JP7222426B2 - 光接続構造 - Google Patents

光接続構造 Download PDF

Info

Publication number
JP7222426B2
JP7222426B2 JP2021528599A JP2021528599A JP7222426B2 JP 7222426 B2 JP7222426 B2 JP 7222426B2 JP 2021528599 A JP2021528599 A JP 2021528599A JP 2021528599 A JP2021528599 A JP 2021528599A JP 7222426 B2 JP7222426 B2 JP 7222426B2
Authority
JP
Japan
Prior art keywords
optical
optical fiber
adhesive
connection structure
plc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021528599A
Other languages
English (en)
Other versions
JPWO2020255379A1 (ja
Inventor
裕士 石川
淳 阿部
昇男 佐藤
淳 荒武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2020255379A1 publication Critical patent/JPWO2020255379A1/ja
Application granted granted Critical
Publication of JP7222426B2 publication Critical patent/JP7222426B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02385Comprising liquid, e.g. fluid filled holes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光接続構造に関し、より具体的には、光学素子と光ファイバとの光接続構造に関する。
光通信や光センシングといった光信号処理技術を使用する産業分野は、関連分野とともに急速に発展し続けている。この光信号処理技術と同様に急速な発展を続けていると同時に、光信号処理技術と組み合わせて使用されていることが多いのが電子回路技術である。しかし、この電子回路技術と比べると光信号処理技術にはいくつか苦手とする部分がある。それは、コンパクト化と簡便な接続である。
[コンパクト化]
シリコンを中心とする電子回路技術においては、非常に活発に微細化が推し進められてきた。これは、電子回路技術においては、スケーリング則により微細化がそのまま高性能化につながるからである。
一方、光信号処理技術においては、空間光学系の場合、系のサイズが非常に大きくなってしまう。また、空間光学系より小さな系を実現できる平面光波回路(PLC:Planar Lightwave Circuit。以下「PLC」という。)においては、カットオフ条件から、最も基本的な光学素子である導波路のサイズですら数μmから数百nmオーダーとなってしまい、電子回路技術と比較して大きなデバイスサイズとなりがちである。
[簡便な接続]
電子回路技術の場合、低周波領域においては、単に金属等の導体を接続するだけで簡便に信号を伝達することが可能である。また、高周波領域においても、RFコネクタのようなプラガブル(pluggable)な接続技術が成熟している。これに対し、光信号処理技術の場合、単に光ファイバなどの光信号を伝送をする媒体を接続するだけでは良好な接続を実現することができない。光信号処理技術において良好な接続を得るためには、デバイス間の高精度のアライメントが不可欠である。例えば、シングルモード導波路を持つデバイスの場合、材質や設計にもよるが、サブμmオーダーの精度でのアライメントが必要である。
光信号処理技術においては、一般的に、光信号の伝送のために用いられる光ファイバと、伝送された光信号の処理を行う光学素子とが必要となる。光信号の処理を行う光学素子としては、例えば、レンズ、PLC、ファイバブラッググレーティング(FBG:Fiber Bragg Grating)、レーザダイオード(LD:Laser Diode)、フォトディテクタ(PD:Photodetector)などがある。光信号処理技術を実現する系においては、上述したような光学素子と光ファイバとの光学的接続が不可欠である。一般的に光信号の伝送のための光ファイバにはシングルモードのものが用いられることから、光学素子と光ファイバとの間の光学的接続には、とりもなおさず、サブμmオーダーの精度でのアライメントが必要になる。
上述した光学素子と光ファイバの接続の中で、代表的なものの一つは、PLCと光ファイバとの直接光学的接続である。
図7に示すPLCと光ファイバとの接合例では、石英系PLC701と光ファイバ702とが光学的接続を形成している。ここで石英系PLC701は、導波路703を持ち、この導波路は、GeドープしているSiO2のコアと、ノンドープのSiO2のクラッドとからなる。図7では、導波路703がマッハツェンダー干渉計を構成する例を示しているが、これはあくまで一例であり、石英系PLC701はどのような回路を持っていても良い。ガラスブロック706と石英系PLC701とはあらかじめ互いに接合されている。また、光ファイバ702とファイバブロック705ともあらかじめ互いに接合されている。これら、ガラスブロック706と石英系PLC701と間の接合および光ファイバ702とファイバブロック705と間の接合は、光学的接続に先立って物理的に形成されている。このような構成は、石英系PLCに多く見られる形態である。
