JP7229139B2 - 工作機械のツール摩耗診断装置 - Google Patents

工作機械のツール摩耗診断装置 Download PDF

Info

Publication number
JP7229139B2
JP7229139B2 JP2019181088A JP2019181088A JP7229139B2 JP 7229139 B2 JP7229139 B2 JP 7229139B2 JP 2019181088 A JP2019181088 A JP 2019181088A JP 2019181088 A JP2019181088 A JP 2019181088A JP 7229139 B2 JP7229139 B2 JP 7229139B2
Authority
JP
Japan
Prior art keywords
wear
tool
degree
wear degree
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019181088A
Other languages
English (en)
Other versions
JP2021053772A (ja
Inventor
見多 出口
和夫 小埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019181088A priority Critical patent/JP7229139B2/ja
Publication of JP2021053772A publication Critical patent/JP2021053772A/ja
Application granted granted Critical
Publication of JP7229139B2 publication Critical patent/JP7229139B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は、工作機械に付与される加工ツール(以下、ツール)の摩耗状態を算出、診断する技術に関する。その中でも特に、ツールの摩耗状態を定量的に算出してツールの交換時期を判定・予測する技術に関する。
なお、本明細書における摩耗とは、使用によりツールの形状、特性が変化ないし劣化することを示し、劣化、消耗、変形、損傷とも表現可能である。
近年、製造現場における多品種少量生産や混流生産のニーズが高まっている。そのため、タレットパンチやマシニングセンタなどの複合加工機を用いた製造が盛んになっている。これらの加工機は、1台の機器のなかに複数種類のツール(タレットパンチの場合はダイ・パンチ、マシニングセンタの場合はスピンドル)が設置されており、指令コードに基づいてこれらのツールを適宜交換して加工することができる。そのため、製品ごとに形状や材料が異なる多品種少量生産や混流生産に適している。
この種の複合加工機においては、加工を繰り返すうちにツールが摩耗して加工対象の仕上がり品質が低下する。生産におけるロスコストを抑制するためには、ツールの劣化を早期に発見してツールの交換を行うことが重要となる。
ツールの摩耗を検知して交換を行う方法として、特許文献1や特許文献2に示す方法が挙げられる。
特許文献1には、「所定時間経過毎に工具のカウンタ値をサンプリングするサンプリング手段を備え、寿命時刻算出手段は、サンプリング手段のサンプリング結果による前回のサンプリング時刻と現在時刻との時間差と、前回のサンプリング時刻のカウンタ値と現在時刻のカウンタ値とのカウンタ差とに基づいて、工具の寿命時刻を予測算出する工具寿命予測装置」とあり、加工回数のカウント値の時系列変化から工具の交換時期を予測する方法が記載されている。
一方、特許文献2には、「複数の加工において前記収集手段により収集され前記記憶部に記憶された略同じ時刻に対応付けられた複数の荷重値の平均値を求め、前記荷重検知手段により検知された荷重値が、前記荷重値が検知された時刻と略同じ時刻に対応付けられた前記平均値を含む所定の範囲内に入っている場合には前記荷重値を正常と判断し、前記荷重検知手段により検知された荷重値が、前記所定の範囲内に入っていない場合には前記荷重値を異常と判断する」とあり、直近の複数回の加工を行ったときに計測した荷重値の時系列データの平均波形が、上下限閾値内か否かで工具の異常を判断する方法が記載されている。
特開平10-263988号公報 特開2019-13947号公報
しかしながら、特許文献1の技術はツールの加工回数に基づいた予測であるため、加工対象の変更などによって工具の摩耗の進展速度が変わった場合などには予測した摩耗状態と実際の摩耗状態に乖離が生じてしまう。そのため、過剰メンテナンスによる保守費の増加や、メンテナンス不足によるツールの破損が起きる可能性がある。
一方、特許文献2の技術は、加工時の荷重値の時系列波形が予め定めた上下限の閾値から逸脱した場合に異常を検出する方法であり、ツールの摩耗状態によって荷重値が変化する現象を捉えることができる。一方で、加工対象の材質や板厚が変わった場合には、ツールが正常状態であるにも関わらず荷重値の時系列波形が変わってしまうため、上下限の閾値から逸脱してしまいツールが異常であると誤判定してしまう可能性がある。板厚ごとに荷重値の閾値を更新する場合も、厚み寸法の公差の割合が大きい薄板や、未知の板厚の板材が加工対象の場合は誤判定する可能性がある。
そこで、本発明は、上記の課題を解決するために、より正確に工作機械のツールの実際の摩耗状態を定量的に診断することを目的とする。
