WO2006043449A1 - Antistatic adhesive optical film and image display - Google Patents

Antistatic adhesive optical film and image display Download PDF

Info

Publication number
WO2006043449A1
WO2006043449A1 PCT/JP2005/018765 JP2005018765W WO2006043449A1 WO 2006043449 A1 WO2006043449 A1 WO 2006043449A1 JP 2005018765 W JP2005018765 W JP 2005018765W WO 2006043449 A1 WO2006043449 A1 WO 2006043449A1
Authority
WO
WIPO (PCT)
Prior art keywords
antistatic
layer
film
optical film
polarizing plate
Prior art date
Application number
PCT/JP2005/018765
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyoshi Taeji
Masayuki Satake
Toshitsugu Hosokawa
Akiko Ogasawara
Shinichi Inoue
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2006043449A1 publication Critical patent/WO2006043449A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an antistatic pressure-sensitive adhesive optical film in which an antistatic layer is laminated on at least one surface of an optical film, and an adhesive layer is further laminated on the antistatic layer.
  • the present invention also relates to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the antistatic adhesive optical film.
  • the optical film include a polarizing plate, a retardation plate, an optical compensation film, a brightness enhancement film, and a laminate of these.
  • polarizing elements In a liquid crystal display or the like, it is indispensable to dispose polarizing elements on both sides of the liquid crystal cell, and generally polarizing plates are attached.
  • various optical elements are being used for liquid crystal panels in order to improve the display quality of displays.
  • a retardation plate for preventing coloring For example, a viewing angle widening film for improving the viewing angle of a liquid crystal display, and a brightness enhancement film for increasing the contrast of the display are used. These films are collectively called optical films.
  • optical films are usually used in the transportation and manufacturing process until they are delivered to consumers!
  • the surface of the optical film is protected from scratches and dirt. Rum is pasted together.
  • the surface protective film may be peeled off after being attached to an LCD or the like, or the same or another surface protective film may be attached again after being peeled off once. And when peeling off this surface protection film, static electricity generate
  • the surface protection film is not only peeled off, but the same problem occurs due to friction between optical films depending on the manufacturing process and the usage method of consumers.
  • an antistatic property is imparted to an optical film such as a polarizing plate.
  • an optical film with an antistatic layer provided with an antistatic layer on the surface of the optical film, and a film provided with a transparent conductive layer on one side or both sides of the optical film are disclosed (Patent Document 1).
  • an adhesive is usually used when adhering an optical film to a liquid crystal cell.
  • the pressure-sensitive adhesive has a merit that a drying process is not required to fix the optical film, and thus the pressure-sensitive adhesive is a pressure-sensitive adhesive optical film previously provided as a pressure-sensitive adhesive layer on one side of the optical film. Film is commonly used.
  • the adhesive optical film is cut into a display size.
  • the adhesive may be lost at that part.
  • the lacked part does not adhere, so that there is a problem that light is reflected at that part, resulting in a display defect.
  • the display frame has been narrowed recently, and the display quality is significantly deteriorated due to the defects occurring at the edge.
  • an antistatic adhesive optical film in which an antistatic layer containing carbon black, an ionic polymer, a surfactant, or a metal oxide is provided between the optical film and the adhesive layer has been proposed.
  • Patent Document 2 When carbon black is used as an antistatic agent, there is a problem that the light transmittance of the optical film is lowered.
  • an ionic polymer, a surfactant, or a metal oxide is used as an antistatic agent, there is a problem that the antistatic performance is lowered after the antistatic optical film is stored in a high temperature environment. .
  • Patent Document 1 Japanese Patent Laid-Open No. 7-26223
  • Patent Document 2 JP-A-11-91038 Disclosure of the invention
  • the present invention is an antistatic pressure-sensitive adhesive optical film in which an antistatic layer is laminated on at least one surface of an optical film, and an adhesive layer is further laminated on the antistatic layer, and has an optical transmittance.
  • the object is to provide a product that can maintain excellent antistatic performance even after being stored in a high temperature environment. It is another object of the present invention to provide an image display device using the antistatic adhesive optical film.
  • an antistatic layer is laminated on at least one surface of an optical film, and an adhesive layer is further laminated on the antistatic layer, and the antistatic layer contains a carbon nanomaterial.
  • the present invention relates to an antistatic pressure-sensitive adhesive optical film.
  • an antistatic layer is formed that has high light transmittance and can maintain excellent antistatic performance even after storage in a high temperature environment. can do.
  • carbon nanomaterials are generally very small carbon substances with a size of nm, so it is considered that light reflection and scattering can be effectively prevented.
  • it since it has a stable SP 2 structure even in a high temperature environment, it is thought that excellent antistatic performance can be maintained even after storage in a high temperature environment.
  • the antistatic layer preferably further contains a binder component.
  • the binder component is preferably at least one selected from the group consisting of polyurethane-based resin, polyester-based resin and acrylic-based resin. By using such a resin, the adhesive strength between the antistatic layer and the optical film or the pressure-sensitive adhesive layer is improved.
  • the antistatic layer preferably further contains a dispersant.
  • the pressure-sensitive adhesive layer is preferably formed of an acrylic pressure-sensitive adhesive.
  • the present invention is a method for producing the antistatic pressure-sensitive adhesive optical film, It includes a step of applying a dispersion containing a carbon nanomaterial on at least one surface of an optical film and drying to form an antistatic layer, and a step of forming an adhesive layer on the antistatic layer. Relates to a method for producing an antistatic adhesive optical film,
  • the present invention relates to an image display device using at least one antistatic adhesive optical film.
  • the antistatic pressure-sensitive adhesive optical film of the present invention is used in combination of one or more sheets depending on various usages of an image display device such as a liquid crystal display device.
  • FIG. 1 is an example of a cross-sectional view of an antistatic pressure-sensitive adhesive optical film of the present invention.
  • an antistatic layer 2 and an adhesive layer 3 are laminated in this order on one side of the optical film 1.
  • FIG. 1 shows the case where the adhesive layer 3 is provided on one side of the optical film 1, but the adhesive layer 3 may be provided on both sides of the optical film. Further, the pressure-sensitive adhesive layer 3 on the other side may have the antistatic layer 2.
  • the antistatic layer 2 of the antistatic pressure-sensitive adhesive optical film of the present invention is formed of a composition containing a forceful nanomaterial as an antistatic agent.
  • Examples of the carbon nanomaterial include carbon nanotubes, carbon nanohorns, strong bon nanowalls, and fullerenes. Of these, carbon nanotubes are preferably used. Carbon nanotubes generally have a hollow fiber shape, and are carbon materials having a diameter of about 0.5 nm to 5 ⁇ m and a length of about 10 nm to 1000 ⁇ m. In the present invention, it is preferable to use a carbon nanotube having a diameter of 0.5! 1! 11 to 1111, and a length of 1011111 to 100111.
  • a conductive polymer may be used together with the carbon nanomaterial.
  • the conductive polymer a polymer having good optical characteristics, appearance, antistatic effect and antistatic effect when heated and humidified is used.
  • a conductive polymer include polymers such as polyarine, polythiophene, polypyrrole, and polyquinoxaline.
  • polyaniline, polythiophene, and the like that are likely to become a water-soluble conductive polymer or a water-dispersible conductive polymer are preferably used.
  • Polythiophene is particularly preferable.
  • an optical film such as a polarizing plate is soluble in a non-aqueous organic solvent and tends to be deteriorated or deteriorated to deteriorate optical characteristics.
  • the coating liquid for forming the antistatic layer is preferably an aqueous dispersion in which carbon nanomaterial is dispersed in water.
  • the aqueous dispersion may contain a hydrophilic solvent together with water.
  • hydrophilic solvent examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-amyl alcohol, isoamyl alcohol, sec-amyl alcohol, tert -Alcohols such as Amylano Noreconole, 1-Etenore 1-Prono Norre, 2-Methinore 1-Butanol Monore, n-Hexanol, and Cyclohexanol.
  • the material for forming the antistatic layer it is preferable to use a binder component together with the carbon nanomaterial for the purpose of improving the film forming property of the antistatic agent and the adhesion to the optical film.
  • a water-soluble or water-dispersible binder component examples include polyurethane-based resins, polyester-based resins, talyl-based resins, polyether-based resins, cellulose-based resins, polybulal alcohol-based resins, epoxy resins, polybululpyrrolidone, polystyrene.
  • the noinder component include polyurethane-based resins, polyester-based resins, talyl-based resins, polyether-based resins, cellulose-based resins, polybulal alcohol-based resins, epoxy resins, polybululpyrrolidone, polystyrene.
  • examples thereof include polyethylene resin, polyethylene glycol, and pentaerythritol.
  • polyurethane-based resin polyester-based resin, and acrylic-based resin are preferred.
  • binder components can be used alone or in combination of two or more as appropriate.
  • the carbon nanomaterial is a carbon nanotube
  • it is preferable that the carbon nanotube is less than 100 parts by weight with respect to 100 parts by weight of the binder component. Parts by weight.
  • a dispersant it is preferable to use a dispersant together with the carbon nanomaterial for the purpose of improving the dispersibility of the carbon nanomaterial.
  • dispersant examples include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and a resin used as a binder such as polyvinylpyrrolidone. These dispersants can be used alone or in combination of two or more as appropriate.
  • the amount of the dispersant used depends on the type of the carbon nanomaterial. 100 to 100 parts by weight of the carbon nanomaterial 0.1 to: LOOO parts by weight is preferable, and more preferably 1 to: LOO parts by weight. is there.
  • the surface resistance value of the antistatic layer is preferably 1 ⁇ 10 12 ⁇ well or less, more preferably 1 ⁇ 10 11 ⁇ well or less. If the surface resistance exceeds 1 X 10 12 ⁇ , the static electricity is generated due to peeling of the surface protection film with insufficient antistatic function or the friction of the optical film. It may cause liquid crystal alignment failure.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 3 of the antistatic pressure-sensitive adhesive optical film of the present invention is not particularly limited, and examples thereof include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyetherols, fluorine-based polymers. Those having a base polymer of a polymer such as rubber or the like can be appropriately selected and used. In particular, those excellent in optical transparency, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties and excellent in weather resistance and heat resistance are preferably used. An acrylic pressure-sensitive adhesive is preferably used to exhibit such characteristics.
  • the acrylic pressure-sensitive adhesive has an acrylic polymer having a main skeleton of an alkyl (meth) acrylate monomer unit as a base polymer.
  • (meta) attalate refers to attalate and cocoon or metatarate, and (meta) in the present invention has the same meaning.
  • the average number of carbon atoms of the alkyl group of the alkyl (meth) acrylate that constitutes the main skeleton of the acrylic polymer is about 1 to 12, and specific examples of the alkyl (meth) acrylate include methyl (meth) acrylate.
  • acrylic polymer examples include rate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, etc., and these can be used alone or in combination. Of these, alkyl (meth) acrylates having 1 to 9 carbon atoms in the alkyl group are preferred.
  • monomers include (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid 4-hydroxybutyl, and (meth) acrylic acid.
  • (N-substituted) amides such as (meth) acrylamide, N, N dimethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, etc.
  • carboxyl group-containing monomers such as acrylic acid are preferably used from the viewpoints of adhesion to liquid crystal cells and adhesion durability for optical film applications.
  • the proportion of the copolymerization monomer in the acrylic polymer is not particularly limited, but is preferably about 0.1 to 10% by weight.
  • the average molecular weight of the acrylic polymer is not particularly limited, but the weight average molecular weight is preferably about 300,000 to 2.5 million.
  • the acrylic polymer can be produced by various known methods. For example, a radical polymerization method such as a Balta polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected.
  • a radical polymerization method such as a Balta polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected.
  • the radical polymerization initiator various known ones such as azo and peroxide can be used.
  • the reaction temperature is usually about 50-80 ° C, and the reaction time is 1-8 hours.
  • ethyl acetate, toluene and the like are generally used as the solvent for the acrylic polymer for which the solution polymerization method is preferred.
  • the solution concentration is usually about 20 to 80% by weight.
  • Examples of the base polymer of the rubber adhesive include natural rubber, isoprene rubber, styrene butadiene rubber, recycled rubber, polyisobutylene rubber, styrene-soprene styrene rubber, styrene butadiene styrene. System rubber and the like.
  • Examples of the base polymer for the silicone-based pressure-sensitive adhesive include dimethylpolysiloxane and diphenylpolysiloxane. These base polymers can also be used in which functional groups such as carboxyl groups are introduced.
  • the pressure-sensitive adhesive is preferably a pressure-sensitive adhesive composition containing a crosslinking agent.
  • the polyfunctional compound that can be added to the pressure-sensitive adhesive include organic crosslinking agents and polyfunctional metal chelates.
  • organic crosslinking agents include epoxy crosslinking agents, isocyanate crosslinking agents, imine Examples thereof include a system cross-linking agent.
  • an isocyanate crosslinking agent is preferred.
  • a polyfunctional metal chelate is one in which a polyvalent metal is covalently or coordinately bonded to an organic compound.
  • Multivalent metal atoms include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, etc. Can be given.
  • Examples of the atoms in the organic compound to be covalently bonded or coordinated include oxygen atoms, and examples of the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds, and ketone compounds.
  • the mixing ratio of the base polymer such as acrylic polymer and the crosslinking agent is not particularly limited! However, usually, the crosslinking agent (solid content) is preferably about 0.01 to 10 parts by weight and more preferably about 0.1 to 5 parts by weight with respect to 100 parts by weight of the base polymer (solid content).
  • Sarakuko has a tackifier, a plasticizer, glass fiber, glass beads, metal powder, other inorganic powders, a filler, a pigment, a colorant, and the like as necessary. Fillers, antioxidants, ultraviolet absorbers, silane coupling agents, and the like, and various additives can be appropriately used within the range V and without departing from the object of the present invention. Moreover, it is good also as an adhesive layer etc. which contain microparticles
  • the optical film 1 used for the antistatic pressure-sensitive adhesive optical film of the present invention those used for forming an image display device such as a liquid crystal display device are used, and the type thereof is not particularly limited.
  • the optical film includes a polarizing plate.
  • the polarizing plate one having a transparent protective film on one side or both sides of the polarizer is generally used.
  • the polarizer is not particularly limited, and various types can be used.
  • the polarizer include hydrophilic polymer films such as polybulal alcohol film, partially formalized polybulal alcohol film, and ethylene / acetic acid copolymer partial ken film, and iodine and dichroic dyes.
  • examples include uniaxially stretched films by adsorbing dichroic substances, and polyvinyl-based oriented films such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride.
  • a polybulol alcohol film and a polarizer having dichroic substance power such as iodine are preferable.
  • the thickness of these polarizers is not particularly limited. Generally, the thickness is about 5 to 80 ⁇ m.
  • a polarizer obtained by uniaxially stretching a polyvinyl alcohol film dyed with iodine is, for example, It can be prepared by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it 3 to 7 times the original length. If necessary, it can also be immersed in an aqueous solution of potassium iodide or the like which may contain boric acid, zinc sulfate, zinc chloride and the like. Furthermore, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing.
  • the stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be stretched and dyed with strong iodine.
  • the film can be stretched even in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • a material for forming a transparent protective film provided on one or both sides of the polarizer a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy, and the like is preferable.
  • polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate
  • cenorelose-based polymers such as dicetinoresenorelose and triacetinoloselenolose
  • acrylic polymers such as polymethylmethacrylate
  • polystyrene and Examples include styrene polymers such as styrene copolymers (AS resin) and polycarbonate polymers.
  • polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure polyolefin polymers such as ethylene / propylene copolymers, salt bubul polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, Snorephone-based polymer, Polyetherenorenolephone-based polymer, Polyethylene-noreno-ketone-based polymer, Polyphenylene sulfide-based polymer, Vinyl alcohol-based polymer, Vinylidene chloride-based polymer, Vinyl butyral-based polymer, Arylate-based polymer, Polyoxymethylene-based Examples of the polymer that forms the transparent protective film include polymers, epoxy polymers, and blends of the above polymers.
  • the transparent protective film can also be formed as a cured layer of thermosetting or ultraviolet curable resin such as acrylic, urethane, acrylurethane, epoxy, and silicone.
  • a polymer film described in JP-A-2001-343529 for example, (A) a thermoplastic resin having a substituted side chain and a Z or non-midamide group; (B) A resin composition containing a thermoplastic resin having substituted and Z or unsubstituted fullyl and -tolyl groups in the side chain.
  • a specific example is a film of a resin composition containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer.
  • a strong film such as a mixed extruded product of the resin composition can be used.
  • the thickness of the protective film can be appropriately determined, but is generally about 1 to 500 m from the viewpoints of workability such as strength and handleability, and thin film properties. In particular, 5 to 200 m is preferable.
  • a protective film having a thickness of 90 nm to +75 nm is preferably used.
  • the thickness direction retardation (Rth) is more preferably from 80 nm to +60 nm, and particularly preferably from 70 nm to +45 nm.
  • a cellulose polymer such as triacetyl cellulose is preferred from the viewpoints of polarization characteristics and durability.
  • a triacetyl cellulose film is particularly preferable.
  • protective films having the same polymer material strength may be used on the front and back sides, or different protective films having the same polymer material strength may be used.
  • the polarizer and the protective film are usually in close contact with each other through an aqueous adhesive or the like.
  • water-based adhesives include isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based, water-based polyurethane, water-based polyester, and the like.
  • the surface of the transparent protective film to which the polarizer is not adhered may be subjected to a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment for diffusion or anti-glare.
  • the hard coat treatment is performed for the purpose of preventing the surface of the polarizing plate from being scratched. For example, curing with excellent UV hardness curable resin such as acrylic and silicone is excellent in hardness and sliding properties. Form the film by applying a film to the surface of the transparent protective film. You can.
  • the antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art.
  • the sticking prevention treatment is performed for the purpose of preventing adhesion with an adjacent layer of another member.
  • the anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visual recognition of the light transmitted through the polarizing plate. It can be formed by imparting a fine concavo-convex structure to the surface of the transparent protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles.
  • the fine particles to be included in the formation of the surface fine concavo-convex structure include silica, alumina, titanium dioxide, zirconium oxide, tin oxide, indium oxide, cadmium oxide, and acid oxide having an average particle diameter of 0.5 to 50 ⁇ m.
  • Transparent fine particles such as inorganic fine particles that may have conductivity such as antimony and organic fine particles (including beads) that also have crosslinked or uncrosslinked polymer are used.
  • the amount of fine particles used is generally about 2 to 50 parts by weight per 100 parts by weight of the transparent resin forming the surface fine concavo-convex structure, and 5 to 25 parts by weight preferable.
  • the anti-glare layer may also serve as a diffusion layer (such as a visual enlargement function) for diffusing the light transmitted through the polarizing plate to enlarge vision.
  • the antireflection layer, the anti-sticking layer, the diffusion layer, the antiglare layer, and the like can be provided on the transparent protective film itself, or separately from the transparent protective film as an optical layer. It can also be provided.
  • the optical film is used for forming a liquid crystal display device such as a reflection plate, an anti-transmission plate, a retardation plate (including wavelength plates such as 1Z2 and 1Z4), a visual compensation film, and a brightness enhancement film. And an optical layer that has a problem. These can be used alone as an optical film, or can be laminated on the polarizing plate for practical use and used in one or more layers.
  • a reflective polarizing plate or semi-transmissive polarizing plate in which a polarizing plate is further laminated with a reflecting plate or a semi-transmissive reflecting plate, and an elliptical polarizing plate or circular plate in which a retardation plate is further laminated on a polarizing plate.
  • a polarizing plate, a wide viewing angle polarizing plate in which a visual compensation film is further laminated on the polarizing plate, or a polarizing plate in which a brightness enhancement film is further laminated on the polarizing plate are preferable.
  • a reflective polarizing plate is a polarizing plate provided with a reflective layer, and incident light from the viewing side (display side). This is for forming a liquid crystal display device of the type that reflects the light, and has the advantage that it is easy to reduce the thickness of the liquid crystal display device by omitting the incorporation of a light source such as a backlight.
  • the reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer having a metal isotropic force is attached to one surface of the polarizing plate via a transparent protective layer or the like, if necessary.
  • a reflective layer is formed by attaching a foil vapor-deposited film made of a reflective metal such as aluminum on one side of a transparent protective film matted as necessary.
  • the transparent protective film may include fine particles having a surface fine uneven structure, and a reflective layer having a fine uneven structure on the surface.