このような構成をとるためには、一般に、石英系PLC701の端面の光導波路703のコア断面付近にファイバブロック705に接合されている光ファイバ702のコア断面を近づけ、アクティブアライメントにより最適な位置を決定した後、すなわち、光学的接続の位置合わせを行った後、接着剤704によってこれらのデバイスを互いに固定することになる。
アクティブアライメントは、一般に専用の装置を用いて、PLC及び光ファイバに光を通しながらその伝搬光を観測して位置を調整する位置合わせ手法である。アクティブアライメントでは、通常、伝搬光の強度を観測して、その伝搬光の強度が最大となったときが最も適切な位置であると判断して接着を行うことが一般的である。
このようなアクティブアライメントに対して、パッシブアライメントという概念も提案されている。パッシブアライメントは、位置合わせをするべき素子同士の物理的構造、例えば、嵌合や突合せを利用して位置合わせを行う技術である。パッシブアライメントは、専用の装置を必要とせず、光伝搬およびその観測も必要としない。しかしながら、現時点では、PLCをはじめとする光学素子と光ファイバとの間の光学的接続において成熟したパッシブアライメント技術は存在しない。したがって、図7に示すような光学素子と光ファイバとの光接続は、アクティブアライメントを前提としているのが現状である。
河内正夫 著、電子情報通信学会論文誌 C Vol.J81-C2 No.6 pp.513-523
しかしながら、アクティブアライメントは複雑な実装装置を必要とするとともに、長い実装時間と高い実装コストを要するという問題点があった。
そこで、本発明は、光学素子と光ファイバとの位置合わせをパッシブアライメントにより実現し、光学素子と光ファイバとの接続における実装時間および実装コストを低減することができる光接続構造を提供することを目的とする。
本発明に係る光接続構造は、光学素子(103)と、円柱状のコア及び当該コアと同軸で円筒状のクラッドからなるシングルコアの光ファイバであり前記光学素子と対向する端面を有する光ファイバ(101)と、前記端面と前記光学素子の前記端面に対向する対向面の間に塗布されて、前記光学素子と前記光ファイバとを光学的かつ機械的に接続する接着剤(104)とからなり、前記光学素子の前記対向面と前記接着剤の外周面とがなす接触角、および前記光ファイバの前記端面と前記接着剤の外周面がなす接触角は、いずれも90度未満であり、前記光ファイバは、前記端面に開口する穴を有し、前記接着剤の一部は、前記穴に入り込む、ことを特徴とする。
本発明によれば、光学素子の前記対向面と前記接着剤の外周面とがなす接触角、および前記光ファイバの前記端面と前記接着剤の前記外周面とがそれぞれなす接触角をいずれも90度未満とすることにより、接着剤の表面張力を利用して光学素子と光ファイバとの接続をパッシブアライメントにより実現し、光学素子と光ファイバとの接続における実装時間および実装コストを低減することができる。
図1Aは、本発明の第1の実施形態に係る光接続構造の概要を説明する斜視図である。 図1Bは、第1の実施形態に係る光接続構造のyz平面における断面図である。 図1Cは、光ファイバの端面を接着面から見た図である。 図1Dは、レンズを接着面から見た図である。 図2Aは、本発明の第2の実施形態に係る光接続構造の概要を説明する斜視図である。 図2Bは、第2の実施形態に係る光接続構造のyz平面における断面図である。 図2Cは、光ファイバの端面を接着面から見た図である。 図2Dは、レンズを接着面から見た図である。 図3Aは、本発明の第3の実施形態に係る光接続構造の概要を説明する斜視図である。 図3Bは、第3の実施形態に係る光接続構造のyz平面における断面図である。 図3Cは、第3の実施形態に係る光接続構造をy方向から見た図である。 図3Dは、光ファイバの端面を接着面から見た図である。 図3Eは、PLCを接着面から見た図である。 図4Aは、本発明の第4の実施形態に係る光接続構造の概要を説明する斜視図である。 図4Bは、第4の実施形態に係る光接続構造のyz平面における断面図である。 図4Cは、第4の実施形態に係る光接続構造をy方向から見た図である。 図4Dは、光ファイバの端面を接着面から見た図である。 図4Eは、PLCを接着面から見た図である。 図5Aは、本発明の第5の実施形態に係る光接続構造の概要を説明する斜視図である。 図5Bは、第5の実施形態に係る光接続構造のyz平面における断面図である。 図5Cは、第5の実施形態に係る光接続構造をy方向から見た図である。 図5Dは、光ファイバの端面を接着面から見た図である。 図5Eは、PLCを接着面から見た図である。 図6Aは、本発明の第6の実施形態に係る光接続構造の概要を説明する斜視図である。 図6Bは、第6の実施形態に係る光接続構造のyz平面における断面図である。 図6Cは、第6の実施形態に係る光接続構造をy方向から見た図である。 図6Dは、光ファイバの端面を接着面から見た図である。 図6Eは、PLCを接着面から見た図である。 図7は、従来の光学素子と光ファイバとの光接続を説明するための図である。
以下、図面を参照して本発明に係る光接続構造の実施の形態について説明する。
[第1の実施の形態]
本発明の第1の実施の形態に係る光接続構造は、図1A~図1Dに示すように、レンズ103と光ファイバ101とを接着剤104によって接続する光接続構造である。光ファイバ101の内部に光ファイバコア102が形成されている。接着剤104は、レンズ103の光ファイバ101と対向する面と、光ファイバ101のレンズと対向する端面とに塗布されている。レンズ103が光ファイバ101の端面に接着剤104によって接着されることによって、光ファイバ101とレンズ103は接着剤104により光学的にも機械的にも互いに接続されている。
