/cm以上、最も好ましは、1.7g/cm以上であり、例えば、4g/cm以下である。 The density of the heat conductive sheet 100 is, for example, 1.5 g / cm 2 or more, preferably 1.55 g / cm 2 or more, more preferably 1.6 g / cm 2 or more, and particularly preferably 1. 65 g / cm 2 or more, most preferably 1.7 g / cm 2 or more, for example, 4 g / cm 2 or less.
 また、熱伝導性シート100には、図21が参照されるように、例えば、空隙(隙間)28が形成される場合がある。 Further, as shown in FIG. 21, for example, a gap (gap) 28 may be formed in the heat conductive sheet 100.
 熱伝導性シート100における空隙28の割合、すなわち、空隙率Pは、例えば、3.0体積%以下であり、好ましくは、2.5体積%以下、より好ましくは、2.0体積%以下であり、さらに好ましくは、1.5体積%以下であり、また、例えば、0体積%以上である。 The ratio of the voids 28 in the thermally conductive sheet 100, that is, the void ratio P is, for example, 3.0% by volume or less, preferably 2.5% by volume or less, more preferably 2.0% by volume or less. More preferably 1.5% by volume or less, and for example, 0% by volume or more.
 上記した空隙率Pは、例えば、窒化ホウ素粒子の理論密度を2.28g/cm、ポリマーマトリクスの理論密度を1.2g/cmと仮定して理論密度算出(ρA、1.956g/cm)して、さらに、熱伝導性シート100を直径25mmのポンチで型抜きした際の厚みと切片の面積、重さから算出した密度ρBを算出する。次いで、上述で測定、算出した密度より、空隙率P=100×(ρB/ρA)を算出する。 Porosity P described above are, for example, 2.28 g / cm 3 the theoretical density of boron nitride particles, assuming theoretical density calculated theoretical density of the polymer matrix and 1.2g / cm 3 (ρA, 1.956g / cm 3 ) Further, the density ρB calculated from the thickness, the area of the slice, and the weight when the thermally conductive sheet 100 is punched with a punch having a diameter of 25 mm is calculated. Next, the porosity P = 100 × (ρB / ρA) is calculated from the density measured and calculated above.
 また、空隙率Pは、例えば、まず、熱伝導性シート100を厚み方向に沿ってクロスセクションポリッシャー(CP)により切断加工して、それにより現れる断面を、走査型電子顕微鏡(SEM)で、200倍で観察して、像を得、得られた像から、空隙28部分と、それ以外の部分とを二値化処理し、次いで、熱伝導性シート100全体の断面積に対する空隙28部分の面積比を算出することにより測定される。 For example, the porosity P is first determined by cutting the thermally conductive sheet 100 along the thickness direction with a cross section polisher (CP), and the resulting cross section is measured with a scanning electron microscope (SEM) 200. An image is obtained by observing the image at a magnification, and from the obtained image, the void 28 portion and the other portion are binarized, and then the area of the void 28 portion with respect to the entire cross-sectional area of the heat conductive sheet 100 It is measured by calculating the ratio.
 空隙率Pの測定には、Bステージ(半硬化)状態の熱伝導性シート100が用いられる。 For measuring the porosity P, a thermally conductive sheet 100 in a B-stage (semi-cured) state is used.
 熱伝導性シート100の空隙率Pが上記した範囲内にあれば、熱伝導性シート100の熱伝導性や、段差追従性(熱伝導性シート100を、段差のある設置対象に設けるときに、その段差に沿って密着するように追従する特性)を向上させることができる。 If the porosity P of the thermal conductive sheet 100 is within the above-described range, the thermal conductivity of the thermal conductive sheet 100 and the step following ability (when the thermal conductive sheet 100 is provided on a stepped installation target, The characteristic of following so as to adhere closely along the step can be improved.
 また、熱伝導性シート100の複素剪断粘度ηは、動的粘弾性測定により得られる温度20~150℃の温度範囲の少なくともいずれかの温度において(特に、好ましくは、70℃において)、例えば、300Pa・s以上、好ましくは、500Pa・s以上、より好ましくは、800Pa・s以上であり、また、例えば、5×10Pa・s以下、好ましくは、3×10Pa・s以下、さらに好ましくは、1×10Pa・s以下である。 Further, the complex shear viscosity η * of the heat conductive sheet 100 is at least at any temperature within a temperature range of 20 to 150 ° C. obtained by dynamic viscoelasticity measurement (particularly preferably at 70 ° C.). 300 Pa · s or more, preferably 500 Pa · s or more, more preferably 800 Pa · s or more, and for example, 5 × 10 4 Pa · s or less, preferably 3 × 10 4 Pa · s or less, More preferably, it is 1 × 10 4 Pa · s or less.
 なお、動的粘弾性測定は、JIS K7244-10(2005年)に準拠し、周波数10Hz、昇温速度2℃/分の剪断モードにて測定される。 The dynamic viscoelasticity is measured according to JIS K7244-10 (2005) in a shear mode with a frequency of 10 Hz and a heating rate of 2 ° C./min.
 熱伝導性シート100の複素剪断粘度ηが、上記範囲内にあれば、原料成分の加工性(成形性)を向上させることができる。 If the complex shear viscosity η * of the heat conductive sheet 100 is within the above range, the processability (formability) of the raw material components can be improved.
 また、熱伝導性シート100は、JIS K 5600-5-1の円筒形マンドレル法に準拠する耐屈曲性試験において、下記の試験条件で評価したときに、例えば、破断が観察されない。 Further, when the thermal conductive sheet 100 is evaluated under the following test conditions in a bending resistance test based on the cylindrical mandrel method of JIS K 5600-5-1, for example, no fracture is observed.
 試験条件
  試験装置:タイプI
  マンドレル:直径1mm、5mm、10mm
  屈曲角度:90度~180度
  熱伝導性シート100の厚み:0.1~2mm(具体的には、0.2mm)
 タイプIの試験装置の斜視図を図4および図5に示し、以下に、タイプIの試験装置を説明する。
Test conditions Test equipment: Type I
Mandrel: 1mm diameter, 5mm, 10mm
Bending angle: 90 ° to 180 ° The thickness of the heat conductive sheet 100: 0.1 to 2 mm (specifically, 0.2 mm)
A perspective view of the type I test apparatus is shown in FIGS. 4 and 5, and the type I test apparatus will be described below.
 図4および図5において、タイプIの試験装置30は、第1平板31と、第1平板31と並列配置される第2平板32と、第1平板31および第2平板32を相対回動させるために設けられるマンドレル(回転軸)33とを備えている。 4 and 5, the type I test apparatus 30 relatively rotates the first flat plate 31, the second flat plate 32 arranged in parallel with the first flat plate 31, and the first flat plate 31 and the second flat plate 32. For this purpose, a mandrel (rotary shaft) 33 is provided.
 第1平板31は、略矩形平板状に形成されている。また、第1平板31の一端部(遊端部)には、ストッパ34が設けられている。ストッパ34は、第1平板31の表面に、第1平板31の一端部に沿って延びるように形成されている。 The first flat plate 31 is formed in a substantially rectangular flat plate shape. A stopper 34 is provided at one end (free end) of the first flat plate 31. The stopper 34 is formed on the surface of the first flat plate 31 so as to extend along one end portion of the first flat plate 31.
 第2平板32は、略矩形平板状をなし、その1辺が、第1平板31の1辺(ストッパ34が設けられる一端部と反対側の他端部(基端部)の1辺)と隣接するように、配置されている。 The second flat plate 32 has a substantially rectangular flat plate shape, and one side thereof is one side of the first flat plate 31 (one side of the other end (base end) opposite to the one end where the stopper 34 is provided). It arrange | positions so that it may adjoin.
 マンドレル33は、互いに隣接する第1平板31および第2平板32の1辺に沿って延びるように形成されている。 The mandrel 33 is formed so as to extend along one side of the first flat plate 31 and the second flat plate 32 adjacent to each other.
 このタイプIの試験装置30は、図4に示すように、耐屈曲性試験を開始する前には、第1平板31の表面と第2平板32の表面とが面一とされる。 As shown in FIG. 4, in the type I test apparatus 30, the surface of the first flat plate 31 and the surface of the second flat plate 32 are flush with each other before the bending resistance test is started.
 そして、耐屈曲性試験を実施するには、熱伝導性シート100を、第1平板31の表面と第2平板32の表面とに載置する。なお、熱伝導性シート100を、その1辺が、ストッパ34に当接するように載置する。 And in order to perform a bending resistance test, the heat conductive sheet 100 is mounted on the surface of the first flat plate 31 and the surface of the second flat plate 32. The heat conductive sheet 100 is placed so that one side thereof is in contact with the stopper 34.
 次いで、図5に示すように、第1平板31および第2平板32を、相対的に回動させる。具体的には、第1平板31の遊端部と第2平板32の遊端部とを、マンドレル33を中心として、所定の角度だけ、回動させる。詳しくは、第1平板31および第2平板32を、それらの遊端部の表面が近接(対向)するように、回動させる。 Next, as shown in FIG. 5, the first flat plate 31 and the second flat plate 32 are relatively rotated. Specifically, the free end portion of the first flat plate 31 and the free end portion of the second flat plate 32 are rotated about the mandrel 33 by a predetermined angle. Specifically, the first flat plate 31 and the second flat plate 32 are rotated so that the surfaces of their free end portions are close (opposed).
 これによって、熱伝導性シート100は、第1平板31および第2平板32の回動に追従しながら、マンドレル33を中心に屈曲する。 Thereby, the heat conductive sheet 100 bends around the mandrel 33 while following the rotation of the first flat plate 31 and the second flat plate 32.
 好ましくは、熱伝導性シート100は、上記した試験条件において、屈曲角度を180度に設定したときでも、破断が観察されない。 Preferably, the thermal conductive sheet 100 is not observed to break even when the bending angle is set to 180 degrees under the test conditions described above.
 上記した屈曲角度での耐屈曲性試験において熱伝導性シート100に破断が観察される場合には、熱伝導性シート100に優れた柔軟性を付与することができない場合がある。 In the bending resistance test at the bending angle described above, when breakage is observed in the heat conductive sheet 100, the heat conductive sheet 100 may not be provided with excellent flexibility.
 なお、耐屈曲性試験には、ポリマーマトリクスが熱硬化性樹脂成分を含有する場合にはBステージ状態の熱伝導性シート100が用いられる。 In the bending resistance test, when the polymer matrix contains a thermosetting resin component, the thermally conductive sheet 100 in the B stage state is used.
 そして、この熱伝導性シート100は、被着体となる放熱対象に貼着され、その後、ポリマーマトリクスが熱硬化性樹脂成分を含有する場合には、加熱により熱硬化させる(Cステージ状態とする)ことにより、放熱対象に接着される。 And this heat conductive sheet 100 is affixed on the heat dissipation object used as a to-be-adhered body, and after that, when a polymer matrix contains a thermosetting resin component, it heat-hardens by heating (it is set as a C stage state). ) To adhere to the heat dissipation object.
 熱伝導性シート100を熱硬化させるには、例えば、60℃以上、好ましくは、80℃以上、また、例えば、250℃以下、好ましくは、200℃以下で、例えば、5分間以上、好ましくは、10分間以上、また、例えば、300分間以下、好ましくは、200分間以下で、熱伝導性シート100を加熱する。 In order to thermally cure the heat conductive sheet 100, for example, 60 ° C. or more, preferably 80 ° C. or more, for example, 250 ° C. or less, preferably 200 ° C. or less, for example, 5 minutes or more, preferably The heat conductive sheet 100 is heated for 10 minutes or longer, for example, 300 minutes or shorter, preferably 200 minutes or shorter.
 そして、本発明の熱伝導性シートの製造方法では、原料成分27からカレンダー1によって熱伝導性シート100を形成するので、優れた製造効率で熱伝導性シート100を得ることができる。 And in the manufacturing method of the heat conductive sheet of this invention, since the heat conductive sheet 100 is formed from the raw material component 27 with the calendar 1, the heat conductive sheet 100 can be obtained with excellent manufacturing efficiency.
 しかも、板状の窒化ホウ素粒子23の破砕を有効に防止することができる。 Moreover, crushing of the plate-like boron nitride particles 23 can be effectively prevented.
 また、原料成分27を、上下方向に互いに隣接する上流側のニップ部分2と下流側のニップ部分2と、すなわち、圧延部材4に通過させる。そして、カレンダー1では、下流側のニップ部分2の間隔G’が、上流側のニップ部分の間隔Gより小さく設定されている。 Further, the raw material component 27 is passed through the upstream nip portion 2 and the downstream nip portion 2 adjacent to each other in the vertical direction, that is, through the rolling member 4. In the calendar 1, the interval G 'between the downstream nip portions 2 is set to be smaller than the interval G between the upstream nip portions.
 すなわち、カレンダー1において、第2圧延部材8のニップ部分2の間隔G2は、第1圧延部材7のニップ部分2の間隔G1より小さく、第3圧延部材9のニップ部分2の間隔G3は、第2圧延部材8のニップ部分2の間隔G2より小さく、第4圧延部材10のニップ部分2の間隔G4は、第3圧延部材9のニップ部分2の間隔G3より小さく、第5圧延部材8のニップ部分2の間隔G5は、第1圧延部材7のニップ部分2の間隔G4より小さく設定されている。 That is, in the calendar 1, the gap G2 of the nip part 2 of the second rolling member 8 is smaller than the gap G1 of the nip part 2 of the first rolling member 7, and the gap G3 of the nip part 2 of the third rolling member 9 is 2 is smaller than the gap G2 of the nip portion 2 of the rolling member 8, the gap G4 of the nip portion 2 of the fourth rolling member 10 is smaller than the gap G3 of the nip portion 2 of the third rolling member 9, and is the nip of the fifth rolling member 8. The interval G5 of the portion 2 is set smaller than the interval G4 of the nip portion 2 of the first rolling member 7.
 要するに、圧延部材4のニップ部分2の間隔G1~G5は、搬送方向下流側に向かって順次小さくなるように設定されている。 In short, the gaps G1 to G5 of the nip portion 2 of the rolling member 4 are set so as to decrease sequentially toward the downstream side in the transport direction.
 そのため、板状の窒化ホウ素粒子23をポリマーマトリクス24中で面方向PDに沿って効率よく配向させながら、空隙率Pを低減させることができる。 Therefore, the porosity P can be reduced while the plate-like boron nitride particles 23 are efficiently oriented in the polymer matrix 24 along the plane direction PD.
 そのため、面方向PDの熱伝導性および柔軟性に優れる熱伝導性シート100を、優れた製造効率で製造することができる。 Therefore, the heat conductive sheet 100 having excellent heat conductivity and flexibility in the surface direction PD can be manufactured with excellent manufacturing efficiency.
 その結果、柔軟性および面方向PDの熱伝導性に優れる熱伝導性シート100として、種々の放熱用途に用いることができる。 As a result, the heat conductive sheet 100 having excellent flexibility and thermal conductivity in the surface direction PD can be used for various heat dissipation applications.
 具体的には、熱伝導性シート100によって電子素子を被覆すれば、かかる電子素子を保護できながら、電子素子の熱を効率的に熱伝導させることができる。 Specifically, if the electronic element is covered with the thermal conductive sheet 100, the heat of the electronic element can be efficiently conducted while protecting the electronic element.
 なお、熱伝導性シート100に被覆される電子素子としては、特に限定されず、例えば、IC(集積回路)チップ、コンデンサ、コイル、抵抗器、発光ダイオードなどが挙げられる。これら電子素子は、通常、基板の上に設けられ、面方向(基板の面方向)に互いに間隔を隔てて配置されている。 It should be noted that the electronic element coated on the heat conductive sheet 100 is not particularly limited, and examples thereof include an IC (integrated circuit) chip, a capacitor, a coil, a resistor, and a light emitting diode. These electronic elements are usually provided on a substrate, and are arranged at intervals in a plane direction (plane direction of the substrate).
 とりわけ、熱伝導性シート100によって、パワーエレクトロニクスに採用される電子部品および/またはそれが実装される実装基板を被覆すれば、熱伝導性シート100の熱による劣化を防止できながら、熱伝導性シート100によって、電子部品および/または実装基板の熱を面方向PDに沿って放熱させることができる。 In particular, if an electronic component employed in power electronics and / or a mounting substrate on which it is mounted is covered with the heat conductive sheet 100, the heat conductive sheet 100 can be prevented from being deteriorated by heat, and the heat conductive sheet can be prevented. With 100, the heat of the electronic component and / or the mounting board can be dissipated along the surface direction PD.
 パワーエレクトロニクスに採用される電子部品としては、例えば、IC(集積回路)チップ(とりわけ、ICチップにおける幅狭の電極端子部分)、サイリスタ(整流器)、モータ部品、インバーター、送電用部品、コンデンサ、コイル、抵抗器、発光ダイオードなどが挙げられる。 Electronic components used in power electronics include, for example, IC (integrated circuit) chips (especially narrow electrode terminal portions in IC chips), thyristors (rectifiers), motor parts, inverters, power transmission parts, capacitors, coils , Resistors, light emitting diodes, and the like.
