JPWO2020149283A1 - Carbon nano brush antistatic paint - Google Patents

Carbon nano brush antistatic paint Download PDF

Info

Publication number
JPWO2020149283A1
JPWO2020149283A1 JP2020566419A JP2020566419A JPWO2020149283A1 JP WO2020149283 A1 JPWO2020149283 A1 JP WO2020149283A1 JP 2020566419 A JP2020566419 A JP 2020566419A JP 2020566419 A JP2020566419 A JP 2020566419A JP WO2020149283 A1 JPWO2020149283 A1 JP WO2020149283A1
Authority
JP
Japan
Prior art keywords
coating film
carbon nanohorn
mass
nanohorn aggregate
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020566419A
Other languages
Japanese (ja)
Other versions
JP7230928B2 (en
Inventor
眞由美 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2020149283A1 publication Critical patent/JPWO2020149283A1/en
Application granted granted Critical
Publication of JP7230928B2 publication Critical patent/JP7230928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本発明の目的は、高い帯電防止性能を有する塗膜を提供することにある。本発明の塗膜は、単層カーボンナノホーンが放射状に集合し、且つ、繊維状に繋がっている繊維状カーボンナノホーン集合体を含む導電成分を含むことを特徴とする。An object of the present invention is to provide a coating film having high antistatic performance. The coating film of the present invention is characterized in that single-layer carbon nanohorns are radially aggregated and contain a conductive component containing a fibrous carbon nanohorn aggregate connected in a fibrous manner.

Description

本発明は、繊維状カーボンナノホーン集合体を含む塗膜および帯電防止塗膜の製造方法に関する。 The present invention relates to a coating film containing a fibrous carbon nanohorn aggregate and a method for producing an antistatic coating film.

静電気の発生を防止する導電性塗料が開発されている。塗料に添加される導電成分として、カーボンナノチューブ等の導電性に優れる炭素材料が検討されている。例えば、特許文献1には、カーボンナノチューブを含有する塗料組成物が開示されている。 Conductive paints that prevent the generation of static electricity have been developed. As a conductive component added to a paint, a carbon material having excellent conductivity such as carbon nanotubes is being studied. For example, Patent Document 1 discloses a coating composition containing carbon nanotubes.

国際公開第2012/060292号International Publication No. 2012/060292

カーボンナノチューブは分散性に劣るため、十分な帯電防止性能を有する塗膜を形成できないという問題があった。本発明の目的は、高い帯電防止性能を有する塗膜を提供することにある。 Since carbon nanotubes are inferior in dispersibility, there is a problem that a coating film having sufficient antistatic performance cannot be formed. An object of the present invention is to provide a coating film having high antistatic performance.

本発明の塗膜は、単層カーボンナノホーンが放射状に集合し、且つ、繊維状に繋がっている繊維状カーボンナノホーン集合体を含む導電成分を含むことを特徴とする。 The coating film of the present invention is characterized in that single-layer carbon nanohorns are radially aggregated and contain a conductive component containing a fibrous carbon nanohorn aggregate connected in a fibrous manner.

本発明によれば、高い帯電防止性能を有する塗膜を提供できる。 According to the present invention, it is possible to provide a coating film having high antistatic performance.

<繊維状カーボンナノホーン集合体>
本実施形態に係る塗膜は、繊維状カーボンナノホーン集合体を含む。繊維状カーボンナノホーン集合体はカーボンナノブラシ(CNB)とも呼ばれ、単層カーボンナノホーンが放射状に集合し、且つ、繊維状に繋がった構造を有する。繊維状カーボンナノホーン集合体は、単に単層カーボンナノホーンが複数連なって繊維状に見えるものとは異なり、遠心分離や超音波分散等の操作を行っても繊維状の形状を維持できる。単層カーボンナノホーンはグラフェンシートが巻かれた構造の先端が先端角約20°の角(ホーン)状に尖った、直径1nm〜5nm、長さが30nm〜100nmの円錐型の形状の炭素構造体である。ここで、炭素構造体とは炭素を主に含む構造体であり、軽元素や触媒金属を含んでもよい。繊維状カーボンナノホーン集合体は、繊維状の炭素構造体であり、一般的に、直径が30nm〜200nmであり、長さが1μm〜100μm、例えば2μm〜30μmである。繊維状カーボンナノホーン集合体のアスペクト比(長さ/直径)は、一般的に4〜4000であり、例えば、5〜3500である。繊維状カーボンナノホーン集合体の表面には、直径1nm〜5nm、長さ30nm〜100nmの単層カーボンナノホーンの突起を有している。導電性が高い単層カーボンナノホーンが繊維状に繋がり、長い導電性パスを持つ構造を特徴とするため、繊維状カーボンナノホーン集合体は高い導電性を有する。更に、繊維状カーボンナノホーン集合体は、高い分散性を併せ持っており、導電性付与の効果が高い。
<Aggregate of fibrous carbon nanohorns>
The coating film according to the present embodiment contains a fibrous carbon nanohorn aggregate. The fibrous carbon nanohorn aggregate is also called a carbon nanobrush (CNB), and has a structure in which single-layer carbon nanohorns are radially assembled and connected in a fibrous manner. The fibrous carbon nanohorn aggregate can maintain the fibrous shape even if an operation such as centrifugation or ultrasonic dispersion is performed, unlike a structure in which a plurality of single-layer carbon nanohorns are simply arranged to look fibrous. The single-layer carbon nanohorn is a conical carbon structure with a diameter of 1 nm to 5 nm and a length of 30 nm to 100 nm, with the tip of the structure wrapped with a graphene sheet pointed like a horn with a tip angle of about 20 °. Is. Here, the carbon structure is a structure mainly containing carbon, and may contain a light element or a catalyst metal. Fibrous carbon nanohorn aggregates are fibrous carbon structures, generally 30 nm to 200 nm in diameter and 1 μm to 100 μm in length, for example 2 μm to 30 μm. The aspect ratio (length / diameter) of the fibrous carbon nanohorn aggregate is generally 4 to 4000, for example 5 to 3500. The surface of the fibrous carbon nanohorn aggregate has protrusions of a single-layer carbon nanohorn having a diameter of 1 nm to 5 nm and a length of 30 nm to 100 nm. Since single-layer carbon nanohorns having high conductivity are connected in a fibrous form and characterized by a structure having a long conductive path, the aggregate of fibrous carbon nanohorns has high conductivity. Further, the fibrous carbon nanohorn aggregate also has high dispersibility, and is highly effective in imparting conductivity.

