JP7216419B2 - Lead-free solder alloys and solder joints - Google Patents

Lead-free solder alloys and solder joints Download PDF

Info

Publication number
JP7216419B2
JP7216419B2 JP2019510113A JP2019510113A JP7216419B2 JP 7216419 B2 JP7216419 B2 JP 7216419B2 JP 2019510113 A JP2019510113 A JP 2019510113A JP 2019510113 A JP2019510113 A JP 2019510113A JP 7216419 B2 JP7216419 B2 JP 7216419B2
Authority
JP
Japan
Prior art keywords
solder
weight
test
solder alloy
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019510113A
Other languages
Japanese (ja)
Other versions
JPWO2018181690A1 (en
Inventor
哲郎 西村
貴利 西村
徹哉 赤岩
将一 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Superior Sha Co Ltd
Original Assignee
Nihon Superior Sha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Superior Sha Co Ltd filed Critical Nihon Superior Sha Co Ltd
Publication of JPWO2018181690A1 publication Critical patent/JPWO2018181690A1/en
Application granted granted Critical
Publication of JP7216419B2 publication Critical patent/JP7216419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin

Description

本発明は、少なくとも表面層にAlを含む基板とのはんだ付けに用いられるSn‐Ag‐Cu系鉛フリーはんだ合金に関する。 TECHNICAL FIELD The present invention relates to a Sn--Ag--Cu based lead-free solder alloy used for soldering to a substrate containing Al in at least the surface layer.

Alは、他の金属と比較して、高い熱伝導率を有し、熱応力の発生が少ないために、電子機器等の放熱部材に多く用いられている。また、近年、Alの特性である比重の小ささ又は強度が着目され、モータ等の軽量化に寄与する素材としても検討がなされている。 Al has high thermal conductivity and generates less thermal stress than other metals, so it is often used for heat dissipation members of electronic devices and the like. Moreover, in recent years, attention has been paid to the low specific gravity and strength, which are the characteristics of Al, and it is being studied as a material that contributes to the weight reduction of motors and the like.

しかし、上述したように、Alを放熱部材、又は、モータのコイル等に用いる場合、はんだを用いて接合するのが一般的であるが、十分な接合強度及び信頼性が得られないという問題点が存在している。 However, as described above, when Al is used for heat radiation members, motor coils, etc., it is common to use solder for bonding, but there is the problem that sufficient bonding strength and reliability cannot be obtained. exists.

Al用はんだとして、特許文献1には Sn-(3~40%)Zn-(1~10%)Ag-(0.5~4%)Cu組成のはんだ合金が、特許文献2にはSn-(0.5~7%)Mg-(1.5~20%)Zn-(0.5~15%)Ag組成のはんだ合金がそれぞれ開示されている。 As a solder for Al, Patent Document 1 discloses a solder alloy having a Sn- (3 to 40%) Zn- (1 to 10%) Ag- (0.5 to 4%) Cu composition, and Patent Document 2 discloses a Sn- Solder alloys of (0.5-7%) Mg-(1.5-20%) Zn-(0.5-15%) Ag compositions are disclosed respectively.

また、特許文献3にはSn-(10~15%)Zn-(0.1~1.5%)Cu-(0.0001~0.1%)Al-(0.0001~0.03%)Si-(0.0001~0.02%)Ti-(0.0001~0.01%)B組成のはんだ合金が、特許文献4にはSn-(10%以下) Ag-(15%以下)Al組成のAl部材直接接合用はんだ合金がそれぞれ開示されている。
そして、特許文献5にはAl材同士、又はAl材と異種材との接合に関する接合方法として、Cu、Ag、In、Bi、Co、Tiの群より選択される金属元素と残部SnからなるSn系はんだを用いた接合が開示されている。
Further, in Patent Document 3, Sn- (10-15%) Zn- (0.1-1.5%) Cu- (0.0001-0.1%) Al- (0.0001-0.03%) ) Si- (0.0001 to 0.02%) Ti- (0.0001 to 0.01%) B solder alloy is described in Patent Document 4, Sn- (10% or less) Ag- (15% or less ) Al composition solder alloys for direct bonding of Al members are respectively disclosed.
Further, in Patent Document 5, as a bonding method for bonding between Al materials or between an Al material and a dissimilar material, Sn consisting of a metal element selected from the group of Cu, Ag, In, Bi, Co, and Ti and the balance Sn Joints using system solders are disclosed.

特開昭50-50250号公報JP-A-50-50250 特開昭50-56347号公報JP-A-50-56347 特開2006-167800号公報Japanese Patent Application Laid-Open No. 2006-167800 特開2008-142729号公報JP 2008-142729 A 特開2011-167714号公報JP 2011-167714 A

一方、鉛フリーはんだ合金として広く用いられているSn-Ag-Cu系はんだ合金はAl部材の接合には適さないと知られている。詳しくは、Sn-Ag-Cu系はんだ合金を用いて、Al部材同士の接合を行う場合、又は、Al部材及び異種金属部材を接合する場合には、Al部材表面に形成される酸化膜、また、電解腐食(ガルバニック腐食)等の問題が生じることにより十分な接合強度が得られないことが知られている。 On the other hand, Sn--Ag--Cu solder alloys, which are widely used as lead-free solder alloys, are known to be unsuitable for joining Al members. Specifically, when joining Al members together or joining Al members and dissimilar metal members using a Sn—Ag—Cu solder alloy, the oxide film formed on the surface of the Al member, It is known that sufficient bonding strength cannot be obtained due to problems such as electrolytic corrosion (galvanic corrosion).

更に、斯かるはんだ継手を海水のような塩水等の環境で使用した場合は、前記電解腐食が早く進行し、短時間でSn-Ag-Cu系はんだ合金とAl部材とが剥離されてしまう問題があった。 Furthermore, when such a solder joint is used in an environment such as salt water such as seawater, the electrolytic corrosion progresses quickly, and the Sn--Ag--Cu solder alloy and the Al member are separated in a short time. was there.