 また、実装基板には、上記した電子部品が表面(一方面)に実装されており、かかる実装基板では、電子部品が、面方向(実装基板の面方向)に互いに間隔を隔てて配置されている。 In addition, the electronic component described above is mounted on the surface (one surface) of the mounting substrate, and in such a mounting substrate, the electronic components are arranged at intervals in the surface direction (surface direction of the mounting substrate). Yes.
 また、耐熱性に優れる熱伝導性シート100を、例えば、LED放熱基板、電池用放熱材に設けることもできる。 Moreover, the heat conductive sheet 100 excellent in heat resistance can be provided on, for example, an LED heat dissipation board or a battery heat dissipation material.
 なお、図1の実線の実施形態では、溶媒を含む原料成分を、乾燥させて、原料粉体を調製して、それをカレンダー1に投入しているが、例えば、図1の仮想線で示すように、溶媒を含む原料成分を押出機などによって原料シート26に成形した後、原料シート26をカレンダー1に投入することもできる。 In the embodiment shown by the solid line in FIG. 1, the raw material component containing the solvent is dried to prepare the raw material powder, which is put into the calendar 1. As described above, after the raw material component including the solvent is formed into the raw material sheet 26 by an extruder or the like, the raw material sheet 26 can be put into the calendar 1.
 次に、図6~図18を参照して、本発明の長尺シート形成工程のカレンダーの他の実施形態を説明する。 Next, another embodiment of the calendar of the long sheet forming process of the present invention will be described with reference to FIGS.
 なお、上記した各部に対応する部材については、以降の各図面において同一の参照符号を付し、その詳細な説明を省略する。 In addition, about the member corresponding to each above-mentioned part, the same referential mark is attached | subjected in each subsequent drawing, and the detailed description is abbreviate | omitted.
 図1の実施形態では、カレンダー1は、複数の圧延部材4が上下方向に延びるように縦型に直列配置される縦型配置としているが、例えば、図6に示すように、複数の圧延部材4が左右方向に延びるように横型に直列配置される横型配置とすることもできる。 In the embodiment of FIG. 1, the calendar 1 has a vertical arrangement in which a plurality of rolling members 4 are arranged in series in a vertical manner so that the plurality of rolling members 4 extend in the vertical direction. It can also be set as the horizontal type arrangement | positioning arranged in series in a horizontal type so that 4 may extend in the left-right direction.
 図6のカレンダー1を用いる熱伝導性シートの製造方法は、図1のカレンダー1を用いる熱伝導性シートの製造方法と同様の作用効果を奏する。 The manufacturing method of the heat conductive sheet using the calendar 1 of FIG. 6 has the same effect as the manufacturing method of the heat conductive sheet using the calendar 1 of FIG.
 また、図1の実施形態では、圧延部材4において、第1ロール5および第2ロール6をそれぞれ搬送方向に沿うI字形状に配置しているが、その配置は、それに限定されない。 Moreover, in the embodiment of FIG. 1, in the rolling member 4, the 1st roll 5 and the 2nd roll 6 are each arrange | positioned in I shape along a conveyance direction, However, The arrangement | positioning is not limited to it.
 例えば、図7~図18に示すように、種々の配置で形成されるロール3からなる圧延部材4からカレンダー1を構成することもできる。 For example, as shown in FIG. 7 to FIG. 18, the calendar 1 can also be constituted by a rolling member 4 made of rolls 3 formed in various arrangements.
 図7~図18に示すカレンダー1では、長尺シート20のパスが屈曲状に形成されているので、長尺シート20を屈曲させながら、圧延して、熱伝導性シート100を製造する。 7 to 18, since the path of the long sheet 20 is formed in a bent shape, the long sheet 20 is rolled while being bent, and the heat conductive sheet 100 is manufactured.
 具体的には、図7~図9のカレンダー1では、複数(図7では、3個、図8では、図9では、4個)のロール3が上下方向に直立するように密着状に整列配置されている。 Specifically, in the calendar 1 of FIGS. 7 to 9, a plurality (three in FIG. 7 and four in FIG. 9 in FIG. 9) of the rolls 3 are arranged in close contact so as to stand upright. Has been placed.
 図10のカレンダー1では、複数(3個)のロール3が上下方向に対して傾斜して整列配置されている。 In the calendar 1 in FIG. 10, a plurality (three) of the rolls 3 are arranged in an inclined manner with respect to the vertical direction.
 図11のカレンダー1では、複数(3個)のロール3のうち、上側2個のロール3が、上下方向に対する傾斜方向において対向配置されている。 In the calendar 1 shown in FIG. 11, among the plurality (three) of the rolls 3, the upper two rolls 3 are arranged to face each other in the inclination direction with respect to the vertical direction.
 図8および図12~図15では、圧延部材4は、4個のロール3からなり、ロール3は、図12では、逆L字形状に、図13では、L字形状に、図14では、Z字形状に、図15では、S字形状に配置されている。 8 and 12 to 15, the rolling member 4 is composed of four rolls 3. The roll 3 is in an inverted L shape in FIG. 12, in an L shape in FIG. 13, and in FIG. In FIG. 15, it is arranged in an S shape in a Z shape.
 図9および図16~図18では、圧延部材4は、5個のロール3からなり、ロール3は、図16では、逆L字形状に、図17では、7の字形状に、図18では、M字形状に配置されている。 9 and 16 to 18, the rolling member 4 comprises five rolls 3. The roll 3 has an inverted L shape in FIG. 16, a 7 shape in FIG. 17, and a roll shape in FIG. Are arranged in an M-shape.
 図7~図18のカレンダー1を用いる熱伝導性シート100の製造方法は、図1に示すカレンダー1を用いる熱伝導性シート100の製造方法と同様の作用効果を奏することができる。 7 to 18 can produce the same effects as the method for producing the heat conductive sheet 100 using the calendar 1 shown in FIG.
 好ましくは、図1および図6に示すカレンダー1を用いる熱伝導性シート100の製造方法が挙げられる。この方法によれば、圧延部材4が、直線状に配置され、長尺シート20のパスが直線状に延びるように形成されているので、板状の窒化ホウ素粒子23を屈曲させる応力が発生することを防止することができ、それによって、窒化ホウ素粒子23の破砕をより一層有効に防止することができる。 Preferably, the manufacturing method of the heat conductive sheet 100 using the calendar 1 shown in FIG. 1 and FIG. 6 is mentioned. According to this method, since the rolling member 4 is arranged in a straight line and the path of the long sheet 20 is formed to extend in a straight line, a stress for bending the plate-like boron nitride particles 23 is generated. This can be prevented, whereby the breakage of the boron nitride particles 23 can be more effectively prevented.
 また、図1の実施形態は、圧延部材を5個設けているが、その数は、複数のニップ部分2が形成されるように、複数個であれば特に限定されず、例えば、2~10個(5個を除く)、好ましくは、3~7個(5個を除く)に設定することもできる。 In the embodiment of FIG. 1, five rolling members are provided, but the number is not particularly limited as long as it is plural so that a plurality of nip portions 2 are formed. The number can be set (excluding 5), preferably 3 to 7 (excluding 5).
 好ましくは、圧延部材4を3個以上設ける。これによって、長尺シート20を十分効率よく圧延することができる。 Preferably, three or more rolling members 4 are provided. Thereby, the long sheet 20 can be rolled sufficiently efficiently.
 さらに、図1では、長尺シート形成工程において、カレンダー1として、複数の圧延部材4を備えるカレンダー成形装置を用いているが、例えば、図19に示すように、単数の圧延部材4を備えるカレンダー成形装置を用いることもできる。 Further, in FIG. 1, in the long sheet forming process, a calendar forming apparatus including a plurality of rolling members 4 is used as the calendar 1. For example, as illustrated in FIG. 19, a calendar including a single rolling member 4 is used. A molding apparatus can also be used.
 図19において、1対のロール3は、単数の圧延部材4を構成しており、互いに左右方向に対向配置されている。 In FIG. 19, a pair of rolls 3 constitutes a single rolled member 4 and are arranged to face each other in the left-right direction.
 図19では、1対のロール3を、互いに左右方向に対向配置させているが、例えば、図20に示すように、互いに左右方向に対向配置させることもできる。
[第2実施形態]
 第2実施形態の熱伝導性シートの製造方法は、原料成分を調製する工程(原料調製工程)、原料成分をカレンダーで圧延することにより長尺シートを形成する工程(長尺シート形成工程)、および、長尺シートをプレスする工程(プレス工程)を備えている。
In FIG. 19, the pair of rolls 3 are arranged to face each other in the left-right direction. However, for example, as shown in FIG. 20, they can be arranged to face each other in the left-right direction.
[Second Embodiment]
The manufacturing method of the heat conductive sheet of 2nd Embodiment is the process of preparing a raw material component (raw material preparation process), the process of forming a long sheet by rolling a raw material component with a calendar (long sheet forming process), And the process (press process) of pressing a long sheet is provided.
 以下、各工程を詳述する。 Hereinafter, each process will be described in detail.
 <原料調製工程>
 第2実施形態の原料調製工程は、第1実施形態の原料調製工程と同様である。
<Raw material preparation process>
The raw material preparation process of the second embodiment is the same as the raw material preparation process of the first embodiment.
 <長尺シート形成工程>
 次いで、この方法では、上記した原料成分を、カレンダーで圧延することにより熱伝導性シートを形成する。
<Long sheet forming process>
Next, in this method, the above-described raw material components are rolled with a calender to form a heat conductive sheet.
 次に、長尺シート形成工程で用いられるカレンダーについて図B1を参照して説明する。 Next, a calendar used in the long sheet forming process will be described with reference to FIG.
 図B1において、カレンダーB1は、原料成分B9から第1長尺シートB2を形成するシート形成部B3と、第1長尺シートB2を厚み方向(第1長尺シートB2の厚み方向、以下同様)に複数積層するシート積層部B4とを備えている。 In FIG. B1, a calendar B1 includes a sheet forming portion B3 that forms the first long sheet B2 from the raw material component B9, and the first long sheet B2 in the thickness direction (the thickness direction of the first long sheet B2, the same applies hereinafter). And a sheet lamination part B4 for laminating a plurality of sheets.
 シート形成部B3は、カレンダーB1における第1長尺シートB2の搬送方向(図B1における上下方向、以下、単に搬送方向とする)最上流側に配置され、圧延部材B5を複数備えている。 The sheet forming section B3 is arranged on the most upstream side in the conveying direction of the first long sheet B2 in the calendar B1 (the vertical direction in FIG. B1, hereinafter simply referred to as the conveying direction), and includes a plurality of rolling members B5.
 シート積層部B4は、シート形成部B3に対して、搬送方向下流側に配置されている。シート積層部B4は、搬送方向において多段または単段(n段(nは1以上の整数)、例えば、1~9段、好ましくは、2~6段(具体的には、4段)で構成されている。 The sheet stacking part B4 is arranged on the downstream side in the transport direction with respect to the sheet forming part B3. The sheet stacking part B4 is composed of multiple stages or single stages (n stages (n is an integer of 1 or more)), for example, 1 to 9 stages, preferably 2 to 6 stages (specifically, 4 stages) in the conveying direction. Has been.
 シート形成部B3は、搬送方向と直交する方向に並列配置される圧延部材B5を複数個(2個、具体的には、16個)備えている。 The sheet forming unit B3 includes a plurality ( 2n , specifically, 16) of rolling members B5 arranged in parallel in a direction orthogonal to the conveying direction.
 各圧延部材B5は、ニップ部分(以下、シート形成部においては第1ニップ部分B8、シート積層部においては第2ニップ部分B14とする。)が形成されるように、互いに対向配置される1対のロールを備えている。1対のロールは、並列方向(搬送方向に交差する方向)一方側に配置される第1ロールB6、および、第1ロールB6に対して並列方向他方側に対向配置される第2ロールB7を備えている。 Each of the rolling members B5 is a pair arranged to face each other so as to form a nip portion (hereinafter referred to as a first nip portion B8 in the sheet forming portion and a second nip portion B14 in the sheet stacking portion). It is equipped with a roll. The pair of rolls includes a first roll B6 disposed on one side in the parallel direction (a direction intersecting the transport direction) and a second roll B7 disposed opposite to the other side in the parallel direction with respect to the first roll B6. I have.
 第1ロールB6および第2ロールB7は、例えば、ステンレス、鉄、銅などの金属製のロールから形成されている。第1ロールB6および第2ロールB7は、好ましくは、ステンレスから形成されている。また、第1ロールB6および第2ロールB7の表面には、離型処理することもできる。 The first roll B6 and the second roll B7 are made of, for example, a roll made of metal such as stainless steel, iron, or copper. The first roll B6 and the second roll B7 are preferably made of stainless steel. Further, the surface of the first roll B6 and the second roll B7 can be subjected to mold release treatment.
 また、第1ロールB6および第2ロールB7は、その直径が、例えば、例えば、80mm以上、好ましくは、100mm以上であり、また、例えば、1000mm以下、好ましくは、700mm以下であり、その軸方向長さが、例えば、100mm以上、好ましくは、200mm以上、また、例えば、3000mm以下、好ましくは、2000mm以下として形成されている。 The first roll B6 and the second roll B7 have a diameter of, for example, 80 mm or more, preferably 100 mm or more, for example, 1000 mm or less, preferably 700 mm or less, and an axial direction thereof. The length is, for example, 100 mm or more, preferably 200 mm or more, for example, 3000 mm or less, preferably 2000 mm or less.
 また、第1ロールB6および第2ロールB7の第1ニップ部分B8の間隔G1は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、10mm以下、好ましくは、0.5mm以下である。 Further, the gap G1 between the first nip portion B8 of the first roll B6 and the second roll B7 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 10 mm or less, preferably 0. .5 mm or less.
 第1ロールB6および第2ロールB7は、その回転速度が、例えば、50m/分以下、好ましくは、10m/分以下、また、例えば、0.01m/分以上の範囲に設定されている。 The rotation speeds of the first roll B6 and the second roll B7 are set, for example, in a range of 50 m / min or less, preferably 10 m / min or less, for example, 0.01 m / min or more.
 また、第1ロールB6および第2ロールB7は、必要により、図示しない熱源により加熱されており、その表面温度は、例えば、20℃以上、好ましくは、40℃以上、例えば、150℃以下、好ましくは、80℃以下の範囲に設定されている。 Moreover, the 1st roll B6 and the 2nd roll B7 are heated by the heat source which is not shown in figure as needed, The surface temperature is 20 degreeC or more, for example, Preferably, it is 40 degreeC or more, for example, 150 degreeC or less, Preferably Is set to a range of 80 ° C. or lower.
 第1ロールB6および第2ロールB7は、第1長尺シートB2を搬送方向下流側に搬送できるように、それらの第1ニップ部分B8において、同一方向に回転するように設けられている。 The first roll B6 and the second roll B7 are provided so as to rotate in the same direction at the first nip portion B8 so that the first long sheet B2 can be transported downstream in the transport direction.
 圧延部材B5は、原料成分B9を圧延してシート状に成形することにより、第1長尺シートB2を形成する。 The rolled member B5 forms the first long sheet B2 by rolling the raw material component B9 into a sheet shape.
 シート積層部B4は、最初段積層部、必要により、複数の中間段積層部および最終段積層部を備えている。シート積層部B4は、n段で構成される場合は、例えば、第1シート積層部(最初段積層部)、必要により、第2シート積層部(中間段積層部)、・・・、および、第nシート積層部(最終段積層部)を備えている。具体的には、図B1において、シート積層部B4は、第1シート積層部B10(最初段積層部)、第2シート積層部B11(中間段積層部)、第3シート積層部B12(中間段積層部)、および、第4シート積層部B13(最終段積層部)を備えている。 The sheet lamination part B4 includes a first stage lamination part, and if necessary, a plurality of intermediate stage lamination parts and a final stage lamination part. When the sheet stacking part B4 is composed of n stages, for example, the first sheet stacking part (first stage stacking part), if necessary, the second sheet stacking part (intermediate stage stacking part), ..., and The nth sheet lamination part (final stage lamination part) is provided. Specifically, in FIG. B1, the sheet stacking section B4 includes a first sheet stacking section B10 (first stage stacking section), a second sheet stacking section B11 (intermediate stage stacking section), and a third sheet stacking section B12 (intermediate stage stacking section). Laminating part) and a fourth sheet laminating part B13 (final stage laminating part).
