JP7216752B2 - Measuring device, in-line vapor deposition device and adjustment method - Google Patents

Measuring device, in-line vapor deposition device and adjustment method Download PDF

Info

Publication number
JP7216752B2
JP7216752B2 JP2021018397A JP2021018397A JP7216752B2 JP 7216752 B2 JP7216752 B2 JP 7216752B2 JP 2021018397 A JP2021018397 A JP 2021018397A JP 2021018397 A JP2021018397 A JP 2021018397A JP 7216752 B2 JP7216752 B2 JP 7216752B2
Authority
JP
Japan
Prior art keywords
conveying
transport
height
measuring device
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021018397A
Other languages
Japanese (ja)
Other versions
JP2022121185A (en
Inventor
諭 中村
聡 古木
孝司 須藤
明 石川
友昭 樽茶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2021018397A priority Critical patent/JP7216752B2/en
Priority to CN202210090639.8A priority patent/CN114908328B/en
Priority to KR1020220012059A priority patent/KR20220114481A/en
Publication of JP2022121185A publication Critical patent/JP2022121185A/en
Application granted granted Critical
Publication of JP7216752B2 publication Critical patent/JP7216752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/52Means for observation of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/04Transmission means between sensing element and final indicator for giving an enlarged reading
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/18Measuring inclination, e.g. by clinometers, by levels by using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Chemical & Material Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、搬送装置の高さを調整するための計測装置、インライン型蒸着装置および調整方法に関する。 The present invention relates to a measuring device, an in-line vapor deposition device, and an adjusting method for adjusting the height of a conveying device.

搬送ローラなどの搬送装置で搬送される基板に機能膜を成膜するインライン式成膜装置において、成膜時の膜厚を均一にするために基板を搬送する搬送装置の高さの調整が重要である。しかしながら、大気環境下で高さを調整しても、真空環境下で真空チャンバに歪みが生じることで搬送装置の高さが変化してしまう場合があり、その変化量の計測を真空環境下で行うことは困難である。また、既に製品生産が開始された成膜装置においても、成膜装置の自重による床の沈み込み等で、搬送装置の高さにズレが発生した場合に、そのズレ量を真空状況下で計測することが困難であり、成膜が終了した基板の膜厚分布によってズレ量を推定していた。この場合にも、基板に成膜された機能膜の膜厚の評価をするまでわからないため調整に時間がかかっていた。 In an in-line film deposition system that deposits a functional film on a substrate transported by a transport device such as a transport roller, it is important to adjust the height of the transport device that transports the substrate in order to achieve a uniform film thickness during deposition. is. However, even if the height is adjusted in an atmospheric environment, the height of the transfer device may change due to distortion in the vacuum chamber in the vacuum environment. It is difficult to do. In addition, even in film deposition equipment that has already started product production, if there is a deviation in the height of the transport device due to the sinking of the floor due to the self weight of the film deposition equipment, etc., the amount of deviation is measured under vacuum conditions. Therefore, the amount of deviation was estimated from the film thickness distribution of the substrate on which film formation was completed. In this case as well, it took a long time to adjust because the film thickness of the functional film formed on the substrate was not known until it was evaluated.

このような問題を解決するための従来技術として、特許文献1には、搬送装置内を走行するキャリア側に搬送高さの調整状況を測定するための距離センサを搭載させ、真空状況下でキャリアを走行させることで、搬送装置の高さを計測する技術が知られている。 As a conventional technique for solving such a problem, Patent Document 1 discloses that a distance sensor for measuring the adjustment state of the conveying height is mounted on the side of the carrier traveling in the conveying device, and the carrier is moved under vacuum conditions. There is known a technique for measuring the height of a transport device by running

特表2019-533896Special table 2019-533896

しかしながら、特許文献1で開示されている技術では、隣接する2つの搬送装置までの距離をキャリアで測定し、隣接する2つの搬送装置までの距離の差を計測し搬送装置の整列を判断する。このため、搬送路自体に傾きがある場合にも、搬送装置とキャリアとの平行が確保されていれば調整完了となるため、水平面に対して搬送装置の高さを調整する際の利便性の低さが問題であった。 However, in the technique disclosed in Patent Document 1, the distance to two adjacent transport devices is measured by a carrier, the difference in the distance to the two adjacent transport devices is measured, and alignment of the transport devices is determined. Therefore, even if the transport path itself is inclined, the adjustment is completed as long as the transport device and the carrier are kept parallel. Lowness was a problem.

上記の課題を鑑み、本発明は、水平面に対する搬送装置の高さを調整する際の利便性を向上する計測装置を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a measuring device that improves convenience when adjusting the height of a conveying device with respect to a horizontal plane.

上記課題を解決するために、本発明に係る計測装置は、真空チャンバの内部に配置された複数の搬送装置によって真空中を搬送される計測装置であって、水平面に対する前記計測装置の傾きを検出する第1検出手段と、前記複数の搬送装置に対する前記計測装置の位置を検出する第2検出手段と、を備える。 In order to solve the above problems, a measuring device according to the present invention is a measuring device that is transported in a vacuum by a plurality of transporting devices arranged inside a vacuum chamber, and detects the inclination of the measuring device with respect to a horizontal plane. and a second detection means for detecting the position of the measuring device with respect to the plurality of conveying devices.

これによって、水平面に対する搬送装置の高さを調整する際の利便性を向上する計測装置を提供することができる。 Accordingly, it is possible to provide a measuring device that improves convenience when adjusting the height of the conveying device with respect to the horizontal plane.

本実施形態に係る計測キャリアによる搬送ローラの高さの計測方法を示す図FIG. 4 is a diagram showing a method of measuring the height of the conveying roller by the measurement carrier according to the present embodiment; 計測キャリアのセンサ配置を示す図Diagram showing the sensor arrangement of the metrology carrier 計測キャリアの構成図Configuration diagram of the measurement carrier 搬送ローラの高さの計算方法を示す図Diagram showing how to calculate the height of the transport roller 搬送ローラの高さの計測結果の一例を示す図A diagram showing an example of the measurement result of the height of the conveying roller. 計測キャリアの位置検出方法を示す図Diagram showing the position detection method of the measurement carrier 図6に示す位置検出方法のロジック図Logic diagram of the position detection method shown in FIG. 搬送ローラの高さの自動調整に係る調整システムを示す図FIG. 4 is a diagram showing an adjustment system for automatic adjustment of the height of the conveying roller; 調整システムが実行する処理の一例を示すフローチャートFlowchart showing an example of processing executed by the adjustment system 調整システムが実行する処理の別例を示すフローチャートFlowchart showing another example of processing performed by the coordination system (A)は調整前の搬送ローラの高さを示す図、(B)は調整後の搬送ローラの高さを示す図。(A) is a diagram showing the height of the conveying roller before adjustment, and (B) is a diagram showing the height of the conveying roller after adjustment. 計測キャリアの変形例を示す図Diagram showing a variant of the metrology carrier 計測キャリアの変形例を示す図Diagram showing a variant of the metrology carrier 第2実施形態に係る計測キャリアの側方図Side view of the measurement carrier according to the second embodiment 第2実施形態に係る計測キャリアを上方斜視図Upper perspective view of the measurement carrier according to the second embodiment

以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. In addition, the following embodiments do not limit the invention according to the scope of claims. Although multiple features are described in the embodiments, not all of these multiple features are essential to the invention, and multiple features may be combined arbitrarily. Furthermore, in the accompanying drawings, the same or similar configurations are denoted by the same reference numerals, and redundant description is omitted.

<第1実施形態>
本実施形態では、インライン式の成膜装置に備えられた搬送装置によって搬送され、搬送中に搬送装置の高さを計測する計測装置(計測キャリアとも称する)を用いる計測方法、および計測方法を使用した搬送装置の高さの自動調整方法について説明する。
<First embodiment>
In this embodiment, a measurement method using a measurement device (also referred to as a measurement carrier) that is transported by a transport device provided in an in-line film deposition apparatus and measures the height of the transport device during transport, and a measurement method are used. A method for automatically adjusting the height of the conveying device will be described.

図1に、基板やマスクを搬送する搬送装置によって形成される搬送路の水平面基準からのずれを計測するための計測キャリアによる搬送ローラの高さの計測方法を示す。図1では、成膜装置1が蒸着材料を基板に放出するための真空チャンバ2内に備えられた複数の搬送ローラ20によって形成される搬送路に沿って、計測装置である計測キャリア10が搬送方向(図1のX方向)4へ搬送される。隣接する二つの搬送ローラ20の上に、計測キャリア10の当接部11が当接する位置に計測キャリア10を停止させ、その時の計測キャリア10の傾きを角度測定板12にて計測し、二つの搬送ローラ20の距離から搬送ローラ20の高さの差を算出する。続いて計測キャリア10を次の搬送ローラ20までの距離に相当する1ピッチ分移動させ、次の搬送ローラ20に当接部11が当接すると、計測キャリア10の傾きを測定する。これを順次行うことでインライン式成膜装置1の複数の搬送ローラ20の高さを計測することができる。そして、搬送ローラ20の高さを調整するための調整ユニット21を制御することで、搬送ローラ20の高さを水平面基準で一定の高さに調整することができる。 FIG. 1 shows a method of measuring the height of a transport roller by a measurement carrier for measuring the deviation of a transport path formed by a transport device that transports a substrate or a mask from a horizontal plane reference. In FIG. 1, a measurement carrier 10, which is a measuring device, is transported along a transport path formed by a plurality of transport rollers 20 provided in a vacuum chamber 2 for discharging a vapor deposition material from a film forming apparatus 1 onto a substrate. It is transported in direction 4 (X direction in FIG. 1). The measurement carrier 10 is stopped at a position where the contact portion 11 of the measurement carrier 10 abuts on the two adjacent conveying rollers 20, and the inclination of the measurement carrier 10 at that time is measured by the angle measurement plate 12. A height difference of the conveying roller 20 is calculated from the distance of the conveying roller 20 . Subsequently, the measuring carrier 10 is moved by one pitch corresponding to the distance to the next conveying roller 20, and when the contact portion 11 comes into contact with the next conveying roller 20, the inclination of the measuring carrier 10 is measured. By sequentially performing this, the heights of the plurality of transport rollers 20 of the in-line film forming apparatus 1 can be measured. By controlling the adjusting unit 21 for adjusting the height of the conveying roller 20, the height of the conveying roller 20 can be adjusted to a constant height with reference to the horizontal plane.