しかしながら、特許文献1~5においては、Sn-Ag-Cu系はんだ合金については開示されていない。また、Sn-Ag-Cu系はんだ合金を用いてAl部材を接合したはんだ継手に対する塩水の環境での耐腐食性及び接合信頼性の向上については工夫されていない。 However, Patent Documents 1 to 5 do not disclose a Sn--Ag--Cu solder alloy. In addition, no improvement in corrosion resistance and joint reliability in a salt water environment for solder joints in which Al members are joined using Sn--Ag--Cu solder alloys has been made.

本発明は、斯かる事情に鑑みてなされたものであり、その目的とするところは、塩水の環境でも、Al部材との接合に対する優れた耐食性及び高い接合信頼性を維持できるSn‐Ag‐Cu系の鉛フリーはんだ合金及びはんだ継手を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a Sn-Ag-Cu adhesive that can maintain excellent corrosion resistance and high bonding reliability for bonding with Al members even in a salt water environment. It is another object of the present invention to provide a lead-free solder alloy and solder joint of the system.

本発明に係る鉛フリーはんだ合金は、少なくとも表面層にAlを含む被接合部材とのはんだ付けに用いられるSn‐Ag‐Cu系の鉛フリーはんだ合金において、Ni、及び、Alとの標準電極電位の差が0.7V以下である助剤を含むことを特徴とする。 The lead-free solder alloy according to the present invention is a Sn-Ag-Cu-based lead-free solder alloy used for soldering to a member to be joined that contains Al in at least the surface layer, and the standard electrode potential with Ni and Al difference is 0.7 V or less.

本発明に係る鉛フリーはんだ合金は、前記助剤は、Mn、Ti、Mg、Zrのうち少なくとも一つであることを特徴とする。 The lead-free solder alloy according to the present invention is characterized in that the auxiliary agent is at least one of Mn, Ti, Mg and Zr.

本発明に係る鉛フリーはんだ合金は、Mnの添加量は0超過0.01重量%であることを特徴とする。 The lead-free solder alloy according to the present invention is characterized in that the amount of Mn added is more than 0 and 0.01% by weight.

本発明に係る鉛フリーはんだ合金は、3.00重量%のAg、5.00重量%のCu、0.05重量%のNiを含むことを特徴とする。 A lead-free solder alloy according to the present invention is characterized by containing 3.00% by weight Ag, 5.00% by weight Cu and 0.05% by weight Ni.

本発明に係るはんだ継手は、Niが添加されたSn‐Ag‐Cu系の鉛フリーはんだ合金と、少なくとも表面層にAlを含む被接合部材とのはんだ継手において、前記鉛フリーはんだ合金はAlとの標準電極電位の差が0.7V以下である助剤を含み、前記助剤は接合部に分布していることを特徴とする。 A solder joint according to the present invention is a solder joint between a Sn-Ag-Cu-based lead-free solder alloy to which Ni is added and a member to be joined containing Al in at least a surface layer, wherein the lead-free solder alloy contains Al. The auxiliary agent having a standard electrode potential difference of 0.7 V or less is included, and the auxiliary agent is distributed in the junction.

本発明によれば、塩水の環境でも、Al部材との接合に対する優れた耐食性及び高い接合信頼性を維持できるSn‐Ag‐Cu系の鉛フリーはんだ合金及びはんだ継手を提供できる。 According to the present invention, it is possible to provide a Sn-Ag-Cu-based lead-free solder alloy and a solder joint that can maintain excellent corrosion resistance and high joint reliability for joining with an Al member even in a salt water environment.

本実施の形態に係るはんだ継手の試験試料に用いられる試験片を示す斜視図である。FIG. 4 is a perspective view showing a test piece used as a test sample of the solder joint according to the present embodiment; 本実施の形態に係るはんだ継手の試験試料の一例を模式的に示す模式図である。FIG. 4 is a schematic diagram schematically showing an example of a test sample of the solder joint according to the present embodiment; 表2の腐食試験結果を表すグラフである。4 is a graph showing corrosion test results in Table 2. FIG. 表6の最大応力の測定結果を表すグラフである。7 is a graph showing measurement results of maximum stress in Table 6. FIG. 表7の最大応力の割合を表すグラフである。8 is a graph representing the percentage of maximum stress in Table 7. FIG. 比較例1の最大応力と、実施例2~5及び比較例2~5の試験試料の最大応力との差を、Alの標準電極電位との差(V)に対してプロットしたグラフである。1 is a graph plotting the difference between the maximum stress of Comparative Example 1 and the maximum stress of test samples of Examples 2-5 and Comparative Examples 2-5 against the difference (V) from the standard electrode potential of Al.

以下に、本発明の実施の形態に係るSn‐Ag‐Cu系鉛フリーはんだ合金及びはんだ継手について、図面に基づいて詳述する。 A Sn-Ag-Cu-based lead-free solder alloy and a solder joint according to embodiments of the present invention will be described in detail below with reference to the drawings.

本実施の形態に係るSn‐Ag‐Cu系鉛フリーはんだ合金は、Alを含有する被接合部材とのはんだ付けに用いられる。ここで、Alを含有する被接合部材とは、例えば、純アルミニウム部材、又は、Alコーティングされた表面を有する部材、或は、少なくとも表面層にAlを含む部材を含む。 The Sn--Ag--Cu based lead-free solder alloy according to the present embodiment is used for soldering to members to be joined containing Al. Here, the Al-containing member to be joined includes, for example, a pure aluminum member, a member having an Al-coated surface, or a member containing Al in at least the surface layer.