 第1シート積層部B10は、シート形成部B3に対して、搬送方向下流側に配置され、かつ、シート積層部B4における、搬送方向最上流側に配置されている。また、第1シート積層部B10は、搬送方向上流側に配置されるシート形成部B3における複数の圧延部材B5(第1圧延部材に相当)に対して、搬送方向下流側において、搬送方向と直交する方向に並列配置される1個の圧延部材B5(第2圧延部材に相当)を備えている。 The first sheet stacking unit B10 is disposed on the downstream side in the transport direction with respect to the sheet forming unit B3, and is disposed on the most upstream side in the transport direction in the sheet stacking unit B4. Moreover, 1st sheet | seat lamination | stacking part B10 is orthogonal to a conveyance direction in the conveyance direction downstream with respect to several rolling member B5 (equivalent to a 1st rolling member) in sheet | seat formation part B3 arrange | positioned at a conveyance direction upstream. One rolling member B5 (corresponding to a second rolling member) arranged in parallel in the direction to be provided.
 具体的には、第1シート積層部B10の圧延部材B5は、シート形成部B3における2個の圧延部材B5に対応して、1個設けられている。換言すれば、第1シート積層部B10の圧延部材B5は、シート形成部B3の圧延部材B5の個数に対して、半数個設けられている。シート積層部B4がn段で構成される場合は、第1シート積層部B10は、2n-1個(具体的には、8個)の圧延部材B5を備えている。 Specifically, one rolling member B5 of the first sheet stacking part B10 is provided corresponding to the two rolling members B5 in the sheet forming part B3. In other words, half of the rolling members B5 of the first sheet stacking portion B10 are provided with respect to the number of rolling members B5 of the sheet forming portion B3. In the case where the sheet stacking portion B4 is composed of n stages, the first sheet stacking portion B10 includes 2 n-1 (specifically, 8) rolling members B5.
 第1シート積層部B10における各圧延部材B5を形成する第1ロールB6および第2ロールB7の材料、サイズ、回転速度、表面温度および回転方向は、シート形成部B3における圧延部材B5のそれらと同様である。 The material, size, rotation speed, surface temperature, and rotation direction of the first roll B6 and the second roll B7 that form each rolling member B5 in the first sheet lamination portion B10 are the same as those of the rolling member B5 in the sheet forming portion B3. It is.
 第1シート積層部B10における第1ロールB6および第2ロールB7の第2ニップ部分B14の間隔G2は、シート形成部B3における第1ニップ部分B8の第1間隔G1に対して、例えば、50%以上、好ましくは、70%以上、さらに好ましくは、80%以上、また、例えば、150%以下、好ましくは、130%、さらに好ましくは、120%である。具体的には、第1シート積層部B10における第2ニップ部分B14の間隔G2は、例えば、0.05mm以上、好ましくは、0.05mm以上、より好ましくは、0.1mm以上、さらに好ましくは、0.15mm以上であり、また、例えば、1.5mm以下、好ましくは、1mm以下、より好ましくは、0.8mm以下、さらに好ましくは、0.6mm以下である。 The gap G2 between the second nip portion B14 of the first roll B6 and the second roll B7 in the first sheet lamination portion B10 is, for example, 50% with respect to the first gap G1 of the first nip portion B8 in the sheet forming portion B3. Above, preferably 70% or more, more preferably 80% or more, for example, 150% or less, preferably 130%, and more preferably 120%. Specifically, the gap G2 of the second nip portion B14 in the first sheet lamination part B10 is, for example, 0.05 mm or more, preferably 0.05 mm or more, more preferably 0.1 mm or more, and further preferably For example, it is 1.5 mm or less, preferably 1 mm or less, more preferably 0.8 mm or less, and still more preferably 0.6 mm or less.
 第2シート積層部B11は、第1シート積層部B10に対して、搬送方向下流側に配置されている。また、第2シート積層部B11は、搬送方向上流側に配置される第1シート積層部B10における複数の圧延部材B5(第1圧延部材に相当)に対して、搬送方向下流側において、搬送方向と直交する方向に並列配置される1個の圧延部材B5(第2圧延部材に相当)を備えている。 The second sheet stacking part B11 is arranged on the downstream side in the transport direction with respect to the first sheet stacking part B10. Moreover, 2nd sheet | seat lamination | stacking part B11 is a conveyance direction in the conveyance direction downstream with respect to several rolling member B5 (equivalent to a 1st rolling member) in 1st sheet | seat lamination | stacking part B10 arrange | positioned in the conveyance direction upstream. Is provided with one rolling member B5 (corresponding to a second rolling member) arranged in parallel in a direction orthogonal to the direction.
 具体的には、第2シート積層部B11の圧延部材B5は、第1シート積層部B10における2個の圧延部材B5に対応して、1個設けられている。換言すれば、第2シート積層部B11の圧延部材B5は、第1シート積層部B10の圧延部材B5の個数に対して、半数個設けられている。シート積層部B4がn段で構成される場合は、第2シート積層部B11は、圧延部材B5を2n-2個(具体的には、4個)備えている。 Specifically, one rolling member B5 of the second sheet lamination portion B11 is provided corresponding to the two rolling members B5 in the first sheet lamination portion B10. In other words, half of the rolling members B5 of the second sheet lamination portion B11 are provided with respect to the number of rolling members B5 of the first sheet lamination portion B10. When the sheet stacking part B4 is composed of n stages, the second sheet stacking part B11 is provided with 2 n−2 (specifically, four) rolling members B5.
 第2シート積層部B11における各圧延部材B5を形成する第1ロールB6および第2ロールB7については、第1シート積層部B10におけるそれらと同様である。 1st roll B6 and 2nd roll B7 which form each rolling member B5 in 2nd sheet lamination part B11 are the same as those in 1st sheet lamination part B10.
 第3シート積層部B12は、第2シート積層部B11に対して、搬送方向下流側に配置されている。また、第3シート積層部B12は、搬送方向上流側に配置される第2シート積層部B11における複数の圧延部材B5(第1圧延部材に相当)に対して、搬送方向下流側において、搬送方向と直交する方向に並列配置される1個の圧延部材B5(第2圧延部材に相当)を備えている。 The third sheet stacking part B12 is arranged on the downstream side in the transport direction with respect to the second sheet stacking part B11. In addition, the third sheet stacking portion B12 is in the transport direction on the downstream side in the transport direction with respect to the plurality of rolling members B5 (corresponding to the first rolling member) in the second sheet stacking portion B11 arranged on the upstream side in the transport direction. Is provided with one rolling member B5 (corresponding to a second rolling member) arranged in parallel in a direction orthogonal to the direction.
 具体的には、第3シート積層部B12の圧延部材B5は、第2シート積層部B11における2個の圧延部材B5に対応して、1個設けられている。換言すれば、第3シート積層部B12の圧延部材B5は、第2シート積層部B11の圧延部材B5の個数に対して、半数個設けられている。シート積層部B4がn段で構成される場合は、第3シート積層部B12は、圧延部材B5を2n-3個(具体的には、2個)備えている。 Specifically, one rolling member B5 of the third sheet lamination portion B12 is provided corresponding to the two rolling members B5 in the second sheet lamination portion B11. In other words, half of the rolling members B5 of the third sheet lamination part B12 are provided with respect to the number of rolling members B5 of the second sheet lamination part B11. When the sheet stacking part B4 is composed of n stages, the third sheet stacking part B12 includes 2 n−3 (specifically, two) rolling members B5.
 第3シート積層部B12における各圧延部材B5を形成する第1ロールB6および第2ロールB7については、第1シート積層部B10におけるそれらと同様である。 1st roll B6 and 2nd roll B7 which form each rolling member B5 in 3rd sheet lamination part B12 are the same as those in 1st sheet lamination part B10.
 第4シート積層部B13は、第3シート積層部B12に対して、搬送方向下流側に配置され、かつ、シート積層部B4において、搬送方向最下流側に配置されている。また、第4シート積層部B13は、搬送方向上流側に配置される第3シート積層部B12における複数の圧延部材B5(第1圧延部材に相当)に対して、搬送方向下流側において、搬送方向と直交する方向に並列配置される1個の圧延部材B5(第2圧延部材に相当)を備えている。 The fourth sheet stacking part B13 is disposed on the downstream side in the transport direction with respect to the third sheet stacking part B12, and is disposed on the most downstream side in the transport direction in the sheet stacking part B4. Further, the fourth sheet stacking portion B13 is in the transport direction on the downstream side in the transport direction with respect to the plurality of rolling members B5 (corresponding to the first rolling member) in the third sheet stacking portion B12 arranged on the upstream side in the transport direction. Is provided with one rolling member B5 (corresponding to a second rolling member) arranged in parallel in a direction orthogonal to the direction.
 具体的には、第4シート積層部B13の圧延部材B5は、第3シート積層部B12における2個の圧延部材B5に対応して、1個設けられている。換言すれば、第4シート積層部B13の圧延部材B5は、第3シート積層部B12の圧延部材B5の個数に対して、半数個設けられている。シート積層部B4がn段で構成される場合は、第4シート積層部B13は、圧延部材B5を2n-4個(具体的には、1個)備えている。 Specifically, one rolling member B5 of the fourth sheet lamination part B13 is provided corresponding to the two rolling members B5 in the third sheet lamination part B12. In other words, half of the rolling members B5 of the fourth sheet lamination portion B13 are provided with respect to the number of rolling members B5 of the third sheet lamination portion B12. When the sheet stacking portion B4 is configured with n stages, the fourth sheet stacking portion B13 includes 2 n−4 (specifically, one) rolling members B5.
 第4シート積層部B13における各圧延部材B5を形成する第1ロールB6および第2ロールB7については、第1シート積層部B10におけるそれらと同様である。 1st roll B6 and 2nd roll B7 which form each rolling member B5 in 4th sheet lamination part B13 are the same as those in 1st sheet lamination part B10.
 なお、カレンダーB1には、必要により、巻取ロール(図示せず)が、第4シート積層部B13(シート積層部B4がn段で構成される場合は、第nシート積層部)における圧延部材B5の搬送方向下流側に間隔を隔てて設けられている。 In addition, in the calendar B1, if necessary, a winding roll (not shown) is a rolling member in the fourth sheet lamination portion B13 (or the nth sheet lamination portion when the sheet lamination portion B4 is composed of n stages). It is provided at an interval on the downstream side in the conveyance direction of B5.
 そして、原料成分B9をカレンダーB1で圧延することによって長尺シートB20を形成するには、原料成分B9をシート形成部B3における第1ロールB6および第2ロールB7で圧延することによって、第1長尺シートB2を形成し、次いで、第1長尺シートB2を厚み方向に複数積層し、シート積層部B4における第1ロールB6および第2ロールB7で圧延する。 And in order to form the elongate sheet | seat B20 by rolling raw material component B9 with the calendar | calender B1, by rolling the raw material component B9 with the 1st roll B6 and the 2nd roll B7 in the sheet | seat formation part B3, it is 1st long. A length sheet B2 is formed, and then a plurality of first long sheets B2 are stacked in the thickness direction, and rolled by the first roll B6 and the second roll B7 in the sheet stacking portion B4.
 具体的には、原料成分B9を、シート形成部B3における複数の圧延部材B5の各第1ニップ部分B8に投入する。 Specifically, the raw material component B9 is charged into each first nip portion B8 of the plurality of rolling members B5 in the sheet forming portion B3.
 原料成分B9の投入量は、例えば、0.01kg/分以上、好ましくは、0.02kg/分以上、また、例えば、50kg/分以下、5kg/分以下である。 The input amount of the raw material component B9 is, for example, 0.01 kg / min or more, preferably 0.02 kg / min or more, and, for example, 50 kg / min or less, 5 kg / min or less.
 次いで、シート形成部B3における複数の圧延部材B5の各第1ニップ部分B8に投入された原料成分B9は、第1ニップ部分B8において、第1ロールB6および第2ロールB7の回転によって、搬送方向下流側に搬送されながら圧延されて第1長尺シートB2にそれぞれ形成され、各第1長尺シートB2がシート形成部B3における各圧延部材B5から送り出される。 Next, the raw material component B9 introduced into each first nip portion B8 of the plurality of rolling members B5 in the sheet forming portion B3 is conveyed in the conveying direction by the rotation of the first roll B6 and the second roll B7 in the first nip portion B8. Each of the first long sheets B2 is rolled out while being conveyed to the downstream side and formed on the first long sheet B2, and the first long sheets B2 are sent out from the respective rolling members B5 in the sheet forming portion B3.
 シート形成部B3における圧延部材B5により形成された第1長尺シートB2の厚みTB1は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1mm以下、好ましくは、0.8mm以下、より好ましくは、0.6mm以下、さらに好ましくは、0.4mm以下である。 The thickness TB1 of the first long sheet B2 formed by the rolling member B5 in the sheet forming portion B3 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and for example, 1 mm or less, preferably It is 0.8 mm or less, More preferably, it is 0.6 mm or less, More preferably, it is 0.4 mm or less.
 シート形成部B3における並列方向に互いに隣接する2個の圧延部材B5によって圧延された2つの第1長尺シートB2は、それら2つに対応する、第1シート積層部B10における1個の圧延部材B5に向けて送り出される。そして、2つの第1長尺シートB2は、その後、第1シート積層部B10における圧延部材B5の第2ニップ部分B14に到達し、合一して積層されながら第1シート積層部B10における第2ニップ部分B14に進入する。次いで、第2ニップ部分B14に進入した2つの第1長尺シートB2は、第1ロールB6および第2ロールB7の回転によって、搬送方向下流側(下側)に搬送されながらまとめて圧延されて、2層からなる1つの第2長尺シートB15に形成され、第1シート積層部B10における圧延部材B5から送り出される。 The two first long sheets B2 rolled by the two rolling members B5 adjacent to each other in the parallel direction in the sheet forming portion B3 are one rolling member in the first sheet stacking portion B10 corresponding to these two. It is sent out to B5. Then, the two first long sheets B2 then reach the second nip portion B14 of the rolling member B5 in the first sheet stacking portion B10, and are joined together and stacked in the second sheet in the first sheet stacking portion B10. The nip portion B14 is entered. Next, the two first long sheets B2 that have entered the second nip portion B14 are rolled together while being transported downstream (downward) in the transport direction by the rotation of the first roll B6 and the second roll B7. It is formed on one second long sheet B15 composed of two layers, and is sent out from the rolling member B5 in the first sheet lamination part B10.
 第1シート積層部B10における圧延部材B5により成形された第2長尺シートB15の厚みTB2は、シート形成部B3における圧延部材B5の圧延により成形された第1長尺シートB2の厚みTB1に対して、例えば、150%以下、好ましくは、130%以下、さらに好ましくは、120%以下であり、また、例えば、50%以上、好ましくは、70%以上、さらに好ましくは、80%以上でもある。 The thickness TB2 of the second long sheet B15 formed by the rolling member B5 in the first sheet lamination part B10 is compared with the thickness TB1 of the first long sheet B2 formed by rolling of the rolling member B5 in the sheet forming part B3. For example, it is 150% or less, preferably 130% or less, more preferably 120% or less, and for example, 50% or more, preferably 70% or more, and more preferably 80% or more.
 具体的には、第1シート積層部B10における圧延部材B5により成形された第2長尺シートB15の厚みTB2は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1mm以下、好ましくは、0.8mm以下、より好ましくは、0.6mm以下、さらに好ましくは、0.4mm以下である。 Specifically, the thickness TB2 of the second long sheet B15 formed by the rolling member B5 in the first sheet stacking portion B10 is, for example, 0.05 mm or more, preferably 0.1 mm or more, 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less, and further preferably 0.4 mm or less.