図1Aおよび図1Bに示すように、レンズ103の表面と接着剤104の表面とがなす接触角、および、光ファイバ101の端面と接着剤104の表面とがなす接触角は、いずれも90度未満となっている。
この構造により、接着剤104が硬化する前の時点において、接着剤104の表面張力の働きにより光ファイバ101とレンズ103の相対位置が安定した状態となるように変化する。そのため、表面張力の釣り合った状態でアライメント位置となるように光ファイバ101とレンズ103の材料、外形、および表面状態と接着剤104の材料を設計しておけば、光ファイバ101とレンズ103の間に自発的なアライメントを実現できる。例えば、光ファイバ101の端面と、レンズ103の光ファイバ101の端面と対向する面とを、それぞれ光軸の周りに回転対称となる形状とすることが考えられる。
この接着剤104が硬化する前の時点における自発的なアライメントが生じた後に、接着剤104を硬化させることで、安定的な光学的接続を得ることが出来る。これにより、アクティブアライメント無しにパッシブアライメントのみで、x軸方向およびy軸方向を高精度に制御して、光ファイバ101とレンズ103の光接続を実現することが出来るとともに、アクティブアライメントを使用するときよりも実装時間および実装コストを改善できる。
なお、接着剤104は、光学的に損失が小さいことが望ましいため、光学用の接着剤がよい。また、接着剤104は、熱硬化タイプの接着剤を用いてもよいし、紫外線硬化タイプのものでもよい。
[第2の実施の形態]
第2の実施の形態に係る光接続構造は、上述した第1の実施の形態に係る光接続構造と同様に、レンズ203と光ファイバ101とを接着剤104によって接続する光接続構造である。第2の実施の形態に係る光接続構造における光ファイバ201は、図2A~図2Cに示すように、光ファイバコア202に加えて、端面に開口する穴205を備えた、いわゆる穴あき光ファイバである。
本実施の形態において、穴あき光ファイバ201は、穴205として、クラッド部分に光ファイバコア202と平行に、すなわち、光ファイバ201の導波方向と平行に形成された柱状の空孔を備えている。図2A~図2Cに示すように、本実施の形態において、z方向から見たときに、2つの空孔が光ファイバコア202を挟んで対称の位置に配置されている。それぞれの穴205は、円柱状の空孔である。
この穴205の中には接着剤204の一部が入り込んでいる。レンズ203は、接着剤204によって、光ファイバ201の端面に固定されている。その結果、穴あき光ファイバ201とレンズ203とは、接着剤204により光学的にも機械的にも互いに接続されている。
なお、図2Dに示すように、レンズ203の光ファイバ201の端面と対向する面は、第1の実施の形態に係る光接続構造におけるレンズ103と変わるところはない。
本実施の形態に係る光接続構造においても、レンズ203の表面と接着剤204の表面とがなす接触角、ならびに、光ファイバ201の端面および穴205の壁面と接着剤204の表面とがなす接触角は、いずれも90度未満となっている。
したがって、同様に穴あき光ファイバ201とレンズ203および穴205の材料、外形、および表面状態と接着剤204の材料を、硬化前の接着剤204と接する素子表面とその硬化前の接着剤204の接触角が90度未満となるように設計することで、接着剤204が硬化する前の時点において、穴あき光ファイバ201とレンズ203の相対位置が、表面張力の働きにより安定した状態に変化して、表面張力の釣り合った状態でアライメント位置となるので、自発的なアライメントと毛細管現象が生じた後に、接着剤204を硬化させることで、穴あき光ファイバ201とレンズ203の間に自発的なアライメントを実現できる。
また、穴あき光ファイバ201の端面に接着剤204を塗布すると、毛細管現象により接着剤204の一部が穴あき光ファイバ201の穴205の中に入り込む。このように硬化前の接着剤204が毛細管現象により穴205に流れ込むことで、穴あき光ファイバ201とレンズ203の間隔を制御することが可能となる。この接着剤204が硬化する前の時点における自発的なアライメントと毛細管現象が生じた後に、接着剤204を硬化させることで、安定的な光学的接続を得ることが出来る。
これにより、アクティブアライメント無しにパッシブアライメントのみで、x軸方向、y軸方向およびz軸方向を高精度に制御して、穴あき光ファイバ201とレンズ203の光接続を実現することが出来るとともに、アクティブアライメントを使用するときよりも実装時間および実装コストを改善できる。
なお、本実施の形態においては、例えば、図2Dに示すように、光ファイバ201の2つの穴205が光ファイバコア202を挟んで対称の位置に形成されているが、光ファイバ201に形成される穴の数やその配置については、パッシブアライメントを実現する上で適宜選択することができる。
[第3の実施の形態]
本発明の第3の実施の形態に係る光接続構造は、図3A~図3Eに示すように、穴あき光ファイバ301と、PLC303とを接着剤304によって接続する構造である。
穴あき光ファイバ301の構成は、第2の実施の形態における穴あき光ファイバ201と同じある。すなわち、光ファイバ301は、穴305として、光ファイバコア302と平行に形成された、すなわち、光ファイバ301の導波方向に沿って形成された2つの円柱状の空孔を備えている。2つの穴は、図3Cに示すように、y方向から見て光ファイバコア302に対して対称の位置に形成されている。