  • the reflective layer having the fine concavo-convex structure described above has the advantage that incident light is diffused by irregular reflection to prevent directivity and glaring appearance, and to suppress unevenness in brightness and darkness.
  • the protective film containing fine particles has an advantage that incident light and its reflected light are diffused when passing through it and light and darkness can be further suppressed.
  • the reflective layer having a fine concavo-convex structure reflecting the surface fine concavo-convex structure of the transparent protective film can be formed by, for example, applying the metal to the surface of the transparent protective layer by an appropriate method such as a vacuum deposition method, an ion plating method, a sputtering method, or a plating method It can be performed by a method of attaching directly to the.
  • the reflecting plate instead of the method of directly applying the reflecting plate to the transparent protective film of the polarizing plate, it is also possible to use it as a reflecting sheet in which a reflecting layer is provided on an appropriate film according to the transparent film.
  • the reflective layer usually has a metallic force, the usage state in which the reflective surface is covered with a transparent protective film or a polarizing plate is used to prevent the reflectance from being lowered by oxidation, and thus the long-term initial reflectance. It is more preferable in terms of sustainability and avoiding the separate provision of a protective layer.
  • the transflective polarizing plate can be obtained by using a transflective reflective layer such as a half mirror that reflects and transmits light by the reflective layer.
  • Transflective polarizing plate can be obtained by using a transflective reflective layer such as a half mirror that reflects and transmits light by the reflective layer.
  • the transflective polarizing plate can save energy when using a light source such as a knocklight in a bright atmosphere, and can be used with a built-in power supply even in a relatively low atmosphere. It is useful for the formation of
  • a phase difference plate or the like is used when changing linearly polarized light into elliptically or circularly polarized light, changing elliptically or circularly polarized light into linearly polarized light, or changing the polarization direction of linearly polarized light.
  • a so-called 1Z4 wavelength plate also called a ⁇ 4 plate
  • a 1Z2 wavelength plate (also referred to as ⁇ 2 plate) is usually used to change the polarization direction of linearly polarized light.
  • the elliptically polarizing plate compensates (prevents) coloring (blue or yellow) caused by double bending of the liquid crystal layer of the super twist nematic (STN) type liquid crystal display device, and displays the above-mentioned coloring! It is used effectively in such cases. Further, the one having a controlled three-dimensional refractive index is preferable because it can compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction.
  • the circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which an image is displayed in color, and also has an antireflection function.
  • the retardation plate examples include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, a liquid crystal polymer alignment film, and a liquid crystal polymer alignment layer supported by the film. It is done.
  • the thickness of the retardation plate is not particularly limited, but is generally about 20 to 150 / ⁇ ⁇ .
  • polymer material examples include polybutyl alcohol, polybutyral, polymethyl vinylenoether, polyhydroxy ethino rare talylate, hydroxy ethinore cellulose, hydroxypropyl cellulose, methenorescenellose, polycarbonate, poly Allylate, Polysulfone, Polyethylene terephthalate, Polyethylene naphthalate, Polyetherolsulfone, Polyphenylene sulfide, Polyphenylene oxide, Polyallylsulfone, Polyamide, Polyimide, Polyolefin, Polychlorinated butyl, Cellulose polymer, Norbornene resin Or various types of these binary and ternary copolymers, graft copolymers, and blends.
  • liquid crystal polymer examples include various main chain types and side chain types in which a conjugated linear atomic group (mesogen) imparting liquid crystal alignment is introduced into the main chain or side chain of the polymer. Can be given.
  • main chain type liquid crystal polymer examples include a nematic orientation polyester liquid crystal polymer, a discotic polymer and a cholesteric polymer having a structure in which a mesogenic group is bonded at a spacer portion that imparts flexibility. It is done.
  • side-chain liquid crystal polymers include polysiloxane, polyacrylate, polymetatalylate, or polymalonate as the main chain skeleton, and nematic alignment imparted via a spacer unit consisting of conjugated atomic groups as side chains. And those having a mesogenic moiety that is a unit force of a para-substituted cyclic compound.
  • These liquid crystal polymers are, for example, liquid crystalline on the alignment surface such as those obtained by rubbing the surface of a thin film such as polyimide polybulal alcohol formed on a glass plate, or those obtained by obliquely vapor deposition of oxygen. This is done by developing and heat-treating the polymer solution.
  • the retardation plate may have an appropriate retardation according to the purpose of use, such as for the purpose of color compensation by birefringence of various wavelength plates or liquid crystal layers, compensation of vision, etc. 2 It may be a laminate in which more than one kind of retardation plate is laminated to control optical characteristics such as retardation.
  • the elliptically polarizing plate and the reflective elliptical polarizing plate described above are obtained by laminating a polarizing plate or a reflective polarizing plate and a retardation plate in an appropriate combination.
  • the elliptical polarizing plate or the like that can be formed can be formed by sequentially laminating them separately in the manufacturing process of the liquid crystal display device so as to be a combination of a (reflection type) polarizing plate and a retardation plate.
  • an optical film such as an elliptically polarizing plate is advantageous in that it has excellent quality stability and lamination workability, and can improve the manufacturing efficiency of a liquid crystal display device.
  • the visual compensation film is a film for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed in a slightly oblique direction rather than perpendicular to the screen.
  • a visual compensation phase difference plate for example, a phase difference plate, an alignment film such as a liquid crystal polymer, or a support in which an alignment layer such as a liquid crystal polymer is supported on a transparent substrate can be used.
  • a normal retardation film uses a polymer film having birefringence uniaxially stretched in the plane direction, whereas a retardation film used as a visual compensation film has a plane direction.
  • Such a bi-directional stretched film is used.
  • the tilted alignment film include a film obtained by bonding a heat-shrinkable film to a polymer film and stretching or z-shrinking the polymer film under the action of the contraction force by heating, or a film obtained by obliquely aligning a liquid crystal polymer. Etc.
  • the raw material polymer for the phase difference plate is the same as the polymer described in the previous phase difference plate, preventing coloration due to a change in the viewing angle based on the phase difference of the liquid crystal cell and expanding the viewing angle for good viewing. Anything suitable for the purpose can be used.
  • a liquid crystal polymer alignment layer is supported by a triacetyl cellulose film in order to achieve a wide viewing angle with good visibility.
  • the optically compensated retardation plate can be preferably used.
  • a polarizing plate obtained by bonding a polarizing plate and a brightness enhancement film is usually used by being provided on the back side of the liquid crystal cell.
  • the brightness enhancement film reflects the linearly polarized light with a predetermined polarization axis or circularly polarized light in a predetermined direction when natural light is incident due to a backlight of a liquid crystal display device or the like, or reflection from the back side, and transmits other light.
  • a polarizing plate in which a brightness enhancement film is laminated with a polarizing plate allows light from a light source such as a backlight to be incident to obtain transmitted light in a predetermined polarization state, and reflects light without transmitting the light other than the predetermined polarization state. Is done.
  • the light reflected on the surface of the brightness enhancement film is further inverted through a reflective layer provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state.
  • a reflective layer provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state.
  • the light having a polarization direction that does not coincide with the polarization axis of the polarizer is It is almost absorbed by the polarizer and does not pass through the polarizer. That is, approximately 50% of the light that is different depending on the characteristics of the polarizer used is absorbed by the polarizer, and the amount of light that can be used for liquid crystal image display is reduced, and the image becomes dark.
  • the brightness enhancement film has a polarization that is absorbed by the polarizer.
  • the light having the light direction is reflected once by the brightness enhancement film without being incident on the polarizer, and is further reversed through the reflective layer provided on the back side and re-incident on the brightness enhancement film.
  • the brightness enhancement film transmits only the polarized light whose polarization direction is reflected and reversed between the two so that it can pass through the polarizer, and is supplied to the polarizer. Light can be efficiently used to display images on a liquid crystal display device, and the screen can be brightened.
  • a diffusion plate may be provided between the brightness enhancement film and the reflective layer.
  • the polarized light reflected by the brightness enhancement film is directed to the reflection layer and the like, but the installed diffuser diffuses the light passing therethrough at the same time and simultaneously cancels the polarization state to become a non-polarized state. That is, the light in the natural light state is directed to the reflection layer and the like, is reflected through the reflection layer and the like, passes through the diffusion plate again, and reenters the brightness enhancement film.
  • the brightness of the display screen is maintained, and at the same time, uneven brightness of the display screen is reduced.
  • the number of repetitions of the initial incident light increased moderately, and combined with the diffusion function of the diffuser, it was possible to provide a uniform brightness V and display screen. It is done.
  • a dielectric multilayer thin film or a multilayer laminate of thin film films having different refractive index anisotropies transmits linearly polarized light having a predetermined polarization axis and transmits other light.
  • Reflecting one of the left-handed or right-handed circularly polarized light and transmitting the other light, such as those that show reflective properties, such as oriented films of cholesteric liquid crystal polymer and those oriented liquid crystal layers supported on a film substrate Appropriate things such as those showing the characteristics to be used can be used.
  • the transmitted light is directly incident on the polarizing plate with the polarization axis aligned, thereby suppressing absorption loss due to the polarizing plate.
  • it can be transmitted efficiently.
  • a brightness enhancement film of a type that transmits circularly polarized light such as a cholesteric liquid crystal layer
  • it can be directly incident on a polarizer.
  • the circularly polarized light is linearly polarized through a retardation plate in order to suppress absorption loss. It is preferable to make it light and make it enter into a polarizing plate.
  • a retardation plate that functions as a 1Z4 wavelength plate at a wide wavelength such as in the visible light region exhibits, for example, a retardation plate that functions as a 1Z4 wavelength plate for light-colored light having a wavelength of 55 Onm and other retardation characteristics. It can be obtained by a method of superposing a retardation layer, for example, a retardation layer functioning as a 1Z2 wavelength plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may have a retardation layer force of one layer or two or more layers.
  • the cholesteric liquid crystal layer also reflects circularly polarized light in a wide wavelength range such as a visible light castle by combining two or more layers with different reflection wavelengths in an overlapping structure. Based on this, transmission circular polarization in a wide and wavelength range can be obtained.
  • the polarizing plate may be formed by laminating a polarizing plate such as the above-described polarization-separating polarizing plate and two or more optical layers. Therefore, a reflective elliptical polarizing plate or a semi-transmissive elliptical polarizing plate in which the above-mentioned reflective polarizing plate or semi-transmissive polarizing plate and a retardation plate are combined may be used.
  • An optical film in which the optical layer is laminated on a polarizing plate can be formed even in a method of laminating separately in the manufacturing process of a liquid crystal display device or the like. It has excellent quality stability and assembly work! /, And has the advantage of improving the manufacturing process of liquid crystal display devices.
  • an appropriate adhesive means such as an adhesive layer can be used.
  • the polarizing plate and the other optical layer are bonded, their optical axes can be arranged at an appropriate angle depending on the target retardation characteristics.
  • a dispersion liquid containing a carbon nanomaterial, a binder component, a dispersant, and the like is applied and dried to form the antistatic layer 2.
  • the solid content concentration of the dispersion is preferably adjusted to about 0.05 to 50% by weight.
  • the coating method include a roll coating method such as reverse coating and gravure coating, a spin coating method, a screen coating method, a fountain coating method, a dating method, and a spray method.
  • the thickness of the antistatic layer is preferably 5 to: LOOOnm.
  • the thickness of the antistatic layer is usually 5000 nm or less, and the point of reduction in optical properties is usually less, but the thickness of the antistatic layer increases. If the antistatic layer is not strong enough, the antistatic layer may break down and may not have sufficient adhesion.
  • the thickness of the antistatic agent is preferably 500 nm or less, more preferably 300 nm or less, and even more preferably 200 nm or less. In order to ensure adhesion and suppress peeling charge, it is preferably 5 nm or more, and more preferably lOnm or more.
  • the peeling charge effect is preferably that the antistatic layer is thicker, but it is less than or equal to 200 nm. From this point, it is preferable that the thickness is 5 to 500 nm, further 10 to 300 nm, and further 10 to 200 nm.
  • the optical film 1 can be subjected to an activation treatment.
  • the activation treatment is effective when an aqueous solution containing a water-soluble conductive polymer is used as an antistatic agent, and repelling when applying the aqueous solution can be suppressed.
  • the activation treatment is effective particularly when the optical film 1 is a polyolefin resin or a norbornene resin.
  • the pressure-sensitive adhesive layer 3 is formed by laminating on the antistatic layer 2.
  • the forming method is not particularly limited, and examples thereof include a method of applying a pressure-sensitive adhesive solution to the antistatic layer and drying, a method of transferring with a release sheet provided with a pressure-sensitive adhesive layer, and the like.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably about 10 to 40 ⁇ m.
  • Constituent materials of the release film include paper, polyethylene, polypropylene, synthetic resin films such as polyethylene terephthalate, rubber sheets, paper, cloth, non-woven fabrics, nets, foam sheets, metal foils, laminates thereof, and the like. Appropriate thin leaves and the like can be mentioned.
  • the surface of the release film is subjected to low-adhesive release treatments such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary to improve the peelability from the pressure-sensitive adhesive layer 3! Also good!
  • each layer such as an optical film or an adhesive layer of the antistatic adhesive optical film of the present invention includes, for example, a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, and a cyanoacrylate compound. Further, it may be one having an ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorber such as a nickel complex compound.
  • the adhesion between the antistatic layer 2 and the pressure-sensitive adhesive layer 3 is as follows.
  • the peeling angle is 180 ° and the peeling speed is 300 mm.
  • the Zmin is 10 NZ25 mm or more, more preferably 15 NZ25 mm or more. If the adhesive strength is less than 10NZ25mm, adhesive residue may be generated when the optical film is peeled off from the liquid crystal panel, or peeling may occur in a heated and humidified environment.
  • the antistatic pressure-sensitive adhesive optical film of the present invention can be preferably used for forming various image display devices such as liquid crystal display devices.
  • the liquid crystal display device can be formed according to the conventional method.
  • a liquid crystal display device generally has a force formed by appropriately assembling components such as a liquid crystal cell, an antistatic adhesive optical film, and an illumination system as necessary, and incorporating a drive circuit.
  • the method can be based on the conventional method without any limitation except that the optical film according to the present invention is used.
  • the liquid crystal cell for example, any type such as a TN type, STN type, or ⁇ type can be used.
  • An appropriate liquid crystal display device such as a liquid crystal display device in which an antistatic adhesive optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight in a lighting system or a reflector is formed. Can do.
  • the optical film according to the present invention can be placed on one or both sides of the liquid crystal cell. When optical films are provided on both sides, they may be the same or different.
  • a single layer of appropriate parts such as a diffuser plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffuser plate, and a knocklight at an appropriate position. Or two or more layers can be arranged.
  • organic electroluminescence device organic EL display device
  • the optical film (polarizing plate or the like) of the present invention can also be applied to an organic EL display device.
  • a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitter (organic electroluminescent light emitter).
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injecting layer having an isotropy such as a triphenylamine derivative and a light emitting layer having a fluorescent organic solid force such as anthracene.
  • an organic EL display device in order to extract light emitted from the organic light emitting layer, at least one of the electrodes must be transparent, and is usually formed of a transparent conductor such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • a transparent electrode is used as the anode.
  • metal electrodes such as Mg Ag and A1-Li are used.
  • the organic light emitting layer is formed of a very thin film with a thickness of about 1 Onm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident on the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode again returns to the surface side of the transparent substrate. When viewed, the display surface of the OLED display looks like a mirror.
  • an organic EL display device including an organic electroluminescent light emitting device including a transparent electrode on a front surface side of an organic light emitting layer that emits light by application of a voltage and a metal electrode on a back surface side of the organic light emitting layer
  • a polarizing plate can be provided on the surface side of the electrode, and a retardation plate can be provided between the transparent electrode and the polarizing plate.
  • the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization function. is there.
  • the retardation plate is a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation plate is adjusted to ⁇ Z4, the mirror surface of the metal electrode can be completely shielded.
  • the linearly polarized light component of the external light incident on the organic EL display device is transmitted through the polarizing plate.
  • This linearly polarized light is generally elliptically polarized by the phase difference plate.
  • the phase difference plate is a 1Z4 wavelength plate, and the angle between the polarization direction of the polarizing plate and the phase difference plate is ⁇ ⁇ 4.
  • This circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, is again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and is linearly polarized again on the retardation plate. Become. And since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate, it cannot be transmitted through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
  • a polybulal alcohol film having a thickness of 80 ⁇ m was stretched 5 times in an aqueous iodine solution at 40 ° C, and then dried at 50 ° C for 4 minutes to obtain a polarizer.
  • a polarizing plate was obtained by adhering a triacetyl cellulose film on both sides of the polarizer using a polybulal alcohol adhesive.
  • a base polymer As a base polymer, 95 parts of butyl acrylate, 5 parts of acrylic acid and 0.2 part of benzoyl peroxide are dissolved in 300 parts of ethyl acetate and reacted at about 60 ° C for 6 hours with stirring to obtain an average molecular weight of 2 million. A solution (20% solid content) containing an acrylic polymer was used. To the above acrylic polymer solution, 0.5 part of Coronate L manufactured by Nippon Polyurethane Co., Ltd., which is an isocyanate-based polyfunctional compound, was added to 100 parts of polymer solid content. The pressure-sensitive adhesive solution is separated from a release film (Mitsubishi Chemical Polyester, Die, so that the thickness after drying is 25 m. After applying it by reverse roll coating method, it is further coated with a release film and dried in a hot air circulation oven.
  • a release film Mitsubishi Chemical Polyester, Die, so that the thickness after drying is 25 m.
  • a pressure-sensitive adhesive layer was formed.
  • an antistatic adhesive polarizing plate On the antistatic layer of the antistatic polarizing plate, a release film on which an adhesive layer was formed was bonded to prepare an antistatic adhesive polarizing plate.
  • Example 1 In the formation of the antistatic layer of Example 1, an antistatic pressure-sensitive adhesive polarizing plate was produced in the same manner as in Example 1 except that 2 parts of carbon nanotubes were added.
  • An antistatic pressure-sensitive adhesive polarizing plate was produced in the same manner as in Example 1 except that carbon nanotubes were not added in the formation of the antistatic layer of Example 1.
  • Example 1 In the formation of the antistatic layer of Example 1, an antistatic adhesive polarizing plate was prepared in the same manner as in Example 1 except that 1 part of carbon black was added instead of carbon nanotubes.
  • Dispersion containing tin oxide fine particles (Yamanaka Sangyo Co., Ltd., EPS 6) was applied to one side of the polarizing plate so that the thickness after drying was 200 nm, and dried at 80 ° C for 2 minutes to charge. A protective layer was formed.
  • An antistatic pressure-sensitive adhesive polarizing plate was produced in the same manner as in Example 1.
  • the produced antistatic pressure-sensitive adhesive optical film was punched out to a size of 25 mm ⁇ 50 mm with a Thomson blade type, and bonded to the glass surface to obtain a sample. Integral sphere spectral transmission The light transmittance of the sample was measured using a rate measuring device (DOT-3, manufactured by Murakami Color Research Laboratory Co., Ltd.).
  • the produced antistatic adhesive optical film was cut into a size of 100 mm X 100 mm and attached to a liquid crystal panel.
  • This panel was placed on a backlight with a brightness of lOOOOcd, and 5kv of static electricity was generated using ESD (SANKI, ESD-8012A), a static electricity generator, which caused liquid crystal alignment disorder. .
  • ESD SANKI, ESD-8012A
  • the recovery time (seconds) for the display failure due to the orientation failure was measured using an instantaneous multiphotometric detector (MCPD-3000, manufactured by Otsuka Electronics Co., Ltd.). The panel was allowed to stand for 500 hours in a 50 ° C environment, and then the recovery time (seconds) was measured in the same manner as described above.