繊維状カーボンナノホーン集合体は、一般的には、種型、つぼみ型、ダリア型、ペタルダリア型、ペタル型(グラフェンシート構造)のカーボンナノホーン集合体が繋がって形成されている。すなわち、繊維状構造中に1種類または複数のこれらカーボンナノホーン集合体が含まれている。種型は集合体の表面に角状の突起がほとんどみられない、あるいは全くみられない形状、つぼみ型は集合体の表面に角状の突起が多少みられる形状、ダリア型は集合体の表面に角状の突起が多数みられる形状、ペタル型は集合体の表面に花びら状の突起がみられる形状である。ペタル構造は、幅は50nm〜200nm、厚みは0.34nm〜10nm、2枚〜30枚のグラフェンシート構造である。ペタル−ダリア型はダリア型とペタル型の中間的な構造である。生成するカーボンナノホーン集合体は、ガスの種類や流量によってその形態および粒径が変わる。 The fibrous carbon nanohorn aggregate is generally formed by connecting seed-type, bud-type, dahlia-type, petal-daria-type, and petal-type (graphene sheet structure) carbon nanohorn aggregates. That is, one or more of these carbon nanohorn aggregates are contained in the fibrous structure. The seed type has a shape with few or no square protrusions on the surface of the aggregate, the bud type has a shape with some square protrusions on the surface of the aggregate, and the dalia type has the surface of the aggregate. The petal type has a shape with many horn-shaped protrusions, and the petal type has a shape with petal-shaped protrusions on the surface of the aggregate. The petal structure is a graphene sheet structure having a width of 50 nm to 200 nm and a thickness of 0.34 nm to 10 nm and 2 to 30 sheets. The petal-dahlia type is an intermediate structure between the dahlia type and the petal type. The form and particle size of the carbon nanohorn aggregate to be produced change depending on the type and flow rate of the gas.

繊維状カーボンナノホーン集合体は、国際公開第2016/147909号にも詳細に記載されている。国際公開第2016/147909号の図1および図2には繊維状カーボンナノホーン集合体の透過型顕微鏡写真が開示されている。この透過型顕微鏡写真で示される繊維状カーボンナノホーン集合体では、放射状に集合している単層カーボンナノホーン(カーボンナノホーン集合体)が、繊維状に繋がっている。国際公開第2016/147909号の開示の全てを引用によって本明細書に取り込む。 Fibrous carbon nanohorn aggregates are also described in detail in WO 2016/147909. FIGS. 1 and 2 of WO 2016/147909 disclose transmission micrographs of fibrous carbon nanohorn aggregates. In the fibrous carbon nanohorn aggregate shown in this transmissive micrograph, single-layer carbon nanohorns (carbon nanohorn aggregate) that are radially assembled are connected in a fibrous manner. All disclosures of WO 2016/147909 are incorporated herein by reference.

繊維状カーボンナノホーン集合体の作製方法では、触媒を含有した炭素をターゲット(触媒含有炭素ターゲットという)とし、触媒含有炭素ターゲットを配置した容器内でターゲットを回転させながら窒素雰囲気、不活性雰囲気、水素、二酸化炭素、または、混合雰囲気下でレーザーアブレーションによりターゲットを加熱し、ターゲットを蒸発させる。蒸発した炭素と触媒が冷える過程で、繊維状カーボンナノホーン集合体が得られる。また、上記レーザーアブレーション法以外にアーク放電法や抵抗加熱法を用いることができる。しかしながら、レーザーアブレーション法は、室温、大気圧中で連続生成できる観点からより好ましい。 In the method for producing a fibrous carbon nanohorn aggregate, a catalyst-containing carbon is used as a target (referred to as a catalyst-containing carbon target), and the target is rotated in a container in which the catalyst-containing carbon target is placed to create a nitrogen atmosphere, an inert atmosphere, and hydrogen. The target is heated by laser ablation in a carbon dioxide or mixed atmosphere to evaporate the target. As the evaporated carbon and the catalyst cool, fibrous carbon nanohorn aggregates are obtained. In addition to the laser ablation method, an arc discharge method or a resistance heating method can be used. However, the laser ablation method is more preferable from the viewpoint of continuous generation at room temperature and atmospheric pressure.

本発明で適用するレーザーアブレーション法は、レーザー光をターゲットにパルス状または連続して照射して、照射強度が閾値以上になると、ターゲットがエネルギーを変換し、その結果、プルームが生成され、生成物をターゲットの下流に設けた基板上に堆積させる、或いは装置内の空間に生成させ、回収室で回収する方法である。 In the laser ablation method applied in the present invention, the target is irradiated with laser light in a pulsed or continuous manner, and when the irradiation intensity exceeds the threshold value, the target converts energy, and as a result, a plume is generated and a product is produced. Is deposited on a substrate provided downstream of the target, or is generated in the space inside the apparatus and collected in the recovery chamber.

レーザーアブレーションには、COレーザー、YAGレーザー、エキシマレーザー、半導体レーザー等が使用可能で、高出力化が容易なCOレーザーが最も適当である。COレーザーは、1kW/cm〜1000kW/cmの出力が使用可能であり、連続照射およびパルス照射で行うことが出来る。繊維状カーボンナノホーン集合体の生成には連続照射の方が望ましい。レーザー光をZnSeレンズ等により集光させ、照射させる。また、ターゲットを回転させることで連続的に合成することが出来る。ターゲット回転速度は任意に設定できるが、0.1rpm〜6rpmが特に好ましい。0.1rpm以上であればグラファイト化を抑制でき、また、6rpm以下であればアモルファスカーボンの増加を抑制できる。この時、レーザー出力は15kW/cm以上が好ましく、30kW/cm〜300kW/cmが最も効果的である。レーザー出力が15kW/cm以上であれば、ターゲットが適度に蒸発し、繊維状カーボンナノホーン集合体の生成が容易となる。またレーザー出力が300kW/cm以下であれば、アモルファスカーボンの増加を抑制できる。容器(チャンバー)内の圧力は、13332.2hPa(10000Torr)以下で使用することができるが、圧力が真空に近くなるほど、カーボンナノチューブが生成しやすくなり、繊維状カーボンナノホーン集合体が得られなくなる。容器(チャンバー)内の圧力は、好ましくは666.61hPa(500Torr)〜1266.56hPa(950Torr)で、より好ましくは常圧(1013hPa(1atm≒760Torr))付近であることが大量合成や低コスト化のためにも適当である。また照射面積もレーザー出力とレンズでの集光の度合いにより制御でき、0.005cm〜1cmが使用できる。 For laser ablation, a CO 2 laser, a YAG laser, an excimer laser, a semiconductor laser, or the like can be used, and the CO 2 laser, which can easily increase the output, is the most suitable. CO 2 lasers, the output of 1kW / cm 2 ~1000kW / cm 2 can be used, can be carried out by continuous irradiation and pulse irradiation. Continuous irradiation is preferable for the formation of fibrous carbon nanohorn aggregates. The laser beam is focused by a ZnSe lens or the like and irradiated. In addition, it can be continuously synthesized by rotating the target. The target rotation speed can be set arbitrarily, but 0.1 rpm to 6 rpm is particularly preferable. If it is 0.1 rpm or more, graphitization can be suppressed, and if it is 6 rpm or less, the increase of amorphous carbon can be suppressed. At this time, the laser output is preferably 15 kW / cm 2 or more, and 30 kW / cm 2 to 300 kW / cm 2 is the most effective. When the laser output is 15 kW / cm 2 or more, the target evaporates moderately, and the formation of fibrous carbon nanohorn aggregates becomes easy. Further, when the laser output is 300 kW / cm 2 or less, the increase of amorphous carbon can be suppressed. The pressure in the container (chamber) can be used at 1333.2 hPa (10000 Torr) or less, but the closer the pressure is to vacuum, the easier it is for carbon nanotubes to be formed, and the fibrous carbon nanohorn aggregate cannot be obtained. The pressure in the container (chamber) is preferably 666.61 hPa (500 Torr) to 1266.56 hPa (950 Torr), and more preferably around normal pressure (1013 hPa (1 atm ≈ 760 Torr)) for mass synthesis and cost reduction. Also suitable for. The irradiation area may be controlled by the degree of condensing of the laser output and the lens, 0.005 cm 2 1 cm 2 can be used.