一方、図3A、図3Bおよび図3Eに示すように、PLC303には、PLCコア306が形成されている。
本実施の形態に係る光接続構造においては、図3Bに示すように、光ファイバ301の端面にPLC303が接着剤304によって固定されるとともに、光ファイバコア302の光軸とPLCコア306の光軸とがアライメントされて、光ファイバ301とPLC303とが光学的にも機械的にも互いに接続されている。ここで接着剤304の一部は、穴305の中に入り込んでいる。
本実施の形態に係る光接続構造においても、図3Bおよび図3Cに示すように、PLC303の表面と接着剤304の表面とがなす接触角、ならびに、光ファイバ301の端面および穴305の壁面と接着剤304の表面とがなす接触角は、いずれも90度未満となっている。
したがって、穴あき光ファイバ301とPLC303および穴305の材料、外形、および表面状態と接着剤304の材料を、硬化前の接着剤304と接する素子表面とその硬化前の接着剤304の接触角が90度未満となるように設計することで、接着剤304が硬化する前の時点において、穴あき光ファイバ301とPLC303の相対位置が、接着剤304の表面張力の働きにより安定した状態に変化して、表面張力の釣り合った状態でアライメント位置となるので、自発的なアライメントと毛細管現象が生じた後に、接着剤304を硬化させることで、穴あき光ファイバ301とPLC303の間に自発的なアライメントを実現できる。
また、硬化前の接着剤304が毛細管現象により穴あき光ファイバ301の穴305に流れ込むことで、穴あき光ファイバ301とPLC303の間隔およびz軸まわりの回転方向の傾きを制御することが可能となる。
この接着剤304が硬化する前の時点における自発的なアライメントと毛細管現象が生じた後に、接着剤304を硬化させることで、安定的な光学的接続を得ることが出来る。これにより、アクティブアライメント無しにパッシブアライメントのみで、x軸方向、y軸方向およびz軸方向の位置ならびにz軸まわりの回転方向の傾きを高精度に制御して、穴あき光ファイバ301とPLC303の光接続を実現することが出来るとともに、アクティブアライメントを使用するときよりも実装時間および実装コストを改善できる。
なお、本実施の形態においては、例えば、図3Dに示すように、2つの穴305が光ファイバコア302を挟んで対称の位置に形成されているが、光ファイバ301に形成される穴の数やその配置については、パッシブアライメントを実現する上で適宜選択することができる。
[第4の実施の形態]
本発明の第4の実施の形態に係る光接続構造は、図4A~図4Eに示すように、穴あきマルチコア光ファイバ401と、PLC403とを接着剤404によって接続する構造である。
穴あきマルチコア光ファイバ401は、図4Aおよび図4Bに示すように、複数の光ファイバコア402と、穴405として、光ファイバコア402と平行に形成された、すなわち、穴あきマルチコア光ファイバ401の導波方向に沿って形成された2つの円柱状の空孔を備えている。本実施の形態においては、図4Dに示すように、複数の光ファイバコア402と2つの穴405とは、z方向から見て一直線上に配置されており、2つの穴405は、光ファイバコア402を挟んで対称の位置に設けられている。
一方、図4A、図4Bおよび図4Eに示すように、PLC403には、複数のPLCコア406が形成されている。これらのPLCコア406も、-z方向から見て一直線上に配置されている。
本実施の形態に係る光接続構造においては、図4Bに示すように、穴あきマルチコア光ファイバ401の端面にPLC403が接着剤404によって固定されるとともに、穴あきマルチコア光ファイバ401の複数の光ファイバコア402の光軸とPLC403の複数のPLCコア406の光軸とがそれぞれアライメントされて、穴あきマルチコア光ファイバ401とPLC403とが光学的にも機械的にも互いに接続されている。ここで接着剤404の一部は、穴405の中に入り込んでいる。
本実施の形態に係る光接続構造においても、図4Bおよび図4Cに示すように、PLC403の表面と接着剤404の表面とがなす接触角、ならびに、穴あきマルチコア光ファイバ401の端面および穴405の壁面と接着剤404の表面とがなす接触角は、いずれも90度未満となっている。
したがって、穴あきマルチコア光ファイバ401とPLC403および穴405の材料、外形、および表面状態と接着剤404の材料を、硬化前の接着剤404と接する素子表面とその硬化前の接着剤404の接触角が90度未満となるように設計することで、接着剤404が硬化する前の時点において、穴あきマルチコア光ファイバ401とPLC403の相対位置が、接着剤404の表面張力の働きにより安定した状態に変化して、表面張力の釣り合った状態でアライメント位置となるので、自発的なアライメントと毛細管現象が生じた後に、接着剤404を硬化させることで、穴あきマルチコア光ファイバ401とPLC403の間に自発的なアライメントを実現できる。
また、硬化前の接着剤404が毛細管現象により穴あきマルチコア光ファイバ401の穴405に流れ込むことで、穴あきマルチコア光ファイバ401とPLC403の間隔およびz軸まわりの回転方向の傾きを制御することが可能となる。
この接着剤404が硬化する前の時点における自発的なアライメントと毛細管現象が生じた後に、接着剤404を硬化させることで、安定的な光学的接続を得ることが出来る。これにより、アクティブアライメント無しにパッシブアライメントのみで、x軸方向、y軸方向およびz軸方向の位置ならびにz軸まわりの回転方向の傾きを高精度に制御して、穴あきマルチコア光ファイバ401とPLC403のすべての導波路コアにおける光接続を実現することが出来るとともに、アクティブアライメントを使用するときよりも実装時間および実装コストを改善できる。