図2は、計測キャリア10の構成を示す上面図である。計測キャリア10は、搬送路に配された左右の搬送ローラ20にそれぞれ接触する左右の角度測定板12L、12Rを連結部材206で搬送方向前後において連結したフレーム構造になっている。なお、図2では、当接部11など、計測キャリア10の筐体は省略している。 FIG. 2 is a top view showing the configuration of the measurement carrier 10. FIG. The measurement carrier 10 has a frame structure in which left and right angle measurement plates 12L and 12R that contact the left and right conveying rollers 20 arranged in the conveying path are connected by a connecting member 206 in front and rear in the conveying direction. 2, the housing of the measurement carrier 10 such as the contact portion 11 is omitted.

左右の角度測定板12L、12R(総称して角度測定板12と呼ぶ)には、それぞれ搬送方向における傾きを測定する左右の角度測定ユニット201L、201Rが配置される。連結部材206には左右の角度測定板12間の傾斜角と、搬送ローラ20間の傾きを測定するための角度測定ユニット201Cが配置されている。角度測定ユニット201L、201R、201Cを総称して角度測定ユニット201と呼ぶ。 Left and right angle measurement units 201L and 201R for measuring the inclination in the transport direction are arranged on the left and right angle measurement plates 12L and 12R (collectively referred to as angle measurement plates 12). An angle measuring unit 201</b>C for measuring the tilt angle between the left and right angle measuring plates 12 and the tilt between the conveying rollers 20 is arranged on the connecting member 206 . The angle measurement units 201L, 201R, and 201C are collectively called the angle measurement unit 201. FIG.

角度測定ユニット201はそれぞれ水平面(XY面)に対する傾斜角度を測定する角度計(水準器)を収納した金属製の筐体によって構成され、真空環境下でも傾斜角度を計測することができる。角度測定ユニット201は計測キャリア10の3か所に取り付けられている。左右の角度測定板12に取り付けられた角度測定ユニット201L、201Rは、左右の角度測定板12それぞれの搬送方向における傾斜角を計測する。角度測定ユニット201Cは、連結部材206に取り付けられ、左右の角度測定板12間の傾斜角を測定する。 Each angle measurement unit 201 is composed of a metal housing containing a goniometer (level) for measuring an inclination angle with respect to a horizontal plane (XY plane), and can measure an inclination angle even in a vacuum environment. The angle measurement units 201 are attached to the measurement carrier 10 at three locations. The angle measurement units 201L and 201R attached to the left and right angle measurement plates 12 measure the tilt angles of the left and right angle measurement plates 12 in the conveying direction. The angle measurement unit 201</b>C is attached to the connecting member 206 and measures the tilt angle between the left and right angle measurement plates 12 .

左右の角度測定板12間には、制御ユニット(PCユニットとも称する)202、角度測定ユニット201、電力を供給するバッテリユニット203、後述する位置検出ユニット205を含む回路ブロックが配置される。これらの回路ブロックはフレキ管204で接続される。 A circuit block including a control unit (also referred to as a PC unit) 202, an angle measurement unit 201, a battery unit 203 for supplying power, and a position detection unit 205, which will be described later, is arranged between the left and right angle measurement plates 12. FIG. These circuit blocks are connected by a flexible tube 204 .

フレキ管204はバッテリユニット203からPCユニット202、バッテリユニット203から各角度測定ユニット201、位置検出ユニット205からPCユニット202およびバッテリユニット203を接続する。フレキ管204は、さらに、各角度測定ユニット201、PCユニット202、位置検出ユニット205に電源を供給する電源ケーブルを収容する。また、フレキ管204には、各角度測定ユニット201および位置検出ユニット205からPCユニット202に測定データを送信するための通信ケーブルも収容される。 The flexible tube 204 connects the battery unit 203 to the PC unit 202 , the battery unit 203 to each angle measurement unit 201 , the position detection unit 205 to the PC unit 202 and the battery unit 203 . The flexible tube 204 further accommodates a power cable that supplies power to each angle measurement unit 201 , PC unit 202 and position detection unit 205 . The flexible tube 204 also accommodates a communication cable for transmitting measurement data from each angle measurement unit 201 and position detection unit 205 to the PC unit 202 .

PCユニット202は、金属製の筐体を有し、図3において計測処理PC2021、および入出力インタフェース(I/F)2022を含む。計測処理PC2021は、計算した結果を外部へと送信可能な無線通信ユニット2021aと、測定対象の搬送ローラ20を特定してその高さを計算するプロセッサ、メモリを含む処理ユニット2021bを備える。入出力I/F2022は、角度測定ユニット201に電源を供給するとともに、角度測定ユニット201によって取得した測定データを受け取る。位置検出ユニット205は、後述する位置検出方法によって、計測キャリア10がいずれの搬送ローラ20上に位置するかを検出するためのセンサを備える。位置検出ユニット205は入出力I/F2022を介して計測処理PC2021に接続される。 The PC unit 202 has a metal housing and includes a measurement processing PC 2021 and an input/output interface (I/F) 2022 in FIG. The measurement processing PC 2021 includes a wireless communication unit 2021a capable of transmitting the results of calculations to the outside, and a processing unit 2021b including a processor and a memory for specifying the conveying roller 20 to be measured and calculating its height. The input/output I/F 2022 supplies power to the angle measurement unit 201 and receives measurement data acquired by the angle measurement unit 201 . The position detection unit 205 includes a sensor for detecting on which conveying roller 20 the measurement carrier 10 is positioned by a position detection method to be described later. The position detection unit 205 is connected to the measurement processing PC 2021 via an input/output I/F 2022 .

バッテリユニット203内には、計測処理PC2021へと電力を供給するための充電式バッテリ2031、UPSコントローラ2032、およびUPSバッテリ2033が収納されている。 The battery unit 203 accommodates a rechargeable battery 2031 for supplying power to the measurement processing PC 2021, a UPS controller 2032, and a UPS battery 2033.

UPSコントローラ2032は、バッテリ2031およびUPSバッテリ2033のいずれから電源供給を行うかを切り替える。UPSバッテリ2033は、バッテリ2031の充電容量不足や故障によって電源供給ができなくなった場合に計測処理PC2021を安全にシャットダウンするためのバックアップ用の電源である。 The UPS controller 2032 switches between the battery 2031 and the UPS battery 2033 to supply power. The UPS battery 2033 is a backup power source for safely shutting down the measurement processing PC 2021 when power supply becomes impossible due to insufficient charging capacity of the battery 2031 or failure.

図3は計測キャリア10の構成図である。PCユニット202は、入出力インタフェース2022を介して、角度測定ユニット201L、201R、201Cの角度計からの測定値及び位置検出ユニット205の測定値を取得する。そして、PCユニット202は測定結果から測定対象の搬送ローラ20を特定してその搬送ローラ20の高さを計算する計測処理PC2021を備える。また計測処理PC2021によって計算された測定結果は、内蔵の無線通信ユニット2021aへと送信され、搬送ローラ20および調整ユニット21を制御する制御装置へと無線送信される。 FIG. 3 is a configuration diagram of the measurement carrier 10. As shown in FIG. The PC unit 202 acquires the measured values from the goniometers of the angle measuring units 201L, 201R, and 201C and the measured values of the position detection unit 205 via the input/output interface 2022 . The PC unit 202 includes a measurement processing PC 2021 that specifies the transport roller 20 to be measured from the measurement result and calculates the height of the transport roller 20 . Further, the measurement result calculated by the measurement processing PC 2021 is transmitted to the built-in wireless communication unit 2021a, and wirelessly transmitted to the control device that controls the conveying roller 20 and the adjustment unit 21. FIG.

計測キャリア10は、真空チャンバ内を搬送されるため、外部よりの電源供給が困難であったり、あるいは、非効率的であることがある。このため、計測キャリア10はバッテリ2031から電源の供給を受ける。バッテリ2031は、バッテリ2031の充電容量の監視のためのUPSコントローラ2032に接続される。UPSコントローラ2032はバッテリ2031のバッテリ容量または供給される電圧が閾値を下回ったことを検知し、電源供給をUPSバッテリ2033へ切換え、計測処理PC2021へシャットダウン信号を発報する。これによって、計測処理PC2021を安全にシャットダウンすることができる。 Since the metrology carrier 10 is transported through a vacuum chamber, it may be difficult or inefficient to supply power from the outside. Therefore, the measurement carrier 10 receives power supply from the battery 2031 . Battery 2031 is connected to UPS controller 2032 for monitoring the charge capacity of battery 2031 . The UPS controller 2032 detects that the battery capacity of the battery 2031 or the supplied voltage has fallen below the threshold, switches the power supply to the UPS battery 2033, and issues a shutdown signal to the measurement processing PC 2021. This allows the measurement processing PC 2021 to be safely shut down.