上記課題を解決するために、本発明では、摩耗度の経時変化(線形変化)を画面表示するものであり、ツールの形状を含むその特性を、最新の摩耗度と対応付けて表示させるものである。より詳細な本発明の一態様は、工作機械の加工で用いられるプレス金型であるツールの摩耗状態を診断する工作機械のツール摩耗診断装置において、前記工作機械のセンサから前記加工における物理量を取得し、当該物理量から特徴量を抽出する手段と、前記特徴量を用いて、前記ツールにおける摩耗状態を示す摩耗度を算出タイミングごとに算出する手段と、ツールごとに、当該ツールの形状に対応付けて、前記摩耗度の推移を示す摩耗推移情報、最新の摩耗度および当該ツールの交換が必要な摩耗度を示す摩耗度閾値からなる摩耗度演算結果を表示装置に表示させる手段を有し、前記特徴量を抽出する手段は、前記特徴量として、前記物理量である前記ツールを駆動するモータの電流量から電流ピーク値および当該電流ピーク値に達した時間を示す時間情報を抽出し、前記摩耗度を算出する手段は、計測した電流ピーク値および時間情報と前記工作機械の動作が正常である場合の電流ピーク値および時間情報である基準情報との差分を用いて前記摩耗度を算出する工作機械のツール摩耗診断装置である。
特に、物理量として、加工のための電流の電流ピーク値および当該電流ピーク値に達した時間を示す時間情報を用いると好適である。また、本発明には、工作機械で複数のツールを用い、これら複数のツールにおける各種情報を合わせて表示することも含まれる。
本発明によれば、複数のツールを使用する工作機械において、各ツールの摩耗状態を定量的に表示することが可能となる。
本発明の一実施例における工作機械のツール摩耗診断システムおよび表示内容の一例を示す図。 本発明の一実施例におけるプレス加工機の電流波形の一例を示す図。 本発明の一実施例におけるプレス加工機の電流データから抽出した特徴量。 本発明の一実施例における摩耗度を演算する方法を説明する図。 本発明の一実施例における摩耗度の進行を示す図。 本発明の一実施例におけるプレス加工機での摩耗度を演算する方法を説明する図。摩耗度の計算方法例。 本発明の一実施例におけるプレス加工機での摩耗度の進行を示す図。 本発明の一実施例におけるツールの摩耗診断のフローを示す図。 本発明の一実施例における加工品品質に基づいてツール摩耗度の閾値を決定する場合のシステム構成例。 本発明の一実施例における摩耗度の閾値を決定するためのフロー。 本発明の一実施例におけるツール保守後の摩耗度演算モデルを決定する場合のシステム構成例。 本発明の一実施例におけるツール交換後の摩耗度演算モデルの更新方法を示すフロー。 本発明の一実施例におけるツール補修後の摩耗度演算モデルの更新方法を示すフロー。 本発明の一実施例における摩耗度演算結果の一例を示す図。 本発明の一実施例における機器50の詳細を示す図。 本発明の一実施例における上型21および下型22が正常な状態で加工したときの模式図。 本発明の一実施例における上型21および下型22が摩耗した状態で加工したときの模式図。 本発明の一実施例におけるツール摩耗診断装置をクラウド化した構成図。
以下、本発明の実施例について図面を用いて説明する。
診断システムの基本構成および表示内容
図1は、本実施例を適用したツール摩耗診断システムの基本構成および表示内容を示す図である。同図に示すシステムでは、診断対象となる工作機械である機器50から、使用するツールの識別子、種別、特性などを含むツール情報1と、当該ツールで加工したときの物理量をセンシングしたセンサデータ2とが出力される。センサデータ2は、機器50に設けられたセンサでセンシングされる。
そして、ツール情報1とセンサデータ2に基づいて、摩耗度演算部3で当該ツールの摩耗度を演算する。つまり、本ツール摩耗診断システムの摩耗度演算部3は、いわゆるコンピュータで実現される。摩耗度演算部3の機能は、コンピュータプログラムに従った処理を実行するCPUの如き処理装置で実行される。なお、本コンピュータをツール摩耗診断装置とも称する。
また、表示装置70内には、表示内容として、摩耗度の演算対象のツールID4、ツールの形状を示す形状5および摩耗度演算結果6を一列で表示する。
なお、表示装置70は、ツール摩耗診断システムの一構成としてもよいし、システムと接続する別構成としてもよい。後者の場合、摩耗度演算部3を有するツール摩耗診断装置をいわゆるサーバとして構成し、表示装置70は端末の構成となる。
ここで、機器50の詳細を、図13を用いて説明する。機器50は、加工制御部300から通知される制御信号に基づきインバータ(INV)400がモータ500を制御すること。このことで、機器50は加工対象である加工品51(図8に図示)に対する加工を行うことになる。つまり、モータ500には、固定装置などを介してツールないし加工品51が設置されており、加工制御部300からの制御信号に従った加工が可能になる。
また、モータ500にはセンサが設置され、モータ500のU、V、W相電流を示すセンシング情報201a~cが電流データ2aとして、ツール摩耗診断装置側に通知される。
さらに、加工制御部300からツール摩耗診断装置に対して、加工品51の大きさ(板厚)、ツールの識別子や種別を含むツール情報1を送信する。これらの情報は、作業者から受け付けてもよいし、機器50の機能で自動認識してもよい。
なお、表示装置70は、ツール摩耗診断システムの一構成としてもよいし、システムと接続する別構成としてもよい。後者の場合、摩耗度演算部3を有するツール摩耗診断装置をいわゆるサーバとして構成し、表示装置70は端末の構成となる。図13は、このように構成した場合の一例でもある。