 第1シート積層部B10における並列方向に互いに隣接する2個の圧延部材B5によって圧延された2つの第2長尺シートB15は、それら2つに対応する、第2シート積層部B11における1個の圧延部材B5に向けて送り出される。そして、2つの第2長尺シートB15は、その後、第2シート積層部B11における圧延部材B5の第2ニップ部分B14に到達し、合一して積層されながら第2シート積層部B11における第2ニップ部分B14に進入する。次いで、第2ニップ部分B14に進入した2つの第2長尺シートB15は、第1ロールB6および第2ロールB7の回転によって、搬送方向下流側(下側)に搬送されながらまとめて圧延されて、4層からなる1つの第3長尺シートB16に形成され、第2シート積層部B11における圧延部材B5から送り出される。 The two second long sheets B15 rolled by the two rolling members B5 adjacent to each other in the parallel direction in the first sheet lamination part B10 correspond to one of the two in the second sheet lamination part B11. It is sent out toward the rolling member B5. Then, the two second long sheets B15 then reach the second nip portion B14 of the rolling member B5 in the second sheet lamination portion B11 and are united and laminated while being second in the second sheet lamination portion B11. The nip portion B14 is entered. Next, the two second long sheets B15 that have entered the second nip portion B14 are rolled together while being conveyed downstream (downward) in the conveyance direction by the rotation of the first roll B6 and the second roll B7. It is formed on one third long sheet B16 composed of four layers, and is fed out from the rolling member B5 in the second sheet lamination part B11.
 第2シート積層部B11における圧延部材B5により成形された第3長尺シートB16の厚みTB3は、第1シート積層部B10における圧延部材B5の圧延により成形された第2長尺シートB15の厚みTB2に対して、例えば、150%以下、好ましくは、130%以下、さらに好ましくは、120%以下であり、また、例えば、50%以上、好ましくは、70%以上、さらに好ましくは、80%以上でもある。 The thickness TB3 of the third long sheet B16 formed by the rolling member B5 in the second sheet lamination part B11 is the thickness TB2 of the second long sheet B15 formed by rolling of the rolling member B5 in the first sheet lamination part B10. In contrast, for example, 150% or less, preferably 130% or less, more preferably 120% or less, and for example, 50% or more, preferably 70% or more, more preferably 80% or more. is there.
 具体的には、第2シート積層部B11における圧延部材B5により成形された第3長尺シートB16の厚みTB3は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1mm以下、好ましくは、0.8mm以下、より好ましくは、0.6mm以下、さらに好ましくは、0.4mm以下である。 Specifically, the thickness TB3 of the third long sheet B16 formed by the rolling member B5 in the second sheet lamination portion B11 is, for example, 0.05 mm or more, preferably 0.1 mm or more, 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less, and further preferably 0.4 mm or less.
 第2シート積層部B11における並列方向に互いに隣接する2個の圧延部材B5によって圧延された2つの第3長尺シートB16は、それら2つに対応する、第3シート積層部B12における1個の圧延部材B5に向けて送り出される。そして、2つの第3長尺シートB16は、その後、第3シート積層部B12における圧延部材B5の第2ニップ部分B14に到達し、合一して積層されながら第3シート積層部B12における第2ニップ部分B14に進入する。次いで、第2ニップ部分B14に進入した2つの第3長尺シートB16は、第1ロールB6および第2ロールB7の回転によって、搬送方向下流側(下側)に搬送されながらまとめて圧延されて、8層からなる1つの第4長尺シートB17に形成され、第3シート積層部B12における圧延部材B5から送り出される。 Two third long sheets B16 rolled by two rolling members B5 adjacent to each other in the parallel direction in the second sheet lamination part B11, one corresponding in the two in the third sheet lamination part B12 It is sent out toward the rolling member B5. Then, the two third long sheets B16 then reach the second nip portion B14 of the rolling member B5 in the third sheet lamination portion B12 and are united and laminated while being second in the third sheet lamination portion B12. The nip portion B14 is entered. Next, the two third long sheets B16 entering the second nip portion B14 are rolled together while being conveyed downstream (downward) in the conveying direction by the rotation of the first roll B6 and the second roll B7. , Formed on one fourth elongate sheet B17 composed of 8 layers, and sent out from the rolling member B5 in the third sheet lamination part B12.
 第3シート積層部B12における圧延部材B5により成形された第4長尺シートB17の厚みTB4は、第2シート積層部B11における圧延部材B5の圧延により成形された第3長尺シートB16の厚みTB3に対して、例えば、150%以下、好ましくは、130%以下、さらに好ましくは、120%以下であり、また、例えば、50%以上、好ましくは、70%以上、さらに好ましくは、80%以上でもある。 The thickness TB4 of the fourth long sheet B17 formed by the rolling member B5 in the third sheet lamination part B12 is the thickness TB3 of the third long sheet B16 formed by rolling of the rolling member B5 in the second sheet lamination part B11. In contrast, for example, 150% or less, preferably 130% or less, more preferably 120% or less, and for example, 50% or more, preferably 70% or more, more preferably 80% or more. is there.
 具体的には、第3シート積層部B12における圧延部材B5により成形された第4長尺シートB17の厚みTB4は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1mm以下、好ましくは、0.8mm以下、より好ましくは、0.6mm以下、さらに好ましくは、0.4mm以下である。 Specifically, the thickness TB4 of the fourth long sheet B17 formed by the rolling member B5 in the third sheet lamination portion B12 is, for example, 0.05 mm or more, preferably 0.1 mm or more, 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less, and further preferably 0.4 mm or less.
 第3シート積層部B12における並列方向に互いに隣接する2個の圧延部材B5によって圧延された2つの第4長尺シートB17は、それら2つに対応する、第4シート積層部B13における1個の圧延部材B5に向けて送り出される。そして、2つの第4長尺シートB17は、その後、第4シート積層部B13における圧延部材B5の第2ニップ部分B14に到達し、合一して積層されながら第4シート積層部B13における第2ニップ部分B14に進入する。次いで、第2ニップ部分B14に進入した2つの第4長尺シートB17は、第1ロールB6および第2ロールB7の回転によって、搬送方向下流側(下側)に搬送されながらまとめて圧延されて、16層からなる1つの第5長尺シートB18に形成され、第4シート積層部B13における圧延部材B5から送り出される。 Two fourth long sheets B17 rolled by two rolling members B5 adjacent to each other in the parallel direction in the third sheet stacking portion B12 correspond to one of the two in the fourth sheet stacking portion B13. It is sent out toward the rolling member B5. Then, the two fourth long sheets B17 then reach the second nip portion B14 of the rolling member B5 in the fourth sheet stacking portion B13, and the second sheet in the fourth sheet stacking portion B13 is stacked while being united. The nip portion B14 is entered. Next, the two fourth long sheets B17 that have entered the second nip portion B14 are rolled together while being conveyed downstream (downward) in the conveyance direction by the rotation of the first roll B6 and the second roll B7. , Formed in one fifth long sheet B18 composed of 16 layers, and fed out from the rolling member B5 in the fourth sheet lamination part B13.
 第4シート積層部B13における圧延部材B5により成形された第5長尺シートB18の厚みTB5は、第3シート積層部B12における圧延部材B5の圧延により成形された第4長尺シートB17の厚みTB4に対して、例えば、150%以下、好ましくは、130%以下、さらに好ましくは、120%以下であり、また、例えば、50%以上、好ましくは、70%以上、さらに好ましくは、80%以上でもある。 The thickness TB5 of the fifth long sheet B18 formed by the rolling member B5 in the fourth sheet lamination part B13 is the thickness TB4 of the fourth long sheet B17 formed by rolling of the rolling member B5 in the third sheet lamination part B12. In contrast, for example, 150% or less, preferably 130% or less, more preferably 120% or less, and for example, 50% or more, preferably 70% or more, more preferably 80% or more. is there.
 具体的には、第4シート積層部B13における圧延部材B5により成形された第5長尺シートB18の厚みTB5は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1mm以下、例えば、0.8mm以下、より好ましくは、0.6mm以下、さらに好ましくは、0.4mm以下である。 Specifically, the thickness TB5 of the fifth long sheet B18 formed by the rolling member B5 in the fourth sheet lamination portion B13 is, for example, 0.05 mm or more, preferably 0.1 mm or more, It is 1 mm or less, for example, 0.8 mm or less, More preferably, it is 0.6 mm or less, More preferably, it is 0.4 mm or less.
 その後、第4シート積層部B13における圧延部材B5から送り出された第5長尺シートB18は、図示しない巻取ロールによって巻き取られる。 Thereafter, the fifth long sheet B18 fed from the rolling member B5 in the fourth sheet stacking part B13 is wound up by a winding roll (not shown).
 これにより、長尺シートB20を得ることができる。 Thereby, the long sheet B20 can be obtained.
 <プレス工程>
 第2実施形態のプレス工程は、第1実施形態のプレス工程と同様である。
<Pressing process>
The pressing process of the second embodiment is the same as the pressing process of the first embodiment.
 また、第2実施形態のシートB21および熱伝導性シートB100の物性等は、第1実施形態の熱伝導性シート100と同様である。 The physical properties and the like of the sheet B21 and the heat conductive sheet B100 of the second embodiment are the same as those of the heat conductive sheet 100 of the first embodiment.
 そして、この熱伝導性シートB100は、被着体となる放熱対象に貼着され、その後、ポリマーマトリクスが熱硬化性樹脂成分を含有する場合には、加熱により熱硬化させる(Cステージ状態とする)ことにより、放熱対象に接着される。 And this heat conductive sheet B100 is affixed on the heat dissipation object used as a to-be-adhered body, and after that, when a polymer matrix contains a thermosetting resin component, it is thermoset by heating (it is set as a C stage state). ) To adhere to the heat dissipation object.
 熱伝導性シートB100を熱硬化させるには、例えば、60℃以上、好ましくは、80℃以上、また、例えば、250℃以下、好ましくは、200℃以下で、例えば、5分間以上、好ましくは、10分間以上、また、例えば、300分間以下、好ましくは、200分間以下で、熱伝導性シートB100を加熱する。 In order to thermally cure the heat conductive sheet B100, for example, 60 ° C. or more, preferably 80 ° C. or more, for example, 250 ° C. or less, preferably 200 ° C. or less, for example, 5 minutes or more, preferably The heat conductive sheet B100 is heated for 10 minutes or longer, for example, 300 minutes or shorter, preferably 200 minutes or shorter.
 そして、第2実施形態の熱伝導性シートの製造方法では、原料成分B9を、第1ロールB6および第2ロールB7を備えるカレンダーB1で圧延することにより第5長尺シートB18を形成するので、優れた製造効率で熱伝導性シートB100を得ることができる。 And in the manufacturing method of the heat conductive sheet of 2nd Embodiment, since 5th elongate sheet B18 is formed by rolling raw material component B9 with the calendar | calender B1 provided with 1st roll B6 and 2nd roll B7, The heat conductive sheet B100 can be obtained with excellent production efficiency.
 しかも、原料成分をカレンダーB1で圧延するので、板状の窒化ホウ素粒子B23の破砕を有効に防止することができる。 Moreover, since the raw material components are rolled with the calendar B1, the plate-like boron nitride particles B23 can be effectively prevented from being crushed.
 また、原料成分B9を、シート形成部B3において第1ロールB6および第2ロールB7で圧延することによって、第1長尺シートB2を形成し、その後、シート積層部B4における第1シート積層部B10、第2シート積層部B11、第3シート積層部B12および第4シート積層部B13のそれぞれにおいて、第1ロールB6および第2ロールB7にて、第1長尺シートB2、第2長尺シートB15、第3長尺シートB16および第4長尺シートB17をそれぞれ厚み方向TDに複数積層し、圧延する。その後、さらに、長尺シートをプレスするため、板状の窒化ホウ素23をポリマーマトリクスB24中で厚み方向TDに直交する面方向PDに沿って配向させながら、空隙率Pを低減させることができる。 Also, the first long sheet B2 is formed by rolling the raw material component B9 with the first roll B6 and the second roll B7 in the sheet forming section B3, and then the first sheet stacking section B10 in the sheet stacking section B4. In the second sheet stacking part B11, the third sheet stacking part B12 and the fourth sheet stacking part B13, the first long sheet B2 and the second long sheet B15 in the first roll B6 and the second roll B7, respectively. A plurality of third long sheets B16 and fourth long sheets B17 are stacked in the thickness direction TD and rolled. Thereafter, in order to further press the long sheet, the porosity P can be reduced while orienting the plate-like boron nitride 23 along the surface direction PD orthogonal to the thickness direction TD in the polymer matrix B24.
 そのため、板状の窒化ホウ素粒子B23をポリマーマトリクスB24中で面方向PDに沿って効率よく配向させながら、空隙率Pを低減させることができる。 Therefore, the porosity P can be reduced while the plate-like boron nitride particles B23 are efficiently oriented along the plane direction PD in the polymer matrix B24.
 そのため、面方向PDの熱伝導性および柔軟性に優れる熱伝導性シートB100を、優れた製造効率で製造することができる。 Therefore, the thermal conductive sheet B100 having excellent thermal conductivity and flexibility in the surface direction PD can be manufactured with excellent manufacturing efficiency.
 その結果、柔軟性および面方向PDの熱伝導性に優れる熱伝導性シートB100として、種々の放熱用途に用いることができる。 As a result, the heat conductive sheet B100 having excellent flexibility and thermal conductivity in the surface direction PD can be used for various heat dissipation applications.
 具体的には、熱伝導性シートB100によって電子素子を被覆すれば、かかる電子素子を保護できながら、電子素子の熱を効率的に熱伝導させることができる。 Specifically, if the electronic element is covered with the heat conductive sheet B100, the electronic element can be efficiently conducted while protecting the electronic element.
 なお、熱伝導性シートB100に被覆される電子素子としては、特に限定されず、例えば、IC(集積回路)チップ、コンデンサ、コイル、抵抗器、発光ダイオードなどが挙げられる。これら電子素子は、通常、基板の上に設けられ、面方向(基板の面方向)に互いに間隔を隔てて配置されている。 The electronic element covered with the heat conductive sheet B100 is not particularly limited, and examples thereof include an IC (integrated circuit) chip, a capacitor, a coil, a resistor, and a light emitting diode. These electronic elements are usually provided on a substrate, and are arranged at intervals in a plane direction (plane direction of the substrate).
 とりわけ、熱伝導性シートB100によって、パワーエレクトロニクスに採用される電子部品および/またはそれが実装される実装基板を被覆すれば、熱伝導性シートB100の熱による劣化を防止できながら、熱伝導性シートB100によって、電子部品および/または実装基板の熱を面方向PDに沿って放熱させることができる。 In particular, if the heat conductive sheet B100 covers an electronic component employed in power electronics and / or a mounting substrate on which the electronic component is mounted, the heat conductive sheet B100 can be prevented from being deteriorated by heat, and the heat conductive sheet B100 can be prevented. With B100, the heat of the electronic component and / or the mounting substrate can be radiated along the surface direction PD.
 パワーエレクトロニクスに採用される電子部品としては、例えば、IC(集積回路)チップ(とりわけ、ICチップにおける幅狭の電極端子部分)、サイリスタ(整流器)、モータ部品、インバーター、送電用部品、コンデンサ、コイル、抵抗器、発光ダイオードなどが挙げられる。 Electronic components used in power electronics include, for example, IC (integrated circuit) chips (especially narrow electrode terminal portions in IC chips), thyristors (rectifiers), motor parts, inverters, power transmission parts, capacitors, coils , Resistors, light emitting diodes, and the like.
 また、実装基板には、上記した電子部品が表面(一方面)に実装されており、かかる実装基板では、電子部品が、面方向(実装基板の面方向)に互いに間隔を隔てて配置されている。 In addition, the electronic component described above is mounted on the surface (one surface) of the mounting substrate, and in such a mounting substrate, the electronic components are arranged at intervals in the surface direction (surface direction of the mounting substrate). Yes.
 また、耐熱性に優れる熱伝導性シートB100を、例えば、LED放熱基板、電池用放熱材に設けることもできる。 Also, the heat conductive sheet B100 having excellent heat resistance can be provided on, for example, an LED heat dissipation board or a battery heat dissipation material.