Abstract

Disclosed is an antistatic adhesive optical film with high light transmittance which is able to maintain excellent antistatic properties even after storage in high temperature environments. Such an antistatic adhesive optical film is characterized in that an antistatic layer is arranged on at least one side of an optical film, an adhesive layer is arranged on the antistatic layer, and the antistatic layer contains a carbon nanomaterial.

Description

明 細 書  Specification
帯電防止性粘着型光学フィルム及び画像表示装置  Antistatic adhesive optical film and image display device
技術分野  Technical field
[0001] 本発明は、光学フィルムの少なくとも片面に帯電防止層が積層され、さらに該帯電 防止層上に粘着剤層が積層されている帯電防止性粘着型光学フィルムに関する。ま た、前記帯電防止性粘着型光学フィルムを用いた液晶表示装置、有機 EL表示装置 、 PDP等の画像表示装置に関する。前記光学フィルムとしては、偏光板、位相差板、 光学補償フィルム、輝度向上フィルム、さらにはこれらが積層されているものなどがあ げられる。  The present invention relates to an antistatic pressure-sensitive adhesive optical film in which an antistatic layer is laminated on at least one surface of an optical film, and an adhesive layer is further laminated on the antistatic layer. The present invention also relates to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the antistatic adhesive optical film. Examples of the optical film include a polarizing plate, a retardation plate, an optical compensation film, a brightness enhancement film, and a laminate of these.
背景技術  Background art
[0002] 液晶ディスプレイ等は、その画像形成方式力 液晶セルの両側に偏光素子を配置 することが必要不可欠であり、一般的には偏光板が貼着されている。また液晶パネル には偏光板の他に、ディスプレイの表示品位を向上させるために様々な光学素子が 用いられるようになってきている。例えば、着色防止としての位相差板、液晶ディスプ レイの視野角を改善するための視野角拡大フィルム、さらにはディスプレイのコントラ ストを高めるための輝度向上フィルム等が用いられる。これらのフィルムは総称して光 学フィルムと呼ばれる。  In a liquid crystal display or the like, it is indispensable to dispose polarizing elements on both sides of the liquid crystal cell, and generally polarizing plates are attached. In addition to polarizing plates, various optical elements are being used for liquid crystal panels in order to improve the display quality of displays. For example, a retardation plate for preventing coloring, a viewing angle widening film for improving the viewing angle of a liquid crystal display, and a brightness enhancement film for increasing the contrast of the display are used. These films are collectively called optical films.
[0003] これらの光学フィルムは、通常、消費者に届けられるまでの間は輸送や製造工程に お!、て光学フィルムの表面に傷や汚れがつかな 、ように、その表面に表面保護フィ ルムが貼り合わされている。当該表面保護フィルムは、 LCD等に貼り付けられた後に 剥離されたり、一度剥離した後に同じ又は別の表面保護フィルムを再度貼り合せる場 合もある。そして、該表面保護フィルムを剥離する際に静電気が発生し、この静電気 によって LCDパネル等の回路が破壊されるという問題があった。また LCDパネル内 部のアレイ素子に影響を与えて、それがさらに液晶の配向に影響を与えて不良を誘 発する問題があった。また表面保護フィルムは剥離する際のみならず、製造工程や 消費者の使用方法によっても光学フィルム同士の摩擦により同様の問題が発生する 。前記問題を解決するために、偏光板等の光学フィルムに帯電防止性を付与するこ とが提案されている。たとえば、光学フィルムの表面に帯電防止層を設けた帯電防止 層付光学フィルム、光学フィルムの片側又は両側に透明導電層を設けたものが開示 されている(特許文献 1)。 [0003] These optical films are usually used in the transportation and manufacturing process until they are delivered to consumers! The surface of the optical film is protected from scratches and dirt. Rum is pasted together. The surface protective film may be peeled off after being attached to an LCD or the like, or the same or another surface protective film may be attached again after being peeled off once. And when peeling off this surface protection film, static electricity generate | occur | produced and there existed a problem that circuits, such as an LCD panel, were destroyed by this static electricity. In addition, there is a problem that the array elements inside the LCD panel are affected, which further affects the alignment of the liquid crystal and induces defects. Further, the surface protection film is not only peeled off, but the same problem occurs due to friction between optical films depending on the manufacturing process and the usage method of consumers. In order to solve the above problem, an antistatic property is imparted to an optical film such as a polarizing plate. And have been proposed. For example, an optical film with an antistatic layer provided with an antistatic layer on the surface of the optical film, and a film provided with a transparent conductive layer on one side or both sides of the optical film are disclosed (Patent Document 1).
[0004] 一方、光学フィルムを液晶セルに貼着する際には、通常、粘着剤が使用される。ま た、光学フィルムと液晶セル、または光学フィルム間の接着は、通常、光の損失を低 減するため、それぞれの材料は粘着剤を用いて密着されている。このような場合に、 光学フィルムを固着させるのに乾燥工程を必要としな 、こと等のメリットを有することか ら、粘着剤は、光学フィルムの片側に予め粘着剤層として設けられた粘着型光学フィ ルムが一般的に用いられる。  [0004] On the other hand, an adhesive is usually used when adhering an optical film to a liquid crystal cell. In addition, since the adhesion between the optical film and the liquid crystal cell or the optical film usually reduces the loss of light, the respective materials are adhered using an adhesive. In such a case, the pressure-sensitive adhesive has a merit that a drying process is not required to fix the optical film, and thus the pressure-sensitive adhesive is a pressure-sensitive adhesive optical film previously provided as a pressure-sensitive adhesive layer on one side of the optical film. Film is commonly used.
[0005] 前記粘着型光学フィルムは、その使用に際して、ディスプレイのサイズに切断される 。力かる使用工程でのハンドリングの際、粘着型光学フィルムの端部 (切断部)が人 や装置に接触すると、その部分に粘着剤の欠落が起きることがある。このような、粘着 剤の欠落した粘着型光学フィルムを液晶セルに貼り付けると、その欠落した部分は密 着しないため、その部分で光が反射し表示欠点となる問題がある。特に最近ではディ スプレイの狭額縁化が進み、前記端部で発生する欠点によっても表示品質が著しく 低下する。また、前記粘着型光学フィルムを液晶パネルに貼り付けた後、異物の混入 などの理由によってパネルカゝら剥がす場合に、パネル側に粘着剤が残る(所謂糊残 り現象)という支障が生じないこと、すなわちリワーク性が良好であることが望まれる。  [0005] In use, the adhesive optical film is cut into a display size. When handling in the intensive use process, if the end (cutting part) of the adhesive optical film comes into contact with a person or device, the adhesive may be lost at that part. When such an adhesive type optical film lacking an adhesive is attached to a liquid crystal cell, the lacked part does not adhere, so that there is a problem that light is reflected at that part, resulting in a display defect. In particular, the display frame has been narrowed recently, and the display quality is significantly deteriorated due to the defects occurring at the edge. In addition, when the adhesive optical film is attached to the liquid crystal panel and then peeled off from the panel cover for reasons such as foreign matter mixing, there will be no trouble that the adhesive remains on the panel side (so-called adhesive residue phenomenon). That is, it is desired that reworkability is good.
[0006] 上記粘着型光学フィルムにつ!/、ても、帯電防止性を付与することが提案されて ヽる 。たとえば、光学フィルムと粘着剤層との間に、カーボンブラック、イオン性高分子、界 面活性剤、又は金属酸化物を含有する帯電防止層を設けた帯電防止性粘着型光学 フィルムが提案されている(特許文献 2)。しかし、カーボンブラックを帯電防止剤とし て使用した場合には、光学フィルムの光透過率が低下するという問題があった。また 、イオン性高分子、界面活性剤、又は金属酸化物を帯電防止剤として使用した場合 には、帯電防止性光学フィルムを高温環境下で保存した後に帯電防止性能が低下 するという問題があった。  [0006] It has been proposed to impart antistatic properties to the adhesive optical film. For example, an antistatic adhesive optical film in which an antistatic layer containing carbon black, an ionic polymer, a surfactant, or a metal oxide is provided between the optical film and the adhesive layer has been proposed. (Patent Document 2). However, when carbon black is used as an antistatic agent, there is a problem that the light transmittance of the optical film is lowered. In addition, when an ionic polymer, a surfactant, or a metal oxide is used as an antistatic agent, there is a problem that the antistatic performance is lowered after the antistatic optical film is stored in a high temperature environment. .
[0007] 特許文献 1 :特開平 7— 26223号公報  [0007] Patent Document 1: Japanese Patent Laid-Open No. 7-26223
特許文献 2:特開平 11— 91038号公報 発明の開示 Patent Document 2: JP-A-11-91038 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、光学フィルムの少なくとも片面に帯電防止層が積層され、さらに該帯電 防止層上に粘着剤層が積層されている帯電防止性粘着型光学フィルムであって、光 透過率が高ぐかつ高温環境下で保存した後でも優れた帯電防止性能を維持できる ものを提供することを目的とする。また、前記帯電防止性粘着型光学フィルムを用い た画像表示装置を提供することを目的とする。  [0008] The present invention is an antistatic pressure-sensitive adhesive optical film in which an antistatic layer is laminated on at least one surface of an optical film, and an adhesive layer is further laminated on the antistatic layer, and has an optical transmittance. The object is to provide a product that can maintain excellent antistatic performance even after being stored in a high temperature environment. It is another object of the present invention to provide an image display device using the antistatic adhesive optical film.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、下記の帯電防止性 粘着型光学フィルムにより前記課題を解決できることを見出し、本発明を完成する〖こ 至った。 [0009] As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by the following antistatic adhesive optical film, and have completed the present invention.
[0010] すなわち本発明は、光学フィルムの少なくとも片面に帯電防止層が積層され、さら に該帯電防止層上に粘着剤層が積層されており、前記帯電防止層は、カーボンナノ 材料を含有することを特徴とする帯電防止性粘着型光学フィルム、に関する。  That is, in the present invention, an antistatic layer is laminated on at least one surface of an optical film, and an adhesive layer is further laminated on the antistatic layer, and the antistatic layer contains a carbon nanomaterial. The present invention relates to an antistatic pressure-sensitive adhesive optical film.
[0011] 帯電防止剤としてカーボンナノ材料、特にカーボンナノチューブを使用することによ り、光透過率が高ぐかつ高温環境下で保存した後でも優れた帯電防止性能を維持 できる帯電防止層を形成することができる。このような効果が発現する理由は明らか ではないが、カーボンナノ材料は一般にその大きさが nm単位で非常に微小な炭素 物質であるため、光の反射及び散乱を効果的に防止できると考えられる。また、高温 環境下でも安定した SP2構造を有するため、高温環境下で保存した後でも優れた帯 電防止性能を維持できると考えられる。 [0011] By using carbon nanomaterials, particularly carbon nanotubes, as an antistatic agent, an antistatic layer is formed that has high light transmittance and can maintain excellent antistatic performance even after storage in a high temperature environment. can do. The reason why such an effect appears is not clear, but carbon nanomaterials are generally very small carbon substances with a size of nm, so it is considered that light reflection and scattering can be effectively prevented. . In addition, since it has a stable SP 2 structure even in a high temperature environment, it is thought that excellent antistatic performance can be maintained even after storage in a high temperature environment.
[0012] 前記帯電防止層は、さらにバインダー成分を含有することが好ましい。また、前記バ インダー成分は、ポリウレタン系榭脂、ポリエステル系榭脂およびアクリル系榭脂から なる群より選ばれる少なくとも 1種であることが好ましい。これらの榭脂を用いることに より、帯電防止層と光学フィルム又は粘着剤層との接着強度が向上する。 [0012] The antistatic layer preferably further contains a binder component. The binder component is preferably at least one selected from the group consisting of polyurethane-based resin, polyester-based resin and acrylic-based resin. By using such a resin, the adhesive strength between the antistatic layer and the optical film or the pressure-sensitive adhesive layer is improved.
[0013] また、前記帯電防止層は、さらに分散剤を含有することが好ましい。 [0013] The antistatic layer preferably further contains a dispersant.
[0014] また、前記粘着剤層はアクリル系粘着剤により形成されていることが好ましい。 [0014] The pressure-sensitive adhesive layer is preferably formed of an acrylic pressure-sensitive adhesive.
[0015] さらに、本発明は、前記帯電防止性粘着型光学フィルムを製造する方法であって、 光学フィルムの少なくとも片面に、カーボンナノ材料を含有する分散液を塗布し、乾 燥して帯電防止層を形成する工程、及び当該帯電防止層上に粘着剤層を形成する 工程を含むことを特徴とする帯電防止性粘着型光学フィルムの製造方法、に関する [0015] Further, the present invention is a method for producing the antistatic pressure-sensitive adhesive optical film, It includes a step of applying a dispersion containing a carbon nanomaterial on at least one surface of an optical film and drying to form an antistatic layer, and a step of forming an adhesive layer on the antistatic layer. Relates to a method for producing an antistatic adhesive optical film,
[0016] 本発明は、前記帯電防止性粘着型光学フィルムを少なくとも 1枚用いた画像表示 装置に関する。本発明の帯電防止性粘着型光学フィルムは、液晶表示装置等の画 像表示装置の各種の使用態様に応じて、 1枚または複数のものを組み合わせて用い られる。 [0016] The present invention relates to an image display device using at least one antistatic adhesive optical film. The antistatic pressure-sensitive adhesive optical film of the present invention is used in combination of one or more sheets depending on various usages of an image display device such as a liquid crystal display device.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の帯電防止性粘着型光学フィルムの断面図の一例である。 FIG. 1 is an example of a cross-sectional view of an antistatic pressure-sensitive adhesive optical film of the present invention.
符号の説明  Explanation of symbols
[0018] 1 光学フィルム [0018] 1 Optical film
2 帯電防止層  2 Antistatic layer
3 粘着剤層  3 Adhesive layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明の帯電防止性粘着型光学フィルムは、図 1に示すように、光学フィルム 1の 片面に帯電防止層 2、粘着剤層 3をこの順に積層している。なお、図 1では、光学フィ ルム 1の片面に粘着剤層 3を設けている場合を示しているが、粘着剤層 3は光学フィ ルムの両面に有して 、てもよ 、。また他面の粘着剤層 3につ 、ても帯電防止層 2を有 していてもよい。 In the antistatic pressure-sensitive adhesive optical film of the present invention, as shown in FIG. 1, an antistatic layer 2 and an adhesive layer 3 are laminated in this order on one side of the optical film 1. FIG. 1 shows the case where the adhesive layer 3 is provided on one side of the optical film 1, but the adhesive layer 3 may be provided on both sides of the optical film. Further, the pressure-sensitive adhesive layer 3 on the other side may have the antistatic layer 2.
[0020] 本発明の帯電防止性粘着型光学フィルムの帯電防止層 2は、帯電防止剤である力 一ボンナノ材料を含む組成物によって形成されている。  [0020] The antistatic layer 2 of the antistatic pressure-sensitive adhesive optical film of the present invention is formed of a composition containing a forceful nanomaterial as an antistatic agent.
[0021] カーボンナノ材料としては、例えば、カーボンナノチューブ、カーボンナノホーン、力 一ボンナノウォール、及びフラーレンなどが挙げられる。これらのなかでカーボンナノ チューブを用いることが好ましい。カーボンナノチューブは、一般に中空繊維状形状 をしており、直径 0. 5nm〜5 μ m、長さ 10nm〜1000 μ m程度の炭素物質である。 本発明においては、直径 0. 5!1!11〜1 111、長さ1011111〜100 111のカーボンナノチ ユーブを用いることが好まし 、。 [0022] なお、帯電防止剤として、カーボンナノ材料と共に導電性ポリマーを用いてもよい。 導電性ポリマーとしては、光学特性、外観、帯電防止効果および帯電防止効果の熱 時、加湿時での安定性が良好なものを使用する。そのような導電性ポリマーとしては 、ポリア-リン、ポリチォフェン、ポリピロール、ポリキノキサリン等のポリマーがあげられ る。これらのなかでも、水溶性導電性ポリマーまたは水分散性導電性ポリマーになり やすい、ポリア二リン、ポリチォフェンなどが好ましく使用される。特にポリチォフェン が好ましい。 [0021] Examples of the carbon nanomaterial include carbon nanotubes, carbon nanohorns, strong bon nanowalls, and fullerenes. Of these, carbon nanotubes are preferably used. Carbon nanotubes generally have a hollow fiber shape, and are carbon materials having a diameter of about 0.5 nm to 5 μm and a length of about 10 nm to 1000 μm. In the present invention, it is preferable to use a carbon nanotube having a diameter of 0.5! 1! 11 to 1111, and a length of 1011111 to 100111. [0022] As the antistatic agent, a conductive polymer may be used together with the carbon nanomaterial. As the conductive polymer, a polymer having good optical characteristics, appearance, antistatic effect and antistatic effect when heated and humidified is used. Examples of such a conductive polymer include polymers such as polyarine, polythiophene, polypyrrole, and polyquinoxaline. Among these, polyaniline, polythiophene, and the like that are likely to become a water-soluble conductive polymer or a water-dispersible conductive polymer are preferably used. Polythiophene is particularly preferable.
[0023] 偏光板等の光学フィルムは、非水系の有機溶剤に可溶であり変質や劣化して光学 特性が悪くなる傾向がある。このように光学フィルムは耐有機溶剤性に劣るため、帯 電防止層を形成する際の塗布液は、カーボンナノ材料を水に分散させた水分散液と するのが好ましい。なお、前記水分散液は、水と共に親水性溶媒を含有していてもよ い。親水性溶媒としては、例えば、メタノール、エタノール、 n—プロパノール、イソプ ロパノール、 n—ブタノール、イソブタノール、 sec—ブタノール、 tert—ブタノール、 n ーァミルアルコール、イソアミルアルコール、 sec—ァミルアルコール、 tert—アミルァ ノレコーノレ、 1ーェチノレー 1ープロノ ノーノレ、 2—メチノレー 1ーブタノ一ノレ、 n—へキサノ ール、及びシクロへキサノール等のアルコール類があげられる。  [0023] An optical film such as a polarizing plate is soluble in a non-aqueous organic solvent and tends to be deteriorated or deteriorated to deteriorate optical characteristics. As described above, since the optical film is inferior in organic solvent resistance, the coating liquid for forming the antistatic layer is preferably an aqueous dispersion in which carbon nanomaterial is dispersed in water. The aqueous dispersion may contain a hydrophilic solvent together with water. Examples of the hydrophilic solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-amyl alcohol, isoamyl alcohol, sec-amyl alcohol, tert -Alcohols such as Amylano Noreconole, 1-Etenore 1-Prono Norre, 2-Methinore 1-Butanol Monore, n-Hexanol, and Cyclohexanol.
[0024] 帯電防止層の形成材料としては、帯電防止剤の皮膜形成性、光学フィルムへの密 着性の向上などを目的として、カーボンナノ材料と共にバインダー成分を用いること が好ましい。特に、水溶性または水分散性のバインダー成分を用いることが好ましい 。 ノインダー成分としては、例えば、ポリウレタン系榭脂、ポリエステル系榭脂、アタリ ル系榭脂、ポリエーテル系榭脂、セルロース系榭脂、ポリビュルアルコール系榭脂、 エポキシ榭脂、ポリビュルピロリドン、ポリスチレン系榭脂、ポリエチレングリコール、ぺ ンタエリスリトールなどがあげられる。特にポリウレタン系榭脂、ポリエステル系榭脂、 アクリル系榭脂が好まし 、。これらバインダー成分は 1種または 2種以上を適宜その 用途に合わせて用いることができる。ノインダー成分の使用量は、例えば、カーボン ナノ材料がカーボンナノチューブの場合、バインダー成分 100重量部に対して、カー ボンナノチューブが 100重量部以下であることが好ましぐより好ましくは 0. 001-50 重量部である。 [0025] また、帯電防止層の形成材料としては、カーボンナノ材料の分散性を向上させるこ とを目的として、カーボンナノ材料と共に分散剤を用いることが好ましい。分散剤とし ては、例えば、ァニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活 性剤、及びポリビニルピロリドンのようなバインダーとして用いられる榭脂が挙げられる 。これら分散剤は 1種または 2種以上を適宜その用途に合わせて用いることができる。 分散剤の使用量は、カーボンナノ材料の種類にもよる力 カーボンナノ材料 100重量 部に対して 0. 1〜: LOOO重量部であることが好ましぐより好ましくは 1〜: LOO重量部 である。 [0024] As the material for forming the antistatic layer, it is preferable to use a binder component together with the carbon nanomaterial for the purpose of improving the film forming property of the antistatic agent and the adhesion to the optical film. In particular, it is preferable to use a water-soluble or water-dispersible binder component. Examples of the noinder component include polyurethane-based resins, polyester-based resins, talyl-based resins, polyether-based resins, cellulose-based resins, polybulal alcohol-based resins, epoxy resins, polybululpyrrolidone, polystyrene. Examples thereof include polyethylene resin, polyethylene glycol, and pentaerythritol. In particular, polyurethane-based resin, polyester-based resin, and acrylic-based resin are preferred. These binder components can be used alone or in combination of two or more as appropriate. For example, when the carbon nanomaterial is a carbon nanotube, it is preferable that the carbon nanotube is less than 100 parts by weight with respect to 100 parts by weight of the binder component. Parts by weight. [0025] Further, as a material for forming the antistatic layer, it is preferable to use a dispersant together with the carbon nanomaterial for the purpose of improving the dispersibility of the carbon nanomaterial. Examples of the dispersant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and a resin used as a binder such as polyvinylpyrrolidone. These dispersants can be used alone or in combination of two or more as appropriate. The amount of the dispersant used depends on the type of the carbon nanomaterial. 100 to 100 parts by weight of the carbon nanomaterial 0.1 to: LOOO parts by weight is preferable, and more preferably 1 to: LOO parts by weight. is there.