さらに、ツール摩耗診断装置をサーバとして構成する場合、図15に示すようにクラウド化することも可能である。この場合、A工場、B工場のいわゆる生産ラインに複数の機器を設ける。それぞれが工場内のネットワークを介して接続され、さらに、インターネット等によりツール摩耗診断装置と接続される。なお、図15では表示装置70である端末装置を全体で1つ設けているが、各工場に設けてもよい。この構成により、クラウド化されたツール摩耗診断装置dねお診断結果を、各工場で共有可能である。
以上のツール摩耗診断システムの基本構成は、機器50やセンサとツール摩耗診断装置である摩耗度演算部3がケーブルなどで接続され、これに表示装置70も含め構成される。
次に、表示装置70内での表示内容を説明する。まず、ID4は、ツールを識別する情報ないしツールの種別を識別する情報である。形状5は、摩耗前(使用前)の形状でもよいし、使用により摩耗した形状であってもよい。使用により摩耗した形状である場合、任意時間(利用者の指定時間や最新)におけるツールの摩耗状態を示す摩耗度を演算し、その結果を使用前の形状に反映して形状を特定する。もしくは、時間ごとの形状を撮影し、その撮影された情報を用いてもよい。
摩耗度演算結果6は、周期的に演算される摩耗度に関する情報であり、以下の要素で構成される。61は、周期的に算出された摩耗度の時系列の推移を示す摩耗推移情報であり、過去に演算された各摩耗度をプロットして表示される。62が、最新の摩耗度である。この摩耗度62は、摩耗診断を実施した直後の現在の摩耗度とみなすことが可能である。63は、摩耗度の将来がどのように推移するかの予測値を示す摩耗度推移予測情報である。この摩耗度推移予測情報63は、摩耗推移情報61と摩耗度62から推測される。この推測には、摩耗推移情報61と摩耗度62を用いて構築した回帰式によって導出する方法が含まれる。64は、ツールの交換が必要となる摩耗度を示す摩耗度閾値である。この摩耗度閾値64は、作業者の入力を受け付けることで設定してもよいし、ツールの交換した際の摩耗度から算出(例えば、平均)してもよい。65は、摩耗度閾値64に達する時期を示すツール交換予測時期である。ツール交換予測時期65の算出は、摩耗度推移予測情報63を用いて、摩耗度閾値64に到達する時期を算出することで実現できる。これら摩耗度演算結果6が、表示エリア6aに表示される。なお、図1に示すとおり、これら各種情報を、機器50で扱う複数のツールの情報のそれぞれを表示することが好適である。
これらのID4、形状5および摩耗度演算結果6からなる各情報を表示器60に表示することで、作業者に現在の各種ツールの摩耗の進展状況を知らせることが可能となる。ツールの摩耗状態を定量的に提示することで、ツールの摩耗状態に応じた最適な保守計画を立案するための一指標とすることが可能となる。ここで、摩耗度演算部3では、センサデータ2で取得した時系列データの最大値や平均値の大きさで評価する方法、時系列データから抽出した特徴量を用いて回帰式やクラスタリングする方法などで摩耗度を演算する。特徴量としては、例えば、特定の動作の際の最大値や特定の動作に要した時間などがある。センサデータ2で取得するのは、電流・電圧・電力などの電気的な物理量、振動(衝撃波)・音・温度などの機械的な物理量などが上げられる。
プレス加工機を対象とした例
ツール摩耗診断システムの具体例として、機器50はプレス加工機、診断対象のツールはプレス金型とし、金型の摩耗を診断するシステムについて説明する。なお、本実施例では、プレス加工機のモータ電流をセンサデータ2として活用したときの例を示す。
図2は、プレス加工機で金属板材を打抜加工したときのモータ電流の実効値を時系列で取得したデータである。加工開始時T1とともに電流値が上昇し、その後金型が材料を打ち抜く瞬間T2でピークI1を迎える。ここで、電流のピーク値I1と、そのときの時間情報T2を摩耗診断に使用する特徴量として抽出する。時間情報T2は、加工品51の板厚や金型の種類などによらずに相対的に評価できる指標とする。本実施例では、加工開始時刻T1=0として、ピーク値I1となるまでの経過時間をT2として定義している。
図3は、実際にプレス加工を行った時のモータ電流の実効値の時系列データを取得し、電流ピーク値I1を縦軸、時間情報T2を横軸としてプロットした結果である。同図内のt1~t3は加工品51の金属板の板厚であり、t1が最も板厚が薄く、t3が最も板厚が厚い(板厚:t1<t2<t3)。また、同図内の○で示したデータは正常状態の金型(以下、正常金型)で加工したときの電流ピーク値I1と時間情報T2である。また、□で示したデータは金型の角部に面取加工を施した劣化を模擬した金型(以下、劣化金型)で加工したときの電流ピーク値I1と時間情報T2である。同図に示す結果から、板厚が増加するにつれて電流ピーク値I1と時間情報T2(加工開始時刻T1からの経過時間)の両者が増加する傾向である。また、正常金型は破線L1上に、劣化金型は破線L2上にそれぞれ分布する傾向が得られる。
金型の摩耗度演算方法
図3の特性から、摩耗度の演算方法の一例について説明する。図4(a)は正常金型で加工したときの電流データから抽出した特徴量を基準(L1)として摩耗度を演算する方法、図5(a)は劣化金型で加工したときの電流データから抽出した特徴量を基準(L2)として摩耗度を演算する方法である。摩耗状態と板厚が不明で、ツール情報1のみが既知の加工データD(同図☆)の摩耗度Wを求める。基準L1(L2の場合も同様)は電流ピークI1と電流ピークT2を用いて以下の数1で表せる。なおα、βはあらかじめ定められる定数である。