触媒は、Fe、Ni、Coを単体で、または混合して使用することができる。触媒の濃度は適宜選択できるが、炭素に対して、0.1質量%〜10質量%が好ましく、0.5質量%〜5質量%がより好ましい。0.1質量%以上であると、繊維状カーボンナノホーン集合体の生成が確実となる。また、10質量%以下の場合は、ターゲットコストの増加を抑制できる。 As the catalyst, Fe, Ni, and Co can be used alone or in combination. The concentration of the catalyst can be appropriately selected, but is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 5% by mass, based on carbon. When it is 0.1% by mass or more, the formation of fibrous carbon nanohorn aggregates is ensured. Further, when it is 10% by mass or less, an increase in the target cost can be suppressed.

容器内は任意の温度で使用でき、好ましくは、0℃〜100℃であり、より好ましくは室温で使用することが大量合成や低コスト化のためにも適当である。 The inside of the container can be used at any temperature, preferably 0 ° C to 100 ° C, and more preferably used at room temperature for mass synthesis and cost reduction.

容器内には、窒素ガスや、不活性ガス、水素ガス、COガス等を単独でまたは混合して導入することで上記の雰囲気とする。コストの面からは、窒素ガス、Arガスが好ましい。これらのガスは反応容器内を流通し、生成する物質をこのガスの流れによって回収することが出来る。雰囲気ガス流量は、任意の量を使用できるが、好ましくは0.5L/min〜100L/minの範囲が適当である。ターゲットが蒸発する過程ではガス流量を一定に制御する。The above atmosphere is created by introducing nitrogen gas, inert gas, hydrogen gas, CO 2 gas, etc. into the container alone or in combination. From the viewpoint of cost, nitrogen gas and Ar gas are preferable. These gases circulate in the reaction vessel and the substances produced can be recovered by this gas flow. The atmospheric gas flow rate can be any amount, but is preferably in the range of 0.5 L / min to 100 L / min. In the process of evaporation of the target, the gas flow rate is controlled to be constant.

以上のようにして得られる繊維状カーボンナノホーン集合体は、通常、球状カーボンナノホーン集合体と共に得られる。以下では、繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体の混合物を単にカーボンナノホーン集合体とも呼ぶ。球状カーボンナノホーン集合体は、単層カーボンナノホーンが放射状に集合した球状の炭素構造体である。球状カーボンナノホーン集合体は、直径が30nm〜200nm程度でほぼ均一なサイズである。また、得られる繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体は、その炭素骨格の一部が触媒金属元素、窒素原子等で置換されていてもよい。繊維状カーボンナノホーン集合体を単離して用いてよい。繊維状カーボンナノホーン集合体を球状カーボンナノホーン集合体等のその他の炭素材料とともに用いてもよい。なお、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体とは、サイズの違いにより分離することが可能である。さらに、カーボンナノホーン集合体以外の不純物が含まれる場合、遠心分離法、沈降速度の違い、サイズによる分離等により除去できる。また、生成条件を変えることで、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体の比率を変えることが可能である。 The fibrous carbon nanohorn aggregate obtained as described above is usually obtained together with the spherical carbon nanohorn aggregate. Hereinafter, the mixture of the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate is also simply referred to as a carbon nanohorn aggregate. The spherical carbon nanohorn aggregate is a spherical carbon structure in which single-layer carbon nanohorns are radially assembled. The spherical carbon nanohorn aggregate has a diameter of about 30 nm to 200 nm and has a substantially uniform size. Further, in the obtained fibrous carbon nanohorn aggregate and spherical carbon nanohorn aggregate, a part of the carbon skeleton may be replaced with a catalyst metal element, a nitrogen atom or the like. Fibrous carbon nanohorn aggregates may be isolated and used. Fibrous carbon nanohorn aggregates may be used with other carbon materials such as spherical carbon nanohorn aggregates. The fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate can be separated by the difference in size. Further, when impurities other than carbon nanohorn aggregates are contained, they can be removed by a centrifugal separation method, a difference in sedimentation speed, separation by size, or the like. Further, by changing the production conditions, it is possible to change the ratio of the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate.

カーボンナノホーン集合体に微細な孔を開ける(開孔)場合は、酸化処理によって行うことができる。この酸化処理により、開孔部に酸素を含んだ表面官能基が形成される。また酸化処理は、気相プロセスと液相プロセスを使用できる。気相プロセスの場合は、空気、酸素、二酸化炭素等の酸素を含む雰囲気ガス中で熱処理して行う。中でも、コストの観点から空気が適している。また、温度は、300℃〜650℃の範囲が使用でき、400℃〜550℃がより適している。300℃以上であれば、炭素が燃え、確実に開孔を形成できる。また、650℃以下ではカーボンナノホーン集合体の全体が燃焼することを抑制できる。液相プロセスの場合、硝酸、硫酸、過酸化水素等の酸化性物質を含む液体中で行う。硝酸の場合は、室温〜120℃の温度範囲で使用できる。120℃以下であれば、必要以上に酸化されることがない。過酸化水素の場合、室温〜100℃の温度範囲で使用でき、40℃以上がより好ましい。40℃〜100℃の温度範囲では酸化力が効率的に作用し、効率よく開孔を形成できる。また液相プロセスのとき、光照射を併用するとより効果的である。 When making fine holes (opening) in the carbon nanohorn aggregate, it can be performed by an oxidation treatment. By this oxidation treatment, a surface functional group containing oxygen is formed in the opened portion. In addition, a gas phase process and a liquid phase process can be used for the oxidation treatment. In the case of a gas phase process, heat treatment is performed in an atmospheric gas containing oxygen such as air, oxygen, and carbon dioxide. Above all, air is suitable from the viewpoint of cost. Further, the temperature can be used in the range of 300 ° C. to 650 ° C., and 400 ° C. to 550 ° C. is more suitable. If the temperature is 300 ° C. or higher, carbon burns and pores can be reliably formed. Further, at 650 ° C. or lower, it is possible to suppress the entire combustion of the carbon nanohorn aggregate. In the case of a liquid phase process, it is carried out in a liquid containing an oxidizing substance such as nitric acid, sulfuric acid and hydrogen peroxide. In the case of nitric acid, it can be used in the temperature range of room temperature to 120 ° C. If the temperature is 120 ° C. or lower, it will not be oxidized more than necessary. In the case of hydrogen peroxide, it can be used in a temperature range of room temperature to 100 ° C, and 40 ° C or higher is more preferable. Oxidizing power acts efficiently in the temperature range of 40 ° C to 100 ° C, and pores can be efficiently formed. In addition, it is more effective to use light irradiation together in the liquid phase process.