[0026] 前記帯電防止層の表面抵抗値は、 1 X 1012ΩΖ口以下であることが好ましぐさら に好ましくは 1 X 1011 Ω Ζ口以下である。表面抵抗値が 1 X 1012 Ω Ζ口を超える場合 には、帯電防止機能が十分でなぐ表面保護フィルムの剥離や、光学フィルムの摩擦 により静電気が発生 ·帯電し、液晶セルの回路の破壊や液晶の配向不良を引き起こ す場合がある。 [0026] The surface resistance value of the antistatic layer is preferably 1 × 10 12 Ω well or less, more preferably 1 × 10 11 Ω well or less. If the surface resistance exceeds 1 X 10 12 Ω, the static electricity is generated due to peeling of the surface protection film with insufficient antistatic function or the friction of the optical film. It may cause liquid crystal alignment failure.
[0027] 本発明の帯電防止性粘着型光学フィルムの粘着剤層 3を形成する粘着剤としては 、特に制限されず、例えばアクリル系ポリマー、シリコーン系ポリマー、ポリエステル、 ポリウレタン、ポリアミド、ポリエーテノレ、フッ素系やゴム系などのポリマーをベースポリ マーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、 適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れる ものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好まし く使用される。  [0027] The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 3 of the antistatic pressure-sensitive adhesive optical film of the present invention is not particularly limited, and examples thereof include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyetherols, fluorine-based polymers. Those having a base polymer of a polymer such as rubber or the like can be appropriately selected and used. In particular, those excellent in optical transparency, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties and excellent in weather resistance and heat resistance are preferably used. An acrylic pressure-sensitive adhesive is preferably used to exhibit such characteristics.
[0028] アクリル系粘着剤は、アルキル (メタ)アタリレートのモノマーユニットを主骨格とする アクリル系ポリマーをベースポリマーとする。なお、(メタ)アタリレートはアタリレートお よび Ζまたはメタタリレートをいい、本発明の (メタ)とは同様の意味である。アクリル系 ポリマーの主骨格を構成する、アルキル (メタ)アタリレートのアルキル基の平均炭素 数は 1〜12程度のものであり、アルキル (メタ)アタリレートの具体例としては、メチル( メタ)アタリレート、ェチル (メタ)アタリレート、ブチル (メタ)アタリレート、 2—ェチルへ キシル (メタ)アタリレート等を例示でき、これらは単独または組み合わせて使用できる 。これらの中でもアルキル基の炭素数 1〜9のアルキル (メタ)アタリレートが好ましい。 [0029] 前記アクリル系ポリマー中には、接着性や耐熱性の改善を目的に、 1種類以上の各 種モノマーが共重合により導入される。そのような共重合モノマーの具体例としては、 例えば、(メタ)アクリル酸 2—ヒドロキシェチル、(メタ)アクリル酸 2—ヒドロキシプロピル 、(メタ)アクリル酸 4ーヒドロキシブチル、(メタ)アクリル酸 6—ヒドロキシへキシル、(メタ) アクリル酸 8 ヒドロキシォクチル、(メタ)アクリル酸 10 ヒドロキシデシル、(メタ)アタリ ル酸 12 -ヒドロキシラウリルや(4 -ヒドロキシメチルシクロへキシル)一メチルアタリレ ートなどのヒドロキシル基含有モノマー; (メタ)アクリル酸、カルボキシェチル (メタ)ァク リレート、カルボキシペンチル (メタ)アタリレート、ィタコン酸、マレイン酸、フマール酸、 クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水ィタコン酸など の酸無水物基含有モノマー;アクリル酸の力プロラタトン付加物;スチレンスルホン酸 ゃァリルスルホン酸、 2—(メタ)アクリルアミドー 2—メチルプロパンスルホン酸、 (メタ) アクリルアミドプロパンスルホン酸、スルホプロピル (メタ)アタリレート、(メタ)アタリロイ ルォキシナフタレンスルホン酸などのスルホン酸基含有モノマー; 2—ヒドロキシェチ ルァクリロイルホスフェートなどの燐酸基含有モノマーなどがあげられる。 [0028] The acrylic pressure-sensitive adhesive has an acrylic polymer having a main skeleton of an alkyl (meth) acrylate monomer unit as a base polymer. In addition, (meta) attalate refers to attalate and cocoon or metatarate, and (meta) in the present invention has the same meaning. The average number of carbon atoms of the alkyl group of the alkyl (meth) acrylate that constitutes the main skeleton of the acrylic polymer is about 1 to 12, and specific examples of the alkyl (meth) acrylate include methyl (meth) acrylate. Examples thereof include rate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, etc., and these can be used alone or in combination. Of these, alkyl (meth) acrylates having 1 to 9 carbon atoms in the alkyl group are preferred. [0029] In the acrylic polymer, one or more kinds of monomers are introduced by copolymerization for the purpose of improving adhesiveness and heat resistance. Specific examples of such copolymerization monomers include (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid 4-hydroxybutyl, and (meth) acrylic acid. 6-hydroxyhexyl, (meth) acrylic acid 8 hydroxyoctyl, (meth) acrylic acid 10 hydroxydecyl, (meth) acrylic acid 12-hydroxylauryl and (4-hydroxymethylcyclohexyl) monomethyl acrylate Hydroxyl group-containing monomers; (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid and other carboxyl group-containing monomers; maleic anhydride Monomers containing acid anhydride groups such as acid and itaconic anhydride; Rataton adducts: styrene sulfonic acid, gallic sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) attaylloy oxynaphthalene sulfonic acid And sulfonic acid group-containing monomers such as 2-hydroxyethyl acryloyl phosphate.
[0030] また、 (メタ)アクリルアミド、 N, N ジメチル (メタ)アクリルアミド、 N ブチル (メタ) アクリルアミドゃ N—メチロール (メタ)アクリルアミド、 N—メチロールプロパン (メタ)ァ クリルアミドなどの(N 置換)アミド系モノマー;(メタ)アクリル酸アミノエチル、 (メタ) アクリル酸お N ジメチルアミノエチル、 (メタ)アクリル酸 t ブチルアミノエチルなど の(メタ)アクリル酸アルキルアミノアルキル系モノマー;(メタ)アクリル酸メトキシェチ ル、 (メタ)アクリル酸エトキシェチルなどの(メタ)アクリル酸アルコキシアルキル系モノ マー; N— (メタ)アタリロイルォキシメチレンスクシンイミドゃ N— (メタ)アタリロイル一 6 ーォキシへキサメチレンスクシンイミド、 N- (メタ)アタリロイルー 8—ォキシオタタメチ レンスクシンイミド、 N—アタリロイルモルホリンなどのスクシンイミド系モノマーなども改 質目的のモノマー例としてあげられる。  [0030] In addition, (N-substituted) amides such as (meth) acrylamide, N, N dimethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, etc. (Meth) acrylic acid aminoethyl, (meth) acrylic acid and N dimethylaminoethyl, (meth) acrylic acid t-butylaminoethyl and other (meth) acrylic acid alkylaminoalkyl monomers; (meth) acrylic acid methoxy ester (Meth) acrylic acid alkoxyalkyl monomers such as (meth) acrylic acid ethoxyethyl; N— (meth) acryloyloxymethylene succinimide N— (meth) acryloyl 1-oxyhexamethylene succinimide, N— ( Meta) Atari Roy Roux 8—Oxiota Methylol succinimides, also including succinimide-based monomers such as N- Atari acryloyl morpholine and the like as a monomer Examples of the reforming purposes.
[0031] さらに、酢酸ビュル、プロピオン酸ビュル、 N ビュルピロリドン、メチルビ-ルピロリ ドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピ ラジン、ビュルピロール、ビュルイミダゾール、ビュルォキサゾール、ビュルモルホリン 、 N ビニノレ力ノレボン酸アミド類、スチレン、 α—メチノレスチレン、 Ν ビニノレ力プロラ クタムなどのビュル系モノマー;アクリロニトリル、メタタリ口-トリルなどのシァノアクリレ ート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー ; (メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール、 (メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸メトキシポリプロピレング リコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフ ルフリル、フッ素(メタ)アタリレート、シリコーン (メタ)アタリレートや 2—メトキシェチル アタリレートなどのアクリル酸エステル系モノマーなども使用することができる。 [0031] Further, butyl acetate, butyl propionate, N butyl pyrrolidone, methyl pyrrol pyrrolidone, vinyl pyridine, vinyl piperidone, vinyl pyrimidine, vinyl piperazine, vinyl pyrazine, bur pyrrole, bul imidazole, buroxazole, bul morpholine, N Vinore strength norevonamide, styrene, α-methylol styrene, Ν Vinole strength pro Bullet monomers such as cutams; Cyanacrylate monomers such as acrylonitrile and methacrylic mouth-tolyl; Epoxy group-containing acrylic monomers such as glycidyl (meth) acrylate; Polyethylene glycol (meth) acrylate, Polypropylene (meth) acrylate Glycol-based acrylic ester monomers such as glycol, (meth) acrylic acid methoxyethylene glycol, and (meth) acrylic acid methoxypolypropylene glycol; (meth) acrylic acid tetrahydrofuryl, fluorine (meth) acrylate, silicone (meth) acrylate Acrylic acid ester monomers such as 2-methoxyethyl acrylate can also be used.
[0032] これらの中でも、光学フィルム用途として液晶セルへの接着性、接着耐久性の点か ら、アクリル酸などのカルボキシル基含有モノマーが好ましく用いられる。  Among these, carboxyl group-containing monomers such as acrylic acid are preferably used from the viewpoints of adhesion to liquid crystal cells and adhesion durability for optical film applications.
[0033] アクリル系ポリマー中の前記共重合モノマーの割合は、特に制限されないが、重量 比率において、 0. 1〜10%程度であるのが好ましい。  [0033] The proportion of the copolymerization monomer in the acrylic polymer is not particularly limited, but is preferably about 0.1 to 10% by weight.
[0034] アクリル系ポリマーの平均分子量は特に制限されないが、重量平均分子量は、 30 万〜 250万程度であるのが好ましい。前記アクリル系ポリマーの製造は、各種公知の 手法により製造でき、たとえば、バルタ重合法、溶液重合法、懸濁重合法等のラジカ ル重合法を適宜選択できる。ラジカル重合開始剤としては、ァゾ系、過酸化物系の各 種公知のものを使用できる。反応温度は通常 50〜80°C程度、反応時間は 1〜8時 間とされる。また、前記製造法の中でも溶液重合法が好ましぐアクリル系ポリマーの 溶媒としては一般に酢酸ェチル、トルエン等が用いられる。溶液濃度は通常 20〜80 重量%程度とされる。  [0034] The average molecular weight of the acrylic polymer is not particularly limited, but the weight average molecular weight is preferably about 300,000 to 2.5 million. The acrylic polymer can be produced by various known methods. For example, a radical polymerization method such as a Balta polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected. As the radical polymerization initiator, various known ones such as azo and peroxide can be used. The reaction temperature is usually about 50-80 ° C, and the reaction time is 1-8 hours. Among the above production methods, ethyl acetate, toluene and the like are generally used as the solvent for the acrylic polymer for which the solution polymerization method is preferred. The solution concentration is usually about 20 to 80% by weight.
[0035] ゴム系粘着剤のベースポリマーとしては、たとえば、天然ゴム、イソプレン系ゴム、ス チレン ブタジエン系ゴム、再生ゴム、ポリイソブチレン系ゴム、さらにはスチレンーィ ソプレン一スチレン系ゴム、スチレン一ブタジエン一スチレン系ゴム等があげられる。 シリコーン系粘着剤のベースポリマーとしては、たとえば、ジメチルポリシロキサン、ジ フエ-ルポリシロキサン等があげられ、これらベースポリマーもカルボキシル基等の官 能基が導入されたものを使用することができる。  [0035] Examples of the base polymer of the rubber adhesive include natural rubber, isoprene rubber, styrene butadiene rubber, recycled rubber, polyisobutylene rubber, styrene-soprene styrene rubber, styrene butadiene styrene. System rubber and the like. Examples of the base polymer for the silicone-based pressure-sensitive adhesive include dimethylpolysiloxane and diphenylpolysiloxane. These base polymers can also be used in which functional groups such as carboxyl groups are introduced.
[0036] また前記粘着剤は、架橋剤を含有する粘着剤組成物とするのが好ま ヽ。粘着剤 に配合できる多官能化合物としては、有機系架橋剤や多官能性金属キレートがあげ られる。有機系架橋剤としては、エポキシ系架橋剤、イソシァネート系架橋剤、ィミン 系架橋剤などがあげられる。有機系架橋剤としてはイソシァネート系架橋剤が好まし い。多官能性金属キレートは、多価金属が有機化合物と共有結合または配位結合し ているものである。多価金属原子としては、 Al、 Cr、 Zr、 Co、 Cu、 Fe、 Ni、 V、 Zn、 I n、 Ca、 Mg、 Mn、 Y、 Ce、 Sr、 Ba、 Mo、 La、 Sn、 Ti等があげられる。共有結合また は配位結合する有機化合物中の原子としては酸素原子等があげられ、有機化合物 としてはアルキルエステル、アルコール化合物、カルボン酸化合物、エーテル化合物 、ケトンィ匕合物等があげられる。 [0036] The pressure-sensitive adhesive is preferably a pressure-sensitive adhesive composition containing a crosslinking agent. Examples of the polyfunctional compound that can be added to the pressure-sensitive adhesive include organic crosslinking agents and polyfunctional metal chelates. Examples of organic crosslinking agents include epoxy crosslinking agents, isocyanate crosslinking agents, imine Examples thereof include a system cross-linking agent. As the organic crosslinking agent, an isocyanate crosslinking agent is preferred. A polyfunctional metal chelate is one in which a polyvalent metal is covalently or coordinately bonded to an organic compound. Multivalent metal atoms include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, etc. Can be given. Examples of the atoms in the organic compound to be covalently bonded or coordinated include oxygen atoms, and examples of the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds, and ketone compounds.
[0037] アクリル系ポリマー等のベースポリマーと架橋剤の配合割合は特に限定されな!、が 、通常、ベースポリマー(固形分) 100重量部に対して、架橋剤(固形分) 0. 01〜10 重量部程度が好ましぐさらには 0. 1〜5重量部程度が好ましい。  [0037] The mixing ratio of the base polymer such as acrylic polymer and the crosslinking agent is not particularly limited! However, usually, the crosslinking agent (solid content) is preferably about 0.01 to 10 parts by weight and more preferably about 0.1 to 5 parts by weight with respect to 100 parts by weight of the base polymer (solid content).
[0038] さら〖こは、前記粘着剤には、必要に応じて、粘着付与剤、可塑剤、ガラス繊維、ガラ スビーズ、金属粉、その他の無機粉末等力 なる充填剤、顔料、着色剤、充填剤、酸 化防止剤、紫外線吸収剤、シランカップリング剤等を、また本発明の目的を逸脱しな V、範囲で各種の添加剤を適宜に使用することもできる。また微粒子を含有して光拡 散性を示す粘着剤層などとしても良い。  [0038] Sarakuko has a tackifier, a plasticizer, glass fiber, glass beads, metal powder, other inorganic powders, a filler, a pigment, a colorant, and the like as necessary. Fillers, antioxidants, ultraviolet absorbers, silane coupling agents, and the like, and various additives can be appropriately used within the range V and without departing from the object of the present invention. Moreover, it is good also as an adhesive layer etc. which contain microparticles | fine-particles and show light diffusibility.
[0039] 本発明の帯電防止性粘着型光学フィルムに使用される光学フィルム 1としては、液 晶表示装置等の画像表示装置の形成に用いられるものが使用され、その種類は特 に制限されない。たとえば、光学フィルムとしては偏光板があげられる。偏光板は偏 光子の片面または両面には透明保護フィルムを有するものが一般に用いられる。  [0039] As the optical film 1 used for the antistatic pressure-sensitive adhesive optical film of the present invention, those used for forming an image display device such as a liquid crystal display device are used, and the type thereof is not particularly limited. For example, the optical film includes a polarizing plate. As the polarizing plate, one having a transparent protective film on one side or both sides of the polarizer is generally used.
[0040] 偏光子は、特に限定されず、各種のものを使用できる。偏光子としては、たとえば、 ポリビュルアルコール系フィルム、部分ホルマール化ポリビュルアルコール系フィル ム、エチレン ·酢酸ビュル共重合体系部分ケンィ匕フィルム等の親水性高分子フィルム に、ヨウ素や二色性染料の二色性物質を吸着させて一軸延伸したもの、ポリビニルァ ルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリェン系配向フィルム 等があげられる。これらの中でも、ポリビュルアルコール系フィルムとヨウ素などの二 色性物質力もなる偏光子が好適である。これらの偏光子の厚さは特に制限されない 力 一般的に 5〜80 μ m程度である。  [0040] The polarizer is not particularly limited, and various types can be used. Examples of the polarizer include hydrophilic polymer films such as polybulal alcohol film, partially formalized polybulal alcohol film, and ethylene / acetic acid copolymer partial ken film, and iodine and dichroic dyes. Examples include uniaxially stretched films by adsorbing dichroic substances, and polyvinyl-based oriented films such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride. Among these, a polybulol alcohol film and a polarizer having dichroic substance power such as iodine are preferable. The thickness of these polarizers is not particularly limited. Generally, the thickness is about 5 to 80 μm.
[0041] ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば 、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の 3〜 7倍に延伸することで作成することができる。必要に応じてホウ酸や硫酸亜鉛、塩ィ匕 亜鉛等を含んでいても良いヨウ化カリウムなどの水溶液に浸漬することもできる。さら に必要に応じて染色前にポリビニルアルコール系フィルムを水に浸漬して水洗しても よ 、。ポリビュルアルコール系フィルムを水洗することでポリビュルアルコール系フィ ルム表面の汚れやブロッキング防止剤を洗浄することができるほ力に、ポリビニルァ ルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もあ る。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、ま た延伸して力 ヨウ素で染色しても良い。ホウ酸やヨウ化カリウムなどの水溶液や水浴 中でも延伸することができる。 A polarizer obtained by uniaxially stretching a polyvinyl alcohol film dyed with iodine is, for example, It can be prepared by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it 3 to 7 times the original length. If necessary, it can also be immersed in an aqueous solution of potassium iodide or the like which may contain boric acid, zinc sulfate, zinc chloride and the like. Furthermore, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. By washing the polybulal alcohol-based film with water, it is possible to clean the surface of the polybulal alcohol-based film and the anti-blocking agent, and by swelling the polyvinyl alcohol-based film, unevenness such as uneven dyeing can be achieved. There is also an effect to prevent. The stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be stretched and dyed with strong iodine. The film can be stretched even in an aqueous solution of boric acid or potassium iodide or in a water bath.
[0042] 前記偏光子の片面または両面に設けられる透明保護フィルムを形成する材料とし ては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好 ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエス テノレ系ポリマー、ジァセチノレセノレロースやトリァセチノレセノレロース等のセノレロース系 ポリマー、ポリメチルメタタリレート等のアクリル系ポリマー、ポリスチレンやアタリ口-トリ ル 'スチレン共重合体 (AS榭脂)等のスチレン系ポリマー、ポリカーボネート系ポリマ 一などがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネ ン構造を有するポリオレフイン、エチレン ·プロピレン共重合体の如きポリオレフイン系 ポリマー、塩ィ匕ビュル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、 イミド系ポリマー、スノレホン系ポリマー、ポリエーテノレスノレホン系ポリマー、ポリエーテ ノレエーテノレケトン系ポリマー、ポリフエ二レンスルフイド系ポリマー、ビニルアルコール 系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、ァリレート系ポ リマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブ レンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。透明 保護フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン 系等の熱硬化型、紫外線硬化型の樹脂の硬化層として形成することもできる。  [0042] As a material for forming a transparent protective film provided on one or both sides of the polarizer, a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy, and the like is preferable. . For example, polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorelose-based polymers such as dicetinoresenorelose and triacetinoloselenolose, acrylic polymers such as polymethylmethacrylate, polystyrene and Examples include styrene polymers such as styrene copolymers (AS resin) and polycarbonate polymers. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, salt bubul polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, Snorephone-based polymer, Polyetherenorenolephone-based polymer, Polyethylene-noreno-ketone-based polymer, Polyphenylene sulfide-based polymer, Vinyl alcohol-based polymer, Vinylidene chloride-based polymer, Vinyl butyral-based polymer, Arylate-based polymer, Polyoxymethylene-based Examples of the polymer that forms the transparent protective film include polymers, epoxy polymers, and blends of the above polymers. The transparent protective film can also be formed as a cured layer of thermosetting or ultraviolet curable resin such as acrylic, urethane, acrylurethane, epoxy, and silicone.