Figure 0007229139000001
加工データDの特徴量(電流ピーク値、時間情報)=(X、Y)のとき、基準L1までの垂線の長さを摩耗度Wと定義すると、以下の数2で求めることができる。なお、本数2は、ツール(ないしその特性)ごとに用意され、摩耗度演算モデルとして用いられる。
Figure 0007229139000002
図4(a)の場合は、摩耗が進むにつれて正常データラインL1からの距離が増加するため摩耗度Wは増加(図4(b))し、図5の場合は、摩耗が進むにつれて劣化データラインL2との距離が減少(図5(b))する。本手法では使用している金型の情報(使用している金型の形状、ロットなど)と特徴量のみを用いて摩耗度を求めることができるため、加工板厚の情報が不要であるという利点がある。そのため、板厚の寸法公差(特に薄板の場合は顕著)が摩耗度の計算結果に及ぼす影響がない利点がある。なお、上記は摩耗度の演算方法の具体例の1つであるが、これに限定されるものではない。
また、以下、図14(a)(b)を用いて、電流ピーク値と電流ピーク値の発生する時間の時間情報が、ツールの摩耗の要因となる原理について説明する。なお、本原理は、数2を導き出す論理を説明することにもなる。
図14(a)(b)は、ツールの一例である金型20(上型21、下型22)の摩耗(劣化)が加工品51に与える影響を説明する図である。図14(a)は、上型21および下型22が正常な状態で加工したときの模式図である(摩耗度が摩耗度閾値64未満の場合)。この場合の破断面32は、上型21の鋭利な角部21aと加工品51の接触部から、下型22の鋭利な角部22aと加工品51の接触部とを結ぶ位置に発生する。
一方、図14(b)に示すように摩耗した金型の場合、角が鈍った端部21bおよび端部22bでは、加工品51にせん断力が集中しない。そのため、打ち抜き時の電流値(電流ピーク値I1)も金型の劣化に伴い低下する。つまり、電流ピーク値I1が摩耗に伴って減少する要因となる。
さらに、金型が摩耗すると、鈍った端部21bと材料の接触している部分のうち、もっともせん断力が高くなった位置から破断が開始する。そのため、クラックの発生位置が安定せず、破断面32の距離も長くなる。これにともない、クラックが発生するまでの時間も遅れ気味になる。つまり、ピーク時刻T2が示す時間情報が摩耗に伴って増加する要因となる。
以上により、本実施例では、摩耗度の演算を、電流ピーク値および時間情報を用いて実行する。
摩耗診断フロー
図6に、ツールの摩耗診断を行う摩耗診断フローを示す。なお、ここでは正常データラインL1からの距離W1を摩耗度としたときの例である。なお、正常は、摩耗度閾値64ないしそれ未満の閾値未満の状態を示す。
ステップS1において、摩耗度演算部3は、機器50ないしセンサから通知される加工の際の時系列データ(モータ電流)であるセンサデータ2を取得する。そして、摩耗度演算部3は、そのセンサデータ2から特徴量(プレス加工機の場合は電流ピーク値I1と時間情報T2)を抽出する。
ステップS2において、摩耗度演算部3は、機器50からツール情報1を取得する。摩耗度演算部3は、ステップS1で取得した時系列データと取得したツール情報1を対応付ける。これにより、どのツール(金型)で加工したときのデータかを紐付けることになる。なお、このように対応づけられた情報は、摩耗度演算部3がアクセス可能な記憶装置に格納される。
ステップS3において、摩耗度演算部3は、ステップS2で取得したツール情報1に該当する摩耗度演算モデルを選択する。なお、摩耗度演算モデルは、記憶装置にツールの識別子やツールの種別などと対応付けて記憶されている。なお、摩耗度演算モデルとは、摩耗度を算出するためのモデルであり、上述の数2が該当する。
ステップS4において、摩耗度演算部3は、ステップS3で選択された摩耗度演算モデルとステップS1で抽出された特徴量を用いて摩耗度を演算する。つまり、抽出された特徴量である電流ピーク値と時間情報を、ステップS3で選択された摩耗度演算モデル(数2)に適用して摩耗度を演算する。なお、この演算処理は周期的に行う。周期は、予め設定された期間ごとでもよいし、作業者がツール摩耗診断装置(摩耗度演算部3)に対して演算を指定した毎であってもよい。
このように、本実施例では、ツールごとないしその特性ごとに、数2に示す摩耗度演算モデルを用意しておき、これを用いて摩耗度を演算する。
ステップS5において、摩耗度演算部3は、周期的にステップS4で演算された摩耗度を表示装置70の表示エリア6aにプロットし表示させる。このようにすることで、図1に示すようにグラフ状に摩耗推移情報61が表示される。また、摩耗度演算部3は、演算した摩耗度を履歴情報として記憶装置に格納しておき、これらを読み出し、上述のとおり表示させる。このように表示させることで、摩耗度の時系列の変化を把握しやすくなる。例えば、作業者は摩耗度閾値64に達する時期を直感的に予想することも可能になる。
ステップS6において、摩耗度演算部3は、ステップS4で演算された摩耗度が、摩耗度閾値64以上であるかを判定する。摩耗度閾値64未満であれば、ステップS4で演算した摩耗度に問題はない(例えば、交換の必要はない)と判断して診断を終了する。なお、本診断を終了しても、周期的な摩耗度の演算(ステップS4以降)は継続してもよいし、終了してもよい。また、摩耗度閾値64以上であれば、ステップS7に進む。
ステップS7において、摩耗度演算部3は、表示装置70に対して摩耗度閾値64以上であることを表示させる。た 閾値異常の場合は、例えば表示器60にツール交換が必要である旨のアラームを表示する。その後、フロー終了。