各角度測定ユニット201のそれぞれとPCユニット202の入出力I/F2022は、バッテリユニット203を介してデータ線で接続されている。なお、PCユニット202、バッテリユニット203の筐体、角度測定ユニットの筐体は、金属製であり、非磁性体である。寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定するものではない。例えば、位置検出ユニット205はPCユニット202に収容されず、計測処理PC2021とは別個の筐体に収容されてもよい。 Each of the angle measurement units 201 and the input/output I/F 2022 of the PC unit 202 are connected via a data line via the battery unit 203 . The housings of the PC unit 202, the battery unit 203, and the angle measurement unit are made of metal and non-magnetic. Dimensions, materials, shapes, relative positions, etc., are not intended to limit the scope of the present invention unless otherwise specified. For example, the position detection unit 205 may not be accommodated in the PC unit 202, but may be accommodated in a housing separate from the measurement processing PC 2021.

また、図3において、フレキ管204は電源線またはデータ線を保護するために配置されるが、寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定するものではない。例えば、フレキ管204はPCユニット202と角度測定ユニット201とを直接接続してもよい。 Also, in FIG. 3, the flexible tube 204 is arranged to protect the power supply line or the data line. The scope is not limited to those only. For example, the flexible tube 204 may directly connect the PC unit 202 and the angle measurement unit 201 .

図4は計測キャリア10による搬送ローラの高さの計算方法を示したものである。図4において、角度測定板12Rの下方には、搬送方向前後の搬送ローラ20の間隔に合わせて形成された当接部401、402が配置される。当接部401、402が二つの搬送ローラ20に接触した状態で、計測キャリア10が傾きθを有する状態で静止している。尚、図4は搬送方向に向かって右側の側面を示しているが、左側の側面にも同様の角度測定板12Lが同様の状態で位置している。 FIG. 4 shows a method of calculating the height of the conveying roller by the measurement carrier 10. In FIG. In FIG. 4, contact portions 401 and 402 are arranged below the angle measuring plate 12R so as to match the interval between the conveying rollers 20 in the conveying direction. With the contact portions 401 and 402 in contact with the two conveying rollers 20, the measurement carrier 10 is stationary with an inclination θ. Although FIG. 4 shows the right side in the conveying direction, a similar angle measuring plate 12L is also positioned on the left side in the same manner.

この状態で、計測キャリアの角度測定ユニット201の角度計より出力される出力データを計測処理PC2021で処理することにより、搬送ローラの高さを特定する。すなわち計測キャリア10の搬送方向における傾き角度θと、搬送ローラ20の間隔すなわちローラ距離Dから、搬送ローラ20の高さの差H=D×tanθを特定することができる。このように、計測キャリア10を搬送しながら、当接部401、402が搬送ローラ20に当接する位置となるたびに停止させ、各搬送ローラ20において高さの計算を順次行う。 In this state, the measurement processing PC 2021 processes the output data output from the angle meter of the angle measurement unit 201 of the measurement carrier to specify the height of the conveying roller. That is, from the inclination angle θ of the measurement carrier 10 in the conveying direction and the interval between the conveying rollers 20, that is, the roller distance D, the height difference H=D×tan θ of the conveying rollers 20 can be specified. In this manner, the measurement carrier 10 is conveyed and stopped each time the contact portions 401 and 402 come into contact with the conveying rollers 20 , and the height of each conveying roller 20 is calculated sequentially.

これによって、計測キャリア10によれば、搬送路上に配列された複数の搬送ローラ20に対し、2つの搬送ローラ20間それぞれの高さの差を計測し、搬送路上のすべての搬送ローラ20に対して水平基準面に対する高さのばらつきを検出することができる。 As a result, according to the measurement carrier 10, the difference in height between two of the transport rollers 20 arranged on the transport path is measured, and the height difference is measured for all the transport rollers 20 on the transport path. can detect variations in height with respect to the horizontal reference plane.

なお、図4の例では、測定を隣接する搬送ローラ20に対して行っているが、例えば図12に示すように、1個おきなど、所望の個数離れた2つの搬送ローラ20の高さの差を計測してもよい。これによって、隣接する搬送ローラ20の間隔が狭い場合であっても傾きを計測する搬送ローラ20間の距離Dを長くとることができるので、測定精度を高める効果がある。 In the example of FIG. 4, the measurement is performed for the adjacent conveying rollers 20. However, as shown in FIG. You can measure the difference. As a result, even when the distance between the adjacent conveying rollers 20 is narrow, the distance D between the conveying rollers 20 for measuring the inclination can be increased, thereby increasing the measurement accuracy.

また、図13に示す例では、計測キャリア10は、角度測定板12Rの当接部11を凸形状にせず、平板状に形成されている。計測キャリア10の搬送方向における長さMLが隣接ローラ20の間隔よりも大きく、さらにその搬送方向外側に位置する2つの搬送ローラ20間よりも短ければ、この当接部11であっても搬送ローラ20間の高さの差を測定することができる。ローラ間隔が一定でないような場合に適用範囲が広がり、効果的である。 In the example shown in FIG. 13, the contact portion 11 of the angle measurement plate 12R of the measurement carrier 10 is not formed in a convex shape, but is formed in a flat plate shape. If the length ML of the measurement carrier 10 in the conveying direction is greater than the interval between the adjacent rollers 20 and shorter than the interval between the two conveying rollers 20 located outside in the conveying direction, then even the contact portion 11 will Height differences between 20 can be measured. The range of application is widened and effective when the roller spacing is not constant.

いずれの場合でも、測定対象となる搬送ローラ20とその傾きあるいは高さ情報を対応させて計測し、図8のように搬送ローラ20の高さを調整するための情報を搬送制御装置800へと送信する点においては同様である。 In either case, the conveying roller 20 to be measured and its inclination or height information are measured in correspondence, and information for adjusting the height of the conveying roller 20 is sent to the conveying control device 800 as shown in FIG. Transmission is the same.

図5は図4にて計測された搬送方向に配列された搬送ローラ20の高さの測定値をプロットしたものである。図4の例では、最初の搬送ローラ20、図5のX=0の搬送ローラ20の高さを0とする。続いて、2番目の搬送ローラ20(図5の左から2番目の黒丸)の高さを、最初の搬送ローラ20の高さとの差からZ方向の高さを判定する。このように、搬送方向で1つ上流側の搬送ローラ20のとの高さの差を足すことで、最初の搬送ローラ20に対する相対的な高さを判定することができる。 FIG. 5 plots measured values of the height of the transport rollers 20 arranged in the transport direction measured in FIG. In the example of FIG. 4, the height of the first conveying roller 20, that is, the conveying roller 20 at X=0 in FIG. Subsequently, the height in the Z direction is determined from the difference between the height of the second conveying roller 20 (the second black circle from the left in FIG. 5) and the height of the first conveying roller 20 . In this manner, by adding the difference in height from that of the transport roller 20 one upstream in the transport direction, the height relative to the first transport roller 20 can be determined.

また、システムの構成上許容可能な搬送ローラ20の高さの上限値501及び搬送ローラ20の高さの下限値502が予め計測処理PC2021に設定されており、上下限値より外れているローラを判断することができる。この上下限値より外れている搬送ローラ20を上下限値内に手動あるいは自動で調整することにより、全ての搬送ローラを垂直方向(Z方向)で一定の高さに揃えることができる。これによって、真空チャンバ内で蒸着等によって成膜を行った際にも、膜厚分布のむらを防ぎ、均一な膜厚の成膜を行うことが可能となる。 In addition, the upper limit value 501 and the lower limit value 502 of the height of the conveying roller 20 that are allowable in terms of system configuration are set in the measurement processing PC 2021 in advance, and the rollers outside the upper and lower limit values are detected. can judge. By manually or automatically adjusting the conveying rollers 20 outside the upper and lower limits within the upper and lower limits, all the conveying rollers can be aligned at a constant height in the vertical direction (Z direction). As a result, even when the film is formed by vapor deposition or the like in a vacuum chamber, it is possible to prevent unevenness in the film thickness distribution and form a film with a uniform film thickness.

図6は、計測キャリア10による位置検出動作を説明する図である。この位置検出動作は、搬送ローラ20と対向する角度測定板12の下面に配されたカウントセンサ2051a、2051b、2051c(総称してカウントセンサ2051とする)の出力を位置検出ユニット205によって処理することによって行われる。例えば、カウントセンサ2051aは、角度測定板12の下方に近接する物体を検出する光学式の測距センサである。この場合、角度測定板12の下方、測距センサに対応する位置に搬送ローラ20が位置すると、カウントセンサ2051は物体を検出したとして「1」を出力する。測距センサに対応する位置に何も物体が存在しない場合にはカウントセンサ2051は「0」を出力する。これによって、カウントセンサ2051の下方に搬送ローラ20が位置する間だけ、カウントセンサ2051は「1」を出力する。そして、後述するように3つのカウントセンサ2051の出力が変化するタイミングに基づいて計測キャリア10の移動方向や、通過した搬送ローラ20の個数を特定することができる。 6A and 6B are diagrams for explaining the position detection operation by the measurement carrier 10. FIG. This position detection operation is performed by the position detection unit 205 processing the outputs of count sensors 2051a, 2051b, and 2051c (collectively referred to as count sensors 2051) arranged on the lower surface of the angle measurement plate 12 facing the conveying roller 20. done by For example, the count sensor 2051a is an optical ranging sensor that detects an object approaching below the angle measurement plate 12 . In this case, when the conveying roller 20 is positioned below the angle measuring plate 12 and at a position corresponding to the distance measuring sensor, the count sensor 2051 detects an object and outputs "1". The count sensor 2051 outputs "0" when no object exists at the position corresponding to the distance measurement sensor. As a result, the count sensor 2051 outputs “1” only while the conveying roller 20 is positioned below the count sensor 2051 . Then, as will be described later, the moving direction of the measurement carrier 10 and the number of conveying rollers 20 that have passed can be specified based on the timing at which the outputs of the three count sensors 2051 change.