[0043] また、特開 2001— 343529号公報(WO01Z37007)に記載のポリマーフィルム、 たとえば、(A)側鎖に置換および Zまたは非置^ミド基を有する熱可塑性榭脂と、 (B)側鎖に置換および Zまたは非置換フ -ルならびに-トリル基を有する熱可塑 性榭脂を含有する榭脂組成物があげられる。具体例としてはイソブチレンと N—メチ ルマレイミドからなる交互共重合体とアクリロニトリル 'スチレン共重合体とを含有する 榭脂組成物のフィルムがあげられる。フィルムは榭脂組成物の混合押出品など力ゝらな るフィルムを用いることができる。 [0043] Further, a polymer film described in JP-A-2001-343529 (WO01Z37007), for example, (A) a thermoplastic resin having a substituted side chain and a Z or non-midamide group; (B) A resin composition containing a thermoplastic resin having substituted and Z or unsubstituted fullyl and -tolyl groups in the side chain. A specific example is a film of a resin composition containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer. As the film, a strong film such as a mixed extruded product of the resin composition can be used.
[0044] 保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、 薄膜性などの点より 1〜500 m程度である。特に、 5〜200 mが好ましい。  [0044] The thickness of the protective film can be appropriately determined, but is generally about 1 to 500 m from the viewpoints of workability such as strength and handleability, and thin film properties. In particular, 5 to 200 m is preferable.
[0045] また、保護フィルムは、できるだけ色付きがな!、ことが好まし!/、。従って、 Rth= (nx  [0045] The protective film should be as colored as possible! I like it! /. Therefore, Rth = (nx
-nz) *d (ただし、 nxはフィルム平面内の遅相軸方向の屈折率、 nzはフィルム厚方 向の屈折率、 dはフィルム厚みである)で表されるフィルム厚み方向の位相差が 90 nm〜 + 75nmである保護フィルムが好ましく用いられる。力かる厚み方向の位相差 値 (Rth)が 90nm〜 + 75nmのものを使用することにより、保護フィルムに起因す る偏光板の着色 (光学的な着色)はほぼ解消することができる。厚み方向位相差 (Rt h)は、さらに好ましくは一 80nm〜 + 60nm、特に一 70nm〜+45nmが好ましい。  -nz) * d (where nx is the refractive index in the slow axis direction in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness). A protective film having a thickness of 90 nm to +75 nm is preferably used. By using a film having a thickness direction retardation value (Rth) of 90 nm to +75 nm, the coloring (optical coloring) of the polarizing plate caused by the protective film can be almost eliminated. The thickness direction retardation (Rth) is more preferably from 80 nm to +60 nm, and particularly preferably from 70 nm to +45 nm.
[0046] 保護フィルムとしては、偏光特性や耐久性などの点より、トリァセチルセルロース等 のセルロース系ポリマーが好まし 、。特にトリァセチルセルロースフィルムが好適であ る。なお、偏光子の両側に保護フィルムを設ける場合、その表裏で同じポリマー材料 力もなる保護フィルムを用いても良ぐ異なるポリマー材料等力もなる保護フィルムを 用いても良い。前記偏光子と保護フィルムとは通常、水系接着剤等を介して密着して いる。水系接着剤としては、イソシァネート系接着剤、ポリビニルアルコール系接着剤 、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリウレタン、水系ポリエステル等を 例示できる。  [0046] As the protective film, a cellulose polymer such as triacetyl cellulose is preferred from the viewpoints of polarization characteristics and durability. A triacetyl cellulose film is particularly preferable. In the case where protective films are provided on both sides of the polarizer, protective films having the same polymer material strength may be used on the front and back sides, or different protective films having the same polymer material strength may be used. The polarizer and the protective film are usually in close contact with each other through an aqueous adhesive or the like. Examples of water-based adhesives include isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based, water-based polyurethane, water-based polyester, and the like.
[0047] 前記透明保護フィルムの偏光子を接着させない面には、ハードコート層や反射防 止処理、ステイツキング防止や、拡散ないしアンチグレアを目的とした処理を施したも のであっても良い。  [0047] The surface of the transparent protective film to which the polarizer is not adhered may be subjected to a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment for diffusion or anti-glare.
[0048] ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例 えばアクリル系、シリコーン系などの適宜な紫外線硬化型榭脂による硬度や滑り特性 等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成するこ とができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるもの であり、従来に準じた反射防止膜などの形成により達成することができる。また、ステ イツキング防止処理は他の部材の隣接層との密着防止を目的に施される。 [0048] The hard coat treatment is performed for the purpose of preventing the surface of the polarizing plate from being scratched. For example, curing with excellent UV hardness curable resin such as acrylic and silicone is excellent in hardness and sliding properties. Form the film by applying a film to the surface of the transparent protective film. You can. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. In addition, the sticking prevention treatment is performed for the purpose of preventing adhesion with an adjacent layer of another member.
[0049] また、アンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式ゃェン ボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透 明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。 前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が 0. 5〜50 μ mのシリカ、アルミナ、チタ二了、ジルコユア、酸化スズ、酸化インジウム、酸 化カドミウム、酸ィ匕アンチモン等力もなる導電性の場合もある無機系微粒子、架橋又 は未架橋のポリマー等力もなる有機系微粒子 (ビーズを含む)などの透明微粒子が 用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹 凸構造を形成する透明榭脂 100重量部に対して一般的に 2〜50重量部程度であり 、 5〜25重量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視覚などを 拡大するための拡散層 (視覚拡大機能など)を兼ねるものであっても良い。  [0049] The anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visual recognition of the light transmitted through the polarizing plate. It can be formed by imparting a fine concavo-convex structure to the surface of the transparent protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles. Examples of the fine particles to be included in the formation of the surface fine concavo-convex structure include silica, alumina, titanium dioxide, zirconium oxide, tin oxide, indium oxide, cadmium oxide, and acid oxide having an average particle diameter of 0.5 to 50 μm. Transparent fine particles such as inorganic fine particles that may have conductivity such as antimony and organic fine particles (including beads) that also have crosslinked or uncrosslinked polymer are used. In the case of forming a surface fine concavo-convex structure, the amount of fine particles used is generally about 2 to 50 parts by weight per 100 parts by weight of the transparent resin forming the surface fine concavo-convex structure, and 5 to 25 parts by weight preferable. The anti-glare layer may also serve as a diffusion layer (such as a visual enlargement function) for diffusing the light transmitted through the polarizing plate to enlarge vision.
[0050] なお、前記反射防止層、ステイツキング防止層、拡散層やアンチグレア層等は、透 明保護フィルムそのものに設けることができるほか、別途光学層として透明保護フィル ムとは別体のものとして設けることもできる。  [0050] The antireflection layer, the anti-sticking layer, the diffusion layer, the antiglare layer, and the like can be provided on the transparent protective film itself, or separately from the transparent protective film as an optical layer. It can also be provided.
[0051] また光学フィルムとしては、例えば反射板や反透過板、位相差板(1Z2や 1Z4等 の波長板を含む)、視覚補償フィルム、輝度向上フィルムなどの液晶表示装置等の 形成に用いられることのある光学層となるものがあげられる。これらは単独で光学フィ ルムとして用いることができる他、前記偏光板に、実用に際して積層して、 1層または 2層以上用いることができる。  [0051] The optical film is used for forming a liquid crystal display device such as a reflection plate, an anti-transmission plate, a retardation plate (including wavelength plates such as 1Z2 and 1Z4), a visual compensation film, and a brightness enhancement film. And an optical layer that has a problem. These can be used alone as an optical film, or can be laminated on the polarizing plate for practical use and used in one or more layers.
[0052] 特に、偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板 または半透過型偏光板、偏光板に更に位相差板が積層されてなる楕円偏光板また は円偏光板、偏光板に更に視覚補償フィルムが積層されてなる広視野角偏光板、あ るいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。  [0052] In particular, a reflective polarizing plate or semi-transmissive polarizing plate in which a polarizing plate is further laminated with a reflecting plate or a semi-transmissive reflecting plate, and an elliptical polarizing plate or circular plate in which a retardation plate is further laminated on a polarizing plate. A polarizing plate, a wide viewing angle polarizing plate in which a visual compensation film is further laminated on the polarizing plate, or a polarizing plate in which a brightness enhancement film is further laminated on the polarizing plate are preferable.
[0053] 反射型偏光板は、偏光板に反射層を設けたもので、視認側 (表示側)からの入射光 を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バッ クライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利 点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の 片面に金属等力 なる反射層を付設する方式などの適宜な方式にて行うことができ る。 [0053] A reflective polarizing plate is a polarizing plate provided with a reflective layer, and incident light from the viewing side (display side). This is for forming a liquid crystal display device of the type that reflects the light, and has the advantage that it is easy to reduce the thickness of the liquid crystal display device by omitting the incorporation of a light source such as a backlight. The reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer having a metal isotropic force is attached to one surface of the polarizing plate via a transparent protective layer or the like, if necessary.
[0054] 反射型偏光板の具体例としては、必要に応じマット処理した透明保護フィルムの片 面に、アルミニウム等の反射性金属からなる箔ゃ蒸着膜を付設して反射層を形成し たものなどがあげられる。また、前記透明保護フィルムに微粒子を含有させて表面微 細凹凸構造とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前 記した微細凹凸構造の反射層は、入射光を乱反射により拡散させて指向性やギラギ ラした見栄えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有 の保護フィルムは、入射光及びその反射光がそれを透過する際に拡散されて明暗ム ラをより抑制しうる利点なども有している。透明保護フィルムの表面微細凹凸構造を 反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレー ティング方式、スパッタリング方式ゃメツキ方式などの適宜な方式で金属を透明保護 層の表面に直接付設する方法などにより行うことができる。  [0054] As a specific example of the reflective polarizing plate, a reflective layer is formed by attaching a foil vapor-deposited film made of a reflective metal such as aluminum on one side of a transparent protective film matted as necessary. Etc. In addition, the transparent protective film may include fine particles having a surface fine uneven structure, and a reflective layer having a fine uneven structure on the surface. The reflective layer having the fine concavo-convex structure described above has the advantage that incident light is diffused by irregular reflection to prevent directivity and glaring appearance, and to suppress unevenness in brightness and darkness. In addition, the protective film containing fine particles has an advantage that incident light and its reflected light are diffused when passing through it and light and darkness can be further suppressed. The reflective layer having a fine concavo-convex structure reflecting the surface fine concavo-convex structure of the transparent protective film can be formed by, for example, applying the metal to the surface of the transparent protective layer by an appropriate method such as a vacuum deposition method, an ion plating method, a sputtering method, or a plating method It can be performed by a method of attaching directly to the.
[0055] 反射板は前記の偏光板の透明保護フィルムに直接付与する方式に代えて、その透 明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いる こともできる。なお反射層は、通常、金属力 なるので、その反射面が透明保護フィル ムゃ偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひ いては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ま しい。  [0055] Instead of the method of directly applying the reflecting plate to the transparent protective film of the polarizing plate, it is also possible to use it as a reflecting sheet in which a reflecting layer is provided on an appropriate film according to the transparent film. In addition, since the reflective layer usually has a metallic force, the usage state in which the reflective surface is covered with a transparent protective film or a polarizing plate is used to prevent the reflectance from being lowered by oxidation, and thus the long-term initial reflectance. It is more preferable in terms of sustainability and avoiding the separate provision of a protective layer.
[0056] なお、半透過型偏光板は、上記にお!、て反射層で光を反射し、かつ透過するハー フミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は [0056] The transflective polarizing plate can be obtained by using a transflective reflective layer such as a half mirror that reflects and transmits light by the reflective layer. Transflective polarizing plate
、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使 用する場合には、視認側 (表示側)からの入射光を反射させて画像を表示し、比較的 喑 、雰囲気にぉ 、ては、半透過型偏光板のバックサイドに内蔵されて 、るバックライ ト等の内蔵電源を使用して画像を表示するタイプの液晶表示装置などを形成できる 。すなわち、半透過型偏光板は、明るい雰囲気下では、ノ ックライト等の光源使用の エネルギーを節約でき、比較的喑 、雰囲気下にお ヽても内蔵電源を用いて使用でき るタイプの液晶表示装置などの形成に有用である。 Normally, it is provided on the back side of the liquid crystal cell, and when using a liquid crystal display device etc. in a relatively bright atmosphere, it reflects the incident light from the viewing side (display side) and displays an image. Under the atmosphere, it is built in the back side of the transflective polarizing plate and can be used to form liquid crystal display devices that display images using a built-in power source such as a backlight. . In other words, the transflective polarizing plate can save energy when using a light source such as a knocklight in a bright atmosphere, and can be used with a built-in power supply even in a relatively low atmosphere. It is useful for the formation of
[0057] 偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説 明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直 線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが 用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相 差板としては、いわゆる 1Z4波長板(λ Ζ4板とも言う)が用いられる。 1Z2波長板( λ Ζ2板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。  [0057] An elliptically polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate will be described. A phase difference plate or the like is used when changing linearly polarized light into elliptically or circularly polarized light, changing elliptically or circularly polarized light into linearly polarized light, or changing the polarization direction of linearly polarized light. In particular, a so-called 1Z4 wavelength plate (also called a λλ4 plate) is used as a phase difference plate that changes linearly polarized light into circularly polarized light or changes circularly polarized light into linearly polarized light. A 1Z2 wavelength plate (also referred to as λ 2 plate) is usually used to change the polarization direction of linearly polarized light.
[0058] 楕円偏光板はスーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈 折により生じた着色 (青又は黄)を補償 (防止)して、前記着色のな!、白黒表示する場 合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装 置の画面を斜め方向から見た際に生じる着色も補償 (防止)することができて好まし い。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色 調を整える場合などに有効に用いられ、また、反射防止の機能も有する。  [0058] The elliptically polarizing plate compensates (prevents) coloring (blue or yellow) caused by double bending of the liquid crystal layer of the super twist nematic (STN) type liquid crystal display device, and displays the above-mentioned coloring! It is used effectively in such cases. Further, the one having a controlled three-dimensional refractive index is preferable because it can compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction. The circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which an image is displayed in color, and also has an antireflection function.
[0059] 位相差板としては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィ ルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したも のなどがあげられる。位相差板の厚さも特に制限されないが、 20〜150 /ζ πι程度が 一般的である。  Examples of the retardation plate include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, a liquid crystal polymer alignment film, and a liquid crystal polymer alignment layer supported by the film. It is done. The thickness of the retardation plate is not particularly limited, but is generally about 20 to 150 / ζ πι.
[0060] 高分子素材としては、たとえば、ポリビュルアルコール、ポリビュルブチラール、ポリ メチルビ二ノレエーテル、ポリヒドロキシェチノレアタリレート、ヒドロキシェチノレセルロース 、ヒドロキシプロピルセルロース、メチノレセノレロース、ポリカーボネート、ポリアリレート、 ポリスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテノレス ルホン、ポリフエ-レンスルファイド、ポリフエ-レンオキサイド、ポリアリルスルホン、ポ リアミド、ポリイミド、ポリオレフイン、ポリ塩化ビュル、セルロース系重合体、ノルボルネ ン系榭脂、またはこれらの二元系、三元系各種共重合体、グラフト共重合体、プレン ド物などがあげられる。これらの高分子素材は延伸等により配向物 (延伸フィルム)と なる。 [0061] 液晶ポリマーとしては、たとえば、液晶配向性を付与する共役性の直線状原子団( メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種のものなどを あげられる。主鎖型の液晶ポリマーの具体例としては、屈曲性を付与するスぺーサー 部でメソゲン基を結合した構造の、例えばネマチック配向性のポリエステル系液晶性 ポリマー、ディスコティックポリマーゃコレステリックポリマーなどがあげられる。側鎖型 の液晶ポリマーの具体例としては、ポリシロキサン、ポリアタリレート、ポリメタタリレート 又はポリマロネートを主鎖骨格とし、側鎖として共役性の原子団からなるスぺーサー 部を介してネマチック配向付与性のパラ置換環状ィ匕合物単位力 なるメソゲン部を 有するものなどがあげられる。これらの液晶ポリマーは、たとえば、ガラス板上に形成 したポリイミドゃポリビュルアルコール等の薄膜の表面をラビング処理したもの、酸ィ匕 ケィ素を斜方蒸着したものなどの配向処理面上に液晶性ポリマーの溶液を展開して 熱処理することにより行われる。 [0060] Examples of the polymer material include polybutyl alcohol, polybutyral, polymethyl vinylenoether, polyhydroxy ethino rare talylate, hydroxy ethinore cellulose, hydroxypropyl cellulose, methenorescenellose, polycarbonate, poly Allylate, Polysulfone, Polyethylene terephthalate, Polyethylene naphthalate, Polyetherolsulfone, Polyphenylene sulfide, Polyphenylene oxide, Polyallylsulfone, Polyamide, Polyimide, Polyolefin, Polychlorinated butyl, Cellulose polymer, Norbornene resin Or various types of these binary and ternary copolymers, graft copolymers, and blends. These polymer materials become an oriented product (stretched film) by stretching or the like. Examples of the liquid crystal polymer include various main chain types and side chain types in which a conjugated linear atomic group (mesogen) imparting liquid crystal alignment is introduced into the main chain or side chain of the polymer. Can be given. Specific examples of the main chain type liquid crystal polymer include a nematic orientation polyester liquid crystal polymer, a discotic polymer and a cholesteric polymer having a structure in which a mesogenic group is bonded at a spacer portion that imparts flexibility. It is done. Specific examples of side-chain liquid crystal polymers include polysiloxane, polyacrylate, polymetatalylate, or polymalonate as the main chain skeleton, and nematic alignment imparted via a spacer unit consisting of conjugated atomic groups as side chains. And those having a mesogenic moiety that is a unit force of a para-substituted cyclic compound. These liquid crystal polymers are, for example, liquid crystalline on the alignment surface such as those obtained by rubbing the surface of a thin film such as polyimide polybulal alcohol formed on a glass plate, or those obtained by obliquely vapor deposition of oxygen. This is done by developing and heat-treating the polymer solution.