以上に示した実施例によれば、ツールごとに摩耗状態を定量的に評価することが可能となる。また、過去の摩耗度の推移から予測した摩耗度推移の予測値と閾値との比較を行うことで、ツールの保守タイミングを精度良く予測することが可能となる。閾値と現在の摩耗度を比較して、閾値以上となった場合にツール交換アラームを表示することで、加工品の不良発生によるロスコストや、ツール破損によるダウンタイムコストを抑制する効果もある。
閾値設定フロー
ツール交換が必要か否かを判定するためには、計算した摩耗度が摩耗度閾値64以上かどうかを比較する必要がある(ステップS6)。このように、本実施例は、実施例1の事前準備とも言える処理であるため、通常は実施例1より先に処理を行う。また、本フローで設定の代わりに、作業者等からの摩耗度閾値64の入力を受け付けてもよい。以下、摩耗度閾値64の設定方法の一例を示す。
図7に示す閾値設定システムの構成は、加工品51の品質と閾値を紐付けるための構成である。この構成を採る理由は、加工品が不良の場合はツールが破損していなくても補修が必要となるためである。同図に示すように、加工品51の品質を良否判定する良否判定手段52が備わっており、摩耗度演算部にはツール情報1、センサデータ2、良否判定結果53が入力される。なお、良否判定手段52は、コンピュータである摩耗度診断装置であってもよいし、別状態のコンピュータであってもよい。この良否判定手段52の機能もプログラムに従ったCPUの如き処理装置で実行される。
ここで、図8に示す閾値設定フローを用いて、摩耗度閾値64の設定方法を説明する。なお、ステップS1~S4は摩耗診断フローと同一処理のため割愛する。なお、図6に示す診断の処理フローと本処理フローは並行して実行してもよい。つまり、ステップS4までは同じ処理であり、以降の処理を分岐してそれぞれ実行する。
ステップS8において、良否判定手段52は、ステップS4で摩耗度62を計算した際、加工品51の品質が正常かどうかを判定する。正常の場合は摩耗度閾値64の設定を終了する。本ステップは、画像処理装置である良否判定手段52が、加工品51の画像を取り込み、基準画像と比較して判定することで実行される。例えば、加工品51の寸法を計測して判定する。なお、画像処理の以外の方法(レーザー等の利用)や重量など他のパラメータを用いて判定してもよい。そして、この良否判定結果53が摩耗度演算部3に通知される。
また、本判定は作業員が実質的に行い、本ステップでは作業員からの判定結果を受領する構成としてもよい。つまり、良否判定手段52が作業員の目視結果である判定結果を受け付け、その良否判定結果53を摩耗度演算部3に通知する。
さらに、判定自身を摩耗度演算部3で実行してもよい。この場合、良否判定手段52は、カメラなど判定のためのデータを収集するものであり、そのデータを摩耗度演算部3に通知する。なお、摩耗度演算部3での判定手法は、上述のとおりである。
ステップS9において、ステップS8での判定結果が、品質が正常でない場合、摩耗度演算部3は、ステップS4で演算された摩耗度62を記憶装置に蓄積する。この摩耗度を摩耗度閾値64として直接設定しないのは、摩耗度の計算結果のばらつきを考慮した摩耗度閾値64を設定するためである。
ステップS10において、摩耗度演算部3は、ステップS9で蓄積した摩耗度が一定数以下の場合は、閾値設定フローが終了する。但し、終了せず一定数が蓄積されるまで処理を継続してもよい。
また、一定数を超えた場合、ないし超えた段階において、ステップS11に移行する。
ステップS11において、摩耗度演算部3は、ステップS9に蓄積した一定数以上の摩耗度を用いて、摩耗度閾値64を算出する。この算出方法としては、一定数以上の摩耗度に対して、平均化処理することが含まれる。平均化処理として、本実施例では、摩耗度の外れ値の除去や分散を考慮した処理を行って摩耗度閾値64を算出する。摩耗度演算部3があらかじめ設定された摩耗度閾値64を、ステップS11で算出した摩耗度閾値64に更新して、摩耗度閾値算出を終了する。
本実施例において、加工品51の良否判定結果53は、作業員による加工品の寸法や細部の仕上がり具合の確認結果だけでなく、画像センサなどを用いた形状認識による品質評価結果を使用することも可能である。
以上に示した実施例によれば、ツール交換時期を判断する指標となる閾値を、製品の品質に基づいて設定することができる。ツールの種類や加工材料の材質によってことなるツール摩耗状態と加工品品質の影響を考慮しているため、例えば同じツールを使用した場合でも、加工品に求められる加工精度に応じて摩耗度閾値64を変更することも可能となる。
金型交換後の演算モデル更新フロー
前述のステップS7にてツールの摩耗度が閾値を越えてツールの交換が必要と判断した場合、新品のツールに交換もしくは摩耗したツールを補修(研磨)した後に再度ツールを使用する。新品のツールに交換した場合、これまで使用していた摩耗度演算モデルで摩耗度が正確に計算できるかどうかを判定し、必要に応じて摩耗度演算モデルを再構成する必要がある。一方、ツールを補修して再利用する場合、補修後のツール状態が正常かどうかを確認する必要がある。つまり、ツールの交換により摩耗度演算モデルの交換、修正、調整等が必要か判断することになる。以下、システム構成とフローを用いて説明する。
図9に示すシステム構成図では、機器50に設置されたツールが交換されたことを検出するためのツール交換検出手段42が設けられている。このツール交換検出手段42で、交換を検出した際に摩耗度演算部3に検出信号を送信する。検出信号を受信した摩耗度演算部3では、摩耗度演算モデルの再構成ないしはツールの補修状態を判定する。