計測キャリア10が、カウントセンサ2051の出力に基づいて通過した搬送ローラ20の個数をカウントすることで、計測キャリア10の位置、すなわち当接部11が搬送路上のどの搬送ローラ20に当接する位置にあるかを把握することができる。 By counting the number of transport rollers 20 that the measurement carrier 10 has passed based on the output of the count sensor 2051, the position of the measurement carrier 10, that is, the position at which the contact portion 11 contacts the transport roller 20 on the transport path is determined. you can figure out if there is.

カウントセンサ2051は、真空環境下で使用可能な、たとえば反射型のファイバーセンサによって構成される光学センサであり、計測処理PC2021に接続される。カウントセンサ2051の出力信号は、搬送方向検出用、ローラカウント用、搬送方向フラグリセット用に使用される。また搬送ローラ20の高さの測定値にローラカウント個数を付加することで、搬送路上の何個目の搬送ローラ測定値なのかを特定でき、調整が必要な搬送ローラ20の特定を容易に行うことが出来る。 The count sensor 2051 is an optical sensor configured by, for example, a reflective fiber sensor that can be used in a vacuum environment, and is connected to the measurement processing PC 2021 . The output signal of the count sensor 2051 is used for conveying direction detection, roller counting, and conveying direction flag resetting. Also, by adding the roller count number to the measured value of the height of the conveying roller 20, it is possible to identify the number of the conveying roller on the conveying path and to easily identify the conveying roller 20 that needs to be adjusted. can do

図7は、位置検出ロジック図を示す。計測キャリア10を正搬送方向(図1の搬送方向4)に移動させた時のロジック図である。まず、カウントセンサ2051aが搬送ローラ20を検知しカウントセンサ2051aの検出信号701の立ち上がりを計測処理PC2021が認識した時点で、計測処理PC2021の内部に、正搬送フラグ704をオンに設定する。さらに計測キャリア10が搬送ローラ20を検知し、カウントセンサ2051bによる検出信号702の立ち上がりで、正搬送フラグ704が1の時、正搬送方向の搬送ローラ20のカウントを1加算する。続いて、計測キャリア10が正搬送方向に移動し、カウントセンサ2051cが搬送ローラ20を検知して検出信号703の立ち上がりで、正搬送フラグ704を0に設定する。この一連のサイクルを繰り返すことにより、計測キャリア10の先端が通過した搬送ローラ20の個数をカウントし、計測キャリア10の計測位置が把握できる。 FIG. 7 shows a position detection logic diagram. FIG. 2 is a logic diagram when the measurement carrier 10 is moved in the forward transport direction (transport direction 4 in FIG. 1); First, when the count sensor 2051a detects the conveying roller 20 and the measurement processing PC 2021 recognizes the rise of the detection signal 701 of the count sensor 2051a, the normal conveyance flag 704 is set to ON inside the measurement processing PC 2021. Further, when the measurement carrier 10 detects the transport roller 20 and the detection signal 702 from the count sensor 2051b rises, and the forward transport flag 704 is 1, the count of the transport roller 20 in the forward transport direction is incremented by one. Subsequently, the measurement carrier 10 moves in the forward transport direction, the count sensor 2051c detects the transport roller 20, and the forward transport flag 704 is set to 0 when the detection signal 703 rises. By repeating this series of cycles, the number of conveying rollers 20 passed by the leading edge of the measurement carrier 10 can be counted, and the measurement position of the measurement carrier 10 can be grasped.

なお、逆搬送の場合は、カウントセンサ2051cから検出が始まるので、正搬送フラグが0の状態でカウントセンサ2051cの検出信号703の立ち上がりを検出した場合に、逆搬送フラグを1に設定することで逆搬送を検出することができる。逆搬送フラグが1の状態でカウントセンサ2051bの検出信号702の立ち上がりを検出すると、順方向の搬送ローラ20のカウントを1減算する、または逆方向のローラカウントを1加算することで、逆搬送時の搬送ローラ20のカウントも行うことができる。 In the case of reverse transport, since detection starts from the count sensor 2051c, the reverse transport flag can be set to 1 when the rise of the detection signal 703 of the count sensor 2051c is detected while the normal transport flag is 0. Reverse transport can be detected. When the count sensor 2051b detects the rising edge of the detection signal 702 while the reverse transport flag is 1, the forward transport roller 20 count is decremented by 1 or the reverse roller count is incremented by 1 to , can also be counted.

<高さの自動調整>
図8は、計測キャリア10の計測結果に基づいて、搬送ローラ20の高さを自動調整する調整システムに係るブロック図である。搬送路を形成する各搬送ローラ20には、それぞれ調整ユニット21が取付けられる。また、搬送ローラ20および調整ユニット21を制御するコントローラ801と、計測キャリア10から送信された各搬送ローラ20の高さの計測値を受信する無線通信ユニット802を備えた搬送制御装置800が配置されている。
<Automatic height adjustment>
FIG. 8 is a block diagram of an adjustment system that automatically adjusts the height of the conveying rollers 20 based on the measurement result of the measurement carrier 10. As shown in FIG. An adjustment unit 21 is attached to each transport roller 20 forming the transport path. Further, a transport control device 800 including a controller 801 that controls the transport rollers 20 and the adjustment unit 21 and a wireless communication unit 802 that receives the measurement value of the height of each transport roller 20 transmitted from the measurement carrier 10 is arranged. ing.

これによって、計測キャリア10から送信されてきた搬送ローラ20の高さに関する情報を無線通信ユニット802で受信することができる。また、コントローラ801で高さ調整の必要な搬送ローラ20ごとに高さの調整量を計算し、調整ユニット21を制御することで搬送ローラ20の高さを自動で調整することができる。 This allows the wireless communication unit 802 to receive information about the height of the transport roller 20 transmitted from the measurement carrier 10 . Further, the controller 801 calculates the height adjustment amount for each of the conveying rollers 20 that require height adjustment, and by controlling the adjusting unit 21, the height of the conveying rollers 20 can be automatically adjusted.

また計測キャリア10は、位置検出ユニット205の出力から計測対象の搬送ローラ20を特定するための情報、例えば通過した搬送ローラの数に関する情報(カウント)を送信する。また、計測キャリア10は角度測定ユニット201の検出結果から搬送ローラ20のカウントに対応する搬送ローラ20の高さ情報を、計測処理PC2021aによって計算し、無線通信ユニット2021cによって、搬送制御装置800へと送信する。 The measurement carrier 10 also transmits information for specifying the transport rollers 20 to be measured from the output of the position detection unit 205, for example, information (count) on the number of transport rollers that have passed. In addition, the measurement carrier 10 calculates the height information of the transport roller 20 corresponding to the count of the transport roller 20 from the detection result of the angle measurement unit 201 by the measurement processing PC 2021a, and transmits it to the transport control device 800 by the wireless communication unit 2021c. Send.

図9は、調整システムが実行する処理の一例を示すフローチャートである。図9に示す処理は、計測キャリア10が測定した搬送ローラ20の高さに関する情報に基づいて、搬送制御装置800が搬送ローラ20の高さの調整量を決定する。 FIG. 9 is a flowchart illustrating an example of processing performed by the adjustment system. In the process shown in FIG. 9 , the transport control device 800 determines the adjustment amount of the height of the transport roller 20 based on the information about the height of the transport roller 20 measured by the measurement carrier 10 .

まず、手動あるいは自動で搬送ローラの高さを初期位置に調整する(S1)。手動で搬送ローラの高さを調整する場合は、搬送制御装置800が調整ユニット21を制御することで搬送ローラ20の高さを初期位置に設定する。続いて搬送路上に計測キャリア10を載置し、位置検出ユニット205を用いて、角度測定板12の当接部11が当接する最初の測定開始位置へと計測キャリア10を搬送する(S2)。続いて図4を参照して説明したように、計測キャリア10は、隣接する2つの搬送ローラ20の傾斜角度を測定し(S3)、測定した傾斜角度に基づいて搬送ローラの高さの差を計算する(S4)。なお、隣接する2つの搬送ローラ20間の傾斜角度の測定及び高さの差の計算は、左右の角度測定板12のそれぞれで行われ、また左右の角度測定板12間、すなわち搬送方向に交差する方向において行われてもよい。これによって搬送方向及び搬送方向に直交する左右の搬送ローラ20間の高さをそろえることができる。 First, the height of the conveying roller is manually or automatically adjusted to the initial position (S1). When the height of the conveying roller is manually adjusted, the conveying control device 800 controls the adjusting unit 21 to set the height of the conveying roller 20 to the initial position. Subsequently, the measurement carrier 10 is placed on the transport path, and the position detection unit 205 is used to transport the measurement carrier 10 to the initial measurement start position where the contact portion 11 of the angle measurement plate 12 contacts (S2). Subsequently, as described with reference to FIG. 4, the measurement carrier 10 measures the inclination angles of two adjacent conveying rollers 20 (S3), and calculates the height difference between the conveying rollers based on the measured inclination angles. Calculate (S4). The measurement of the inclination angle and the calculation of the difference in height between two adjacent conveying rollers 20 are performed by the left and right angle measuring plates 12 respectively. It may be done in the direction of As a result, the height between the conveying direction and between the left and right conveying rollers 20 orthogonal to the conveying direction can be made uniform.