[0062] 位相差板は、例えば各種波長板や液晶層の複屈折による着色や視覚等の補償を 目的としたものなどの使用目的に応じた適宜な位相差を有するものであって良ぐ 2 種以上の位相差板を積層して位相差等の光学特性を制御したものなどであっても良 い。  [0062] The retardation plate may have an appropriate retardation according to the purpose of use, such as for the purpose of color compensation by birefringence of various wavelength plates or liquid crystal layers, compensation of vision, etc. 2 It may be a laminate in which more than one kind of retardation plate is laminated to control optical characteristics such as retardation.
[0063] また、上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位 相差板を適宜な組合せで積層したものである。カゝかる楕円偏光板等は、(反射型)偏 光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次別個 に積層することによつても形成しうる力 前記の如く予め楕円偏光板等の光学フィル ムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの製造 効率を向上させうる利点がある。  [0063] Further, the elliptically polarizing plate and the reflective elliptical polarizing plate described above are obtained by laminating a polarizing plate or a reflective polarizing plate and a retardation plate in an appropriate combination. The elliptical polarizing plate or the like that can be formed can be formed by sequentially laminating them separately in the manufacturing process of the liquid crystal display device so as to be a combination of a (reflection type) polarizing plate and a retardation plate. As described above, an optical film such as an elliptically polarizing plate is advantageous in that it has excellent quality stability and lamination workability, and can improve the manufacturing efficiency of a liquid crystal display device.
[0064] 視覚補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向 力 見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフィルム である。このような視覚補償位相差板としては、例えば位相差板、液晶ポリマー等の 配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなど力もなる。 通常の位相差板は、その面方向に一軸に延伸された複屈折を有するポリマーフィル ムが用いられるのに対し、視覚補償フィルムとして用いられる位相差板には、面方向 に二軸に延伸された複屈折を有するポリマーフィルムと力、面方向に一軸に延伸され 厚さ方向にも延伸された厚さ方向の屈折率を制御した複屈折を有するポリマーや傾 斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィルムとし ては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の 作用下にポリマーフィルムを延伸処理又は z及び収縮処理したものや、液晶ポリマ 一を斜め配向させたものなどがあげられる。位相差板の素材原料ポリマーは、先の位 相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差に基づく 視認角の変化による着色等の防止や良視認の視野角の拡大などを目的とした適宜 なものを用いうる。 [0064] The visual compensation film is a film for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed in a slightly oblique direction rather than perpendicular to the screen. As such a visual compensation phase difference plate, for example, a phase difference plate, an alignment film such as a liquid crystal polymer, or a support in which an alignment layer such as a liquid crystal polymer is supported on a transparent substrate can be used. A normal retardation film uses a polymer film having birefringence uniaxially stretched in the plane direction, whereas a retardation film used as a visual compensation film has a plane direction. A birefringent polymer film with birefringence and force, and a birefringent polymer or obliquely oriented film with a controlled refractive index in the thickness direction, uniaxially stretched in the plane direction and stretched in the thickness direction. Such a bi-directional stretched film is used. Examples of the tilted alignment film include a film obtained by bonding a heat-shrinkable film to a polymer film and stretching or z-shrinking the polymer film under the action of the contraction force by heating, or a film obtained by obliquely aligning a liquid crystal polymer. Etc. The raw material polymer for the phase difference plate is the same as the polymer described in the previous phase difference plate, preventing coloration due to a change in the viewing angle based on the phase difference of the liquid crystal cell and expanding the viewing angle for good viewing. Anything suitable for the purpose can be used.
[0065] また、良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にデ イスコチック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセル ロースフィルムにて支持した光学補償位相差板が好ましく用いうる。  [0065] In addition, a liquid crystal polymer alignment layer, particularly an optically anisotropic layer composed of a discotic liquid crystal polymer gradient alignment layer, is supported by a triacetyl cellulose film in order to achieve a wide viewing angle with good visibility. The optically compensated retardation plate can be preferably used.
[0066] 偏光板と輝度向上フィルムを貼り合せた偏光板は、通常液晶セルの裏側サイド〖こ 設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏 側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向 の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光 板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の 透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝 度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転 させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光とし て透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収さ せにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることに より輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せずに、バッ クライトなどで液晶セルの裏側カゝら偏光子を通して光を入射した場合には、偏光子の 偏光軸に一致していない偏光方向を有する光は、ほとんど偏光子に吸収されてしま い、偏光子を透過してこない。すなわち、用いた偏光子の特性よつても異なる力 お よそ 50%の光が偏光子に吸収されてしまい、その分、液晶画像表示等に利用しうる 光量が減少し、画像が暗くなる。輝度向上フィルムは、偏光子に吸収されるような偏 光方向を有する光を偏光子に入射させずに輝度向上フィルムで一反反射させ、更に その後ろ側に設けられた反射層等を介して反転させて輝度向上フィルムに再入射さ せることを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過 し得るような偏光方向になった偏光のみを、輝度向上フィルムは透過させて偏光子に 供給するので、バックライトなどの光を効率的に液晶表示装置の画像の表示に使用 でき、画面を明るくすることができる。 [0066] A polarizing plate obtained by bonding a polarizing plate and a brightness enhancement film is usually used by being provided on the back side of the liquid crystal cell. The brightness enhancement film reflects the linearly polarized light with a predetermined polarization axis or circularly polarized light in a predetermined direction when natural light is incident due to a backlight of a liquid crystal display device or the like, or reflection from the back side, and transmits other light. Thus, a polarizing plate in which a brightness enhancement film is laminated with a polarizing plate allows light from a light source such as a backlight to be incident to obtain transmitted light in a predetermined polarization state, and reflects light without transmitting the light other than the predetermined polarization state. Is done. The light reflected on the surface of the brightness enhancement film is further inverted through a reflective layer provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state. In addition to increasing the amount of light transmitted through the brightness enhancement film, it is possible to improve the brightness by supplying polarized light that is not easily absorbed by the polarizer and increasing the amount of light that can be used for liquid crystal display image display, etc. is there. That is, when light is incident through the polarizer behind the liquid crystal cell without using a brightness enhancement film, the light having a polarization direction that does not coincide with the polarization axis of the polarizer is It is almost absorbed by the polarizer and does not pass through the polarizer. That is, approximately 50% of the light that is different depending on the characteristics of the polarizer used is absorbed by the polarizer, and the amount of light that can be used for liquid crystal image display is reduced, and the image becomes dark. The brightness enhancement film has a polarization that is absorbed by the polarizer. It is repeated that the light having the light direction is reflected once by the brightness enhancement film without being incident on the polarizer, and is further reversed through the reflective layer provided on the back side and re-incident on the brightness enhancement film. The brightness enhancement film transmits only the polarized light whose polarization direction is reflected and reversed between the two so that it can pass through the polarizer, and is supplied to the polarizer. Light can be efficiently used to display images on a liquid crystal display device, and the screen can be brightened.
[0067] 輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フ イルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散 板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。 すなわち、自然光状態の光が反射層等に向力ぃ、反射層等を介して反射し、再び拡 散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上 フィルムと上記反射層等の間に、偏光を元の自然光にもどす拡散板を設けることによ り表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一 で明るい画面を提供することができる。力かる拡散板を設けることにより、初回の入射 光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明る V、表示画面を提供することができたものと考えられる。  [0067] A diffusion plate may be provided between the brightness enhancement film and the reflective layer. The polarized light reflected by the brightness enhancement film is directed to the reflection layer and the like, but the installed diffuser diffuses the light passing therethrough at the same time and simultaneously cancels the polarization state to become a non-polarized state. That is, the light in the natural light state is directed to the reflection layer and the like, is reflected through the reflection layer and the like, passes through the diffusion plate again, and reenters the brightness enhancement film. In this way, by providing a diffuser plate that returns polarized light to the original natural light between the brightness enhancement film and the reflective layer, the brightness of the display screen is maintained, and at the same time, uneven brightness of the display screen is reduced. Can provide a uniform and bright screen. By providing a powerful diffuser, the number of repetitions of the initial incident light increased moderately, and combined with the diffusion function of the diffuser, it was possible to provide a uniform brightness V and display screen. It is done.
[0068] 前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相 違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光 は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向 液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方 の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。  [0068] As the brightness enhancement film, for example, a dielectric multilayer thin film or a multilayer laminate of thin film films having different refractive index anisotropies transmits linearly polarized light having a predetermined polarization axis and transmits other light. Reflecting one of the left-handed or right-handed circularly polarized light and transmitting the other light, such as those that show reflective properties, such as oriented films of cholesteric liquid crystal polymer and those oriented liquid crystal layers supported on a film substrate Appropriate things such as those showing the characteristics to be used can be used.
[0069] 従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムで は、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板に よる吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶 層の如く円偏光を透過するタイプの輝度向上フィルムでは、そのまま偏光子に入射さ せることもできるが、吸収ロスを抑制する点よりその円偏光を、位相差板を介し直線偏 光化して偏光板に入射させることが好ましい。なお、その位相差板として 1Z4波長板 を用いることにより、円偏光を直線偏光に変換することができる。 [0070] 可視光域等の広い波長で 1Z4波長板として機能する位相差板は、例えば波長 55 Onmの淡色光に対して 1Z4波長板として機能する位相差板と他の位相差特性を示 す位相差層、例えば 1Z2波長板として機能する位相差層とを重畳する方式などによ り得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、 1層または 2層以上の位相差層力 なるものであってよい。 [0069] Therefore, in the type of brightness enhancement film that transmits linearly polarized light having the predetermined polarization axis described above, the transmitted light is directly incident on the polarizing plate with the polarization axis aligned, thereby suppressing absorption loss due to the polarizing plate. However, it can be transmitted efficiently. On the other hand, in a brightness enhancement film of a type that transmits circularly polarized light such as a cholesteric liquid crystal layer, it can be directly incident on a polarizer. However, the circularly polarized light is linearly polarized through a retardation plate in order to suppress absorption loss. It is preferable to make it light and make it enter into a polarizing plate. Note that circularly polarized light can be converted to linearly polarized light by using a 1Z4 wavelength plate as the retardation plate. [0070] A retardation plate that functions as a 1Z4 wavelength plate at a wide wavelength such as in the visible light region exhibits, for example, a retardation plate that functions as a 1Z4 wavelength plate for light-colored light having a wavelength of 55 Onm and other retardation characteristics. It can be obtained by a method of superposing a retardation layer, for example, a retardation layer functioning as a 1Z2 wavelength plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may have a retardation layer force of one layer or two or more layers.
[0071] なお、コレステリック液晶層についても、反射波長が相違するものの組合せにして 2 層又は 3層以上重畳した配置構造とすることにより、可視光城等の広い波長範囲で 円偏光を反射するものを得ることができ、それに基づ 、て広 、波長範囲の透過円偏 光を得ることができる。  [0071] Note that the cholesteric liquid crystal layer also reflects circularly polarized light in a wide wavelength range such as a visible light castle by combining two or more layers with different reflection wavelengths in an overlapping structure. Based on this, transmission circular polarization in a wide and wavelength range can be obtained.
[0072] また、偏光板は、上記の偏光分離型偏光板の如ぐ偏光板と 2層又は 3層以上の光 学層とを積層したものからなっていても良い。従って、上記の反射型偏光板や半透過 型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板な どであっても良い。  [0072] The polarizing plate may be formed by laminating a polarizing plate such as the above-described polarization-separating polarizing plate and two or more optical layers. Therefore, a reflective elliptical polarizing plate or a semi-transmissive elliptical polarizing plate in which the above-mentioned reflective polarizing plate or semi-transmissive polarizing plate and a retardation plate are combined may be used.
[0073] 偏光板に前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で 順次別個に積層する方式にても形成することができる力 予め積層して光学フィルム としたものは、品質の安定性や組立作業等に優れて!/、て液晶表示装置などの製造 工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。前 記の偏光板と他の光学層の接着に際し、それらの光学軸は目的とする位相差特性な どにおうじて適宜な配置角度とすることができる。  [0073] An optical film in which the optical layer is laminated on a polarizing plate can be formed even in a method of laminating separately in the manufacturing process of a liquid crystal display device or the like. It has excellent quality stability and assembly work! /, And has the advantage of improving the manufacturing process of liquid crystal display devices. For the lamination, an appropriate adhesive means such as an adhesive layer can be used. When the polarizing plate and the other optical layer are bonded, their optical axes can be arranged at an appropriate angle depending on the target retardation characteristics.
[0074] 次に帯電防止性粘着型光学フィルムの製造方法につ!、て説明する。 Next, a method for producing an antistatic pressure-sensitive adhesive optical film will be described.
[0075] 前述した光学フィルム 1上に、カーボンナノ材料、バインダー成分、及び分散剤など を含有する分散液を塗布し、乾燥して帯電防止層 2を形成する。分散液の固形分濃 度は、 0. 05〜50重量%程度に調整するのが好ましい。塗布方法としては、例えば、 リバースコーティング、グラビアコーティング等のロールコーティング法、スピンコーテ イング法、スクリーンコーティング法、フアウンテンコーティング法、デイツビング法、ス プレー法などが挙げられる。 On the optical film 1 described above, a dispersion liquid containing a carbon nanomaterial, a binder component, a dispersant, and the like is applied and dried to form the antistatic layer 2. The solid content concentration of the dispersion is preferably adjusted to about 0.05 to 50% by weight. Examples of the coating method include a roll coating method such as reverse coating and gravure coating, a spin coating method, a screen coating method, a fountain coating method, a dating method, and a spray method.
[0076] 帯電防止層の厚みは 5〜: LOOOnmであることが好ましい。帯電防止層の厚みは、 光学特性低下の点力も通常 5000nm以下とされるが、帯電防止層の厚みが厚くなる と、帯電防止層の強度不足から帯電防止層内で破壊が起こりやすぐ十分な密着性 が得られない場合がある。帯電防止剤の厚みは、 500nm以下、さらには 300nm以 下、さらには 200nm以下であるのが好ましい。密着性の確保、剥離帯電の抑制から 、 5nm以上、さらには lOnm以上とするのが好ましい。一方、剥離帯電効果は帯電防 止層の厚みが厚い方が好ましいが、 200nmを超えてもそれ以下か同等である。かか る点より、 5〜500nm、さらには 10〜300nm、さらには 10〜200nmであるのが好ま しい。 [0076] The thickness of the antistatic layer is preferably 5 to: LOOOnm. The thickness of the antistatic layer is usually 5000 nm or less, and the point of reduction in optical properties is usually less, but the thickness of the antistatic layer increases. If the antistatic layer is not strong enough, the antistatic layer may break down and may not have sufficient adhesion. The thickness of the antistatic agent is preferably 500 nm or less, more preferably 300 nm or less, and even more preferably 200 nm or less. In order to ensure adhesion and suppress peeling charge, it is preferably 5 nm or more, and more preferably lOnm or more. On the other hand, the peeling charge effect is preferably that the antistatic layer is thicker, but it is less than or equal to 200 nm. From this point, it is preferable that the thickness is 5 to 500 nm, further 10 to 300 nm, and further 10 to 200 nm.
[0077] 帯電防止層 2の形成にあたり、光学フィルム 1には活性ィ匕処理を施すことができる。  [0077] In forming the antistatic layer 2, the optical film 1 can be subjected to an activation treatment.
活性ィ匕処理は各種方法を採用でき、たとえばコロナ処理、低圧 UV処理、プラズマ処 理等を採用できる。活性化処理は、帯電防止剤として水溶性導電ポリマーを含有す る水溶液を用いる場合に有効であり、当該水溶液を塗布する際のハジキを抑えること ができる。活性化処理は、光学フィルム 1が、特にポリオレフイン系榭脂、ノルボルネ ン系榭脂の場合に有効である。  Various methods can be employed for the active soot treatment, such as corona treatment, low-pressure UV treatment, plasma treatment, and the like. The activation treatment is effective when an aqueous solution containing a water-soluble conductive polymer is used as an antistatic agent, and repelling when applying the aqueous solution can be suppressed. The activation treatment is effective particularly when the optical film 1 is a polyolefin resin or a norbornene resin.