以下においては、少なくとも一方の純アルミニウム(Al)板に、Sn‐Ag‐Cu系の鉛フリーはんだ合金のはんだ付けを行った場合を例に説明する。本実施の形態に係るSn‐Ag‐Cu系鉛フリーはんだ合金はSn、Ag、Cuに加え、Ni及び助剤を更に含む。以下においては、助剤としてMnが添加された場合を例に挙げて説明する。 In the following, an example in which a Sn--Ag--Cu based lead-free solder alloy is soldered to at least one pure aluminum (Al) plate will be described. The Sn--Ag--Cu based lead-free solder alloy according to the present embodiment further contains Ni and an auxiliary agent in addition to Sn, Ag and Cu. In the following, the case where Mn is added as an auxiliary agent will be described as an example.

表1は、本実施の形態に係るSn‐Ag‐Cu系はんだ合金(実施例1)の組成を示す表である。また、表1には、比較例1及び比較例2についても示している。 Table 1 shows the composition of the Sn--Ag--Cu solder alloy (Example 1) according to the present embodiment. Table 1 also shows Comparative Examples 1 and 2.


Figure 0007216419000001
Figure 0007216419000001

表1に示すように、本実施の形態に係るSn‐Ag‐Cu系はんだ合金(以下、実施例1と言う)は、Cuと、Agと、Niとを夫々5重量%、3重量%、0.05重量%含んでおり、0.003重量%のMnを更に含み、残部がSnである。実施例1におけるはんだ付け温度は320℃である。 As shown in Table 1, the Sn--Ag--Cu solder alloy according to the present embodiment (hereinafter referred to as Example 1) contains 5% by weight of Cu, 3% by weight of Ag, and 3% by weight of Ni, respectively. It contains 0.05% by weight, further contains 0.003% by weight of Mn, and the balance is Sn. The soldering temperature in Example 1 is 320°C.

また、比較例1は、Cuと、Agと、Niとを夫々5重量%、3重量%、0.05重量%含んでおり、残部がSnである。比較例2は、Cuと、Agとを夫々0.5重量%、3重量%含んでおり、残部がSnである。比較例1,2におけるはんだ付け温度は夫々320℃、245℃である。 Moreover, Comparative Example 1 contains 5% by weight, 3% by weight, and 0.05% by weight of Cu, Ag, and Ni, respectively, and the balance is Sn. Comparative Example 2 contains 0.5 wt % and 3 wt % of Cu and Ag, respectively, and the balance is Sn. The soldering temperatures in Comparative Examples 1 and 2 are 320° C. and 245° C., respectively.

上述した実施例1、比較例1及び比較例2を用いてはんだ継手の試験試料を作成した。試験試料は、実施例1、比較例1及び比較例2を用いて、Al試験片同士を接合することにより作成された。以下、詳しく説明する。 Solder joint test specimens were prepared using Example 1, Comparative Example 1 and Comparative Example 2 described above. Test specimens were prepared using Example 1, Comparative Example 1 and Comparative Example 2 by bonding Al specimens together. A detailed description will be given below.

図1ははんだ継手の試験試料に用いられる試験片を示す斜視図であり、図2ははんだ継手の試験試料の一例を模式的に示す模式図である。試験片1は25×5×1mmの短冊状を有している。 FIG. 1 is a perspective view showing a test piece used as a solder joint test sample, and FIG. 2 is a schematic diagram showing an example of a solder joint test sample. The test piece 1 has a strip shape of 25×5×1 mm.

先ず、図1に示すように試験片1の端部にフラックスを約0.01g塗布する。前記フラックスは日本スペリア社製No.1261である。次に、試験片1の端部における、幅6mmの約正方形のはんだ付け範囲(図1中、ハッチングにて表示)に実施例1、比較例1又は比較例2のはんだ付けを行い、これら合金のメッキ層を形成した。このような試験片を一対用意する。 First, about 0.01 g of flux is applied to the end of the test piece 1 as shown in FIG. The flux is No. 1 manufactured by Nihon Superior Co., Ltd. 1261. Next, the soldering of Example 1, Comparative Example 1 or Comparative Example 2 was performed on the approximately square soldering range (indicated by hatching in FIG. 1) with a width of 6 mm at the end of the test piece 1, and these alloys A plated layer was formed. A pair of such test pieces is prepared.

以上のように用意されたAlの試験片同士をはんだ付けすることにより試験試料のはんだ継手100を作成する。すなわち、実施例1、比較例1,2の何れにおいても、試験試料のはんだ継手100は、一方の試験片1a及び他方の試験片1b共にAlの試験片から製作した。 A solder joint 100 as a test sample is produced by soldering Al test pieces prepared as described above. That is, in both Example 1 and Comparative Examples 1 and 2, the solder joints 100 of the test samples were made from Al test pieces, one test piece 1a and the other test piece 1b.

試験試料のはんだ継手100の製作においては、図2に示すように、Alの試験片1a,1bの前記はんだ付け範囲を向かい合わせ、その間に6×5×0.4mmのはんだ合金箔2を挟み、はんだ合金箔2及びその周囲を加熱して、試験片1a,1bを接合した。この際、はんだ付け温度は表1に記載の通りであり、試験片1a,1bは相互平行である。その後、作成されたはんだ継手100を室温に冷却し、図2に示す試験試料のはんだ継手100が得られた。 In manufacturing the solder joint 100 of the test sample, as shown in FIG. , the solder alloy foil 2 and its surroundings were heated to join the test pieces 1a and 1b. At this time, the soldering temperature is as shown in Table 1, and the test pieces 1a and 1b are parallel to each other. After that, the prepared solder joint 100 was cooled to room temperature, and the test sample solder joint 100 shown in FIG. 2 was obtained.

実施例1の試験試料においては、試験片1a,1bが実施例1によって接合され、比較例1の試験試料においては、試験片1a,1bが比較例1によって接合され、比較例2の試験試料においては、試験片1a,1bが比較例2によって接合されている。 In the test sample of Example 1, the test pieces 1a and 1b are joined by Example 1, in the test sample of Comparative Example 1, the test pieces 1a and 1b are joined by Comparative Example 1, and the test sample of Comparative Example 2 , test pieces 1a and 1b are joined by Comparative Example 2.