計測キャリア10は無線通信ユニット2021aを備えており、計測処理PC2021bによって計算された搬送ローラ20の高さデータを無線通信ユニット2021aを介して搬送ローラ20の高さデータを搬送制御装置800に送信する(S5)。 The measurement carrier 10 has a wireless communication unit 2021a, and transmits the height data of the transport rollers 20 calculated by the measurement processing PC 2021b to the transport control device 800 via the wireless communication unit 2021a. (S5).

搬送制御装置800は、無線通信ユニット802で受信した搬送ローラ20の高さデータをコントローラ801へ転送する。そしてコントローラ801は、計測結果すなわち搬送ローラ20の高さが許容範囲内か、許容範囲外かを判定する(S6)。その搬送ローラ20の高さが許容範囲外である場合は(S6でNo)、調整対象の搬送ローラ20に対して高さの調整量に対応する駆動信号を計算し、調整対象となる搬送ローラ20の調整ユニット21を駆動して搬送ローラ20の高さを調整する(S7)。調整対象の搬送ローラ20の高さが許容範囲内である場合は(S6でYes)、処理をS8に進める。 The transport control device 800 transfers the height data of the transport rollers 20 received by the wireless communication unit 802 to the controller 801 . Then, the controller 801 determines whether the measurement result, ie, the height of the conveying roller 20, is within the allowable range or out of the allowable range (S6). If the height of the transport roller 20 is out of the allowable range (No in S6), a drive signal corresponding to the height adjustment amount is calculated for the transport roller 20 to be adjusted, The adjustment unit 21 of 20 is driven to adjust the height of the conveying roller 20 (S7). If the height of the conveying roller 20 to be adjusted is within the allowable range (Yes in S6), the process proceeds to S8.

搬送ローラ20の高さを調整した後、まだ計測あるいは調整すべき搬送ローラ20が残っているか否かを判定し(S8)、すべての搬送ローラ20の計測/調整が完了していれば(YES)フローを終了する。一方、まだ計測すべき搬送ローラ20が残っている場合は、計測キャリア10を搬送ローラ20の1つ分の距離を移動し(S9)、次の搬送ローラ20の高さ測定を行う(S3へと復帰)。このサイクルを繰り返すことにより搬送路全体の搬送ローラ20の高さの調整を行う。 After adjusting the height of the conveying rollers 20, it is determined whether or not there are still conveying rollers 20 to be measured or adjusted (S8). ) ends the flow. On the other hand, if there are still conveying rollers 20 to be measured, the measurement carrier 10 is moved by the distance of one conveying roller 20 (S9), and the height of the next conveying roller 20 is measured (to S3). and return). By repeating this cycle, the height of the conveying rollers 20 on the entire conveying path is adjusted.

なお、図9の例では搬送ローラ20の測定と、調整とを並行して進めるものとして説明を行った。しかしながら、全ての搬送ローラ20の測定を行い、全ての搬送ローラ20の高さの測定を行った後に、搬送ローラ20の高さの調整を行ってもよい。 In the example of FIG. 9, the description has been given assuming that the measurement and adjustment of the conveying roller 20 are performed in parallel. However, after measuring all the transport rollers 20 and measuring the height of all the transport rollers 20, the height of the transport rollers 20 may be adjusted.

図10は調整システムが実行する処理の別例を示すフローチャートである。図10に示す処理では、計測キャリア10が搬送ローラ20の高さを計測して高さの調整量を決定し、搬送制御装置800に調整量を送信する。搬送制御装置800は、受信した高さの調整量に基づいて搬送ローラ20の高さを調整する。 FIG. 10 is a flow chart showing another example of processing executed by the adjustment system. In the process shown in FIG. 10 , the measurement carrier 10 measures the height of the transport roller 20 to determine the height adjustment amount, and transmits the adjustment amount to the transport control device 800 . The transport control device 800 adjusts the height of the transport roller 20 based on the received height adjustment amount.

図10において、S1~S4までの処理と、S7~S9の処理は、図9と同様であるため説明を省略する。図10の処理では、S4で搬送ローラ20の高さを計算した後、計測キャリア10がS51で計測結果に基づいて搬送ローラ20の高さが許容範囲内か、許容範囲外かを判定する。計測キャリア10は、搬送ローラ20の高さが許容範囲外で調整が必要と判定した場合は(S51でNG)、調整対象の搬送ローラ20に対する調整量を算出する(S61)。また搬送ローラ20の高さが許容範囲内で調整が不要と判定した場合は(S51でOK)、計測キャリア10はその搬送ローラ20について調整量0を設定する(S62)。その後、処理をS63に進め、計測キャリア10はそれぞれ搬送制御装置800に調整量を示す情報を送信する(S63)。一例では、搬送ローラ20のインデックスに対応する情報を合わせて搬送制御装置800に送信する。 In FIG. 10, the processing from S1 to S4 and the processing from S7 to S9 are the same as those in FIG. 9, so description thereof will be omitted. In the process of FIG. 10, after calculating the height of the conveying roller 20 in S4, the measurement carrier 10 determines whether the height of the conveying roller 20 is within the allowable range or out of the allowable range based on the measurement result in S51. When the measurement carrier 10 determines that the height of the transport roller 20 is out of the allowable range and adjustment is necessary (NG in S51), the measurement carrier 10 calculates the adjustment amount for the transport roller 20 to be adjusted (S61). If it is determined that the height of the transport roller 20 is within the allowable range and no adjustment is required (OK in S51), the measurement carrier 10 sets the adjustment amount to 0 for the transport roller 20 (S62). Thereafter, the process proceeds to S63, and each measurement carrier 10 transmits information indicating the adjustment amount to the transport control device 800 (S63). In one example, information corresponding to the index of the transport roller 20 is also transmitted to the transport control device 800 .

そして、搬送制御装置800は、受信した搬送ローラ20の調整量の情報に基づいて、対象となる搬送ローラ20の調整ユニット21を動作させ、搬送ローラ20の高さを調整する(S7)。これによって、搬送制御装置800の計算量を軽減することができる。 Then, the transport control device 800 operates the adjustment unit 21 of the target transport roller 20 to adjust the height of the transport roller 20 based on the received information about the adjustment amount of the transport roller 20 (S7). As a result, the amount of calculation of the transport control device 800 can be reduced.

図11(A)は調整前の搬送ローラ20の高さを示し、図11(B)は調整後の搬送ローラ20の高さを示している。 11A shows the height of the conveying roller 20 before adjustment, and FIG. 11B shows the height of the conveying roller 20 after adjustment.

図11(A)において、2、5、6、7、8、9番目の搬送ローラ20の高さが許容範囲外である。このため、調整システムは2、5、6、7、8、9番目の搬送ローラ20の高さが許容範囲内となるように調整する。調整量は、基準の高さ(Z=0)との差分であってもよい。あるいは、調整対象の搬送ローラ20の搬送方向で上流の所定個の搬送ローラ20であって、許容範囲内に位置する搬送ローラに基づいて決められてもよい。例えば、調整対象の搬送ローラ20の高さがHtであり、搬送方向で1つ上流の搬送ローラ20の高さをHとすると、調整量をH-Htとしてもよい。 In FIG. 11A, the heights of the 2nd, 5th, 6th, 7th, 8th and 9th conveying rollers 20 are out of the allowable range. Therefore, the adjustment system adjusts the heights of the 2nd, 5th, 6th, 7th, 8th and 9th conveying rollers 20 to be within the allowable range. The adjustment amount may be the difference from the reference height (Z=0). Alternatively, it may be determined based on a predetermined number of transport rollers 20 upstream in the transport direction of the transport roller 20 to be adjusted and positioned within the allowable range. For example, if the height of the transport roller 20 to be adjusted is Ht and the height of the transport roller 20 one upstream in the transport direction is H, the adjustment amount may be H-Ht.

これによって、図11(B)に示すように、全ての搬送ローラ20の高さが許容範囲内に含まれるように調整することができる。 As a result, as shown in FIG. 11B, the height of all the transport rollers 20 can be adjusted to be within the allowable range.

なお、搬送ローラ20の搬送方向における間隔は、図11(A)、(B)においては等間隔であるものとして図示されている。この場合、計測キャリア10または搬送制御装置800は、搬送ローラ20の間隔に関する情報を保持し、2つの搬送ローラ20間の傾きに基づいて、搬送ローラ20の高さの差を特定してもよい。 11A and 11B, the intervals between the conveying rollers 20 in the conveying direction are shown as equal intervals. In this case, the measurement carrier 10 or the transport control device 800 may hold information about the distance between the transport rollers 20 and identify the height difference between the transport rollers 20 based on the inclination between the two transport rollers 20. .

一方、防着板やフレームなどの、真空チャンバ内に設置される部材との位置を調整するため、搬送ローラ20の搬送方向における間隔は等間隔でないことがある。このような場合、計測キャリア10または搬送制御装置800は、搬送ローラ20の搬送方向における間隔を示すデータを有していてもよい。 On the other hand, the distance between the transport rollers 20 in the transport direction may not be equal in order to adjust the positions of the members installed in the vacuum chamber, such as the attachment-prevention plate and the frame. In such a case, the measurement carrier 10 or the transport control device 800 may have data indicating the spacing of the transport rollers 20 in the transport direction.