カーボンナノホーン集合体の生成時に含まれる触媒金属は、必要に応じて除去することができる。触媒金属は硝酸、硫酸、塩酸中で溶解するため除去できる。使いやすさの観点から、塩酸が適している。触媒を溶解する温度は適宜選択できるが、触媒を十分に除去する場合は、70℃以上に加熱して行うことが望ましい。また、硝酸、硫酸を用いる場合、触媒除去と開孔の形成とを同時にあるいは連続して行うことができる。また、触媒がカーボンナノホーン集合体生成時に炭素被膜で覆われる場合があるため、炭素被膜を除去するために前処理を行うことが望ましい。前処理は空気中、250℃〜450℃程度で加熱することが望ましい。300℃以上では上記のように一部開孔が形成されることがある。カーボンナノホーン集合体は、カーボンナノチューブよりも触媒金属を除去することが容易である。本実施形態において、触媒金属を除去したカーボンナノホーン集合体を用いることにより、実質的に金属を含まず、金属が溶出しない塗膜を形成できる。これにより、塗膜からの金属溶出を防止できる。 The catalytic metal contained in the formation of the carbon nanohorn aggregate can be removed as needed. The catalyst metal can be removed because it dissolves in nitric acid, sulfuric acid, and hydrochloric acid. Hydrochloric acid is suitable from the viewpoint of ease of use. The temperature at which the catalyst is melted can be appropriately selected, but when the catalyst is sufficiently removed, it is desirable to heat the catalyst to 70 ° C. or higher. When nitric acid or sulfuric acid is used, the catalyst can be removed and the pores can be formed simultaneously or continuously. In addition, since the catalyst may be covered with a carbon film when the carbon nanohorn aggregate is formed, it is desirable to perform pretreatment to remove the carbon film. The pretreatment is preferably heated in air at about 250 ° C to 450 ° C. At 300 ° C. or higher, some openings may be formed as described above. Carbon nanohorn aggregates are easier to remove catalytic metals than carbon nanotubes. In the present embodiment, by using the carbon nanohorn aggregate from which the catalyst metal has been removed, it is possible to form a coating film that is substantially free of metal and does not elute metal. This makes it possible to prevent metal elution from the coating film.

カーボンナノホーン集合体は、不活性ガス、水素、真空中等の非酸化性雰囲気で熱処理することで結晶性を向上させることができる。熱処理温度は、800℃〜2000℃が使用できるが、好ましくは1000℃〜1500℃である。また、開孔処理後では、開孔部に酸素を含んだ表面官能基が形成されるが、熱処理により除去することもできる。その熱処理温度は、150℃〜2000℃が使用できる。表面官能基であるカルボキシル基、水酸基等を除去するには150℃〜600℃が望ましい。表面官能基であるカルボニル基を除去するには、600℃以上が望ましい。また、表面官能基は、気体または液体雰囲気下で還元することによって除去することができる。気体雰囲気下での還元には、水素が使用でき、上記の結晶性の向上と兼用することができる。液体雰囲気下では、ヒドラジン等が利用できる。 The crystallinity of the carbon nanohorn aggregate can be improved by heat treatment in a non-oxidizing atmosphere such as an inert gas, hydrogen, or vacuum. The heat treatment temperature can be 800 ° C. to 2000 ° C., but is preferably 1000 ° C. to 1500 ° C. Further, after the pore opening treatment, a surface functional group containing oxygen is formed in the pore opening portion, but it can also be removed by heat treatment. The heat treatment temperature can be 150 ° C to 2000 ° C. 150 ° C to 600 ° C is desirable for removing carboxyl groups, hydroxyl groups, etc., which are surface functional groups. In order to remove the carbonyl group which is a surface functional group, 600 ° C. or higher is desirable. In addition, surface functional groups can be removed by reduction in a gas or liquid atmosphere. Hydrogen can be used for reduction in a gaseous atmosphere, and can be used in combination with the above-mentioned improvement in crystallinity. Hydrazine and the like can be used in a liquid atmosphere.

<塗料>
本実施形態に係る塗料は、繊維状カーボンナノホーン集合体を含む導電成分を含む。繊維状カーボンナノホーン集合体以外の導電成分としては、球状カーボンナノホーン集合体、カーボンナノチューブ、グラファイト等の炭素材料が挙げられる。導電成分は導電性材料から構成される成分であり、その他各種の導電性材料を含んでよい。導電成分は、例えば、炭素材料以外にも導電性の金属粒子や導電性ポリマー等を含んでよい。一実施形態では、導電性材料は約10−3Ω・cm以下の体積抵抗率(20℃)を備える材料である。
<Paint>
The paint according to the present embodiment contains a conductive component containing a fibrous carbon nanohorn aggregate. Examples of the conductive component other than the fibrous carbon nanohorn aggregate include carbon materials such as spherical carbon nanohorn aggregate, carbon nanotube, and graphite. The conductive component is a component composed of a conductive material, and may include various other conductive materials. The conductive component may include, for example, conductive metal particles, a conductive polymer, or the like in addition to the carbon material. In one embodiment, the conductive material is a material having a volume resistivity (20 ° C.) of about 10 -3 Ω · cm or less.

塗料の母材は特に限定されず、基材に塗膜を形成し得る樹脂、重合性モノマー等の塗料に一般的に用いられる材料であってよい。樹脂としては、例えば、アルキド樹脂、不飽和ポリエステル樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、塩化ビニル樹脂、アクリル樹脂、アクリルウレタン樹脂、ウレタン樹脂、シリコーン樹脂、アクリルシリコーン樹脂、フッ素樹脂等が挙げられる。重合性モノマーとしては、例えば、スチレン、メチルメタクリレート、2−ヒドロキシエチルアクリレート、メタクリル酸、マレイン酸、イタコン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、o−およびp−スチレンスルホネート、ジビニルベンゼン、エチレンジアクリレート、N,N−メチレンビスアクリルアミド等が挙げられる。 The base material of the coating material is not particularly limited, and may be a material generally used for coating materials such as a resin and a polymerizable monomer that can form a coating film on a base material. Examples of the resin include alkyd resin, unsaturated polyester resin, melamine resin, phenol resin, epoxy resin, vinyl chloride resin, acrylic resin, acrylic urethane resin, urethane resin, silicone resin, acrylic silicone resin, fluororesin and the like. .. Examples of the polymerizable monomer include styrene, methylmethacrylate, 2-hydroxyethylacrylate, methacrylic acid, maleic acid, itaconic acid, 2-acrylamide-2-methylpropanesulfonic acid, o- and p-styrene sulfonate, and divinylbenzene. Examples thereof include ethylene diacrylate, N, N-methylenebisacrylamide and the like.