このような、実施例1及び比較例1,2の試験試料のはんだ継手100を用いて腐食試験を行った。斯かる腐食試験では、3%のNaCl水溶液に各試験試料を完全に浸漬させて、室温に放置した。この際、試験試料同士の接触が生じないように静置した。浸漬開始から24時間おきに試験試料を取り出し、正常に接合されているかの確認を行った。 Corrosion tests were conducted using the solder joints 100 of the test samples of Example 1 and Comparative Examples 1 and 2. In such corrosion tests, each test specimen was completely immersed in a 3% NaCl aqueous solution and left at room temperature. At this time, the test samples were allowed to stand so as not to come into contact with each other. A test sample was taken out every 24 hours from the start of immersion, and it was confirmed whether it was joined normally.

斯かる確認は、試験試料のはんだ継手100の一端からおよそ5mmの位置P1を樹脂製ピンセットの先端で押圧して固定し、他端からおよそ5mmの位置P2を樹脂製ピンセットの先端で3回押すことにより行われた。この際、試験試料のはんだ継手100を押す強さは、試験試料が変形したり、強制的な剥離が発生しない程度の強さである。正常に接合している試験試料は再びNaCl水溶液内に浸漬させ、正常に接合していない、すなわち、剥離が発生した試料は容器から取り出した。 For such confirmation, position P1 about 5 mm from one end of the solder joint 100 of the test sample is pressed and fixed with the tip of resin tweezers, and position P2 about 5 mm from the other end is pressed three times with the tip of the resin tweezers. It was done by At this time, the strength with which the test sample is pressed against the solder joint 100 is such a strength that the test sample does not deform or forcibly peel off. The test samples that were normally bonded were immersed in the NaCl aqueous solution again, and the samples that were not properly bonded, that is, peeled off, were removed from the container.

斯かる腐食試験結果を表2に示す。表2における腐食試験結果は、試験片1bの接合部での剥離発生を示している。図3は表2の腐食試験結果を表すグラフである。すなわち、表2及び図3は、試験片1a,1bの何れもがAlの試験片である場合における、試験片1bでの腐食試験結果である。 The corrosion test results are shown in Table 2. The corrosion test results in Table 2 show the occurrence of peeling at the joint portion of the test piece 1b. 3 is a graph showing the corrosion test results of Table 2. FIG. That is, Table 2 and FIG. 3 show the corrosion test results for the test piece 1b when both the test pieces 1a and 1b are Al test pieces.


Figure 0007216419000002
Figure 0007216419000002

斯かる腐食試験は、実施例1と、比較例1,2とにおいて、夫々3回ずつ行われた。表2においては、浸漬開始から剥離の発生の確認までの日数(以下、接合日数と言う)を示している。また、腐食試験結果は昇順にて示している。 Such a corrosion test was performed three times each in Example 1 and Comparative Examples 1 and 2. Table 2 shows the number of days from the start of immersion to the confirmation of the occurrence of peeling (hereinafter referred to as bonding days). Corrosion test results are shown in ascending order.

表2及び図3から分かるように、比較例2の平均接合日数が12日、比較例1の平均接合日数が36日、実施例1の平均接合日数が108日である。すなわち、接合日数を対比してみると、比較例2、比較例1、実施例1の順に長くなる。比較例1の接合日数は、比較例2の接合日数よりも3倍長く、更に実施例1の接合日数は比較例1の接合日数よりも3倍長い。 As can be seen from Table 2 and FIG. 3, the average number of bonding days in Comparative Example 2 is 12 days, the average number of bonding days in Comparative Example 1 is 36 days, and the average number of bonding days in Example 1 is 108 days. That is, when comparing the bonding days, Comparative Example 2, Comparative Example 1, and Example 1 are longer in this order. The bonding days of Comparative Example 1 are three times longer than the bonding days of Comparative Example 2, and the bonding days of Example 1 are three times longer than the bonding days of Comparative Example 1.

以上のことから、実施例1においては、試験片1bがAlである場合、すなわち、Alを含有する被接合部材の場合、比較例1、2よりも耐腐食性、接合信頼性に優れている。 From the above, in Example 1, when the test piece 1b is Al, that is, in the case of a member to be joined containing Al, corrosion resistance and joining reliability are superior to those of Comparative Examples 1 and 2. .

以上のように、実施例1は、塩水の使用環境に置かれた場合でも、優れた耐食性及び高い接合信頼性を維持できる。このような結果は、助剤として添加されたMnが影響していると考えられる。以下、詳しく説明する。 As described above, Example 1 can maintain excellent corrosion resistance and high bonding reliability even when placed in a salt water environment. Such results are thought to be influenced by Mn added as an auxiliary agent. A detailed description will be given below.

電解腐食は、標準電極電位の差が大きいほど進行する。すなわち、Alを含有する被接合部材の場合は、Alとの標準電極電位の差が大きいはんだ合金ほど、接合部での電解腐食が酷くなり、塩水の中では更に電解腐食の速度が速くなる。 Galvanic corrosion progresses as the difference in standard electrode potential increases. That is, in the case of a member to be joined containing Al, the solder alloy having a larger standard electrode potential difference from Al causes severe electrolytic corrosion at the joint, and the rate of electrolytic corrosion increases further in salt water.