なお、本実施の形態においては、例えば、図4Dに示すように、2つの穴405が複数の光ファイバコア402を挟んで対称の位置に形成されているが、穴あきマルチコア光ファイバ401に形成される穴の数やその配置については、パッシブアライメントを実現する上で適宜選択することができる。
[第5の実施の形態]
本発明の第5の実施の形態に係る光接続構造は、図5A~図5Eに示すように、溝付きマルチコア光ファイバ501と、PLC503とを接着剤504によって接続する構造である。
溝付きマルチコア光ファイバ501は、図5Aおよび図5Bに示すように、複数の光ファイバコア502と、溝付きマルチコア光ファイバ501の側面に形成され、その一端が溝付きマルチコア光ファイバ501の端面に接続する溝505を備えている。本実施の形態において、溝505は、穴あきマルチコア光ファイバ401の導波方向に沿って、その長手方向に垂直な断面が略V字型となるように形成されている。また、本実施の形態においては、複数の光ファイバコア502がz方向から見てy方向に一列に配置され、2本の溝505がその延長線上に、複数の光ファイバコア502を挟んで対称の位置に形成されている。
一方、図5A、図5Bおよび図5Eに示すように、PLC503には、複数のPLCコア506が形成されている。これらのPLCコア506も、-z方向から見てy方向に沿って一直線上に配置されている。
本実施の形態に係る光接続構造においては、図5Bに示すように、溝付きマルチコア光ファイバ501の端面にPLC503が接着剤504によって固定されるとともに、複数の光ファイバコア502の光軸と複数のPLCコア506の光軸とがそれぞれアライメントされて、溝付きマルチコア光ファイバ501とPLC503とが光学的にも機械的にも互いに接続されている。ここで接着剤504の一部は、溝505に入り込んでいる。
本実施の形態に係る光接続構造では、硬化前の接着剤504の一部が、濡れの拡大により溝505に流れ込む。本実施の形態に係る光接続構造においても、図5Bおよび図5Cに示すように、PLC503の表面と接着剤504の表面とがなす接触角、ならびに、溝付きマルチコア光ファイバ501の端面および溝505の壁面と接着剤504の表面とがなす接触角は、いずれも90度未満となっている。
したがって、溝付きマルチコア光ファイバ501とPLC503および溝505の材料、外形、および表面状態と接着剤504の材料を、硬化前の接着剤504と接する素子表面とその硬化前の接着剤504の接触角が90度未満となるように設計することで、接着剤504が硬化する前の時点において、溝付きマルチコア光ファイバ501とPLC503の相対位置が、接着剤504の表面張力の働きにより安定した状態に変化して、表面張力の釣り合った状態でアライメント位置となる。そして、自発的なアライメントと毛細管現象が生じた後に、接着剤504を硬化させることで、溝付きマルチコア光ファイバ501とPLC503の間に自発的なアライメントを実現できる。
また、硬化前の接着剤504が濡れの拡大により溝505に流れ込むことで、溝付きマルチコア光ファイバ501とPLC503の間隔およびz軸まわりの回転方向の傾きを制御することが可能となる。
この接着剤504が硬化する前の時点における自発的なアライメントと濡れの拡大が生じた後に、接着剤504を硬化させることで、安定的な光学的接続を得ることが出来る。これにより、アクティブアライメント無しにパッシブアライメントのみで、x軸方向、y軸方向およびz軸方向の位置ならびにz軸まわりの回転方向の傾きを高精度に制御して、溝有りマルチコア光ファイバ501とPLC503のすべての導波路コアにおける光接続を実現することが出来るとともに、アクティブアライメントを使用するときよりも実装時間および実装コストを改善できる。
この形態は、ファイバの加工が上述した第4の実施の形態に係る光接続構造に比べて容易であり、少量生産に適している。
なお、本実施の形態において、溝505は、その長手方向に垂直な断面が略V字型となるように形成されているものとして説明したが、溝の断面形状は略V字型に限られず、例えば、半円形、矩形など、任意の形状とすることができる。
また、本実施の形態においては、溝付きマルチコア光ファイバ501の側面に形成された溝505は、例えば、図5Dに示すように、光ファイバコア502を挟んで対称の位置に配置されているが、溝付きマルチコア光ファイバ501の側面に形成される溝の数やその配置については、パッシブアライメントを実現する上で適宜選択することができる。
[第6の実施の形態]
本発明の第6の実施の形態に係る光接続構造は、図6A~図6Eに示すように、側面に平坦な面605を有するマルチコア光ファイバ601と、PLC603とを接着剤604によって接続する構造である。
マルチコア光ファイバ601は、図6Aおよび図6Bに示すように、複数の光ファイバコア602と、マルチコア光ファイバ601の側面に、マルチコア光ファイバ601の導波方向に沿って形成されて、その一端がマルチコア光ファイバ601の端面に接続する2つの平坦な面(以下、光ファイバの側面に形成され、その光ファイバの端面に接続する平坦な面を「平坦側面」という。)605を備えている。本実施の形態においては、複数の光ファイバコア602がz方向から見てy方向に一列に配置されている。2つの平坦側面605は、その延長線上に、すなわち、光ファイバコア602が配列されるy軸方向とそれぞれ直交し、複数の光ファイバコア602を挟んで対称の位置に形成されている。
一方、図6A、図6Bおよび図6Eに示すように、PLC603には、複数のPLCコア606が形成されている。これらのPLCコア606も、-z方向から見てy方向に沿って一直線上に配置されている。