塗料は水および/または有機溶媒を含んでよい。有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、エチレングリコール等のグリコール類、ケトン類、エーテル類等が挙げられる。 The paint may contain water and / or an organic solvent. Examples of the organic solvent include alcohols such as methanol, ethanol and isopropanol, glycols such as ethylene glycol, ketones and ethers.

塗料は、母材(特には重合性モノマー)に適する硬化剤を含んでよい。また、塗料には、レベリング剤、スリップ剤、可塑剤、増粘剤、乾燥剤、消泡剤、顔料、染料等の従来公知の添加剤を任意に配合できる。 The paint may contain a curing agent suitable for the base material (particularly the polymerizable monomer). Further, conventionally known additives such as leveling agents, slip agents, plasticizers, thickeners, desiccants, defoaming agents, pigments and dyes can be arbitrarily blended in the paint.

<塗膜>
塗料を基材に塗布することにより塗膜を形成できる。必要に応じて塗膜を更に乾燥し、水や有機溶媒等の揮発性成分を除去してよい。必要に応じて塗膜を更に硬化処理してよい。塗膜の硬化方法は母材、特には重合性モノマーの種類に応じて適宜決定される。例えば、熱硬化や光硬化等を採用できる。塗膜の厚さは特には限定されないが、例えば、1μm〜50μmの範囲である。
<Coating film>
A coating film can be formed by applying the paint to the substrate. If necessary, the coating film may be further dried to remove volatile components such as water and organic solvents. If necessary, the coating film may be further cured. The curing method of the coating film is appropriately determined depending on the type of the base material, particularly the polymerizable monomer. For example, thermosetting, photocuring, or the like can be adopted. The thickness of the coating film is not particularly limited, but is, for example, in the range of 1 μm to 50 μm.

塗膜に含まれる繊維状カーボンナノホーン集合体の量は、好ましくは0.001質量%以上、より好ましくは0.002質量%以上、さらに好ましくは0.003質量%以上である。繊維状カーボンナノホーン集合体の量がこの範囲内である場合、塗膜の導電性を高めることができる。塗膜に含まれる繊維状カーボンナノホーン集合体の量は、好ましくは1質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.01質量%以下、特に好ましくは0.005質量%以下である。繊維状カーボンナノホーン集合体の量がこの範囲内である場合、繊維状カーボンナノホーン集合体が塗膜の色味に影響しにくく、透明な塗膜を形成できる。塗膜に含まれる導電成分または炭素材料の総量は、好ましくは0.001質量%以上、より好ましくは0.005質量%以上、さらに好ましくは0.01質量%以上である。塗膜に含まれる導電成分または炭素材料の総量は、好ましくは1質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.08質量%以下である。 The amount of the fibrous carbon nanohorn aggregate contained in the coating film is preferably 0.001% by mass or more, more preferably 0.002% by mass or more, and further preferably 0.003% by mass or more. When the amount of the fibrous carbon nanohorn aggregate is within this range, the conductivity of the coating film can be enhanced. The amount of the fibrous carbon nanohorn aggregate contained in the coating film is preferably 1% by mass or less, more preferably 0.1% by mass or less, still more preferably 0.01% by mass or less, and particularly preferably 0.005% by mass. It is as follows. When the amount of the fibrous carbon nanohorn aggregate is within this range, the fibrous carbon nanohorn aggregate does not easily affect the color of the coating film, and a transparent coating film can be formed. The total amount of the conductive component or the carbon material contained in the coating film is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, and further preferably 0.01% by mass or more. The total amount of the conductive component or the carbon material contained in the coating film is preferably 1% by mass or less, more preferably 0.1% by mass or less, and further preferably 0.08% by mass or less.

塗膜の導電性を更に高めるために、形成した塗膜の表面に剥離シートを貼合してよい。剥離シートを塗膜から剥がすことにより塗膜の表面を毛羽立たせることができる。毛羽立った塗膜の表面では、繊維状カーボンナノホーン集合体の先端が露出するようになり、塗膜の導電性が高まる。 In order to further increase the conductivity of the coating film, a release sheet may be attached to the surface of the formed coating film. The surface of the coating film can be fluffed by peeling the release sheet from the coating film. On the surface of the fluffy coating film, the tip of the fibrous carbon nanohorn aggregate is exposed, and the conductivity of the coating film is enhanced.

剥離シートは、好ましくは粘着成分を含む粘着剤層を有する易剥離性粘着シートである。易剥離性粘着シートの粘着剤層に用いられる粘着成分としては、例えばゴム系樹脂、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ビニルエーテル樹脂等が挙げられる。特に、易剥離性粘着シートには、ダイシングテープやマスキングテープとして市販されているものを好適に用いることができる。 The release sheet is preferably an easily release adhesive sheet having an adhesive layer containing an adhesive component. Examples of the adhesive component used for the adhesive layer of the easily peelable adhesive sheet include rubber-based resin, acrylic resin, silicone resin, urethane resin, vinyl ether resin and the like. In particular, as the easily peelable adhesive sheet, commercially available dicing tape or masking tape can be preferably used.

易剥離性粘着シートの粘着面は粘着力の高い部分(粘着部)と粘着力の低い部分(非粘着部)を有することが好ましい。粘着部と非粘着部を設けることにより、易剥離性粘着シートを剥離する際に、易剥離性粘着シートが伸縮し、塗膜の表面から露出する繊維状カーボンナノホーン集合体の数を増やすことができる。非粘着部には、シリコーン剥離剤や長鎖アルキル剥離剤等の剥離成分を用いることができる。粘着部には、ゴム系樹脂、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ビニルエーテル樹脂等の粘着成分を用いることができる。基材上に剥離剤層を設け、その一部に粘着剤層を設け、粘着部と非粘着部を形成できる。あるいは、基材上に粘着剤層を設け、その一部に剥離剤層を設け、粘着部と非粘着部を形成できる。粘着部または非粘着部の形状は特に限定されず、例えば、格子状、ドット状、穴あき状、または縞状等が挙げられる。易剥離性粘着シートの粘着面における粘着部と非粘着部の面積比率は、例えば、1:10〜10:1、好ましくは1:3〜3:1であってよい。 The adhesive surface of the easily peelable adhesive sheet preferably has a portion having a high adhesive strength (adhesive portion) and a portion having a low adhesive strength (non-adhesive portion). By providing the adhesive portion and the non-adhesive portion, when the easily peelable adhesive sheet is peeled off, the easily peelable adhesive sheet expands and contracts, and the number of fibrous carbon nanohorn aggregates exposed from the surface of the coating film can be increased. can. A peeling component such as a silicone stripping agent or a long-chain alkyl stripping agent can be used for the non-adhesive portion. Adhesive components such as rubber-based resin, acrylic resin, silicone resin, urethane resin, and vinyl ether resin can be used for the adhesive portion. A release agent layer may be provided on the base material, and an adhesive layer may be provided on a part thereof to form an adhesive portion and a non-adhesive portion. Alternatively, a pressure-sensitive adhesive layer may be provided on the base material, and a release agent layer may be provided on a part thereof to form a pressure-sensitive adhesive portion and a non-adhesive portion. The shape of the adhesive portion or the non-adhesive portion is not particularly limited, and examples thereof include a grid shape, a dot shape, a perforated shape, a striped shape, and the like. The area ratio of the adhesive portion to the non-adhesive portion on the adhesive surface of the easily peelable adhesive sheet may be, for example, 1:10 to 10: 1, preferably 1: 3 to 3: 1.