一方、実施例1に添加されたMnの標準電極電位は‐1.18Vであり、またAlの標準電極電位は‐1.68である。Mn及びAl間における標準電極電位の差(以下、Mnの電位差と言う。)は0.5Vであり、比較的に小さい。実施例1においては、このようなMnが、はんだ継手100の接合界面付近(接合部)に分布すると推察される。例えば、接合部に形成されるCu‐Al系又はCu‐Ag系の金属間化合物にMnが含まれることも考えられる。従って、実施例1においては、接合部にて、Alを含有する被接合部材とはんだ合金との標準電極電位の差が低減される。これによって接合部での腐食が抑制されると考えられる。 On the other hand, the standard electrode potential of Mn added in Example 1 is -1.18 V, and the standard electrode potential of Al is -1.68. The difference in standard electrode potential between Mn and Al (hereinafter referred to as the potential difference of Mn) is 0.5 V, which is relatively small. In Example 1, such Mn is presumed to be distributed near the joint interface (joint portion) of the solder joint 100 . For example, it is conceivable that a Cu—Al or Cu—Ag intermetallic compound formed at the junction contains Mn. Therefore, in Example 1, the difference in standard electrode potential between the member to be joined containing Al and the solder alloy is reduced at the joint. It is believed that this suppresses corrosion at the joint.

以上においては、電解腐食を抑制する助剤としてMnが添加された場合を例に挙げて説明したが本発明はこれに限るものでない。Alとの標準電極電位の差が、Mnの電位差(0.5V)以下である助剤であれば良い。例えば、Ti及びZrの標準電極電位は夫々‐1.63V及び‐1.55であり、Alとの標準電極電位の差は夫々0.05V及び0.13VであるのでMnの電位差0.5Vより小さい。従って、助剤として、Ti又はZrを用いても良い。 In the above description, the case where Mn is added as an auxiliary agent for suppressing electrolytic corrosion has been described as an example, but the present invention is not limited to this. Any auxiliary agent having a standard electrode potential difference from Al equal to or less than the potential difference (0.5 V) of Mn may be used. For example, the standard electrode potentials of Ti and Zr are -1.63 V and -1.55, respectively, and the differences between the standard electrode potentials of Al are 0.05 V and 0.13 V, respectively. small. Therefore, Ti or Zr may be used as an auxiliary agent.

また、本発明は以上の記載に限るものでない。Mn以外の助剤として、Alとの標準電極電位の差がMnの電位差(0.5V)と同程度のものを用いても良い。例えば、Mgの場合、標準電極電位が‐2.36であり、Alとの標準電極電位の差は0.68Vであり、Mnの電位差0.5Vと同程度である。従って、助剤として、Mgを用いても良い。 Moreover, the present invention is not limited to the above description. As an auxiliary agent other than Mn, an auxiliary agent having a standard electrode potential difference from Al that is approximately the same as the potential difference (0.5 V) of Mn may be used. For example, in the case of Mg, the standard electrode potential is -2.36, and the standard electrode potential difference with Al is 0.68V, which is about the same as the potential difference of Mn, 0.5V. Therefore, Mg may be used as an auxiliary agent.

以上のことから、電解腐食を抑制する助剤としては、Alとの標準電極電位の差が0.7V以下であるものを用いれば良い。すなわち、斯かる助剤としては、Mn,Mg,Ti,Zrのうち、何れかであっても良い。またこれに限るものでなく、Mn,Mg,Ti,Zrのうち二つ以上を用いても良い。 From the above, as an auxiliary agent for suppressing galvanic corrosion, it is preferable to use one having a standard electrode potential difference of 0.7 V or less from Al. That is, any one of Mn, Mg, Ti and Zr may be used as such an auxiliary agent. Moreover, it is not limited to this, and two or more of Mn, Mg, Ti, and Zr may be used.

以上においては、本実施の形態に係るSn‐Ag‐Cu系はんだ合金が0.003重量%のMnを含む場合を例に挙げて説明したが、本発明はこれに限るものでない。Mnが0~0.01重量%の範囲内である場合、本実施の形態に係るSn‐Ag‐Cu系はんだ合金は上述した効果を奏する。 In the above description, the Sn--Ag--Cu solder alloy according to the present embodiment contains 0.003% by weight of Mn as an example, but the present invention is not limited to this. When the Mn is in the range of 0 to 0.01% by weight, the Sn--Ag--Cu solder alloy according to the present embodiment exhibits the above effects.

上述したように、Mn,Mg,Ti,Zrのうち何れかを助剤として用いた場合、及び、助剤としてMnを0~0.01重量%添加した場合、電解腐食を抑制する効果を奏するかを確認するために、助剤としてMg,Ti,Zrを用いた場合、及び、助剤としてMnを0~0.01重量%添加した場合についても試験を行った。 As described above, when any one of Mn, Mg, Ti, and Zr is used as an auxiliary agent, and when 0 to 0.01% by weight of Mn is added as an auxiliary agent, the effect of suppressing electrolytic corrosion is exhibited. In order to confirm whether or not this is the case, tests were also conducted in cases where Mg, Ti, and Zr were used as auxiliary agents, and in cases where 0 to 0.01% by weight of Mn was added as an auxiliary agent.

助剤としてMg,Ti,Zr、又は0~0.01重量%のMnを添加した、試験試料のはんだ継手100を用いた試験を行った。詳しくは、試験試料のはんだ継手100を塩水中に所定時間浸漬させた後、斯かるはんだ継手100の引張強度を測定し、塩水中への浸漬時間に伴う接合強度の変化を観察した。 Tests were conducted using test sample solder joints 100 with additive Mg, Ti, Zr, or 0-0.01 weight percent Mn as coagents. Specifically, after the solder joint 100 of the test sample was immersed in salt water for a predetermined period of time, the tensile strength of the solder joint 100 was measured to observe the change in joint strength with the immersion time in salt water.

表3は、前記引張強度の測定に用いられた試験試料のはんだ継手100(Sn‐Ag‐Cu系はんだ合金)の組成を示す表である。また、表3に記載の比較例1及び比較例2は上述したものと同様である。更に、表3には、比較のために比較例3~5を追加した。 Table 3 is a table showing the composition of the solder joint 100 (Sn-Ag-Cu solder alloy) of the test sample used for the measurement of the tensile strength. Also, Comparative Examples 1 and 2 described in Table 3 are the same as those described above. Furthermore, Comparative Examples 3 to 5 are added to Table 3 for comparison.