なお、ツール交換検出手段42は、コンピュータである摩耗度診断装置に設けられてもよいし、別状態のコンピュータであってもよい。このツール交換検出手段42の機能もプログラムに従ったCPUの如き処理装置で実行される。さらに、ツール交換検出手段42の機能を摩耗度演算部3で実行してもよい。
図10は、ツールが新品に交換された場合のフローを示した図である。本フローにおけるステップS1~S4は前述の図6、図8と同様の処理を行い、摩耗度を計算する。なお、図6、8の処理フローと本処理フローは並行して実行してもよい。つまり、ステップS4までは同じ処理であり、以降の処理を分岐してそれぞれ実行する。
ステップS12において、ツール交換検出手段42は、ステップS4で演算されたツール交換後の摩耗度と、前回ツールを交換した後の摩耗度(前回交換の際に記憶装置に蓄積された最新のもの)との差分を計算する。この差分は、平均化処理された値を用いて算出してよい。
ステップS13において、ツール交換検出手段42は、ステップS12で計算した差分が所定値以下かを判定する。この結果、所定値以下の場合、交換前の金型と交換後の新品の金型が同一の摩耗度演算モデルで摩耗度を演算可能と判断(演算モデルを変更しないと判断)し、摩耗度演算モデルの更新を終了する。
また、所定値以上と判断した場合、既存の摩耗度演算モデルでは正確に摩耗度を評価できないと判断し、ステップS14に移行する。
ステップS14において、ツール交換検出手段42は、ステップS13で所定値以上となった特徴量と摩耗度62(つまり、ステップS1で抽出された特徴量とステップS4で演算された摩耗度62)を蓄積し、摩耗度演算モデルを新たに構成ないし再構成する。つまり、ステップS3と同様の処理を行い、以降に用いる摩耗演算モデルを特定する。
ステップS15において、ツール交換検出手段42は、ステップS14で特定した摩耗度演算モデルを更新する。そして、ステップS3に戻り、摩耗度演算部3が、更新した摩耗度演算モデルを用いて、再度ステップS4で摩耗度を演算する。そして、ステップS12の差分値が所定値以下となるまでフローを繰り返すことで新品ツールの摩耗度演算モデルを構築する。
図11は、摩耗したツールを補修して再利用するときのフローを示している。摩耗診断フローのステップS1~S4で摩耗度を計算し、摩耗度が所定値(所定値は、例えば補修前のツールが正常状態であったときの摩耗度)以下かどうかを判定するステップS16を有する。所定値以下の場合、ツールが補修によって正常状態となったと判断して確認を終了する。一方、所定値以上となった場合には、ツールを補修するステップS17を経て再度ステップS1~S4とステップS16のフローを実行する。なお、これらの各ステップは、摩耗度演算部3で実行される。
以上に示した実施例によれば、交換した際にツールのロット違いや細かい寸法の違いによって、加工時の電流値の変化に起因して発生する摩耗度の計算誤差を、摩耗度演算モデルの更新によって抑制することが可能となる。また、同一のツールを再研磨した場合も、補修後のツールを使って加工したときの摩耗度を計算し、前回の補修直後の摩耗度と比較を行うことで、ツールの再研磨の精度(ツールの補修状態)を評価することが可能となる。なお、前回の補修直後の代わりに、今の金型を新品として機器に設置し、加工したときと比較してもよい。
摩耗度演算結果
本実施例では、摩耗度62の演算方法の詳細を説明する。つまり、以下の処理は、ステップS4の詳細を示す。図12に摩耗度演算結果の一例を示す。同図に示すように、摩耗度演算結果6には、摩耗推移情報61、最新の摩耗度62、過去の摩耗度である摩耗推移情報61と現在の摩耗度62から推測した摩耗度推移予測情報63が表示されている。
摩耗度推移予測情報63は、摩耗推移情報61と現在の摩耗度62の値を用いて構築した回帰式によって導出する方法などが挙げられる。
以上に示した実施例によれば、加工回数によって評価できない摩耗度の推移を精度よく加工条件や加工材量の違いによって金型の摩耗の進展具合が一義的に決められない場合であっても、過去~現在の摩耗度の推移によって進展具合を随時予測することが可能となる。また、回帰式を構築する際に対象となる摩耗推移情報61の範囲を、直近のデータに絞ることで、突発的な摩耗度の変化(例えば、ツールに微小な破損が生じた場合)があった場合にも、継続的に最新の予測値を表示することが可能となる。
以上の各実施例によれば、ツールの摩耗の推移を予測した結果がリアルタイムで表示されるため、ツールの保守計画を効率的に立案することが可能となり、ダウンタイムを削減できる。また、本実施例によれば、加工材の板厚寸法などの影響を受けることなく、工作機械のツールの実際の摩耗状態を定量的に診断可能な工作機械向けツール摩耗診断装置ないしシステムを提供することが可能になる。
1…ツール情報、2…センサデータ、3…摩耗度演算部、4…ツールID、5…形状、6…摩耗度演算結果、61…摩耗推移情報、62…摩耗度、63…摩耗度推移予測情報、64…摩耗度閾値、65…ツール交換予測時期、70…表示装置

Claims (6)

  1. 工作機械の加工で用いられるプレス金型であるツールの摩耗状態を診断する工作機械のツール摩耗診断装置において、
    前記工作機械のセンサから前記加工における物理量を取得し、当該物理量から特徴量を抽出する手段と、
    前記特徴量を用いて、前記ツールにおける摩耗状態を示す摩耗度を算出タイミングごとに算出する手段と、
    ツールごとに、当該ツールの形状に対応付けて、前記摩耗度の推移を示す摩耗推移情報、最新の摩耗度および当該ツールの交換が必要な摩耗度を示す摩耗度閾値からなる摩耗度演算結果を表示装置に表示させる手段を有し、