[0078] 粘着剤層 3の形成は、前記帯電防止層 2上に積層することにより行う。形成方法とし ては、特に制限されず、帯電防止層に粘着剤溶液を塗布し乾燥する方法、粘着剤層 を設けた離型シートにより転写する方法等があげられる。粘着剤層の厚さは特に限 定されないが、 10〜40 μ m程度とするのが好ましい。  The pressure-sensitive adhesive layer 3 is formed by laminating on the antistatic layer 2. The forming method is not particularly limited, and examples thereof include a method of applying a pressure-sensitive adhesive solution to the antistatic layer and drying, a method of transferring with a release sheet provided with a pressure-sensitive adhesive layer, and the like. The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably about 10 to 40 μm.
[0079] 離型フィルムの構成材料としては、紙、ポリエチレン、ポリプロピレン、ポリエチレンテ レフタレート等の合成樹脂フィルム、ゴムシート、紙、布、不織布、ネット、発泡シート や金属箔、それらのラミネート体等の適宜な薄葉体等があげられる。離型フィルムの 表面には、粘着剤層 3からの剥離性を高めるため、必要に応じてシリコーン処理、長 鎖アルキル処理、フッ素処理などの低接着性の剥離処理が施されて!/ヽても良!、。  [0079] Constituent materials of the release film include paper, polyethylene, polypropylene, synthetic resin films such as polyethylene terephthalate, rubber sheets, paper, cloth, non-woven fabrics, nets, foam sheets, metal foils, laminates thereof, and the like. Appropriate thin leaves and the like can be mentioned. The surface of the release film is subjected to low-adhesive release treatments such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary to improve the peelability from the pressure-sensitive adhesive layer 3! Also good!
[0080] なお、本発明の帯電防止性粘着型光学フィルムの光学フィルムや粘着剤層などの 各層には、例えばサリチル酸エステル系化合物やべンゾフエノール系化合物、ベン ゾトリアゾール系化合物ゃシァノアクリレート系化合物、ニッケル錯塩系化合物等の 紫外線吸収剤で処理する方式などの方式により紫外線吸収能をもたせたものなどで あってもよい。 [0080] It should be noted that each layer such as an optical film or an adhesive layer of the antistatic adhesive optical film of the present invention includes, for example, a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, and a cyanoacrylate compound. Further, it may be one having an ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorber such as a nickel complex compound.
[0081] 帯電防止層 2と粘着剤層 3との密着力は、剥離角度 180° 及び剥離速度 300mm Zminにて 10NZ25mm以上であることが好ましぐさらに好ましくは 15NZ25mm 以上である。密着力が 10NZ25mm未満の場合には、光学フィルムを液晶パネルか ら剥離する際に糊残りが生じたり、加熱'加湿熱環境下において剥がれが生じる恐れ がある。 [0081] The adhesion between the antistatic layer 2 and the pressure-sensitive adhesive layer 3 is as follows. The peeling angle is 180 ° and the peeling speed is 300 mm. It is preferable that the Zmin is 10 NZ25 mm or more, more preferably 15 NZ25 mm or more. If the adhesive strength is less than 10NZ25mm, adhesive residue may be generated when the optical film is peeled off from the liquid crystal panel, or peeling may occur in a heated and humidified environment.
[0082] 本発明の帯電防止性粘着型光学フィルムは液晶表示装置等の各種画像表示装置 の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行 いうる。すなわち液晶表示装置は一般に、液晶セルと帯電防止性粘着型光学フィル ム、及び必要に応じての照明システム等の構成部品を適宜に組み立てて駆動回路 を組み込むことなどにより形成される力 本発明においては本発明による光学フィル ムを用いる点を除いて特に限定は無ぐ従来に準じうる。液晶セルについても、例え ば TN型や STN型、 π型などの任意なタイプなどの任意なタイプのものを用いうる。  [0082] The antistatic pressure-sensitive adhesive optical film of the present invention can be preferably used for forming various image display devices such as liquid crystal display devices. The liquid crystal display device can be formed according to the conventional method. In other words, a liquid crystal display device generally has a force formed by appropriately assembling components such as a liquid crystal cell, an antistatic adhesive optical film, and an illumination system as necessary, and incorporating a drive circuit. The method can be based on the conventional method without any limitation except that the optical film according to the present invention is used. As the liquid crystal cell, for example, any type such as a TN type, STN type, or π type can be used.
[0083] 液晶セルの片側又は両側に帯電防止性粘着型光学フィルムを配置した液晶表示 装置や、照明システムにバックライトある 、は反射板を用いたものなどの適宜な液晶 表示装置を形成することができる。その場合、本発明による光学フィルムは液晶セル の片側又は両側に設置することができる。両側に光学フィルムを設ける場合、それら は同じものであっても良いし、異なるものであっても良い。さらに、液晶表示装置の形 成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ 、レンズアレイシート、光拡散板、ノ ックライトなどの適宜な部品を適宜な位置に 1層 又は 2層以上配置することができる。  [0083] An appropriate liquid crystal display device such as a liquid crystal display device in which an antistatic adhesive optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight in a lighting system or a reflector is formed. Can do. In that case, the optical film according to the present invention can be placed on one or both sides of the liquid crystal cell. When optical films are provided on both sides, they may be the same or different. Further, when forming a liquid crystal display device, for example, a single layer of appropriate parts such as a diffuser plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffuser plate, and a knocklight at an appropriate position. Or two or more layers can be arranged.
[0084] 次 、で有機エレクトロルミネセンス装置 (有機 EL表示装置)につ 、て説明する。本 発明の光学フィルム (偏光板等)は、有機 EL表示装置においても適用できる。一般 に、有機 EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順に 積層して発光体 (有機エレクトロルミネセンス発光体)を形成している。ここで、有機発 光層は、種々の有機薄膜の積層体であり、例えばトリフエニルァミン誘導体等力 な る正孔注入層と、アントラセン等の蛍光性の有機固体力 なる発光層との積層体や、 あるいはこのような発光層とペリレン誘導体等力 なる電子注入層の積層体や、また あるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組合 せをもった構成が知られて 、る。 [0085] 有機 EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機 発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネ ルギ一が蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射 する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと 同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整 流性を伴う強!ゝ非線形性を示す。 Next, an organic electroluminescence device (organic EL display device) will be described. The optical film (polarizing plate or the like) of the present invention can also be applied to an organic EL display device. In general, in an organic EL display device, a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitter (organic electroluminescent light emitter). Here, the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injecting layer having an isotropy such as a triphenylamine derivative and a light emitting layer having a fluorescent organic solid force such as anthracene. Or a laminate of such a light emitting layer and a perylene derivative or the like electron injection layer, or a stack of these hole injection layer, light emitting layer, and electron injection layer. The composition is known. [0085] In an organic EL display device, by applying a voltage to a transparent electrode and a metal electrode, holes and electrons are injected into the organic light emitting layer, and the energy generated by recombination of these holes and electrons is the same. Emits light on the principle that it excites the fluorescent material and emits light when the excited fluorescent material returns to the ground state. The mechanism of recombination in the middle is the same as that of a general diode, and as can be expected from this, the current and emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
[0086] 有機 EL表示装置においては、有機発光層での発光を取り出すために、少なくとも 一方の電極が透明でなくてはならず、通常酸化インジウムスズ (ITO)などの透明導 電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発 光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常 Mg Ag、 A1— Liなどの金属電極を用いている。  [0086] In an organic EL display device, in order to extract light emitted from the organic light emitting layer, at least one of the electrodes must be transparent, and is usually formed of a transparent conductor such as indium tin oxide (ITO). A transparent electrode is used as the anode. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material with a low work function for the cathode, and usually metal electrodes such as Mg Ag and A1-Li are used.
[0087] このような構成の有機 EL表示装置において、有機発光層は、厚さ lOnm程度とき わめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ 完全に透過する。その結果、非発光時に透明基板の表面カゝら入射し、透明電極と有 機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るた め、外部から視認したとき、有機 EL表示装置の表示面が鏡面のように見える。  In the organic EL display device having such a configuration, the organic light emitting layer is formed of a very thin film with a thickness of about 1 Onm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident on the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode again returns to the surface side of the transparent substrate. When viewed, the display surface of the OLED display looks like a mirror.
[0088] 電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、 有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を 含む有機 EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これ ら透明電極と偏光板との間に位相差板を設けることができる。  [0088] In an organic EL display device including an organic electroluminescent light emitting device including a transparent electrode on a front surface side of an organic light emitting layer that emits light by application of a voltage and a metal electrode on a back surface side of the organic light emitting layer, A polarizing plate can be provided on the surface side of the electrode, and a retardation plate can be provided between the transparent electrode and the polarizing plate.
[0089] 位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光す る作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させな いという効果がある。特に、位相差板を 1Z4波長板で構成し、かつ偏光板と位相差 板との偏光方向のなす角を π Z4に調整すれば、金属電極の鏡面を完全に遮蔽す ることがでさる。  [0089] Since the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization function. is there. In particular, if the retardation plate is a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation plate is adjusted to π Z4, the mirror surface of the metal electrode can be completely shielded.
[0090] すなわち、この有機 EL表示装置に入射する外部光は、偏光板により直線偏光成分 のみが透過する。この直線偏光は位相差板により一般に楕円偏光となるが、とく〖こ位 相差板が 1Z4波長板でし力も偏光板と位相差板との偏光方向のなす角が π Ζ4の ときには円偏光となる。 That is, only the linearly polarized light component of the external light incident on the organic EL display device is transmitted through the polarizing plate. This linearly polarized light is generally elliptically polarized by the phase difference plate. However, the phase difference plate is a 1Z4 wavelength plate, and the angle between the polarization direction of the polarizing plate and the phase difference plate is π Ζ4. Sometimes circularly polarized.
[0091] この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再 び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そ して、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できな い。その結果、金属電極の鏡面を完全に遮蔽することができる。  [0091] This circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, is again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and is linearly polarized again on the retardation plate. Become. And since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate, it cannot be transmitted through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
実施例  Example
[0092] 以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例に よって限定されるものではない。なお、各例中の部および%はいずれも重量基準で ある。  [0092] The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, all parts and percentages are based on weight.
[0093] (偏光板の作製)  [0093] (Preparation of polarizing plate)
厚さ 80 μ mのポリビュルアルコールフィルムを 40°Cのヨウ素水溶液中で 5倍に延伸 した後、 50°Cで 4分間乾燥させて偏光子を得た。この偏光子の両側にトリァセチルセ ルロースフィルムをポリビュルアルコール系粘着剤を用いて接着して偏光板を得た。  A polybulal alcohol film having a thickness of 80 μm was stretched 5 times in an aqueous iodine solution at 40 ° C, and then dried at 50 ° C for 4 minutes to obtain a polarizer. A polarizing plate was obtained by adhering a triacetyl cellulose film on both sides of the polarizer using a polybulal alcohol adhesive.
[0094] 実施例 1  [0094] Example 1
(帯電防止層の形成)  (Formation of antistatic layer)
イソプロピルアルコール溶媒 100部に、カーボンナノチューブ 0. 2部、バインダー 成分としてポリエステル榭脂水分散体 (ナガセケムテックス株式会社製、カブセン ES — 210、固形分 25%) 20部、及び分散剤としてポリビニルピロリドン (重量平均分子 量 : 50000) 2部を添加し、超音波処理を 30分間実施して分散液を調製した。当該 分散液を前記偏光板の片面に、乾燥後の厚みが 50nmとなるように塗布し、 80°Cで 2分間乾燥して帯電防止層を形成した。  100 parts of isopropyl alcohol solvent, 0.2 part of carbon nanotubes, 20 parts of polyester resin aqueous dispersion (manufactured by Nagase ChemteX Corporation, Kabusen ES-210, solid content 25%) as binder component, and polyvinylpyrrolidone as dispersant (Weight average molecular weight: 50000) 2 parts were added and sonication was performed for 30 minutes to prepare a dispersion. The dispersion was applied to one side of the polarizing plate so that the thickness after drying was 50 nm, and dried at 80 ° C. for 2 minutes to form an antistatic layer.
[0095] (粘着剤層の形成) [0095] (Formation of adhesive layer)
ベースポリマーとして、ブチルアタリレート 95部、アクリル酸 5部、過酸化ベンゾィル 0. 2部を酢酸ェチル 300部に溶解し、撹拌下、約 60°Cで 6時間反応させて重量平 均分子量 200万のアクリル系ポリマーを含有する溶液(固形分 20%)を用いた。上記 アクリル系ポリマー溶液にイソシァネート系多官能性ィ匕合物である日本ポリウレタン社 製コロネート Lをポリマー固形分 100部に対して 0. 5部を加えた。当該粘着剤溶液を 、乾燥後の厚みが 25 mとなるように、離型フィルム(三菱ィ匕学ポリエステル製、ダイ ャホイル MRF38、ポリエチレンテレフタレート基材)上にリバースロールコート法によ り塗布した後、さらにその上に離型フィルムを付与して熱風循環式オーブンで乾燥しAs a base polymer, 95 parts of butyl acrylate, 5 parts of acrylic acid and 0.2 part of benzoyl peroxide are dissolved in 300 parts of ethyl acetate and reacted at about 60 ° C for 6 hours with stirring to obtain an average molecular weight of 2 million. A solution (20% solid content) containing an acrylic polymer was used. To the above acrylic polymer solution, 0.5 part of Coronate L manufactured by Nippon Polyurethane Co., Ltd., which is an isocyanate-based polyfunctional compound, was added to 100 parts of polymer solid content. The pressure-sensitive adhesive solution is separated from a release film (Mitsubishi Chemical Polyester, Die, so that the thickness after drying is 25 m. After applying it by reverse roll coating method, it is further coated with a release film and dried in a hot air circulation oven.
、粘着剤層を形成した。 A pressure-sensitive adhesive layer was formed.
[0096] (帯電防止性粘着型光学フィルムの作製) [0096] (Preparation of antistatic adhesive optical film)
上記帯電防止性偏光板の帯電防止層上に、粘着剤層を形成した離型フィルムを 貼り合わせて帯電防止性粘着型偏光板を作製した。  On the antistatic layer of the antistatic polarizing plate, a release film on which an adhesive layer was formed was bonded to prepare an antistatic adhesive polarizing plate.
[0097] 実施例 2 [0097] Example 2
実施例 1の帯電防止層の形成において、カーボンナノチューブを 2部添加した以外 は実施例 1と同様の方法により帯電防止性粘着型偏光板を作製した。  In the formation of the antistatic layer of Example 1, an antistatic pressure-sensitive adhesive polarizing plate was produced in the same manner as in Example 1 except that 2 parts of carbon nanotubes were added.
[0098] 比較例 1 [0098] Comparative Example 1
実施例 1の帯電防止層の形成において、カーボンナノチューブを添加しなかった以 外は実施例 1と同様の方法により帯電防止性粘着型偏光板を作製した。  An antistatic pressure-sensitive adhesive polarizing plate was produced in the same manner as in Example 1 except that carbon nanotubes were not added in the formation of the antistatic layer of Example 1.
[0099] 比較例 2 [0099] Comparative Example 2
実施例 1の帯電防止層の形成において、カーボンナノチューブの代わりにカーボン ブラックを 1部添加した以外は実施例 1と同様の方法により帯電防止性粘着型偏光 板を作製した。  In the formation of the antistatic layer of Example 1, an antistatic adhesive polarizing plate was prepared in the same manner as in Example 1 except that 1 part of carbon black was added instead of carbon nanotubes.
[0100] 比較例 3 [0100] Comparative Example 3
(帯電防止層の形成)  (Formation of antistatic layer)
酸化スズ微粒子を含有する分散液(山中産業 (株)製、 EPS 6)を前記偏光板の 片面に、乾燥後の厚みが 200nmとなるように塗布し、 80°Cで 2分間乾燥して帯電防 止層を形成した。  Dispersion containing tin oxide fine particles (Yamanaka Sangyo Co., Ltd., EPS 6) was applied to one side of the polarizing plate so that the thickness after drying was 200 nm, and dried at 80 ° C for 2 minutes to charge. A protective layer was formed.
[0101] (帯電防止性粘着型光学フィルムの作製) [0101] (Preparation of antistatic adhesive optical film)
実施例 1と同様の方法で帯電防止性粘着型偏光板を作製した。  An antistatic pressure-sensitive adhesive polarizing plate was produced in the same manner as in Example 1.
[0102] 実施例および比較例で得られた帯電防止性粘着型光学フィルムにつ!/、て以下の 評価を行った。評価結果を表 1に示す。 [0102] The antistatic pressure-sensitive adhesive optical films obtained in Examples and Comparative Examples were evaluated as follows. Table 1 shows the evaluation results.
[0103] 〔光透過率〕 [0103] [Light transmittance]
作製した帯電防止性粘着型光学フィルムをトムソン刃型で 25mm X 50mmの大き さに打ち抜き、これをガラス表面に貼り合わせてサンプルを得た。積分球式分光透過 率測定器 (株式会社村上色彩技術研究所製、 DOT— 3)を用いて、該サンプルの光 透過率を測定した。 The produced antistatic pressure-sensitive adhesive optical film was punched out to a size of 25 mm × 50 mm with a Thomson blade type, and bonded to the glass surface to obtain a sample. Integral sphere spectral transmission The light transmittance of the sample was measured using a rate measuring device (DOT-3, manufactured by Murakami Color Research Laboratory Co., Ltd.).
〔帯電防止効果〕  [Antistatic effect]
作製した帯電防止性粘着型光学フィルムを 100mm X 100mmの大きさに切断し、 液晶パネルに貼り付けた。このパネルを lOOOOcdの輝度を持つバックライト上に置き 、静電気発生装置である ESD(SANKI社製, ESD— 8012A)を用いて 5kvの静電 気を発生させることで液晶の配向乱れを生じさせた。その配向不良による表示不良 の回復時間(秒)を、瞬間マルチ測光検出器 (大塚電子社製, MCPD— 3000)を用 いて測定した。また、このパネルを 50°Cの環境下で 500時間放置した後、上記と同 様の方法で回復時間(秒)を測定した。  The produced antistatic adhesive optical film was cut into a size of 100 mm X 100 mm and attached to a liquid crystal panel. This panel was placed on a backlight with a brightness of lOOOOcd, and 5kv of static electricity was generated using ESD (SANKI, ESD-8012A), a static electricity generator, which caused liquid crystal alignment disorder. . The recovery time (seconds) for the display failure due to the orientation failure was measured using an instantaneous multiphotometric detector (MCPD-3000, manufactured by Otsuka Electronics Co., Ltd.). The panel was allowed to stand for 500 hours in a 50 ° C environment, and then the recovery time (seconds) was measured in the same manner as described above.
[表 1] 光透過率 表示不良回復時間 (S) [Table 1] Light transmittance Display failure recovery time (S)
(%) 加熱前 加熱後 実施例 1 43.5 <1 <1  (%) Before heating After heating Example 1 43.5 <1 <1
実施例 2 43.4 <1 <1  Example 2 43.4 <1 <1
比較例 1 43.5 >1800 >1800  Comparative Example 1 43.5> 1800> 1800
比較例 2 42.8 <1 ぐ 1  Comparative Example 2 42.8 <1 + 1
比較例 3 43.4 <1 〉1800  Comparative Example 3 43.4 <1> 1800