繊維状カーボンナノホーン集合体を塗膜の表面に露出するために、塗膜と剥離シートとの引きはがし粘着力が所定の範囲内にあることが好ましい。塗膜と剥離シートとの引きはがし粘着力は、好ましくは0.1N/cm以上、より好ましくは1N/cm以上、さらに好ましくは2N/cm以上である。塗膜と剥離シートとの引きはがし粘着力は、好ましくは10N/cm以下、より好ましくは8N/cm以下、さらに好ましくは4N/cm以下である。引きはがし粘着力はJIS Z 0237(剥離ライナーをテープおよびシートの粘着面に対して180°に引きはがす試験方法)により測定される。JIS Z 0237において、引きはがし粘着力は引張試験機により測定され、引張試験機の引きはがし速度は5.0±0.2mm/sである。 In order to expose the fibrous carbon nanohorn aggregate to the surface of the coating film, it is preferable that the peeling adhesive force between the coating film and the release sheet is within a predetermined range. The peeling adhesive strength between the coating film and the release sheet is preferably 0.1 N / cm or more, more preferably 1 N / cm or more, and further preferably 2 N / cm or more. The peeling adhesive force between the coating film and the release sheet is preferably 10 N / cm or less, more preferably 8 N / cm or less, and further preferably 4 N / cm or less. The peeling adhesive force is measured by JIS Z 0237 (a test method of peeling the release liner at 180 ° with respect to the adhesive surface of the tape and the sheet). In JIS Z 0237, the peeling adhesive force is measured by a tensile tester, and the peeling speed of the tensile tester is 5.0 ± 0.2 mm / s.

本実施形態に係る塗膜は、上に記載されるように導電成分の含有量が少ない場合であっても高い導電性を有する。塗膜の表面抵抗率は、一般的には1×1014Ω/□以下、好ましくは1×1011Ω/□以下、より好ましくは1×1010Ω/□以下、さらに好ましくは1×10Ω/□以下である。塗膜の表面抵抗率は、一般的には、1×10Ω/□以上である。表面抵抗率はJIS K6911に準拠して測定できる。一実施形態では、導電成分における炭素材料以外の導電性材料(ただし、繊維状カーボンナノホーン集合体製造用の触媒由来の金属は除く)の量は、好ましくは1質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.001質量%以下である。一実施形態では、塗膜は、導電成分以外には炭素材料以外の導電性材料(ただし、繊維状カーボンナノホーン集合体製造用の触媒由来の金属は除く)を含まない。一実施形態では、導電成分における炭素材料の量は、好ましくは50質量%以上、より好ましくは80質量%以上であり、100質量%であってもよい。As described above, the coating film according to the present embodiment has high conductivity even when the content of the conductive component is small. The surface resistivity of the coating film is generally 1 × 10 14 Ω / □ or less, preferably 1 × 10 11 Ω / □ or less, more preferably 1 × 10 10 Ω / □ or less, and further preferably 1 × 10 It is 9 Ω / □ or less. The surface resistivity of the coating film is generally 1 × 10 5 Ω / □ or more. The surface resistivity can be measured according to JIS K6911. In one embodiment, the amount of the conductive material other than the carbon material (excluding the catalyst-derived metal for producing the fibrous carbon nanohorn aggregate) in the conductive component is preferably 1% by mass or less, more preferably 0. It is 1% by mass or less, more preferably 0.001% by mass or less. In one embodiment, the coating film does not contain a conductive material other than the carbon material (excluding the catalyst-derived metal for producing the fibrous carbon nanohorn aggregate) other than the conductive component. In one embodiment, the amount of the carbon material in the conductive component is preferably 50% by mass or more, more preferably 80% by mass or more, and may be 100% by mass.

<CNB生成物>
窒素雰囲気下のチャンバー内で、鉄を含有した炭素ターゲットをCOレーザーアブレーションすることで繊維状カーボンナノホーン集合体を含む炭素材料混合物(以降CNB生成物と記載)を作製した。詳細には、鉄を1重量%含有する炭素ターゲットを、2rpmで回転させて、これにCOレーザーを連続的に照射した。COレーザーのエネルギー密度は、50kW/cmであった。チャンバー内の温度は室温とし、チャンバー内に供給する窒素の流量を10L/minになるように調整した。チャンバー内の圧力は933.254hPa〜1266.559hPa(700Torr〜950Torr)に制御した。
<CNB product>
A carbon material mixture containing fibrous carbon nanohorn aggregates (hereinafter referred to as CNB product) was prepared by CO 2 laser ablation of a carbon target containing iron in a chamber under a nitrogen atmosphere. Specifically, a carbon target containing 1% by weight of iron was rotated at 2 rpm and continuously irradiated with a CO 2 laser. The energy density of the CO 2 laser was 50 kW / cm 2 . The temperature inside the chamber was set to room temperature, and the flow rate of nitrogen supplied into the chamber was adjusted to 10 L / min. The pressure in the chamber was controlled to 933.254 hPa to 1266.559 hPa (700 Torr to 950 Torr).

CNB生成物をSEM観察すると、繊維状の物質(繊維状カーボンナノホーン集合体)と球状の物質(球状カーボンナノホーン集合体)とグラファイトが観察された。繊維状カーボンナノホーン集合体は、直径が30nm〜100nm程度で、長さが数μm〜数10μmであった。球状カーボンナノホーン集合体は、直径が30nm〜200nm程度の範囲でほぼ均一なサイズのものが多くを占めていた。グラファイトは、大きさが1μm〜数10μmであった。 When the CNB product was observed by SEM, a fibrous substance (fibrous carbon nanohorn aggregate), a spherical substance (spherical carbon nanohorn aggregate), and graphite were observed. The fibrous carbon nanohorn aggregate had a diameter of about 30 nm to 100 nm and a length of several μm to several tens of μm. Most of the spherical carbon nanohorn aggregates had a diameter in the range of about 30 nm to 200 nm and had a substantially uniform size. Graphite was 1 μm to several tens of μm in size.

熱重量分析、および動的光散乱法による粒度分布測定から、CNB生成物は、繊維状カーボンナノホーン集合体4質量%、球状カーボンナノホーン集合体62質量%、グラファイト21質量%、酸化鉄13質量%を含んでいることが確認された。 From thermogravimetric analysis and particle size distribution measurement by dynamic light scattering, the CNB products were 4% by mass of fibrous carbon nanohorn aggregates, 62% by mass of spherical carbon nanohorn aggregates, 21% by mass of graphite, and 13% by mass of iron oxide. It was confirmed that it contained.