    前記特徴量を抽出する手段は、前記特徴量として、前記物理量である前記ツールを駆動するモータの電流量から電流ピーク値および当該電流ピーク値に達した時間を示す時間情報を抽出し、
    前記摩耗度を算出する手段は、計測した電流ピーク値および時間情報と前記工作機械の動作が正常である場合の電流ピーク値および時間情報である基準情報との差分を用いて前記摩耗度を算出することを特徴とする工作機械のツール摩耗診断装置。
  2. 請求項1に記載の工作機械のツール摩耗診断装置において、
    前記摩耗度演算結果は、グラフ形式であり、前記最新の摩耗度が前記摩耗推移情報上にプロットされ、さらに前記最新の摩耗度から前記摩耗度閾値まで前記摩耗推移情報の推移から予測される摩耗度推移予測情報を含むことを特徴とする工作機械のツール摩耗診断装置。
  3. 請求項2に記載の工作機械のツール摩耗診断装置において、
    前記摩耗度推移予測情報は、前記摩耗推移情報の経時変化に基づいて導出した回帰式によって予測された摩耗度であることを特徴とする工作機械のツール摩耗診断装置。
  4. 請求項1乃至3のいずれかに記載の工作機械のツール摩耗診断装置において、
    さらに、前記摩耗度閾値を設定する手段を有することを特徴とする工作機械のツール摩耗診断装置。
  5. 請求項4に記載の工作機械のツール摩耗診断装置において、
    前記摩耗度閾値を設定する手段は、前記工作機械の加工対象である加工品が正常品か判断し、正常品でないと判断した場合に算出される摩耗度の個数が一定以上であれば、前記摩耗度閾値を、前記一定以上の個数の摩耗度を用いて、前記摩耗度閾値を設定することを特徴とする工作機械のツール摩耗診断装置。
  6. 請求項1乃至5のいずれかに記載の工作機械のツール摩耗診断装置において、
    前記摩耗度を算出する手段は、ツールごとに定められる摩耗度演算モデルを用いて前記摩耗度を算出し、
    前記ツールが交換された場合、前記摩耗度を算出する手段は、交換前に算出された摩耗度との差分が所定値以上の場合には、前記摩耗度演算モデルを更新することを特徴とする工作機械のツール摩耗診断装置。
JP2019181088A 2019-10-01 2019-10-01 工作機械のツール摩耗診断装置 Active JP7229139B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019181088A JP7229139B2 (ja) 2019-10-01 2019-10-01 工作機械のツール摩耗診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019181088A JP7229139B2 (ja) 2019-10-01 2019-10-01 工作機械のツール摩耗診断装置

Publications (2)

Publication Number Publication Date
JP2021053772A JP2021053772A (ja) 2021-04-08
JP7229139B2 true JP7229139B2 (ja) 2023-02-27

Family

ID=75269339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019181088A Active JP7229139B2 (ja) 2019-10-01 2019-10-01 工作機械のツール摩耗診断装置

Country Status (1)

Country Link
JP (1) JP7229139B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102630086B1 (ko) * 2021-10-28 2024-01-29 한국항공대학교산학협력단 절삭공구의 수명 예측 및 절삭 조건 능동 제어 장치 및 방법
KR102611403B1 (ko) * 2022-02-21 2023-12-08 다겸 주식회사 수리 파트 결정 기능 및 수리 완성도 평가 기능을 포함하는 이상 탐지 장치
TW202349211A (zh) * 2022-05-31 2023-12-16 日商永木精機股份有限公司 資訊處理系統、電腦程式及資訊處理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205826A (ja) 2016-05-17 2017-11-24 株式会社リコー 情報処理装置、情報処理方法、および情報処理システム
US20180143616A1 (en) 2015-07-01 2018-05-24 Landmark Graphics Corporation Predicting drilling tool failure
JP2018086712A (ja) 2016-11-30 2018-06-07 株式会社日立製作所 工具摩耗予測装置およびその方法
US20180314232A1 (en) 2017-05-01 2018-11-01 Honeywell International Inc. Method and system for real-time damage prediction and quantification

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3621503B2 (ja) * 1996-03-14 2005-02-16 株式会社米倉製作所 プレス加工用金型の劣化度評価方法及び評価装置