 なお、図B1の実線の実施形態では、溶媒を含む原料成分を、乾燥させて、原料粉体を調製して、それをカレンダーB1に投入しているが、例えば、図B1の仮想線で示すように、溶媒を含む原料成分を押出成形などによって原料シートB26に成形した後、原料シートB26をカレンダーB1に投入することもできる。 In the embodiment shown by the solid line in FIG. B1, the raw material component containing the solvent is dried to prepare the raw material powder, which is put into the calendar B1, but for example, shown by the phantom line in FIG. As described above, after the raw material component including the solvent is formed into the raw material sheet B26 by extrusion molding or the like, the raw material sheet B26 can be put into the calendar B1.
 また、図B1の実施形態では、相対的に搬送方向下流側に配置される圧延部材B5を、相対的に搬送方向上流側に配置される2個の圧延部材B5に対応して、1個設けているが、図示しないが、例えば、相対的に搬送方向下流側に配置される圧延部材B5を、相対的に搬送方向上流側に配置される3個以上の複数の圧延部材B5に対応して、1個設けることもできる。 Moreover, in embodiment of FIG. B1, one rolling member B5 arrange | positioned relatively downstream in a conveyance direction is provided corresponding to two rolling members B5 arrange | positioned relatively upstream in a conveyance direction. Although not shown, for example, the rolling member B5 that is relatively disposed on the downstream side in the conveying direction corresponds to three or more rolling members B5 that are relatively disposed on the upstream side in the conveying direction. One can also be provided.
 また、図B1の実施形態では、2つの長尺シートを積層する工程を4回実施しているが、長尺シートを積層する工程の回数は、特に限定されず、例えば、1回(つまり、シート積層部が単段である態様、図B2参照)以上、好ましくは、2回以上、より好ましくは、3回以上、また、例えば、10回以下、好ましくは、7回以下実施することもできる。 Further, in the embodiment of FIG. B1, the step of laminating two long sheets is performed four times, but the number of times of laminating the long sheets is not particularly limited, for example, once (that is, The embodiment in which the sheet lamination part is a single stage (see FIG. B2)) or more, preferably 2 times or more, more preferably 3 times or more, for example, 10 times or less, preferably 7 times or less. .
 長尺シートを積層する工程の実施回数が、上記下限に満たないと、空隙率を十分に低減させることができない場合がある。 If the number of executions of the step of laminating the long sheet does not reach the above lower limit, the porosity may not be sufficiently reduced.
 一方、上記上限を超えると、優れた製造効率が得られない場合がある。 On the other hand, when the above upper limit is exceeded, excellent production efficiency may not be obtained.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明するが、本発明は、何らそれらに限定されない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to them.
 以下に示す実施例の数値は、上記の実施形態において記載される数値(すなわち、上限値または下限値)に代替することができる。 The numerical values of the examples shown below can be replaced with the numerical values (that is, the upper limit value or the lower limit value) described in the above embodiment.
 以下、各実施形態に対応する実施例を挙げて、本発明を具体的に説明する。
[第1実施形態に対応する実施例1~実施例8および比較例1~比較例15]
  実施例1
 [原料成分調製工程]
 各成分を、表1に記載に処方に基づいて配合して、攪拌した後、25℃の真空乾燥により、メチルエチルケトン(溶媒)を留去することにより、原料成分を原料粉体として調製した(混合・真空乾燥法)。
Hereinafter, the present invention will be specifically described with reference to examples corresponding to the respective embodiments.
[Examples 1 to 8 and Comparative Examples 1 to 15 corresponding to the first embodiment]
Example 1
[Raw material component preparation process]
After mixing and stirring each component based on the formulation described in Table 1, the raw material component was prepared as a raw powder by distilling off methyl ethyl ketone (solvent) by vacuum drying at 25 ° C. (mixing)・ Vacuum drying method).
 [長尺シート形成工程](カレンダー成形:圧延部材、図19参照)
 その後、図19に示すように、1対のロールからなる単数の圧延部材を備えるカレンダーを用意した。
[Long sheet forming step] (Calendar molding: rolled member, see FIG. 19)
Then, as shown in FIG. 19, the calendar provided with the single rolling member which consists of a pair of roll was prepared.
 その後、カレンダーを、表1に示す成形条件で操作しながら、原料成分を、カレンダーの圧延部材のニップ部分に上方から投入して圧延することにより、長尺シートを製造した。 Then, while operating the calendar under the molding conditions shown in Table 1, the raw material components were put into the nip portion of the rolling member of the calendar from above and rolled to produce a long sheet.
 なお、原料成分を圧延部材に投入する際には、長尺の2枚の離型シート(商品名「パナピールTP-03」、PET製、厚み188μm、PANAC社製)で、原料成分を挟み込んだ。なお、2枚の離型シートは、それらの処理面が互いに対向するように、つまり、内側を向くように、原料成分を挟み込んだ。 When the raw material component was introduced into the rolled member, the raw material component was sandwiched between two long release sheets (trade name “Panapeel TP-03”, PET, thickness 188 μm, manufactured by PANAC). . The two release sheets sandwiched the raw material components so that their processing surfaces face each other, that is, face the inside.
 長尺シートは、Bステージ状態であった。 The long sheet was in the B stage state.
 [プレス工程]
 長尺シートを、10cm角の矩形状に切り取って、成形した。その後、2枚の離型シートを剥離した。その後、シートを別の離型シート(商品名「パナピールSG-2」、PET製、PANAC社製))の上(上面、具体的には、処理面)に配置し、さらに、上記した離型シート(パナピールSG-2)の上において、シートの周囲に、枠状の真鍮製の200μmのスペーサーを配置し、それらの上に被せるように、離型シート(商品名「パナピールSG-2」、PET製、PANAC社製))を処理面が、シートおよびスペーサーに対向するように配置した。つまり、2枚の離型シートによってシートを挟み込んだ。これにより、離型シート、シートおよび離型シートからなる積層体を用意した。
[Pressing process]
The long sheet was cut into a 10 cm square rectangle and molded. Thereafter, the two release sheets were peeled off. Thereafter, the sheet is placed on the upper surface (specifically, the treated surface) on another release sheet (trade name “Panapeel SG-2”, manufactured by PET, manufactured by PANAC), and further, the above-described mold release On the sheet (Panapeel SG-2), a frame-shaped brass 200 μm spacer is arranged around the sheet, and a release sheet (trade name “Panapeel SG-2”, PET and PANAC)) were placed so that the treated surface was opposite the sheet and spacer. That is, the sheet was sandwiched between two release sheets. Thereby, the laminated body which consists of a release sheet, a sheet | seat, and a release sheet was prepared.
 その後、真空プレス機に、まず、板状のシリコーンゴムシート(離型シート)を配置し、その上に、積層体を配置した。さらに、その上に、シリコーンゴムシートを配置して、続いて、真空加熱プレス機で、70℃、5分間、50Pa以下で真空引きを実施した。次いで、実効圧力が10MPaとなるように調整し、10分間熱プレスを実施した後、除圧して、熱伝導性シートを得た。熱伝導性シートは、Bステージ状態であり、その厚みは、258μmであった。 Thereafter, a plate-like silicone rubber sheet (release sheet) was first placed in a vacuum press, and a laminate was placed thereon. Further, a silicone rubber sheet was placed thereon, and subsequently vacuuming was performed at 70 ° C. for 5 minutes at 50 Pa or less with a vacuum heating press. Next, the effective pressure was adjusted to 10 MPa, and after performing hot pressing for 10 minutes, the pressure was released to obtain a heat conductive sheet. The thermally conductive sheet was in a B-stage state, and its thickness was 258 μm.
  実施例2~8および比較例1~15
 表1~表6に記載の処方および条件に基づいて、実施例1と同様に処理して、実施例2~8および比較例1~15の熱伝導性シートを得た。
Examples 2 to 8 and Comparative Examples 1 to 15
Based on the formulations and conditions described in Tables 1 to 6, the same treatment as in Example 1 was performed to obtain thermally conductive sheets of Examples 2 to 8 and Comparative Examples 1 to 15.
 なお、比較例1~7については、カレンダーにより長尺シート形成工程を実施しなかった。つまり、比較例1、3および5は、原料粉体を、プレスした。また、比較例2および4は、原料粉体を混練し、その後、プレスした。さらに、比較例6は、原料粉体を混練押出しした。また、比較例7は、原料粉体を混練押出しし、その後、プレスした。 In Comparative Examples 1 to 7, the long sheet forming process was not performed by a calendar. That is, in Comparative Examples 1, 3, and 5, the raw material powder was pressed. In Comparative Examples 2 and 4, the raw material powder was kneaded and then pressed. Further, in Comparative Example 6, the raw material powder was kneaded and extruded. In Comparative Example 7, the raw material powder was kneaded and extruded, and then pressed.
 一方、比較例8~15は、プレス工程を実施しなかった。つまり、長尺シート形成工程のみを実施し、得られた長尺シートをそのまま熱伝導性シートとして得た。 On the other hand, Comparative Examples 8 to 15 did not perform the pressing process. That is, only the long sheet forming step was performed, and the obtained long sheet was obtained as it was as a heat conductive sheet.
  (評価)
(1) 熱伝導率
 各実施例および各比較例により得られた熱伝導性シートについて、熱伝導率を測定した。
(Evaluation)
(1) Thermal conductivity The thermal conductivity was measured about the heat conductive sheet obtained by each Example and each comparative example.
 すなわち、面方向(PD)における熱伝導率を、キセノンフラッシュアナライザー「LFA-447型」(NETZSCH社製)を用いるパルス加熱法により測定した。また、厚み方向(TD)における熱伝導率を、「ai-Phase mobile」(アイフェイズ社製)を用いるTWA法により測定した。 That is, the thermal conductivity in the plane direction (PD) was measured by a pulse heating method using a xenon flash analyzer “LFA-447 type” (manufactured by NETZSCH). Further, the thermal conductivity in the thickness direction (TD) was measured by the TWA method using “ai-Phase mobile” (manufactured by Eye Phase).
 その結果を表1~表6に示す。
(2) 電子顕微鏡による断面観察
 実施例1および6の熱伝導性シートを、クロスセクションポリッシャーによって厚み方向に沿って切断し、その切断面を、電子顕微鏡(SEM)によって観察した。その画像処理図を、図21および図22に示す。
The results are shown in Tables 1 to 6.
(2) Cross-sectional observation by electron microscope The heat conductive sheets of Examples 1 and 6 were cut along the thickness direction by a cross section polisher, and the cut surface was observed by an electron microscope (SEM). The image processing diagrams are shown in FIG. 21 and FIG.
 また、窒化ホウ素粒子(PT-110)についても、電子顕微鏡(SEM)によって観察した。その画像処理図を図23に示す。 Also, boron nitride particles (PT-110) were also observed with an electron microscope (SEM). The image processing diagram is shown in FIG.
 その結果、図21で示す実施例1の熱伝導性シートおよび図22で示す実施例6の熱伝導性シートにおける窒化ホウ素粒子は、図23で示す窒化ホウ素粒子に比べて、破砕が有効に防止されていることが分かる。
(3) 耐屈曲性(柔軟性)
 各実施例および各比較例の熱伝導性シートについて、JIS K 5600-5-1耐屈曲性(円筒形マンドレル法)に準拠する耐屈曲性試験を実施した。
As a result, the boron nitride particles in the heat conductive sheet of Example 1 shown in FIG. 21 and the heat conductive sheet of Example 6 shown in FIG. 22 are effectively prevented from being crushed compared to the boron nitride particles shown in FIG. You can see that.
(3) Flexibility (flexibility)
A bending resistance test based on JIS K 5600-5-1 bending resistance (cylindrical mandrel method) was performed on the heat conductive sheets of each example and each comparative example.
 すなわち、下記の試験条件にて、Bステージ状態の各実施例および各比較例の熱伝導性シートの耐屈曲性(柔軟性)を評価した。 That is, the bending resistance (flexibility) of the thermal conductive sheets of the respective examples in the B stage state and the comparative examples was evaluated under the following test conditions.
 試験条件
  試験装置:タイプI
  マンドレル:直径10mm、直径5mm、または、直径1mm
 そして、Bステージ状態の各熱伝導性シートを、90度を超過し、180度以下の屈曲角度で屈曲させ、熱伝導性シートに破断(損傷)を生ずる試験装置のマンドレルの直径から、以下のように評価した。
Test conditions Test equipment: Type I
Mandrel: 10mm diameter, 5mm diameter, or 1mm diameter
Then, from the diameter of the mandrel of the test apparatus that causes each thermal conductive sheet in the B-stage state to bend at a bending angle of more than 90 degrees and 180 degrees or less and cause the thermal conductive sheet to break (damage), It was evaluated as follows.
 その結果を、表1~表6に示す。 The results are shown in Tables 1 to 6.
 ◎:直径1mmのマンドレルで屈曲しても、破断を生じなかった。 A: Even if bent with a mandrel having a diameter of 1 mm, no breakage occurred.
 ○:直径5mmのマンドレルで屈曲しても破断は生じないが、直径1mmのマンドレルで屈曲すると、破断を生じた。 ○: No breakage occurred even when bent with a mandrel having a diameter of 5 mm, but breakage occurred when bent with a mandrel having a diameter of 1 mm.
 △:直径10mmのマンドレルで屈曲しても破断は生じないが、直径5mmのマンドレルで屈曲すると、破断を生じた。 Δ: No breakage occurred even when bent with a mandrel having a diameter of 10 mm, but breakage occurred when bent with a mandrel having a diameter of 5 mm.
 ×:直径10mmのマンドレルで屈曲すると、破断を生じた。
(4) 空隙率(P)
 各実施例および各比較例のBステージ状態の熱伝導性シートの空隙率(P)を下記の測定方法により測定した。
X: Breaking occurred when bent with a mandrel having a diameter of 10 mm.
(4) Porosity (P)
The porosity (P) of the thermally conductive sheet in the B stage state of each example and each comparative example was measured by the following measurement method.
 空隙率の測定方法:まず、熱伝導性シートの体積と重量を測定し、密度を算出した。さらに、窒化ホウ素粒子の密度を2.28g/cm、樹脂の密度を1.2g/cmと仮定し、熱伝導性シートの理論密度を算出した(70vol%のとき、1.956g/cm)。 Measuring method of porosity: First, the volume and weight of the heat conductive sheet were measured, and the density was calculated. Furthermore, the density of 2.28 g / cm 3 of boron nitride particles, assuming the density of the resin and 1.2 g / cm 3, when calculating the theoretical density of the thermal conductive sheet (a 70vol%, 1.956g / cm 3 ).
 その結果を、表1~表6に示す。
(5)複素剪断粘度(複素粘性率:η*)
 実施例および比較例における処方を、処方1~処方3に分類し、各処方における熱伝導性シートの複素剪断粘度(複素粘性率)を、JIS K7244-10(2005年)に準拠し、周波数10Hz、昇温速度2℃/分の剪断モードの動的粘弾性測定によって、測定した。
The results are shown in Tables 1 to 6.
(5) Complex shear viscosity (complex viscosity: η *)
Formulations in Examples and Comparative Examples are classified into Formulation 1 to Formulation 3, and the complex shear viscosity (complex viscosity) of the heat conductive sheet in each formulation is based on JIS K7244-10 (2005), and the frequency is 10 Hz. The measurement was performed by dynamic viscoelasticity measurement in a shear mode at a heating rate of 2 ° C./min.
 その結果を、表7に示す。     The results are shown in Table 7.
 <各実施例および各比較例における処方、成形条件、熱伝導性シートの物性>
 表の窒化ホウ素粒子の欄において、上段の数値は、窒化ホウ素粒子の配合質量(g)であり、下段の括弧内の数値は、熱伝導性シートに対する窒化ホウ素粒子の体積百分率(体積%)である。
[第2実施形態に対応する実施例1~実施例8および比較例1~比較例15]
  実施例B1
 [原料成分調製工程]
 各成分を、表B1に記載に処方に基づいて配合して、攪拌した後、25℃の真空乾燥により、メチルエチルケトン(溶媒)を留去することにより、原料成分を原料粉体として調製した(混合・真空乾燥法)。
<Prescriptions, molding conditions and physical properties of heat conductive sheet in each example and each comparative example>
In the column of boron nitride particles in the table, the upper numerical value is the compounding mass (g) of the boron nitride particles, and the numerical value in parentheses at the lower is the volume percentage (volume%) of the boron nitride particles with respect to the thermal conductive sheet. is there.
[Examples 1 to 8 and Comparative Examples 1 to 15 corresponding to the second embodiment]
Example B1
[Raw material component preparation process]
After mixing and stirring each component based on the formulation described in Table B1, methyl ethyl ketone (solvent) was distilled off by vacuum drying at 25 ° C. to prepare a raw material component as a raw powder (mixing)・ Vacuum drying method).
 [長尺シート形成工程](カレンダー成形:1段のシート形成部および2段のシート積層部、図B2参照)