Figure 0007216419000003
Figure 0007216419000003

表3に示すように、本実施の形態に係るはんだ継手100(表3の実施例2~5)は、助剤として、Mn,Mg,Ti,Zrを夫々含む。一方、新たな比較例3~5は、助剤としてZn,Na,Feを夫々含む。 As shown in Table 3, the solder joint 100 according to the present embodiment (Examples 2 to 5 in Table 3) contains Mn, Mg, Ti and Zr as auxiliary agents. On the other hand, new Comparative Examples 3 to 5 contain Zn, Na and Fe as auxiliary agents, respectively.

本実施の形態に係るはんだ継手100のうち、実施例2は、Agと、Cuと、Niとを夫々3重量%、5重量%、0.05重量%含んでおり、0.009重量%のTiを更に含み、残部がSnである。実施例3は、Ag、Cu、及びNiは実施例2と同量であり、0.008重量%のZrを更に含み、残部がSnである。実施例4は、Ag、Cu、及びNiは実施例2と同量であり、0.010重量%のMnを更に含み、残部がSnである。実施例5は、Ag、Cu、及びNiは実施例2と同量であり、0.004重量%のMgを更に含み、残部がSnである。実施例2~5におけるはんだ付け温度は何れも320℃である。 Among the solder joints 100 according to the present embodiment, Example 2 contains 3% by weight, 5% by weight, and 0.05% by weight of Ag, Cu, and Ni, respectively, and 0.009% by weight. It further contains Ti and the balance is Sn. Example 3 has the same amounts of Ag, Cu, and Ni as Example 2, and further contains 0.008% by weight of Zr and the balance is Sn. Example 4 has the same amounts of Ag, Cu, and Ni as Example 2, and further contains 0.010% by weight of Mn and the balance is Sn. Example 5 has the same amounts of Ag, Cu, and Ni as Example 2, and further contains 0.004% by weight of Mg and the balance is Sn. The soldering temperature in Examples 2-5 is 320°C.

また、比較例3は、Ag、Cu、及びNiは実施例2と同量であり、0.012重量%のZnを更に含み、残部がSnである。比較例4は、Ag、Cu、及びNiは実施例2と同量であり、0.008重量%のNaを更に含み、残部がSnである。比較例5は、Ag、Cu、及びNiは実施例2と同量であり、0.010重量%のFeを更に含み、残部がSnである。
比較例3~5におけるはんだ付け温度は何れも320℃である。なお、比較例1~2については既に説明しており、説明を省略する。
Comparative Example 3 contains the same amounts of Ag, Cu, and Ni as in Example 2, further contains 0.012% by weight of Zn, and the balance is Sn. Comparative Example 4 contains the same amounts of Ag, Cu, and Ni as in Example 2, further contains 0.008% by weight of Na, and the balance is Sn. Comparative Example 5 contains the same amounts of Ag, Cu, and Ni as in Example 2, further contains 0.010% by weight of Fe, and the balance is Sn.
The soldering temperature in Comparative Examples 3-5 is 320°C. Note that Comparative Examples 1 and 2 have already been described, and the description will be omitted.

表4は、実施例2~5及び比較例2~5に添加された助剤の標準電極電位(V)、及び、助剤の標準電極電位(V)とAlの標準電極電位との差(V)を示している。即ち、Alの標準電極電位との差(V)は、Alの標準電極電位から助剤の標準電極電位を引いた値である。表4においてはAlの標準電極電位との差(V)は絶対値にて示している。なお、比較例2においては、助剤としてSnが添加されたものとみなして、助剤の標準電極電位(V)及びAlの標準電極電位との差(V)を記載した。

Figure 0007216419000004
Table 4 shows the standard electrode potential (V) of the auxiliary agents added to Examples 2 to 5 and Comparative Examples 2 to 5, and the difference between the standard electrode potential (V) of the auxiliary agent and the standard electrode potential of Al ( V). That is, the difference (V) from the standard electrode potential of Al is the value obtained by subtracting the standard electrode potential of the aid from the standard electrode potential of Al. In Table 4, the difference (V) from the standard electrode potential of Al is shown as an absolute value. In Comparative Example 2, it was assumed that Sn was added as an auxiliary agent, and the standard electrode potential (V) of the auxiliary agent and the difference (V) from the standard electrode potential of Al were described.
Figure 0007216419000004

助剤として、Mn,Mg,Ti,Zr,Zn,Na,Feを夫々添加した場合(実施例2~5、比較例3~4)における、これら各成分(元素)の添加量は、各元素が放出する電子量が同量になるように定められた。これは、電解腐食が異種金属元素(助剤)間での電子授受によって起こる反応現象であることから、腐食抑制効果について、各元素の添加効果を比較評価するために、反応の授受にかかわる電子量を合わせる必要があると判断されたからである。 When Mn, Mg, Ti, Zr, Zn, Na, and Fe are added as auxiliary agents (Examples 2 to 5, Comparative Examples 3 to 4), the amount of each component (element) added is were determined to emit the same amount of electrons. Since galvanic corrosion is a reaction phenomenon caused by the transfer of electrons between dissimilar metal elements (auxiliaries), in order to comparatively evaluate the effect of addition of each element on the corrosion inhibition effect, electrons involved in the transfer of reaction This is because it was determined that it was necessary to match the amounts.

具体的には、Mnの添加量が0.010重量%である場合を基準として、各元素がイオン化する時の放出電子量が同量になるように、各元素のイオン化価数及び原子量から、以下の式に基づいて算出された。表5は、各元素のイオン化価数、原子量及び計算された添加量(表5中、計算添加量)を示す。

添加量=Mnの添加量×(Mnの価数/元素の価数)×(元素の原子量/Mnの原子量)

Figure 0007216419000005
Specifically, based on the case where the amount of Mn added is 0.010% by weight, based on the ionization valence and atomic weight of each element, the amount of electrons emitted when each element is ionized is the same. It was calculated based on the following formula. Table 5 shows the ionization valence, atomic weight and calculated addition amount (calculated addition amount in Table 5) of each element.