Claims

請求の範囲 The scope of the claims
[1] 光学フィルムの少なくとも片面に帯電防止層が積層され、さらに該帯電防止層上に 粘着剤層が積層されており、前記帯電防止層は、カーボンナノ材料を含有することを 特徴とする帯電防止性粘着型光学フィルム。  [1] An antistatic layer is laminated on at least one surface of the optical film, and an adhesive layer is further laminated on the antistatic layer, and the antistatic layer contains a carbon nanomaterial. Preventive adhesive optical film.
[2] 前記カーボンナノ材料が、カーボンナノチューブである請求項 1記載の帯電防止性 粘着型光学フィルム。  2. The antistatic pressure-sensitive adhesive optical film according to claim 1, wherein the carbon nanomaterial is a carbon nanotube.
[3] 前記帯電防止層は、さらにバインダー成分を含有する請求項 1記載の帯電防止性 粘着型光学フィルム。  3. The antistatic pressure-sensitive adhesive optical film according to claim 1, wherein the antistatic layer further contains a binder component.
[4] 前記ノインダー成分が、ポリウレタン系榭脂、ポリエステル系榭脂およびアクリル系 榭脂からなる群より選ばれる少なくとも 1種である請求項 3記載の帯電防止性粘着型 光学フィルム。  4. The antistatic pressure-sensitive adhesive optical film according to claim 3, wherein the noinder component is at least one selected from the group consisting of polyurethane-based resin, polyester-based resin and acrylic-based resin.
[5] 前記帯電防止層は、さらに分散剤を含有する請求項 1記載の帯電防止性粘着型 光学フィルム。  5. The antistatic pressure-sensitive adhesive optical film according to claim 1, wherein the antistatic layer further contains a dispersant.
[6] 前記粘着剤層がアクリル系粘着剤により形成されている請求項 1記載の帯電防止 性粘着型光学フィルム。  6. The antistatic pressure-sensitive adhesive optical film according to claim 1, wherein the pressure-sensitive adhesive layer is formed of an acrylic pressure-sensitive adhesive.
[7] 請求項 1記載の帯電防止性粘着型光学フィルムを製造する方法であって、光学フ イルムの少なくとも片面に、カーボンナノ材料を含有する分散液を塗布し、乾燥して 帯電防止層を形成する工程、及び当該帯電防止層上に粘着剤層を形成する工程を 含むことを特徴とする帯電防止性粘着型光学フィルムの製造方法。  [7] A method for producing an antistatic pressure-sensitive adhesive optical film according to claim 1, wherein a dispersion containing a carbon nanomaterial is applied to at least one surface of the optical film and dried to form an antistatic layer. A method for producing an antistatic pressure-sensitive adhesive optical film, comprising a step of forming and a step of forming an adhesive layer on the antistatic layer.
[8] 請求項 1〜6のいずれかに記載の帯電防止性粘着型光学フィルムを少なくとも 1枚 用いた画像表示装置。  [8] An image display device using at least one antistatic adhesive optical film according to any one of [1] to [6].
PCT/JP2005/018765 2004-10-21 2005-10-12 Antistatic adhesive optical film and image display WO2006043449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-306956 2004-10-21
JP2004306956A JP2006119351A (en) 2004-10-21 2004-10-21 Antistatic adhesive optical film and image display unit

Publications (1)

Publication Number Publication Date
WO2006043449A1 true WO2006043449A1 (en) 2006-04-27

Family

ID=36202865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018765 WO2006043449A1 (en) 2004-10-21 2005-10-12 Antistatic adhesive optical film and image display

Country Status (3)

Country Link
JP (1) JP2006119351A (en)
TW (1) TW200630452A (en)
WO (1) WO2006043449A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224971A (en) * 2007-03-12 2008-09-25 Nitto Denko Corp Image display device
JPWO2020149283A1 (en) * 2019-01-16 2021-11-25 日本電気株式会社 Carbon nano brush antistatic paint

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107523B2 (en) * 2006-02-24 2012-12-26 三菱樹脂株式会社 Conductive film
JP2008083504A (en) * 2006-09-28 2008-04-10 Seiko Precision Inc Optical filter and manufacturing method thereof
JP2008168591A (en) * 2007-01-15 2008-07-24 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display
WO2009058763A1 (en) * 2007-10-29 2009-05-07 Unidym, Inc. Nanostructure-film lcd devices
KR100948904B1 (en) * 2007-12-28 2010-03-24 제일모직주식회사 Multilayered Film Having Antistatic Property and Method for Manufacturing the Same
KR100950933B1 (en) 2008-02-05 2010-04-01 웅진케미칼 주식회사 Manufacturing method of optical antistatic film
JP5565766B2 (en) 2009-05-20 2014-08-06 東海光学株式会社 Eyeglass plastic lens
JP2011052053A (en) * 2009-08-31 2011-03-17 Ihi Corp Polymeric nanocomposite material
JP5563386B2 (en) * 2010-06-23 2014-07-30 富士フイルム株式会社 Polarizing plate and display device with touch panel function
JP2012166452A (en) * 2011-02-14 2012-09-06 Inoac Gijutsu Kenkyusho:Kk Antistatic film
JP5637961B2 (en) * 2011-09-29 2014-12-10 Kj特殊紙株式会社 Electromagnetic wave absorbing sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191038A (en) * 1997-07-24 1999-04-06 Sumitomo Chem Co Ltd Antistatic plate
JP2004133355A (en) * 2002-10-15 2004-04-30 Nitto Denko Corp Polarizing plate, optical element and picture display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191038A (en) * 1997-07-24 1999-04-06 Sumitomo Chem Co Ltd Antistatic plate
JP2004133355A (en) * 2002-10-15 2004-04-30 Nitto Denko Corp Polarizing plate, optical element and picture display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224971A (en) * 2007-03-12 2008-09-25 Nitto Denko Corp Image display device
JPWO2020149283A1 (en) * 2019-01-16 2021-11-25 日本電気株式会社 Carbon nano brush antistatic paint
JP7230928B2 (en) 2019-01-16 2023-03-01 日本電気株式会社 Carbon nanobrush antistatic paint

Also Published As

Publication number Publication date
TW200630452A (en) 2006-09-01
JP2006119351A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4714452B2 (en) Antistatic adhesive optical film and image display device
TWI393925B (en) Antistatic adhesive-type optical film and method for manufacturing them, liquid crystal panel, and liquid crystal display davice
WO2006043449A1 (en) Antistatic adhesive optical film and image display
WO2006043451A1 (en) Charge-preventing optical film, charge-preventing adhesive optical film, manufacturing method thereof, and image display device
JP4007502B2 (en) Adhesive optical film and image display device
JP4007920B2 (en) Adhesive optical film and image display device
JP4837257B2 (en) Antistatic adhesive optical film and image display device
WO2007105378A1 (en) Adhesive optical film and image display
JP4721368B2 (en) Antistatic adhesive optical film and image display device
KR20060042226A (en) Antistatic adhesive optical film, manufacturing method thereof, and image display device
JP4727238B2 (en) Optical member pressure-sensitive adhesive composition, optical member pressure-sensitive adhesive layer, pressure-sensitive adhesive optical member, and image display device
JP4367704B2 (en) Antistatic adhesive optical film and image display device
JP2008203861A (en) Antistatic adhesive polarizing plate, method for manufacturing the same, liquid crystal panel, and liquid crystal display device
WO2006043448A1 (en) Antistatic adhesive optical film and image display
JP2006047494A (en) Retardation adhesive layer and method of producing the same, adhesive optical film and method of producing the same, and image display
WO2006003827A1 (en) Optical film having pressure-sensitive adhesive attached thereto and image display device
WO2006043450A1 (en) Antistatic optical film, antistatic adhesive optical film and image display
WO2006098138A1 (en) Pressure-sensitive adhesive agent for optical use, pressure-sensitive adhesive optical film, image display device and method for peeling pressure-sensitive adhesive optical film
JP4346086B2 (en) Antistatic adhesive optical film and image display device
JP2006232910A (en) Optical adhesive, optical film having adhesive and image-displaying device
JP4832847B2 (en) Antistatic optical film, antistatic adhesive optical film, and image display device
WO2006006358A1 (en) Optical film with pressure-sensitive adhesive and image display device
JP4526021B2 (en) Antistatic adhesive optical film and image display device
JP2004341155A (en) Adhesive applied optical member, method for manufacturing the same and image display device
JP4484662B2 (en) Method for producing antistatic adhesive optical film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793712

Country of ref document: EP

Kind code of ref document: A1