 その後、図B2に示すように、2対のロールからなるシート形成部、および、1対のロールからなるシート積層部を備えるカレンダーを用意した。
[Long sheet forming step] (Calendar molding: one-stage sheet forming section and two-stage sheet stacking section, see FIG. B2)
Thereafter, as shown in FIG. B2, a calendar including a sheet forming unit composed of two pairs of rolls and a sheet lamination unit composed of a pair of rolls was prepared.
 その後、カレンダーを、表B1に示す成形条件で操作しながら、原料成分を、シート形成部における2つの第1圧延部材のニップ部分に上方から投入して圧延し、連続して、シート積層部の1対のロールによって積層することにより、長尺シートを製造した。 After that, while operating the calendar under the molding conditions shown in Table B1, the raw material components were fed from above into the nip portions of the two first rolling members in the sheet forming portion and rolled, and continuously, A long sheet was produced by laminating with a pair of rolls.
 なお、原料成分をシート形成部の各圧延部材に投入する際には、長尺の2枚の離型シート(商品名「パナピールTP-03」、PET製、厚み188μm、PANAC社製)で、原料成分を挟み込んだ。なお、2枚の離型シートは、それらの処理面が互いに対向するように、つまり、内側を向くように、原料成分を挟み込んだ。さらに、シート形成部およびシート積層部の間において、互いに隣接する離型シートは、長尺シートから剥離できるように、カレンダーを構成した。 In addition, when putting the raw material component into each rolling member of the sheet forming part, with two long release sheets (trade name “Panapeel TP-03”, made of PET, thickness 188 μm, made by PANAC) Raw material components were sandwiched. The two release sheets sandwiched the raw material components so that their processing surfaces face each other, that is, face the inside. Furthermore, the calendar | calender was comprised so that the release sheet which mutually adjoins between a sheet | seat formation part and a sheet | seat lamination | stacking part can be peeled from a elongate sheet.
 長尺シートは、Bステージ状態であった。 The long sheet was in the B stage state.
 [プレス工程]
 長尺シートを、10cm角の矩形状に切り取って、成形した。その後、2枚の離型シートを剥離した。その後、シートを別の離型シート(ポリエステルフィルム(商品名「パナピールSG-2」、PANAC社製))の上(上面、具体的には、処理面)に配置し、さらに、上記した離型シート(パナピールSG-2)の上において、シートの周囲に、枠状の真鍮製の200μmのスペーサーを配置し、それらの上に被せるように、離型シート(ポリエステルフィルム(商品名「パナピールSG-2」、PANAC社製))を処理面が、シートに対向するように配置した。つまり、2枚の離型シートによってシートを挟み込んだ。これにより、離型シート、シートおよび離型シートからなる積層体を用意した。
[Pressing process]
The long sheet was cut into a 10 cm square rectangle and molded. Thereafter, the two release sheets were peeled off. Thereafter, the sheet is placed on another release sheet (polyester film (trade name “Panapeel SG-2”, manufactured by PANAC)) (upper surface, specifically, treated surface), and the above-described release On the sheet (Panapeel SG-2), a frame-shaped brass 200 μm spacer is arranged around the sheet, and a release sheet (polyester film (trade name “Panapeel SG- 2 ”(manufactured by PANAC)) was disposed so that the treated surface was opposed to the sheet. That is, the sheet was sandwiched between two release sheets. Thereby, the laminated body which consists of a release sheet, a sheet | seat, and a release sheet was prepared.
 その後、真空プレス機に、まず、板状のシリコーンゴムシートを配置し、その上に、積層体を配置した。さらに、その上に、シリコーンゴムシートを配置して、続いて、真空加熱プレス機で、70℃、5分間、50Pa以下で真空引きを実施した。次いで、実効圧力が10MPaとなるように調整し、10分間加圧プレスを実施した後、除圧して、熱伝導性シートを得た。熱伝導性シートは、Bステージ状態であり、その厚みは、258μmであった。 Thereafter, a plate-like silicone rubber sheet was first placed in a vacuum press, and a laminate was placed thereon. Further, a silicone rubber sheet was placed thereon, and subsequently vacuuming was performed at 70 ° C. for 5 minutes at 50 Pa or less with a vacuum heating press. Next, the effective pressure was adjusted to 10 MPa, and after pressing for 10 minutes, the pressure was released to obtain a heat conductive sheet. The thermally conductive sheet was in a B-stage state, and its thickness was 258 μm.
  実施例B2~実施例B10および比較例B1~比較例B20
 表B1~表B6に記載の処方および条件に基づいて、実施例B1と同様に処理して、熱伝導性シートを得た。
Example B2 to Example B10 and Comparative Example B1 to Comparative Example B20
Based on the formulation and conditions described in Tables B1 ~ Table B6, was treated in the same manner as in Example B1, to obtain a thermally conductive sheet.
 なお、比較例B1~比較例B7については、カレンダーにより長尺シート形成工程を実施しなかった。つまり、比較例B1、比較例B3および比較例B5は、原料粉体を、プレスした。また、比較例B2および比較例B4は、原料粉体を混練し、その後、プレスした。さらに、比較例B6は、原料粉体を混練押出しした。また、比較例B7は、原料粉体を混練押出しし、その後、プレスした。 For Comparative Examples B1 to B7, the long sheet forming process was not performed by a calendar. That is, Comparative Example B1, Comparative Example B3, and Comparative Example B5 pressed the raw material powder. In Comparative Example B2 and Comparative Example B4, the raw material powder was kneaded and then pressed. Further, in Comparative Example B6, the raw material powder was kneaded and extruded. In Comparative Example B7, the raw material powder was kneaded and extruded, and then pressed.
 一方、比較例B8~比較例B20は、プレス工程を実施しなかった。つまり、長尺シート形成工程のみを実施し、得られた長尺シートをそのまま熱伝導性シートとして得た。なお、比較例B8、比較例B13および比較例B15は、シート積層部を備えないカレンダー、つまり、図B5に示す1対のロールB6およびB7からなるシート形成部B3のみを備えるカレンダーB1を用いて、長尺シートB20を形成し、これをそのまま熱伝導性シートとして得た。 On the other hand, Comparative Example B8 to Comparative Example B20 did not perform the pressing step. That is, only the long sheet forming step was performed, and the obtained long sheet was obtained as it was as a heat conductive sheet. Note that Comparative Example B8, Comparative Example B13, and Comparative Example B15 use a calendar that does not include a sheet stacking unit, that is, a calendar B1 that includes only a sheet forming unit B3 including a pair of rolls B6 and B7 shown in FIG. The long sheet B20 was formed and obtained as a heat conductive sheet as it was.
  (評価)
(1) 熱伝導率
 各実施例Bおよび各比較例Bにより得られた熱伝導性シートについて、熱伝導率を測定した。
(Evaluation)
(1) Thermal conductivity About the heat conductive sheet obtained by each Example B and each comparative example B, the heat conductivity was measured.
 すなわち、面方向(PD)における熱伝導率を、キセノンフラッシュアナライザー「LFA-447型」(NETZSCH社製)を用いるパルス加熱法により測定した。また、厚み方向(TD)における熱伝導率を、「ai-Phase mobile」(アイフェイズ社製)を用いるTWA法により測定した。 That is, the thermal conductivity in the plane direction (PD) was measured by a pulse heating method using a xenon flash analyzer “LFA-447 type” (manufactured by NETZSCH). Further, the thermal conductivity in the thickness direction (TD) was measured by the TWA method using “ai-Phase mobile” (manufactured by Eye Phase).
 その結果を表B1に示す。
(2) 電子顕微鏡による断面観察
 実施例B10の熱伝導性シートを、クロスセクションポリッシャーによって厚み方向に沿って切断し、その切断面を、電子顕微鏡(SEM)によって観察した。その画像処理図を、図B3に示す。
The results are shown in Table B1.
(2) Cross-sectional observation with an electron microscope The heat conductive sheet of Example B10 was cut | disconnected along the thickness direction with the cross section polisher, and the cut surface was observed with the electron microscope (SEM). The image processing diagram is shown in FIG. B3.
 また、窒化ホウ素粒子(PT-110)についても、電子顕微鏡(SEM)によって観察した。その画像処理図を図B4に示す。 Also, boron nitride particles (PT-110) were also observed with an electron microscope (SEM). The image processing diagram is shown in FIG. B4.
 その結果、図B3で示す実施例B10の熱伝導性シートにおける窒化ホウ素粒子は、図B4で示す窒化ホウ素粒子に比べて、破砕が有効に防止されていることが分かる。
(3) 耐屈曲性(柔軟性)
 各実施例Bおよび各比較例Bの熱伝導性シートについて、JIS K 5600-5-1耐屈曲性(円筒形マンドレル法)に準拠する耐屈曲性試験を実施した。
As a result, it can be seen that the boron nitride particles in the thermal conductive sheet of Example B10 shown in FIG. B3 are effectively prevented from being crushed compared to the boron nitride particles shown in FIG. B4.
(3) Flexibility (flexibility)
The heat conductive sheet of each Example B and each Comparative Example B was subjected to a bending resistance test based on JIS K 5600-5-1 bending resistance (cylindrical mandrel method).
 すなわち、下記の試験条件にて、Bステージ状態の各実施例Bおよび各比較例Bの熱伝導性シートの耐屈曲性(柔軟性)を評価した。 That is, the bending resistance (flexibility) of the thermal conductive sheets of Examples B and Comparative Examples B in the B-stage state was evaluated under the following test conditions.
 試験条件
  試験装置:タイプI
  マンドレル:直径10mm、直径5mm、または、直径1mm
 そして、Bステージ状態の各熱伝導性シートを、90度を超過し、180度以下の屈曲角度で屈曲させ、熱伝導性シートに破断(損傷)を生ずる試験装置のマンドレルの直径から、以下のように評価した。
Test conditions Test equipment: Type I
Mandrel: 10mm diameter, 5mm diameter, or 1mm diameter
Then, from the diameter of the mandrel of the test apparatus that causes each thermal conductive sheet in the B-stage state to bend at a bending angle of more than 90 degrees and 180 degrees or less and cause the thermal conductive sheet to break (damage), It was evaluated as follows.
 その結果を、表B1~表B6に示す。 The results are shown in Tables B1 to B6.
 ◎:直径1mmのマンドレルで屈曲しても、破断を生じなかった。 A: Even if bent with a mandrel having a diameter of 1 mm, no breakage occurred.
 ○:直径5mmのマンドレルで屈曲しても破断は生じないが、直径1mmのマンドレルで屈曲すると、破断を生じた。 ○: No breakage occurred even when bent with a mandrel having a diameter of 5 mm, but breakage occurred when bent with a mandrel having a diameter of 1 mm.
 △:直径10mmのマンドレルで屈曲しても破断は生じないが、直径5mmのマンドレルで屈曲すると、破断を生じた。 Δ: No breakage occurred even when bent with a mandrel having a diameter of 10 mm, but breakage occurred when bent with a mandrel having a diameter of 5 mm.
 ×:直径10mmのマンドレルで屈曲すると、破断を生じた。
(4) 空隙率(P)
 各実施例Bおよび各比較例BのBステージ状態の熱伝導性シートの空隙率(P)を下記の測定方法により測定した。
X: Breaking occurred when bent with a mandrel having a diameter of 10 mm.
(4) Porosity (P)
Thermally conductive porosity sheet of B-stage of Examples B and Comparative Examples B and (P) were measured by the following measurement method.
 空隙率の測定方法:まず、熱伝導性シートの体積と重量を測定し、密度を算出した。さらに、窒化ホウ素粒子の密度を2.28g/cm、樹脂の密度を1.2g/cmと仮定し、熱伝導性シートの理論密度を算出した(70vol%のとき、1.956g/cm)。 Measuring method of porosity: First, the volume and weight of the heat conductive sheet were measured, and the density was calculated. Furthermore, the density of 2.28 g / cm 3 of boron nitride particles, assuming the density of the resin and 1.2 g / cm 3, when calculating the theoretical density of the thermal conductive sheet (a 70vol%, 1.956g / cm 3 ).
 その結果を、表B1~表B6に示す。
(5)複素剪断粘度(複素粘性率:η*)
 実施例Bおよび比較例Bにおける処方を、処方B1~処方B3に分類し、各処方における熱伝導性シートの複素剪断粘度(複素粘性率)を、JIS K7244-10(2005年)に準拠し、周波数10Hz、昇温速度2℃/分の剪断モードの動的粘弾性測定によって、測定した。
The results are shown in Tables B1 to B6.
(5) Complex shear viscosity (complex viscosity: η *)
The prescriptions in Example B and Comparative Example B are classified into prescription B1 to prescription B3, and the complex shear viscosity (complex viscosity) of the heat conductive sheet in each prescription conforms to JIS K7244-10 (2005). The measurement was performed by dynamic viscoelasticity measurement in a shear mode at a frequency of 10 Hz and a heating rate of 2 ° C./min.
 その結果を、表B7に示す。   The results are shown in Table B7.
 <各実施例Bおよび各比較例Bにおける処方、成形条件、熱伝導性シートの物性>
 表の窒化ホウ素粒子の欄において、上段の数値は、窒化ホウ素粒子の配合質量(g)であり、下段の括弧内の数値は、熱伝導性シートに対する窒化ホウ素粒子の体積百分率(体積%)である。
<Prescription in each Example B and each Comparative Example B, molding conditions, physical properties of heat conductive sheet>
In the column of boron nitride particles in the table, the upper numerical value is the compounding mass (g) of the boron nitride particles, and the numerical value in parentheses at the lower is the volume percentage (volume%) of the boron nitride particles with respect to the thermal conductive sheet. is there.
 また、表B1~表B6中、略号を以下で詳述する。 In Tables B1 to B6, abbreviations are described in detail below.
 PT-110:商品名、板状の窒化ホウ素粒子、平均粒子径(光散乱法)45μm、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製
 EG-200:商品名「オグソールEG-200」、ビスアリールフルオレン型エポキシ樹脂、半固形状、エポキシ当量292g/eqiv.、常温半固形状、大阪ガスケミカル社製
 EXA-1000:商品名「エピクロンEXA-4850-1000」、ビスフェノールA型エポキシ樹脂、エポキシ当量310~370g/eqiv.、常温液体状、粘度(25℃)100,000mPa・s、DIC社製
 HP-7200:商品名「エピクロンHP-7200」、ジシクロペンタジエン型エポキシ樹脂、エポキシ当量254~264g/eqiv.、常温固形状、軟化点56~66℃、DIC社製
 MEH-7800-SS:商品名、フェノール・アラルキル樹脂、硬化剤、水酸基当量173~177g/eqiv.、明和化成社製
 2P4MHZ-PW:商品名「キュアゾール2P4MHZ-PW」(硬化剤、イミダゾール化合物、四国化成社製)の5質量%メチルエチルケトン分散液
 SG-P3(15mass% MEK溶液):商品名「テイサンレジン SG-P3」、エポキシ変性したアクリル酸エチル-アクリル酸ブチル-アクリロニトリル共重合体、溶媒:メチルエチルケトン、ゴム成分の含有割合15質量%、重量平均分子量850,000、エポキシ当量210eqiv./g、理論ガラス転移温度12℃、ナガセケムテックス社製
 2MAOK-PW:2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、硬化促進剤、四国化成社製
 TP03:商品名「パナピールTP-03」、PET製離型シート、厚み188μm、PANAC社製
 MRF38:商品名「ダイヤホイルMRF38」、PET製離型シート、厚み38μm、三菱化学ポリエステル製社製
PT-110: trade name, plate-like boron nitride particles, average particle size (light scattering method) 45 μm, manufactured by Momentive Performance Materials Japan EG-200: trade name “Ogsol EG-200”, bisarylfluorene Type epoxy resin, semi-solid, epoxy equivalent 292 g / eqiv. Normal temperature semi-solid, manufactured by Osaka Gas Chemical Co., Ltd. EXA-1000: Trade name “Epicron EXA-4850-1000”, bisphenol A type epoxy resin, epoxy equivalent of 310 to 370 g / eqiv. , Liquid at normal temperature, viscosity (25 ° C.) 100,000 mPa · s, manufactured by DIC, HP-7200: trade name “Epicron HP-7200”, dicyclopentadiene type epoxy resin, epoxy equivalent of 254 to 264 g / eqiv. Solid state, softening point 56-66 ° C., DIC Corporation MEH-7800-SS: trade name, phenol aralkyl resin, curing agent, hydroxyl group equivalent 173-177 g / eqiv. 2P4MHZ-PW manufactured by Meiwa Kasei Co., Ltd .: Trade name “Cureazole 2P4MHZ-PW” (curing agent, imidazole compound, Shikoku Kasei Co., Ltd.) 5 mass% methyl ethyl ketone dispersion SG-P3 (15 mass% MEK solution): Trade name “Taisan” Resin SG-P3 ", epoxy-modified ethyl acrylate-butyl acrylate-acrylonitrile copolymer, solvent: methyl ethyl ketone, rubber component content 15 mass%, weight average molecular weight 850,000, epoxy equivalent 210 eqiv. / G, theoretical glass transition temperature 12 ° C., 2MAOK-PW manufactured by Nagase ChemteX: 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct, Curing accelerator, Shikoku Kasei Co., Ltd. TP03: Trade name “Panapeel TP-03”, PET release sheet, thickness 188 μm, PANAC MRF38: Trade name “Diafoil MRF38”, PET release sheet, thickness 38 μm, Made by Mitsubishi Chemical Polyester
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 熱伝導性シートは、例えば、IC(集積回路)チップ、コンデンサ、コイル、抵抗器、発光ダイオードなどの電子素子を被覆して用いられる。 The heat conductive sheet is used by covering electronic elements such as an IC (integrated circuit) chip, a capacitor, a coil, a resistor, and a light emitting diode.