本実施の形態に係る光接続構造においては、図6Bに示すように、マルチコア光ファイバ601の端面にPLC603が接着剤604によって固定されるとともに、マルチコア光ファイバ601の複数の光ファイバコア602の光軸とPLC603の複数のPLCコア606の光軸とがそれぞれアライメントされて、マルチコア光ファイバ601とPLC603とが光学的にも機械的にも互いに接続されている。ここで接着剤604の一部は、接着剤604の硬化前の表面張力による濡れの拡大によって、平坦側面605に塗布されている。
本実施の形態に係る光接続構造においても、図6Bおよび図6Cに示すように、PLC603の表面と接着剤604の表面とがなす接触角、ならびに、マルチコア光ファイバ601の端面および平坦側面605と接着剤504の表面とがなす接触角は、いずれも90度未満となっている。
したがって、平坦側面605を有するマルチコア光ファイバ601とPLC603の材料、外形、および表面状態と接着剤604の材料を、硬化前の接着剤604と接する素子表面とその硬化前の接着剤604の接触角が90度未満となるように設計することで、接着剤604が硬化する前の時点において、平坦側面605を有するマルチコア光ファイバ601とPLC603の相対位置が、接着剤604の表面張力の働きにより安定した状態に変化して、表面張力の釣り合った状態でアライメント位置となる。そして、自発的なアライメントと毛細管現象が生じた後に、接着剤604を硬化させることで、マルチコア光ファイバ601とPLC603の間に自発的なアライメントを実現できる。
また、硬化前の接着剤604が濡れの拡大により平坦側面605に流れ込むことで、マルチコア光ファイバ601とPLC603の間隔およびz軸まわりの回転方向の傾きを制御することが可能となる。
この接着剤604が硬化する前の時点における自発的なアライメントと濡れの拡大が生じた後に、接着剤604を硬化させることで、安定的な光学的接続を得ることが出来る。これにより、アクティブアライメント無しにパッシブアライメントのみで、x軸方向、y軸方向およびz軸方向の位置ならびにz軸まわりの回転方向の傾きを高精度に制御して、マルチコア光ファイバ601とPLC603のすべての導波路コアにおける光接続を実現することが出来るとともに、アクティブアライメントを使用するときよりも実装時間および実装コストを改善できる。
なお、本実施の形態に係る光接続構造において用いられる、平坦側面605を有するマルチコア光ファイバ601は、z軸回りの回転に対する構造上の異方性により、z軸回りの回転方向についても一定の位置にアライメントすることが可能となる。
このように平坦側面605を有するマルチコア光ファイバ601は、多く市販されているので、容易に入手できる。したがって、第3~第5の実施の形態に係る光接続構造と比較して、本実施の形態に係る光接続構造を容易に実現することができる。
また、本実施の形態においては、平坦側面605は、例えば、図6Dに示すように、光ファイバコア602を挟んでマルチコア光ファイバ601の両側に互いに平行となるように形成されているが、マルチコア光ファイバ601の平坦側面の数やその配置については、パッシブアライメントを実現する上で適宜選択することができる。
[変形例]
以上の第1~第6の実施の形態に係る光接続構造において、光ファイバに接続される光学素子をレンズまたはPLCとする例について説明したが、光学素子としてLD、PD、変調器、光学フィルタなどを接続する際にも適用することができる。これらの光学素子はあくまでも例示にすぎず、本発明は、光ファイバに接続されるあらゆる光学素子について適用することが可能である。
また、光学素子としてPLCを用いた場合でも、そのPLCを構成する材料系は、任意に選択できる。例えば、石英系PLCによる系では、支持基板およびクラッド層には、それぞれSi基板およびSiO2を用いることができるが、石英系PLC以外にも、TaO2/SiO2系やニオブ酸リチウム系といった、誘電体材料系の材料や化合物半導体系の材料からなる導波路構造を持つPLCや、シリコンフォトニクス材料系によるPLCなどを任意に採用することができる。したがって、導波路型LDおよび導波路型PDも、本発明における光学素子に含まれる。
また、上述した第2および第3の実施の形態に係る光接続構造において、穴あき光ファイバを用いた実施の形態について説明したが、穴あき光ファイバには、フォトニック結晶光ファイバやホーリーファイバが含まれる。また、特にフォトニック結晶光ファイバまたはホーリーファイバにも分類できない穴の開いた光ファイバに対しても、本発明を適用することが可能である。
第2~第6の実施の形態においては、それぞれ、穴、溝または平坦側面が2つずつ設けられた光ファイバを例に説明したが、本発明においては、穴、溝または平坦側面を設けるか否かは任意である。また、穴、溝または平坦側面を設ける場合でも、その数は2つに限る必要はなく、1つ以上の任意の数量とすることができる。
また、第4~第6の実施の形態においては、光ファイバとしてマルチコア光ファイバを用いた例について説明したが、マルチコア光ファイバは、一般的なシングルモードかつシングルコアの光ファイバと異なり、光学的に軸対称でない光ファイバの一例として挙げたものである。本発明において光ファイバは、特定の種類の光ファイバに限定されるものではない。本発明は、一般的なシングルモードかつシングルコアの光ファイバや上述したマルチコア光ファイバはもちろんのこと、偏波保持ファイバ等、マルチコア光ファイバ以外の光学的に軸対称でない光ファイバを含め、あらゆるタイプの光ファイバに対して適用することができる。