別の例では、計測キャリア10は、搬送ローラ20の搬送方向における間隔を検出してもよい。例えば、計測キャリア10は、加速度センサの出力を保存し、1つの搬送ローラ20を検出してから次の搬送ローラ20を検出するまでの期間の加速度センサの出力を積分することで、1つの搬送ローラ20から次の搬送ローラ20までの距離を計算してもよい。あるいは、計測キャリア10は、角度測定板12に、搬送ローラ20に当接している個所を特定するための複数の感圧センサを備えてもよい。この場合、複数の感圧センサ間の距離に関する情報を計測キャリア10または搬送制御装置800が有し、搬送ローラ20に当接している個所を特定することで、搬送方向で前後の搬送ローラ20の間隔を測定してもよい。 In another example, the measurement carrier 10 may detect the distance between the transport rollers 20 in the transport direction. For example, the measurement carrier 10 stores the output of the acceleration sensor, and integrates the output of the acceleration sensor during the period from when one transport roller 20 is detected until when the next transport roller 20 is detected. The distance from one roller 20 to the next transport roller 20 may be calculated. Alternatively, the measurement carrier 10 may include a plurality of pressure-sensitive sensors on the angle measurement plate 12 for identifying the contact points with the conveying roller 20 . In this case, the measurement carrier 10 or the transport control device 800 has information about the distance between the plurality of pressure-sensitive sensors, and by specifying the contact point with the transport roller 20, the distance between the transport rollers 20 before and after the transport direction is determined. Intervals may be measured.

以上説明したように、本実施形態に係る計測装置によれば、水平面に対する搬送装置の高さを特定することができるため、搬送装置の水平面に対する高さを調整する際の利便性を向上することができる。 As described above, according to the measuring device according to the present embodiment, the height of the conveying device with respect to the horizontal plane can be specified, so that the convenience of adjusting the height of the conveying device with respect to the horizontal plane can be improved. can be done.

また、例えば数10チャンバを超えるような大型の循環式搬送装置の場合、循環最初のチャンバと循環最後のチャンバとの繋ぎ合わせで搬送高さが不一致となり、搬送高さ調整に手戻りが発生してしまう場合があった。これに対して、本実施形態によれば、チャンバ間の搬送ローラの水平面に対する高さを特定する循環最初のチャンバと循環最後のチャンバとのつなぎ合わせで搬送ローラの高さを一致させることができる。 In addition, in the case of a large circulatory transfer apparatus with more than several tens of chambers, for example, the transfer height becomes inconsistent when connecting the first and last chambers of circulation, and rework is required to adjust the transfer height. There was a case where it was lost. On the other hand, according to the present embodiment, the height of the transport rollers can be matched by connecting the chambers at the beginning of circulation and the chamber at the end of circulation, which specify the height of the transport rollers between the chambers with respect to the horizontal plane. .

また、本実施形態に係る基板の搬送装置は、成膜源を有し、蒸着であれば蒸着源、スパッタであればターゲット、化学蒸着法(CVD)であれば電極と成膜ガスの流路が設けられたインライン型蒸着装置に設けられた搬送ローラの調整に使用することができる。この場合、インライン型蒸着装置は、真空チャンバ内に搬送ローラ20を備え、搬送路を減圧した状態で計測キャリア10を搬送することで搬送ローラ20の高さの調整を行う。 In addition, the substrate transfer apparatus according to the present embodiment has a film formation source, a vapor deposition source in the case of vapor deposition, a target in the case of sputtering, and an electrode and film formation gas flow path in the case of chemical vapor deposition (CVD). It can be used for adjusting the conveying rollers provided in the in-line vapor deposition apparatus provided with. In this case, the in-line vapor deposition apparatus includes a transport roller 20 in a vacuum chamber, and adjusts the height of the transport roller 20 by transporting the measurement carrier 10 with the transport path decompressed.

なお、本実施形態に係る計測キャリア10は大気及び真空環境下のいずれでも使用することができ、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定するものではない。 It should be noted that the measurement carrier 10 according to this embodiment can be used in both atmospheric and vacuum environments, and the dimensions, materials, shapes, and relative positions of the components described in this embodiment are not particularly specified. Unless explicitly stated, the scope of this invention is not intended to be limited thereto.

<第2実施形態>
第1実施形態によれば、計測キャリアは、リジッドで変形しない角度計測板を有し、搬送方向で前後の搬送ローラに対する傾きを測定することで搬送ローラの水平面に対する高さを測定する方法について説明した。第2実施形態では、角度測定板にある程度の柔軟性(可撓性)持たせ、搬送方向及び左右の搬送ローラ間で高さにばらつきがあっても、それぞれの搬送ローラに接触し、搬送ローラ間の水平面に対する高さを測定する方法について説明する。なお、第1実施形態と同様の構成、処理、機能については同一の参照符号を使用し、説明を省略する。
<Second embodiment>
According to the first embodiment, the measurement carrier has an angle measurement plate that is rigid and does not deform, and the method for measuring the height of the transport roller with respect to the horizontal plane by measuring the inclination with respect to the front and rear transport rollers in the transport direction will be described. bottom. In the second embodiment, the angle measuring plate is provided with a certain degree of flexibility (flexibility), and even if there are variations in the conveying direction and in the height between the left and right conveying rollers, the plate is in contact with each conveying roller. A method for measuring the height with respect to the horizontal plane between them will be explained. Note that the same reference numerals are used for the same configurations, processes, and functions as in the first embodiment, and descriptions thereof are omitted.

図14は本実施形態に係る計測キャリア200の搬送方向に向かって右側からみた側面図、図15は、上方斜視図である。本実施形態に係る計測キャリア200は、複数の搬送ローラ20の高さのばらつきによる凹凸にフィットして当接するよう、柔軟性を有する角度測定板1400を有する。具体的にはステンレス鋼(SUS)の板金を断面L字状に折り曲げ加工して、ある程度の剛性を持たせつつ、搬送路方向には長尺状の形状をなし、搬送路の凹凸(搬送ローラの高さのばらつき)には柔軟性をもってフィットする構造となっている。また角度測定板1400の前後端部下面には、搬送ローラ20に対してぶつかることなく、円滑に乗り上げて搬送が行われるように傾斜面1401が形成されている。 FIG. 14 is a side view of the measurement carrier 200 according to this embodiment as seen from the right side in the transport direction, and FIG. 15 is an upper perspective view. The measurement carrier 200 according to the present embodiment has an angle measurement plate 1400 having flexibility so as to fit and abut on irregularities due to variations in height of the plurality of conveying rollers 20 . Specifically, a stainless steel (SUS) sheet metal is bent into an L-shaped cross section to provide a certain amount of rigidity, while forming a long shape in the direction of the transport path. It has a structure that fits with flexibility to the height variation). In addition, on the lower surface of the front and rear ends of the angle measurement plate 1400, inclined surfaces 1401 are formed so that the plate can smoothly ride on the conveying rollers 20 and be conveyed.

図14に示すように、計測キャリア200は搬送路に載置した状態で、各複数の搬送ローラ20のそれぞれに自重で変形しながら当接し、角度測定ユニット201の両側に位置する搬送ローラ20の高さを測定する。言い換えれば、角度測定ユニット201)は、測定対象となる2つの搬送ローラの中間位置に、位置検出ユニット205によって正確に位置決めする必要がある。そして測定対象の搬送ローラ20に当接する位置が当接部11として機能し、搬送ローラ20の間隔(ピッチ)によって変化する。 As shown in FIG. 14, the measurement carrier 200 placed on the transport path abuts on each of the transport rollers 20 while being deformed by its own weight. Measure height. In other words, the angle measurement unit 201) needs to be accurately positioned by the position detection unit 205 at an intermediate position between the two transport rollers to be measured. The contact portion 11 functions as a contact portion 11 that contacts the conveying roller 20 to be measured, and changes depending on the interval (pitch) between the conveying rollers 20 .

この方法によれば、搬送ローラ20のピッチ(間隔)が変化しても、計測キャリア200の変形自体には再現性があるため、補正係数を適用すれば、搬送ローラ20間の間隔の変化による計測値の誤差、すなわち角度測定板の撓みによる計測のずれ、誤差をキャンセルすることができる。 According to this method, even if the pitch (interval) of the conveying rollers 20 changes, the deformation of the measurement carrier 200 itself is reproducible. Errors in measured values, that is, deviations and errors in measurement due to bending of the angle measurement plate can be canceled.

また図15に示すように、左右の角度測定板12は、連結部材206によって搬送方向前後において連結されており、その連結部材206の中間位置にも左右の搬送ローラ20の傾き角度、すなわち高さのばらつきを検出する角度測定ユニット201Cが配されている。なお、図15では、PCユニット202、バッテリユニット203、フレキ管204は省略されている。左右の角度測定板12による搬送方向における傾き(高さばらつき)とともに、左右2列の搬送ローラ20群に対しても傾き(高さばらつき)を測定することが可能になる。 Further, as shown in FIG. 15, the left and right angle measurement plates 12 are connected by connecting members 206 in front and rear in the conveying direction. An angle measuring unit 201C is arranged to detect the variation in . 15, the PC unit 202, the battery unit 203, and the flexible tube 204 are omitted. Along with the inclination (height variation) in the conveying direction of the left and right angle measurement plates 12, it is possible to measure the inclination (height variation) of the left and right two rows of conveying rollers 20 as well.