Addition amount = Addition amount of Mn x (valence of Mn/valence of element) x (atomic weight of element/atomic weight of Mn)
Figure 0007216419000005

表3に記載の実施例2~5及び比較例1~5のはんだ合金を用いてはんだ継手の試験試料を作成した。試験試料は、図2に示したものと同形状である。また、図2に示す試験試料の製作については既に説明しており、詳しい説明を省略する。 The solder alloys of Examples 2-5 and Comparative Examples 1-5 listed in Table 3 were used to prepare test specimens of solder joints. The test sample has the same shape as that shown in FIG. Further, since the preparation of the test sample shown in FIG. 2 has already been described, detailed description thereof will be omitted.

このように作成された実施例2~5及び比較例1~5の試験試料に対する引張強度の測定の前に、これら試験試料を塩水の中に所定時間浸漬させた。詳しくは、実施例2~5及び比較例1~5に係る試験試料を、塩水(3%のNaCl水溶液)に完全に浸漬させて、室温に放置した。この際、試験試料同士の接触が生じないように静置した。浸漬開始からの経過時間が72時間、168時間、336時間であるときに試験試料を取り出し、引張強度を測定した。塩水は一週間毎に交換した。 Prior to measuring the tensile strength of the thus prepared test specimens of Examples 2-5 and Comparative Examples 1-5, the test specimens were immersed in salt water for a predetermined period of time. Specifically, the test samples according to Examples 2-5 and Comparative Examples 1-5 were completely immersed in salt water (3% NaCl aqueous solution) and left at room temperature. At this time, the test samples were allowed to stand so as not to come into contact with each other. The test samples were taken out at 72 hours, 168 hours and 336 hours after the start of immersion, and the tensile strength was measured. The saline was changed weekly.

引張強度の測定は、島津製作所製試験機AG-IS10kNを用いて行った。詳しくは、塩水に浸漬させた後の実施例2~5及び比較例1~5の試験試料を、室温(20℃~25℃)・10mm/分の条件にて、各試験試料が切断するまで引っ張り、試験試料の引張強度を測定する。引張強度の測定は各試験試料に対して5回ずつ行った。 The tensile strength was measured using a testing machine AG-IS10kN manufactured by Shimadzu Corporation. Specifically, the test samples of Examples 2 to 5 and Comparative Examples 1 to 5 after being immersed in salt water were treated at room temperature (20 ° C. to 25 ° C.) and 10 mm / min until each test sample was cut. Pull and measure the tensile strength of the test sample. Tensile strength measurements were made five times for each test sample.

引張強度(最大応力)の測定結果を表6に示す。表6において、「0時間」は塩水への浸漬処理前を示す。また、表6において「0」の値は、試験試料のはんだ継手において、はんだ合金(はんだ合金箔2)と試験片1a,1bとの間で剥離が発生したことを示す。また、図4は表6の最大応力の測定結果を表すグラフである。図4において、縦軸は最大応力値を示し、横軸は実施例2~5及び比較例1~5を示す。 Table 6 shows the measurement results of tensile strength (maximum stress). In Table 6, "0 hours" indicates before immersion in salt water. In addition, a value of "0" in Table 6 indicates that delamination occurred between the solder alloy (solder alloy foil 2) and the test pieces 1a and 1b in the solder joint of the test sample. 4 is a graph showing the measurement results of the maximum stress in Table 6. In FIG. In FIG. 4, the vertical axis indicates the maximum stress value, and the horizontal axis indicates Examples 2-5 and Comparative Examples 1-5.


Figure 0007216419000006
Figure 0007216419000006

表7は、前記浸漬処理前(0時間)を基準として、実施例2~5及び比較例1~5の試験試料の最大応力の測定結果を示したものである。即ち、表7においては、実施例2~5及び比較例1~5の夫々における所定時間の浸漬処理後の最大応力を、0時間での最大応力に対する割合(百分率)として示している。また、図5は、表7の最大応力の割合を表すグラフである。図5において、縦軸は浸漬処理前応力値に対する割合を示し、横軸は実施例2~5及び比較例1~5を示す。 Table 7 shows the measurement results of the maximum stress of the test samples of Examples 2 to 5 and Comparative Examples 1 to 5, based on before the immersion treatment (0 hour). That is, Table 7 shows the maximum stress after immersion treatment for a predetermined time in each of Examples 2 to 5 and Comparative Examples 1 to 5 as a ratio (percentage) to the maximum stress at 0 hours. 5 is a graph showing the ratio of the maximum stress in Table 7. FIG. In FIG. 5, the vertical axis indicates the ratio to the stress value before immersion treatment, and the horizontal axis indicates Examples 2-5 and Comparative Examples 1-5.


Figure 0007216419000007
Figure 0007216419000007

図4~図5及び表6~表7から分かるように、実施例2~5及び比較例1~5の試験試料の何れにおいても、浸漬処理の時間が72時間、168時間、336時間に長くなることにつれて、最大応力が低下している。即ち、浸漬処理の時間が長くなることにつれて腐食が酷くなり、最大応力が低下している判断される。 As can be seen from FIGS. 4 to 5 and Tables 6 to 7, the immersion treatment time was increased to 72 hours, 168 hours, and 336 hours in all of the test samples of Examples 2 to 5 and Comparative Examples 1 to 5. The maximum stress decreases as the That is, as the immersion treatment time increases, the corrosion becomes severer and the maximum stress decreases.

しかし、72時間、168時間及び336時間の浸漬処理後において、実施例2~5に係る試験試料のはんだ継手100の最大応力は、比較例1~5に係る試験試料の最大応力を上回る値を示している。 However, after the immersion treatment for 72 hours, 168 hours, and 336 hours, the maximum stress of the solder joints 100 of the test samples according to Examples 2-5 exceeded the maximum stress of the test samples according to Comparative Examples 1-5. showing.