同様に、PLC等の光学素子も、光学的に軸対称な構造を持たないものであってもよい。
101…光ファイバ、201,301…穴あき光ファイバ、401…穴あきマルチコア光ファイバ、501…溝付きマルチコア光ファイバ、601…平坦側面を有するマルチコア光ファイバ、102,202,302,402,502,602…光ファイバコア、103,203…レンズ、303,403,503,603…PLC、104,204,304,404,504,604…接着剤、205,305,405…穴、505…溝、605…平坦側面、306,406,506,606…PLCコア。

Claims (7)

  1. 学素子と、
    円柱状のコア及び当該コアと同軸で円筒状のクラッドからなるシングルコアの光ファイバであり前記光学素子と対向する端面を有する光ファイバと、
    記端面と前記光学素子の前記端面に対向する対向面の間に塗布されて、前記光学素子と前記光ファイバとを光学的かつ機械的に接続する接着剤とからなり、
    前記光学素子の前記対向面と前記接着剤の外周面とがなす接触角、および前記光ファイバの前記端面と前記接着剤の外周面がなす接触角は、いずれも90度未満であり、
    前記光ファイバは、前記端面に開口する穴を有し、
    前記接着剤の一部は、前記穴に入り込む、
    ことを特徴とする、光接続構造。
  2. 請求項に記載された光接続構造において、
    前記穴は、前記光ファイバの導波方向と平行に形成された柱状の空孔である
    ことを特徴とする、光接続構造。
  3. 請求項1又は2に記載された光接続構造において、
    前記光ファイバは、前記光ファイバの側面に形成され、その一端が前記端面に接続する溝を有し、
    前記接着剤の一部は、前記溝に入り込んでいる
    ことを特徴とする、光接続構造。
  4. 請求項記載の光接続構造において、
    前記溝は、前記光ファイバの導波方向に沿って形成されている
    ことを特徴とする、光接続構造。
  5. 請求項1~のいずれか一つに記載された光接続構造において、
    前記光ファイバは、前記光ファイバの側面に形成され、その一端が前記端面に接続する平坦面を有し、
    前記接着剤の一部は、前記平坦面の少なくとも一部に塗布されている
    ことを特徴とする、光接続構造。
  6. 請求項1~のいずれか一つに記載された光接続構造において、
    前記光学素子および前記光ファイバの少なくとも一方は、光学的に軸対称な構造を持たない
    ことを特徴とする、光接続構造。
  7. 請求項1~のいずれか一つに記載された光接続構造において、
    前記光学素子は、平面光波回路である
    ことを特徴とする、光接続構造。
JP2021528599A 2019-06-21 2019-06-21 光接続構造 Active JP7222426B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024731 WO2020255379A1 (ja) 2019-06-21 2019-06-21 光接続構造

Publications (2)

Publication Number Publication Date
JPWO2020255379A1 JPWO2020255379A1 (ja) 2020-12-24
JP7222426B2 true JP7222426B2 (ja) 2023-02-15

Family

ID=74040393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021528599A Active JP7222426B2 (ja) 2019-06-21 2019-06-21 光接続構造

Country Status (3)

Country Link
US (1) US20220350084A1 (ja)
JP (1) JP7222426B2 (ja)
WO (1) WO2020255379A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053764A1 (en) 2001-08-31 2003-03-20 Karl-Joachim Ebeling Method for coupling a surface-oriented opto-electronic element with an optical fiber and opto-electronic element for carrying out such a method
JP2006293166A (ja) 2005-04-13 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> ホーリーファイバおよび光ファイバモジュール
JP2007017808A (ja) 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology 光素子付き光伝送媒体およびその製造方法
JP2012108404A (ja) 2010-11-19 2012-06-07 Hitachi Cable Ltd 光ファイバの端部構造及びその端部加工方法
US20150063755A1 (en) 2013-08-27 2015-03-05 International Business Machines Corporation Multicore fiber waveguide coupler