そして、第1実施形態のように、角度測定板12がリジッドな構造でなく、柔軟性(可撓性)を備えているので、角度測定板12が互いの角度の差異によるねじれの影響を受けずに測定することが可能である。すなわち左右4個の搬送ローラ20の位置関係、によって形成される2次元平面の高さのばらつきを搬送方向及び搬送方向に交差する方向の両方に対して同時に計算することができる。この高さのばらつきをなくすように調整ユニット21を制御することで、個々の搬送ローラ20を逐次調整することなく、全体の傾斜を面として水平面に合わせて調整することが可能となる。 In addition, since the angle measurement plate 12 does not have a rigid structure as in the first embodiment but has flexibility (flexibility), the angle measurement plate 12 is affected by the twist due to the difference in the mutual angle. It is possible to measure without That is, it is possible to simultaneously calculate the variation in the height of the two-dimensional plane formed by the positional relationship of the four left and right conveying rollers 20 in both the conveying direction and the direction intersecting the conveying direction. By controlling the adjustment unit 21 so as to eliminate this height variation, it is possible to adjust the entire inclination to a horizontal plane without adjusting the individual conveying rollers 20 one by one.

なお、第2実施形態に係る計測キャリア200は、間隔が短い複数の搬送ローラ20など、搬送方向で2つの搬送ローラ20によって計測キャリアを搬送することが難しい場合にも搬送ローラ20の水平面に対する高さを計測することができる。 It should be noted that the measurement carrier 200 according to the second embodiment has a height relative to the horizontal plane of the transport rollers 20 even when it is difficult to transport the measurement carrier with two transport rollers 20 in the transport direction, such as a plurality of transport rollers 20 with short intervals. can be measured.

10:計測キャリア、20:搬送ローラ、21:調整ユニット、12:角度測定板、201:角度測定ユニット、202:PCユニット、203:バッテリユニット、204:フレキ管 10: measurement carrier, 20: conveying roller, 21: adjustment unit, 12: angle measurement plate, 201: angle measurement unit, 202: PC unit, 203: battery unit, 204: flexible tube

Claims (20)

真空チャンバの内部に配置された複数の搬送装置によって真空中を搬送される計測装置であって、
水平面に対する前記計測装置の傾きを検出する第1検出手段と、
前記複数の搬送装置に対する前記計測装置の位置を検出する第2検出手段と、
を備えることを特徴とする計測装置。
A measuring device transported in a vacuum by a plurality of transport devices arranged inside a vacuum chamber,
a first detection means for detecting the inclination of the measuring device with respect to a horizontal plane;
a second detecting means for detecting the position of the measuring device with respect to the plurality of conveying devices;
A measuring device comprising:
前記第1検出手段で検出した前記傾きに関する情報を送信するための通信ユニットをさらに備えることを特徴とする請求項1に記載の計測装置。 2. The measuring apparatus according to claim 1, further comprising a communication unit for transmitting information regarding said inclination detected by said first detection means. 前記第1検出手段で検出した前記傾きに関する情報に基づいて前記水平面に沿った基準面に対する高さを特定する特定手段と、
前記特定手段で特定した前記高さに関する情報を送信するための通信ユニットと、
をさらに備えることを特徴とする請求項1に記載の計測装置。
specifying means for specifying a height relative to the reference plane along the horizontal plane based on the information about the inclination detected by the first detecting means;
a communication unit for transmitting the information about the height specified by the specifying means;
The measurement device according to claim 1, further comprising:
前記第1検出手段で検出した前記傾きに基づいて、前記搬送装置の高さの調整量を特定する特定手段と、
前記特定手段で特定した前記調整量に関する情報を送信するための通信ユニットと、
をさらに備えることを特徴とする請求項1に記載の計測装置。
a specifying means for specifying a height adjustment amount of the conveying device based on the inclination detected by the first detecting means;
a communication unit for transmitting information about the adjustment amount specified by the specifying means;
The measurement device according to claim 1, further comprising:
前記通信ユニットは前記第2検出手段で検出した前記位置に関する情報をさらに送信することを特徴とする請求項2から4のいずれか1項に記載の計測装置。 5. The measuring apparatus according to any one of claims 2 to 4, wherein said communication unit further transmits information regarding said position detected by said second detection means. 前記位置に関する情報は、前記計測装置が通過した搬送装置の数を示す情報であることを特徴とする請求項5に記載の計測装置。 6. The measuring device according to claim 5, wherein the information about the position is information indicating the number of conveying devices that the measuring device has passed. 前記第2検出手段は搬送方向に沿って並ぶ複数の光学センサを含むことを特徴とする請求項1から6のいずれか1項に記載の計測装置。 7. The measuring apparatus according to any one of claims 1 to 6, wherein said second detection means includes a plurality of optical sensors arranged along the conveying direction. 前記複数の光学センサのそれぞれは、下方に物体が位置するか否かによって出力を変化させ、
前記複数の光学センサのそれぞれの出力が変化するタイミングに基づいて、前記計測装置の搬送方向を検出する方向検出手段をさらに含むことを特徴とする請求項7に記載の計測装置。
each of the plurality of optical sensors changes its output depending on whether an object is positioned below;
8. The measuring apparatus according to claim 7, further comprising direction detection means for detecting a conveying direction of said measuring apparatus based on the timing at which the outputs of said plurality of optical sensors change.
前記複数の搬送装置のそれぞれは、
搬送ローラと、
前記搬送ローラの位置を調整するための調整ユニットと、
を含み、
前記計測装置は、搬送方向で前後に位置する2つの前記搬送ローラに当接する当接部を有することを特徴とする請求項1から8の何れか1項に記載の計測装置。
each of the plurality of transport devices,
a conveying roller;
an adjusting unit for adjusting the position of the conveying roller;
including
9. The measuring device according to any one of claims 1 to 8, wherein the measuring device has contact portions that contact the two conveying rollers positioned forward and backward in the conveying direction.
前記搬送ローラが前記当接部に当接している個所を検出するための感圧センサを備えることを特徴とする請求項9に記載の計測装置。 10. The measuring device according to claim 9, further comprising a pressure-sensitive sensor for detecting a location where the conveying roller is in contact with the contact portion. 前記第1検出手段は、前記当接部の前記水平面に対する傾きを検出する水準器であることを特徴とする請求項9または10に記載の計測装置。 11. The measuring device according to claim 9, wherein said first detection means is a spirit level that detects an inclination of said contact portion with respect to said horizontal plane. 前記第1検出手段で検出した前記傾きに関する情報と、前記第2検出手段で検出した前記位置に関する情報とが、互いに関連づけられている、
ことを特徴とする請求項1に記載の計測装置。
the information about the tilt detected by the first detection means and the information about the position detected by the second detection means are associated with each other;
The measuring device according to claim 1, characterized by:
インライン型蒸着装置であって、
請求項1から12のいずれか1項に記載の計測装置を搬送する複数の搬送手段と、
前記複数の搬送手段のそれぞれの位置を調整する調整手段と、
前記複数の搬送手段によって搬送される前記計測装置から、前記傾きに関する情報を受信する無線通信手段と、
前記無線通信手段で受信した前記情報に基づいて前記調整手段を制御する制御手段と、
を備えることを特徴とするインライン型蒸着装置。
An in-line vapor deposition device,
a plurality of transport means for transporting the measuring device according to any one of claims 1 to 12;
adjusting means for adjusting the position of each of the plurality of conveying means;
wireless communication means for receiving information about the inclination from the measuring device conveyed by the plurality of conveying means;
a control means for controlling the adjustment means based on the information received by the wireless communication means;
An in-line vapor deposition device comprising:
前記複数の搬送手段は、第1の搬送手段と、搬送方向において前記第1の搬送手段の下流にある第2の搬送手段とを少なくとも含み、
前記無線通信手段は、前記第1の搬送手段と、前記第2の搬送手段との前記水平面に対する傾きを示す情報を受信し、
前記制御手段は、前記傾きを示す情報に基づいて、前記第1の搬送手段と前記第2の搬送手段との高さの差が、所定の範囲内にないと判定した場合に、前記調整手段を制御する
ことを特徴とする請求項13に記載のインライン型蒸着装置。
the plurality of conveying means includes at least a first conveying means and a second conveying means downstream of the first conveying means in the conveying direction;
The wireless communication means receives information indicating inclinations of the first conveying means and the second conveying means with respect to the horizontal plane,
When the control means determines that the difference in height between the first conveying means and the second conveying means is not within a predetermined range based on the information indicating the inclination, the adjusting means 14. The in-line vapor deposition apparatus according to claim 13, wherein the is controlled.
インライン型蒸着装置であって、
請求項1から12のいずれか1項に記載の計測装置を搬送する複数の搬送手段と、
前記複数の搬送手段のそれぞれの位置を調整する調整手段と、
前記複数の搬送手段によって搬送される前記計測装置から、前記搬送手段の前記水平面に対する高さに関する情報を受信する無線通信手段と、
前記無線通信手段で受信した前記情報に基づいて前記調整手段を制御する制御手段と、
を備えることを特徴とするインライン型蒸着装置。
An in-line vapor deposition device,
a plurality of transport means for transporting the measuring device according to any one of claims 1 to 12;
adjusting means for adjusting the position of each of the plurality of conveying means;
wireless communication means for receiving information about the height of the conveying means with respect to the horizontal plane from the measuring devices conveyed by the plurality of conveying means;
a control means for controlling the adjustment means based on the information received by the wireless communication means;
An in-line vapor deposition device comprising:
前記制御手段は、
前記無線通信手段で受信した前記情報に基づいて前記複数の搬送手段のそれぞれの基準面に対する高さが所定の範囲内であるか否かを判定し、
前記水平面に対する高さが所定の範囲内にないと判定した場合に、前記調整手段を制御する
ことを特徴とする請求項15に記載のインライン型蒸着装置。
The control means is
determining whether the height of each of the plurality of conveying means relative to a reference surface is within a predetermined range based on the information received by the wireless communication means;
16. The in-line vapor deposition apparatus according to claim 15, wherein the adjustment means is controlled when it is determined that the height with respect to the horizontal plane is not within a predetermined range.
インライン型蒸着装置であって、
請求項1から12のいずれか1項に記載の計測装置を搬送する複数の搬送手段と、
前記複数の搬送手段のそれぞれの位置を調整する調整手段と、
前記複数の搬送手段によって搬送される前記計測装置から、前記搬送手段の調整量に関する情報を受信する無線通信手段と、
前記無線通信手段で受信した前記情報に基づいて前記調整手段を制御する制御手段と、
を備えることを特徴とするインライン型蒸着装置。
An in-line vapor deposition device,
a plurality of transport means for transporting the measuring device according to any one of claims 1 to 12;
adjusting means for adjusting the position of each of the plurality of conveying means;
wireless communication means for receiving information about the adjustment amount of the conveying means from the measuring device conveyed by the plurality of conveying means;
a control means for controlling the adjustment means based on the information received by the wireless communication means;
An in-line vapor deposition device comprising:
前記無線通信手段は、搬送方向における前記搬送手段の位置に関する情報を受信し、
前記制御手段は、前記搬送手段の位置に関する情報に基づいて調整対象の搬送手段を特定することを特徴とする請求項13から17のいずれか1項に記載のインライン型蒸着装置。
said wireless communication means receiving information about the position of said conveying means in a conveying direction;
18. The in-line vapor deposition apparatus according to any one of claims 13 to 17, wherein the control means specifies the transport means to be adjusted based on information regarding the position of the transport means.
前記搬送手段によって前記計測装置を搬送する搬送路を減圧する真空チャンバを備えることを特徴とする請求項13から18のいずれか1項に記載のインライン型蒸着装置。 19. The in-line vapor deposition apparatus according to any one of claims 13 to 18, further comprising a vacuum chamber for decompressing a conveying path along which the measuring device is conveyed by the conveying means. 真空チャンバの内部に配置された複数の搬送装置を備えるインライン型蒸着装置の調整方法であって、
前記複数の搬送装置によって真空中で計測装置を搬送する工程と、
前記計測装置によって、水平面に対する前記計測装置の傾きに関する情報と、前記複数の搬送装置に対する前記計測装置の位置に関する情報と、を取得する情報取得工程と、
前記位置に関する情報に基づいて、前記複数の搬送装置から調整対象を選択する選択工程と、
前記傾きに関する情報に基づいて、前記調整対象の位置を調整する調整工程と、
を有することを特徴とする調整方法。
A method for adjusting an in-line vapor deposition device comprising a plurality of transport devices arranged inside a vacuum chamber,
a step of transporting the measurement device in a vacuum by the plurality of transport devices;
an information acquisition step of acquiring, by the measuring device, information about the inclination of the measuring device with respect to a horizontal plane and information about the position of the measuring device with respect to the plurality of transport devices;
a selection step of selecting an adjustment target from the plurality of transport devices based on the position information;
an adjustment step of adjusting the position of the adjustment target based on the information about the inclination;
An adjustment method characterized by having
JP2021018397A 2021-02-08 2021-02-08 Measuring device, in-line vapor deposition device and adjustment method Active JP7216752B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021018397A JP7216752B2 (en) 2021-02-08 2021-02-08 Measuring device, in-line vapor deposition device and adjustment method
CN202210090639.8A CN114908328B (en) 2021-02-08 2022-01-26 Measuring device, inline type vapor deposition device, and adjustment method
KR1020220012059A KR20220114481A (en) 2021-02-08 2022-01-27 Measurement apparatus, in-line type vapor deposition apparatus, and adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021018397A JP7216752B2 (en) 2021-02-08 2021-02-08 Measuring device, in-line vapor deposition device and adjustment method