Claims (10)

  1.  板状の窒化ホウ素粒子およびポリマーマトリクスを含有する原料成分を調製する工程、
     前記原料成分からカレンダーによって長尺シートを形成する工程、および、
     前記長尺シートをプレスする工程
    を備える
    ことを特徴とする、熱伝導性シートの製造方法。
    A step of preparing a raw material component containing plate-like boron nitride particles and a polymer matrix;
    Forming a long sheet by a calendar from the raw material components, and
    The manufacturing method of the heat conductive sheet characterized by including the process of pressing the said elongate sheet.
  2.  前記カレンダーは、複数のニップ部分が形成されるように配置される複数のロールを備え、
     前記長尺シートの搬送方向に互いに隣接する上流側のニップ部分と下流側のニップ部分とにおいて、前記下流側のニップ部分の間隔が、前記上流側のニップ部分の間隔より小さいことを特徴とする、請求項1に記載の熱伝導性シートの製造方法。
    The calender includes a plurality of rolls arranged to form a plurality of nip portions,
    In the upstream nip portion and the downstream nip portion adjacent to each other in the conveyance direction of the long sheet, the interval between the downstream nip portions is smaller than the interval between the upstream nip portions. The manufacturing method of the heat conductive sheet of Claim 1.
  3.  前記上流側のニップ部分と前記下流側のニップ部分との2つのニップ部分において、前記下流側のニップ部分の隙間が、前記上流側のニップ部分の間隔に対して、0.9倍以下であることを特徴とする、請求項2に記載の熱伝導性シートの製造方法。 In the two nip portions of the upstream nip portion and the downstream nip portion, the gap between the downstream nip portions is 0.9 times or less than the interval between the upstream nip portions. The manufacturing method of the heat conductive sheet of Claim 2 characterized by the above-mentioned.
  4.  前記カレンダーには、ニップ部分が、少なくとも3つ設けられていることを特徴とする、請求項1に記載の熱伝導性シートの製造方法。 The method for producing a thermally conductive sheet according to claim 1, wherein the calender is provided with at least three nip portions.
  5.  前記カレンダーは、互いに対向配置される1対のロールを前記搬送方向に沿って複数備えていることを特徴とする、請求項1に記載の熱伝導性シートの製造方法。 The method for producing a thermally conductive sheet according to claim 1, wherein the calendar includes a plurality of pairs of rolls arranged to face each other along the conveying direction.
  6.  前記熱伝導性シートの空隙率が、3.0体積%以下であることを特徴とする、請求項1に記載の熱伝導性シートの製造方法。 The method for producing a thermally conductive sheet according to claim 1, wherein the porosity of the thermally conductive sheet is 3.0% by volume or less.
  7.  前記熱伝導性シートは、JIS K7244-10(2005年)に準拠し、周波数10Hz、昇温速度2℃/分の動的粘弾性測定により得られる温度20~150℃のいずれかにおける複素剪断粘度ηが、300Pa・s以上、10000Pa・s以下であることを特徴とする、請求項1に記載の熱伝導性シートの製造方法。 The heat conductive sheet is based on JIS K7244-10 (2005), and has a complex shear viscosity at a temperature of 20 to 150 ° C. obtained by dynamic viscoelasticity measurement at a frequency of 10 Hz and a heating rate of 2 ° C./min. The method for producing a thermally conductive sheet according to claim 1, wherein η * is 300 Pa · s or more and 10,000 Pa · s or less.
  8.  前記窒化ホウ素粒子の動的光散乱法にて測定される平均粒子径が、20μm以上であり、
     前記熱伝導性シートにおける前記窒化ホウ素粒子の体積割合が、60体積%以上であることを特徴とする、請求項1に記載の熱伝導性シートの製造方法。
    The average particle diameter measured by the dynamic light scattering method of the boron nitride particles is 20 μm or more,
    The method for producing a thermally conductive sheet according to claim 1, wherein a volume ratio of the boron nitride particles in the thermally conductive sheet is 60% by volume or more.
  9.  前記熱伝導性シートの厚み方向に対する直交方向の熱伝導率が、6W/m・K以上であることを特徴とする、請求項1に記載の熱伝導性シートの製造方法。 The method for producing a thermally conductive sheet according to claim 1, wherein the thermal conductivity in the direction perpendicular to the thickness direction of the thermally conductive sheet is 6 W / m · K or more.
  10.  前記長尺シートを形成する工程は、
      前記原料成分を1対のロールで圧延することによって、前記長尺シートを形成する工程、および、
      前記長尺シートを厚み方向に複数積層し、1対のロールによって圧延する工程
    を備えることを特徴とする、請求項1に記載の熱伝導性シートの製造方法。
    The step of forming the long sheet includes
    Rolling the raw material components with a pair of rolls to form the long sheet, and
    The method for producing a thermally conductive sheet according to claim 1, comprising a step of laminating a plurality of the long sheets in the thickness direction and rolling with a pair of rolls.
PCT/JP2013/052953 2012-02-08 2013-02-07 Method for producing thermal conductive sheet WO2013118848A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20147020109A KR20140127808A (en) 2012-02-08 2013-02-07 Method for producing thermal conductive sheet
US14/375,865 US20140367883A1 (en) 2012-02-08 2013-02-07 Producing method of thermally conductive sheet
CN201380008693.2A CN104125976A (en) 2012-02-08 2013-02-07 Method for producing thermal conductive sheet