JP2018165804A (ja) 2017-03-28 2018-10-25 住友電気工業株式会社 光接続部品の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269648A (en) * 1980-03-10 1981-05-26 Gte Laboratories Incorporated Method for mounting microsphere coupling lenses on optical fibers
JP3900280B2 (ja) * 2003-02-10 2007-04-04 セイコーエプソン株式会社 光素子と光ファイバとの結合構造、光素子と光ファイバとの結合方法、ならびに光モジュール
US8171625B1 (en) * 2008-06-02 2012-05-08 Wavefront Research, Inc. Method of providing low footprint optical interconnect

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053764A1 (en) 2001-08-31 2003-03-20 Karl-Joachim Ebeling Method for coupling a surface-oriented opto-electronic element with an optical fiber and opto-electronic element for carrying out such a method
JP2006293166A (ja) 2005-04-13 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> ホーリーファイバおよび光ファイバモジュール
JP2007017808A (ja) 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology 光素子付き光伝送媒体およびその製造方法
JP2012108404A (ja) 2010-11-19 2012-06-07 Hitachi Cable Ltd 光ファイバの端部構造及びその端部加工方法
US20150063755A1 (en) 2013-08-27 2015-03-05 International Business Machines Corporation Multicore fiber waveguide coupler
JP2018165804A (ja) 2017-03-28 2018-10-25 住友電気工業株式会社 光接続部品の製造方法

Also Published As

Publication number Publication date
JPWO2020255379A1 (ja) 2020-12-24
WO2020255379A1 (ja) 2020-12-24
US20220350084A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
Kopp et al. Two-dimensional, 37-channel, high-bandwidth, ultra-dense silicon photonics optical interface
US9851521B2 (en) Connectorized optical chip assembly
US9372314B2 (en) Optical signal processor and optical assembly
CA3073803A1 (en) Method and apparatus for self-alignment connection of optical fiber to waveguide of photonic integrated circuit
JP2013213915A (ja) 光結合構造および光結合方法
JP5603847B2 (ja) マイクロレンズアレイ及び光伝送部品
US11385409B2 (en) Connection structure for optical waveguide chip
JP2017173710A (ja) 光ファイバ搭載光集積回路装置
JP6678510B2 (ja) 光導波路素子
WO2021187178A1 (ja) 光ファイバ接続部品及び光ファイバ接続部品の製造方法
KR20140024887A (ko) 두 개의 광 도파로를 위한 광 결합 시스템
JP7222426B2 (ja) 光接続構造
JP7118691B2 (ja) 光学接続部品
JP3229142B2 (ja) 光学装置
JP7107194B2 (ja) 光接続構造
JPH09159865A (ja) 光導波路の接続構造
JP2012027402A (ja) 光ファイバを用いた方向性結合器の製造方法
JP2013213914A (ja) 光結合構造
US20220317387A1 (en) Alignment Method for Optical Waveguide Element
JP4763497B2 (ja) 光モジュールの結合構造及びその組み立て方法
JP2016206308A (ja) 光接続部品
JP6871106B2 (ja) 光導波路チップの接続構造
JP3228614B2 (ja) 光ファイバと光導波路の接続部構造
JPH06138340A (ja) 光導波路と光ファイバとの光結合構造
JP2003131066A (ja) 光ファイバスプライス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7222426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150