JPH1015782A (ja) * 1996-07-04 1998-01-20 Sumitomo Electric Ind Ltd 切削工具の異常検出装置
JPH1158113A (ja) * 1997-08-15 1999-03-02 Yamazaki Mazak Corp 工具摩耗監視装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180143616A1 (en) 2015-07-01 2018-05-24 Landmark Graphics Corporation Predicting drilling tool failure
JP2017205826A (ja) 2016-05-17 2017-11-24 株式会社リコー 情報処理装置、情報処理方法、および情報処理システム
JP2018086712A (ja) 2016-11-30 2018-06-07 株式会社日立製作所 工具摩耗予測装置およびその方法
US20180314232A1 (en) 2017-05-01 2018-11-01 Honeywell International Inc. Method and system for real-time damage prediction and quantification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
モータをセンサとして利用した工作機械の消耗品劣化検知技術の開発(第2報),精密工学会学術講演会講演論文集,日本,公益社団法人精密工学会,2019年03月01日,243-244

Also Published As

Publication number Publication date
JP2021053772A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
JP7229139B2 (ja) 工作機械のツール摩耗診断装置
US11614728B2 (en) Machine tool management system that obtains a next maintenance period from a maintenance period model and a refinement algorithm
US10725465B2 (en) State diagnostic device
KR20190093604A (ko) 정보 처리 방법, 정보 처리 시스템, 및 정보 처리 장치
US20170178015A1 (en) Maintenance timing prediction system and maintenance timing prediction device
US10402246B2 (en) Method for generating a machine heartbeat
JP7017775B2 (ja) プレス製造条件収集システム
JP6680430B1 (ja) 生産ラインにおける品質と設備の統合的監視方法
US9116740B2 (en) Method for generating a machine heartbeat
EP3459714A1 (en) Method and apparatus for monitoring a quality of an object of a 3d-print-job series of identical objects
CN116428984A (zh) 一种五金模具冲压加工智能检测系统
JP5042164B2 (ja) 装置の異常診断装置
JP2017087224A (ja) パンチ装置および打ち抜き加工方法
CN115249040A (zh) 用于监测冲压过程的装置和方法
JP6823025B2 (ja) 検査装置及び機械学習方法
JP6312955B1 (ja) 品質分析装置及び品質分析方法
CN117094605A (zh) 一种铸件质量控制方法及系统
CN116037705A (zh) 冷冲压模具工作状态实时监控系统
KR102045617B1 (ko) 설비 이상 모니터링 장치 및 방법
CN115348913B (zh) 诊断装置、诊断方法及计算机可读取的非暂时性的记录介质
CN115193980A (zh) 用于预处理冲压过程中检测到的状态变量的装置和方法
EP1484607A1 (en) Abnormality determination and estimation method for product of plastic working, and an abnormality determination and estimation device
KR100604227B1 (ko) 잔재부상검출장치 및 그 검출방법
US20230393026A1 (en) Estimation model generation device and tool lifetime estimation device
US20230394195A1 (en) Estimation model generation device and tool lifetime estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7229139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150