Publications (2)

Publication Number Publication Date
JP2022121185A JP2022121185A (en) 2022-08-19
JP7216752B2 true JP7216752B2 (en) 2023-02-01

Family

ID=82763833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021018397A Active JP7216752B2 (en) 2021-02-08 2021-02-08 Measuring device, in-line vapor deposition device and adjustment method

Country Status (3)

Country Link
JP (1) JP7216752B2 (en)
KR (1) KR20220114481A (en)
CN (1) CN114908328B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019243A (en) 2007-07-12 2009-01-29 Hitachi Displays Ltd Vapor deposition method and apparatus
JP2009115763A (en) 2007-11-09 2009-05-28 Hitachi Plant Technologies Ltd Method and device for detecting torsion of level plane
JP2010040945A (en) 2008-08-07 2010-02-18 Sinfonia Technology Co Ltd Vacuum processing device
JP2012028628A (en) 2010-07-26 2012-02-09 Shimizu Corp Conveyor horizontal maintenance mechanism and attitude control method for transportation truck
JP2019119903A (en) 2017-12-28 2019-07-22 キヤノントッキ株式会社 Device for heating substrate and film deposition apparatus
JP2020094263A (en) 2018-12-14 2020-06-18 キヤノントッキ株式会社 Vapor deposition device, electronic device manufacturing device, and vapor deposition method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129705A (en) * 1995-11-02 1997-05-16 Dainippon Screen Mfg Co Ltd Substrate conveying apparatus
JP5036290B2 (en) * 2006-12-12 2012-09-26 東京エレクトロン株式会社 Substrate processing apparatus, substrate transfer method, and computer program
US20110014519A1 (en) * 2008-02-08 2011-01-20 Sadayuki Okazaki Method for forming deposited film
JP5226037B2 (en) * 2010-06-04 2013-07-03 東京エレクトロン株式会社 Heat treatment apparatus and heat treatment method
KR101386685B1 (en) * 2012-04-20 2014-04-24 세메스 주식회사 Apparatus for processing substrate
JP6842934B2 (en) * 2017-01-27 2021-03-17 株式会社Screenホールディングス Board transfer device, detection position calibration method and board processing device
CN109791905A (en) 2017-09-15 2019-05-21 应用材料公司 Method for determining the alignment of carrier suspension system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019243A (en) 2007-07-12 2009-01-29 Hitachi Displays Ltd Vapor deposition method and apparatus
JP2009115763A (en) 2007-11-09 2009-05-28 Hitachi Plant Technologies Ltd Method and device for detecting torsion of level plane
JP2010040945A (en) 2008-08-07 2010-02-18 Sinfonia Technology Co Ltd Vacuum processing device
JP2012028628A (en) 2010-07-26 2012-02-09 Shimizu Corp Conveyor horizontal maintenance mechanism and attitude control method for transportation truck
JP2019119903A (en) 2017-12-28 2019-07-22 キヤノントッキ株式会社 Device for heating substrate and film deposition apparatus
JP2020094263A (en) 2018-12-14 2020-06-18 キヤノントッキ株式会社 Vapor deposition device, electronic device manufacturing device, and vapor deposition method

Also Published As

Publication number Publication date
JP2022121185A (en) 2022-08-19
CN114908328A (en) 2022-08-16
KR20220114481A (en) 2022-08-17
CN114908328B (en) 2023-12-01

Similar Documents

Publication Publication Date Title
KR20100116013A (en) Stocker system and method of managing stocker
KR101846514B1 (en) Apparatus and method for measuring alignment state of the roll
WO2017034087A1 (en) Roll positioning information detection device and measuring method thereof
US20110000866A1 (en) Apparatus for Controlling the Position of Crane Tong According to Slab Bending and the Method Thereof
CN105514010A (en) Method for safely transferring silicon chips
JP7216752B2 (en) Measuring device, in-line vapor deposition device and adjustment method
CN105470184A (en) Safety transportation method for silicon wafers
CN112249709B (en) Manipulator and method for acquiring and transmitting wafers
JP2022511260A (en) A device for detecting relative posture information between rolls and a method for measuring the roll alignment state using the device.
KR20190139534A (en) Apparatus for transferring substrate, apparatus for treating substrate and method for compensating distortion of substrate
KR20080092013A (en) Method and apparatus for transferring a wafer
US12110188B2 (en) Transfer vehicle system
WO2024087595A1 (en) Photovoltaic module, photovoltaic module production device, and method for placing cells of battery string
JP5013730B2 (en) Thickness measuring method and thickness measuring apparatus
JP3583468B2 (en) Axis misalignment measuring device
JP2020076715A (en) Method for measuring coating weight
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
KR20210082363A (en) Apparatus and method for detecting work hole
KR100436514B1 (en) The measurement system and its method of the snaking angle
CN107478151B (en) Single-camera volume measuring device
JP2020148738A (en) Plate position detection method, plate data correction method, and plate position detection device
JP2011138835A (en) Transfer vibration monitoring device, vacuum processing apparatus, and transfer vibration monitoring method
JPH07256418A (en) Method for measuring roll interval in continuous casting equipment and its device
KR102555189B1 (en) Lead-acid battery electrode plate thickness measurement device capable of measuring the electrode plate thickness using a sensor
CN113406927B (en) Linear motion control method and system based on pressure detection and logistics stacking equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230120

R150 Certificate of patent or registration of utility model

Ref document number: 7216752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150