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012025344 2012-02-08
JP2012-025344 2012-02-08
JP2013-012654 2013-01-25
JP2013012654A JP2013176981A (en) 2012-02-08 2013-01-25 Method of producing thermal conductive sheet
JP2013-012655 2013-01-25
JP2013012655A JP2013177565A (en) 2012-02-08 2013-01-25 Method of manufacturing heat conductive sheet

Publications (1)

Publication Number Publication Date
WO2013118848A1 true WO2013118848A1 (en) 2013-08-15

Family

ID=48947603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052953 WO2013118848A1 (en) 2012-02-08 2013-02-07 Method for producing thermal conductive sheet

Country Status (1)

Country Link
WO (1) WO2013118848A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170200527A1 (en) * 2014-07-22 2017-07-13 Alpha Assembly Solutions Inc. Stretchable Interconnects for Flexible Electronic Surfaces
JPWO2017006889A1 (en) * 2015-07-06 2018-04-19 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
EP3315573A4 (en) * 2015-06-29 2019-01-30 Tatsuta Electric Wire & Cable Co., Ltd. Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
JP2020158623A (en) * 2019-03-26 2020-10-01 大阪ガスケミカル株式会社 Epoxy-based curable composition, cured product and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060134A (en) * 2001-08-17 2003-02-28 Polymatech Co Ltd Heat conductive sheet
JP2009149831A (en) * 2007-11-26 2009-07-09 Hitachi Chem Co Ltd Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet
JP2010001402A (en) * 2008-06-20 2010-01-07 Kaneka Corp High thermal conductivity resin molded article
JP2010114421A (en) * 2008-10-08 2010-05-20 Hitachi Chem Co Ltd Thermally conductive sheet and manufacturing method thereof
JP2010229200A (en) * 2009-03-26 2010-10-14 Kuraray Co Ltd Heat-dissipating sheet
JP2011225648A (en) * 2010-04-15 2011-11-10 Kaneka Corp Heat radiation member for lighting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060134A (en) * 2001-08-17 2003-02-28 Polymatech Co Ltd Heat conductive sheet
JP2009149831A (en) * 2007-11-26 2009-07-09 Hitachi Chem Co Ltd Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet
JP2010001402A (en) * 2008-06-20 2010-01-07 Kaneka Corp High thermal conductivity resin molded article
JP2010114421A (en) * 2008-10-08 2010-05-20 Hitachi Chem Co Ltd Thermally conductive sheet and manufacturing method thereof
JP2010229200A (en) * 2009-03-26 2010-10-14 Kuraray Co Ltd Heat-dissipating sheet
JP2011225648A (en) * 2010-04-15 2011-11-10 Kaneka Corp Heat radiation member for lighting

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170200527A1 (en) * 2014-07-22 2017-07-13 Alpha Assembly Solutions Inc. Stretchable Interconnects for Flexible Electronic Surfaces
US10672531B2 (en) * 2014-07-22 2020-06-02 Alpha Assembly Solutions Inc. Stretchable interconnects for flexible electronic surfaces
US11139089B2 (en) 2014-07-22 2021-10-05 Alpha Assembly Solutions Inc. Stretchable interconnects for flexible electronic surfaces
US11830640B2 (en) 2014-07-22 2023-11-28 Alpha Assembly Solutions, Inc. Stretchable interconnects for flexible electronic surfaces
EP3315573A4 (en) * 2015-06-29 2019-01-30 Tatsuta Electric Wire & Cable Co., Ltd. Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
US11236227B2 (en) 2015-06-29 2022-02-01 Tatsuta Electric Wire & Cable Co., Ltd. Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
JPWO2017006889A1 (en) * 2015-07-06 2018-04-19 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
JP2020158623A (en) * 2019-03-26 2020-10-01 大阪ガスケミカル株式会社 Epoxy-based curable composition, cured product and method for producing the same
JP7444543B2 (en) 2019-03-26 2024-03-06 大阪ガスケミカル株式会社 Epoxy curable composition, cured product and method for producing the same

Similar Documents

Publication Publication Date Title
JP2013176981A (en) Method of producing thermal conductive sheet
JP5759191B2 (en) Power module
JP5698932B2 (en) Thermally conductive sheet
TWI492972B (en) Thermal conductive sheet
JP5738652B2 (en) Method for producing thermal conductive sheet and thermal conductive sheet
JP2013062379A (en) Thermally conductive sheet and method for manufacturing the same
JP2012049496A (en) Heat radiation structure
JP2012039062A (en) Heat-conductive sheet
TW201333179A (en) Thermal conductive sheet
JP2012238820A (en) Thermally conductive sheet, insulating sheet and heat dissipating member
JP2012036364A (en) Heat-conductive sheet
KR101612596B1 (en) Laminate and method for producing component for power semiconductor modules
KR20110089106A (en) Heat conductive sheet
WO2013118848A1 (en) Method for producing thermal conductive sheet
JP2014009140A (en) Spherical type alumina filler, and resin composition for high heat conduction insulation material, prepreg, and laminate sheet including the same
JP2012039067A (en) Heat-conductive sheet and light-emitting diode packaging substrate
JP2012039061A (en) Heat-conductive sheet
KR20110089101A (en) Thermal conductive sheet
KR20220129549A (en) Thermally conductive sheets, laminates, and semiconductor devices
JP2012039064A (en) Heat-conductive sheet
JP7295635B2 (en) Laminates, electronic components and inverters
JP5587220B2 (en) Thermally conductive adhesive sheet
JP2012039066A (en) Heat-conductive sheet
WO2022255450A1 (en) Resin sheet, laminate, and semiconductor device
JP2012039063A (en) Heat-conductive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147020109

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14375865

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746018

Country of ref document: EP

Kind code of ref document: A1