<実施例1>
シリコーン樹脂エマルジョン(旭化成SILRES(登録商標)、不揮発成分60質量%含有)100質量部にCNB生成物を0.05質量部加え、三本ロールミルで混錬した。水で希釈した塗料を基板にローラーで塗布し、200℃で1時間硬化した。この塗膜の表面抵抗率を25℃の条件下で、半導体パラメーター・アナライザ(商品名:Agilent 4155C、Agilent Technologies社製)を用いて四探針法で測定したところ、塗膜の表面抵抗率は2×1010Ω/□であった。
<Example 1>
0.05 parts by mass of CNB product was added to 100 parts by mass of a silicone resin emulsion (Asahi Kasei SILRES (registered trademark), containing 60% by mass of a non-volatile component), and the mixture was kneaded with a three-roll mill. The paint diluted with water was applied to the substrate with a roller and cured at 200 ° C. for 1 hour. When the surface resistivity of this coating film was measured by a four-probe method using a semiconductor parameter analyzer (trade name: Agilent 4155C, manufactured by Agilent Technologies) under the condition of 25 ° C., the surface resistivity of the coating film was measured. It was 2 × 10 10 Ω / □.

<実施例2>
実施例1で得られた塗膜の表面にダイシングテープ(日立化成 HAE−1503L)を貼り、引き剥がした。塗膜の表面抵抗率は3×10Ω/□であった。
<Example 2>
A dicing tape (Hitachi Kasei HAE-1503L) was attached to the surface of the coating film obtained in Example 1 and peeled off. The surface resistivity of the coating film was 3 × 10 8 Ω / □.

<比較例1>
シリコーン樹脂エマルジョン(旭化成SILRES(登録商標)、不揮発成分60質量%含有)100質量部にカーボンナノチューブを0.05質量部加え、三本ロールミルで混錬した。水で希釈した塗料を基板にローラーで塗布し、200℃で1時間硬化した。塗膜の表面抵抗率は5×1012Ω/□であった。
<Comparative Example 1>
0.05 parts by mass of carbon nanotubes were added to 100 parts by mass of a silicone resin emulsion (Asahi Kasei SILRES (registered trademark), containing 60% by mass of a non-volatile component), and the mixture was kneaded with a three-roll mill. The paint diluted with water was applied to the substrate with a roller and cured at 200 ° C. for 1 hour. The surface resistivity of the coating film was 5 × 10 12 Ω / □.

<比較例2>
比較例1で得られた塗膜の表面にダイシングテープを貼り、引き剥がした。塗膜の表面抵抗率は2×1012Ω/□であり、CNB生成物を添加した塗膜と比較すると表面処理の効果が小さかった。繊維状カーボンナノホーン集合体は凸凹した形状を有するためダイシングテープに接着する部分が多く、表面処理の効果が大きくなったと考えられる。
<Comparative Example 2>
A dicing tape was attached to the surface of the coating film obtained in Comparative Example 1 and peeled off. The surface resistivity of the coating film was 2 × 10 12 Ω / □, and the effect of the surface treatment was smaller than that of the coating film to which the CNB product was added. Since the fibrous carbon nanohorn aggregate has an uneven shape, there are many parts that adhere to the dicing tape, and it is considered that the effect of the surface treatment is increased.

この出願は、2019年1月16日に出願された日本出願特願2019−005018を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2019-005018 filed on 16 January 2019 and incorporates all of its disclosures herein.

以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made within the scope of the present invention in terms of the configuration and details of the present invention.

Claims (4)

単層カーボンナノホーンが放射状に集合し、且つ、繊維状に繋がっている繊維状カーボンナノホーン集合体を含む導電成分を含む塗膜。 A coating film containing a conductive component containing a fibrous carbon nanohorn aggregate in which single-layer carbon nanohorns are radially aggregated and connected in a fibrous manner. 前記繊維状カーボンナノホーン集合体の量が0.001質量%以上0.1質量%以下である、請求項1に記載の塗膜。 The coating film according to claim 1, wherein the amount of the fibrous carbon nanohorn aggregate is 0.001% by mass or more and 0.1% by mass or less. 前記導電成分の量が0.1質量%以下であり、表面抵抗率が1×1010Ω/□以下である、請求項1または2に記載の塗膜。The coating film according to claim 1 or 2, wherein the amount of the conductive component is 0.1% by mass or less and the surface resistivity is 1 × 10 10 Ω / □ or less. 繊維状カーボンナノホーン集合体を含む導電成分を含む帯電防止塗膜の製造方法であって、
基材に繊維状カーボンナノホーン集合体を含む導電成分を含む塗料を塗布し、塗膜を形成する工程、
前記塗膜に易剥離性粘着シートを貼合する工程、および
前記塗膜から前記易剥離性粘着シートを剥離する工程
を含む帯電防止塗膜の製造方法。
A method for producing an antistatic coating film containing a conductive component containing a fibrous carbon nanohorn aggregate.
A process of applying a paint containing a conductive component containing a fibrous carbon nanohorn aggregate to a base material to form a coating film.
A method for producing an antistatic coating film, which comprises a step of attaching an easily peelable pressure-sensitive adhesive sheet to the coating film and a step of peeling the easily peelable pressure-sensitive adhesive sheet from the coating film.
JP2020566419A 2019-01-16 2020-01-15 Carbon nanobrush antistatic paint Active JP7230928B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019005018 2019-01-16
JP2019005018 2019-01-16
PCT/JP2020/000975 WO2020149283A1 (en) 2019-01-16 2020-01-15 Carbon nano brush antistatic coating material

Publications (2)

Publication Number Publication Date
JPWO2020149283A1 true JPWO2020149283A1 (en) 2021-11-25
JP7230928B2 JP7230928B2 (en) 2023-03-01

Family

ID=71613918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020566419A Active JP7230928B2 (en) 2019-01-16 2020-01-15 Carbon nanobrush antistatic paint

Country Status (2)

Country Link
JP (1) JP7230928B2 (en)
WO (1) WO2020149283A1 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127737A (en) * 2002-10-03 2004-04-22 Hitachi Zosen Corp Carbon nanotube conductive material and its manufacturing method
WO2006043449A1 (en) * 2004-10-21 2006-04-27 Nitto Denko Corporation Antistatic adhesive optical film and image display
JP2006272876A (en) * 2005-03-30 2006-10-12 Takiron Co Ltd Electroconductive element
JP2007190717A (en) * 2006-01-17 2007-08-02 Lintec Corp Peel film and its manufacturing method
JP2007229989A (en) * 2006-02-28 2007-09-13 Takiron Co Ltd Conductive molded body and its manufacturing method
JP2008168591A (en) * 2007-01-15 2008-07-24 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display
JP2010262857A (en) * 2009-05-08 2010-11-18 Nec Corp Manufacturing method of electron-emitting element, and forming method and lighting apparatus of surface-emitting element
JP2010269569A (en) * 2009-05-25 2010-12-02 Nippon Kayaku Co Ltd Conductive film for transfer, production process thereof and conductive object
JP2011064920A (en) * 2009-09-17 2011-03-31 Fujicopian Co Ltd Pasting anti-reflection film
WO2012133239A1 (en) * 2011-03-31 2012-10-04 日本電気株式会社 Carbon nanotube/carbon nanohorn complex, method for producing carbon nanotube/carbon nanohorn complex, and application therefor
JP2012248295A (en) * 2011-05-25 2012-12-13 Nec Corp Field emission type light emitting device
JP2013211272A (en) * 2013-05-17 2013-10-10 Nissha Printing Co Ltd Method of manufacturing conductive pattern coating body
JP2013256631A (en) * 2012-06-14 2013-12-26 Mitsubishi Rayon Co Ltd Nanocarbon-containing composition, and conductor using the same
JP2014152080A (en) * 2013-02-08 2014-08-25 Kohjin Film & Chemicals Co Ltd Active energy ray-curable nanocarbon dispersion, method for manufacturing the same, and active energy ray-curable coating agent using the same
JP2014169193A (en) * 2013-03-01 2014-09-18 Nec Corp Carbon material composed of nanocarbon and graphene or graphite compounded with each other, and method for producing the same
WO2015016316A1 (en) * 2013-07-31 2015-02-05 日産化学工業株式会社 Carbon material dispersed film formation composition
WO2016147909A1 (en) * 2015-03-16 2016-09-22 日本電気株式会社 Fibrous carbon nanohorn aggregates and method for producing same
WO2018146810A1 (en) * 2017-02-13 2018-08-16 日本電気株式会社 Dispersion liquid, preparation method thereof, gas sensor and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104104A (en) * 2011-11-14 2013-05-30 Mec Kk Etching solution, replenishment solution, and method for forming copper wiring

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127737A (en) * 2002-10-03 2004-04-22 Hitachi Zosen Corp Carbon nanotube conductive material and its manufacturing method
WO2006043449A1 (en) * 2004-10-21 2006-04-27 Nitto Denko Corporation Antistatic adhesive optical film and image display
JP2006272876A (en) * 2005-03-30 2006-10-12 Takiron Co Ltd Electroconductive element
JP2007190717A (en) * 2006-01-17 2007-08-02 Lintec Corp Peel film and its manufacturing method
JP2007229989A (en) * 2006-02-28 2007-09-13 Takiron Co Ltd Conductive molded body and its manufacturing method
JP2008168591A (en) * 2007-01-15 2008-07-24 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display
JP2010262857A (en) * 2009-05-08 2010-11-18 Nec Corp Manufacturing method of electron-emitting element, and forming method and lighting apparatus of surface-emitting element
JP2010269569A (en) * 2009-05-25 2010-12-02 Nippon Kayaku Co Ltd Conductive film for transfer, production process thereof and conductive object
JP2011064920A (en) * 2009-09-17 2011-03-31 Fujicopian Co Ltd Pasting anti-reflection film
WO2012133239A1 (en) * 2011-03-31 2012-10-04 日本電気株式会社 Carbon nanotube/carbon nanohorn complex, method for producing carbon nanotube/carbon nanohorn complex, and application therefor
JP2012248295A (en) * 2011-05-25 2012-12-13 Nec Corp Field emission type light emitting device
JP2013256631A (en) * 2012-06-14 2013-12-26 Mitsubishi Rayon Co Ltd Nanocarbon-containing composition, and conductor using the same
JP2014152080A (en) * 2013-02-08 2014-08-25 Kohjin Film & Chemicals Co Ltd Active energy ray-curable nanocarbon dispersion, method for manufacturing the same, and active energy ray-curable coating agent using the same
JP2014169193A (en) * 2013-03-01 2014-09-18 Nec Corp Carbon material composed of nanocarbon and graphene or graphite compounded with each other, and method for producing the same
JP2013211272A (en) * 2013-05-17 2013-10-10 Nissha Printing Co Ltd Method of manufacturing conductive pattern coating body
WO2015016316A1 (en) * 2013-07-31 2015-02-05 日産化学工業株式会社 Carbon material dispersed film formation composition
WO2016147909A1 (en) * 2015-03-16 2016-09-22 日本電気株式会社 Fibrous carbon nanohorn aggregates and method for producing same
WO2018146810A1 (en) * 2017-02-13 2018-08-16 日本電気株式会社 Dispersion liquid, preparation method thereof, gas sensor and method for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PILLA, S. ET AL.: "Nitrogen Rich Hyperbranched Polyurethane-Carbon Nanohorn Composite: Implications on the Development", POLYMER COMPOSITES, vol. Volume 39, Issue S2, JPN6020004899, 12 September 2016 (2016-09-12), pages 772 - 779, ISSN: 0004904743 *

Also Published As

Publication number Publication date
JP7230928B2 (en) 2023-03-01
WO2020149283A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
US10703633B2 (en) Nanocarbon composite material and method for manufacturing same
US20100219383A1 (en) Boron-Doped Single-Walled Nanotubes(SWCNT)
Fabbri et al. In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures
JP7260141B2 (en) Planar structure containing fibrous carbon nanohorn aggregates
JP7088014B2 (en) Electromagnetic wave absorption material
CN108064255A (en) Carbon nano tube dispersion liquid and its manufacturing method
JP2005314226A (en) Carbon nanotube, electron emission source including the same and electron emission device including the electron emission source
CN103318868A (en) Preparation method for semiconducting single-wall carbon nanotube
US7755264B2 (en) Composition for formatting an electron emission source for use in an electron emission device and an electron emission source fabricated using the same
JP6110683B2 (en) Method for producing carbonaceous material-polymer composite material and carbonaceous material-polymer composite material
JP5775366B2 (en) Method for producing carbonaceous material-polymer composite material
JP6922893B2 (en) Adsorbent
KR101635848B1 (en) Manufacture Method of Basic Ink Containing Carbon-nonbonding Metal Nanoparticles Metal Nanoparticles Particle-dispersed Ink
JPWO2020149283A1 (en) Carbon nano brush antistatic paint
Xie et al. Concentration and temperature controlled oxidation and cutting of single-walled carbon nanotubes by ammonium persulfate
WO2020250894A1 (en) Composite member
Liu et al. Superamphiphilic Ag–CNTs electrode by atmosphere plasma treatment
JP7120210B2 (en) Method for producing carbon nanohorn aggregate
JP7283083B2 (en) Carbon nanobrush adhesive/adhesive
JP5447049B2 (en) Method for producing graphene film
WO2020153296A1 (en) Stretch-molded body
JP2007115495A (en) Electron emission source
JP6939903B2 (en) Method for shortening the length of the fibrous carbon nanohorn aggregate and the shortened fibrous carbon nanohorn aggregate
JP2020113501A (en) Carbon nano brush electron emission source
Miao et al. High-efficient and environmentally friendly enrichment of semiconducting single-walled carbon nanotubes by combining short-time electrochemical pre-oxidation and combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R151 Written notification of patent or utility model registration

Ref document number: 7230928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151