実施例2~5においては、72時間の浸漬処理後の最大応力が何れも299N以上であり、168時間の浸漬処理後の最大応力が何れも158N以上であり、336時間の浸漬処理後の最大応力が何れも54N以上であることが分かる。 In Examples 2 to 5, the maximum stress after immersion treatment for 72 hours was 299 N or more, the maximum stress after immersion treatment for 168 hours was 158 N or more, and the maximum stress after immersion treatment for 336 hours was 299 N or more. It can be seen that the stresses are all 54 N or more.

このように、浸漬処理後において、実施例2~5に係る試験試料のはんだ継手100の最大応力が比較例1~5に係る試験試料の最大応力より高いことから、実施例2~5に係る試験試料のはんだ継手100が、比較例1~5に係る試験試料に比べて耐腐食性に優れていることが分かる。 Thus, after the immersion treatment, the maximum stress of the solder joints 100 of the test samples according to Examples 2-5 is higher than the maximum stress of the test samples according to Comparative Examples 1-5. It can be seen that the solder joint 100 of the test sample is superior in corrosion resistance to the test samples according to Comparative Examples 1-5.

図6は、比較例1の最大応力と、実施例2~5及び比較例2~5の試験試料の最大応力との差を、Alの標準電極電位との差(V)に対してプロットしたグラフである。図6において、縦軸は比較例1との最大応力差を示し、横軸はAlの標準電極電位との差(V)を示す。 FIG. 6 plots the difference between the maximum stress of Comparative Example 1 and the maximum stress of the test samples of Examples 2-5 and Comparative Examples 2-5 against the difference (V) from the standard electrode potential of Al. graph. In FIG. 6, the vertical axis indicates the maximum stress difference from Comparative Example 1, and the horizontal axis indicates the difference (V) from the standard electrode potential of Al.

図6から分かるように、Alの標準電極電位との差(V)が0.70である場合を境に最大応力は分かれている。Alの標準電極電位との差(V)が0.70より低い方は、比較例1との最大応力差が0より大きく、Alの標準電極電位との差(V)が0.70より大きい方は、比較例1との最大応力差が0より小さい。Alの標準電極電位との差(V)が0.70より低い方は実施例2~5に係る試験試料のはんだ継手100に該当し、Alの標準電極電位との差(V)が0.70より大きい方は比較例2~5に該当する。 As can be seen from FIG. 6, the maximum stress is divided on the boundary of the case where the difference (V) from the standard electrode potential of Al is 0.70. If the difference (V) from the standard electrode potential of Al is lower than 0.70, the maximum stress difference from Comparative Example 1 is greater than 0, and the difference (V) from the standard electrode potential of Al is greater than 0.70. In the other, the maximum stress difference from Comparative Example 1 is smaller than zero. Those where the difference (V) from the standard electrode potential of Al is lower than 0.70 correspond to the solder joints 100 of the test samples according to Examples 2 to 5, and the difference (V) from the standard electrode potential of Al is 0.70. Those above 70 correspond to Comparative Examples 2-5.

即ち、実施例2~5に係る試験試料のはんだ継手100においては、浸漬処理後の最大応力(引張強度)が比較例1より高く、比較例2~5に係る試験試料においては、浸漬処理後の最大応力(引張強度)が比較例1より低い。換言すれば、実施例2~5に係る試験試料のはんだ継手100の何れもが浸漬処理後において比較例1~5より高い最大応力(引張強度)を示している。 That is, in the solder joints 100 of the test samples according to Examples 2 to 5, the maximum stress (tensile strength) after immersion treatment is higher than that in Comparative Example 1, and in the test samples according to Comparative Examples 2 to 5, after immersion treatment The maximum stress (tensile strength) of is lower than that of Comparative Example 1. In other words, all of the test sample solder joints 100 according to Examples 2-5 exhibit a higher maximum stress (tensile strength) than Comparative Examples 1-5 after the immersion treatment.

以上のことから、Alとの標準電極電位の差が0.7V以下であるMn,Mg,Ti,Zrを助剤として用いることによって、はんだ継手100(はんだ合金)における電解腐食を抑制できることが確認できた。 From the above, it is confirmed that electrolytic corrosion in the solder joint 100 (solder alloy) can be suppressed by using Mn, Mg, Ti, and Zr whose standard electrode potential difference with Al is 0.7 V or less as an auxiliary agent. did it.

詳しくは、0超過0.010重量%のMnを助剤として含む鉛フリーはんだ合金を用いることによって、本実施例のはんだ継手100おいては電解腐食を抑制する効果を奏する。
なお、Mnは容易に酸化される性質をもつ元素であり、はんだ(合金)表面で酸化物いわゆるドロスを形成した場合は、はんだ付け性や作業性を低下させる原因となる。また、SnにMnが添加されるとはんだ合金の融点が上昇すると言う問題もある。このようにMnの添加には、はんだ合金自体の性能やはんだ付け作業性を低下させる側面もあり、0.010重量%を超えるMnの添加は望ましくない。
Specifically, by using a lead-free solder alloy containing 0.010% by weight of Mn as an auxiliary agent, the solder joint 100 of this embodiment has the effect of suppressing galvanic corrosion.
Note that Mn is an element that is easily oxidized, and if it forms an oxide, so-called dross, on the solder (alloy) surface, it causes deterioration in solderability and workability. There is also a problem that the melting point of the solder alloy increases when Mn is added to Sn. As such, the addition of Mn has a side effect of deteriorating the performance of the solder alloy itself and the soldering workability, and the addition of Mn exceeding 0.010% by weight is not desirable.

また、上述したように、0超過0.009重量%のTiを助剤として含む鉛フリーはんだ合金を用いることによって、本実施例のはんだ継手100おいても電解腐食を抑制する効果を奏する。
更に、0超過0.004重量%のMgを助剤として含む鉛フリーはんだ合金を用いることによって、本実施例のはんだ継手100おいても電解腐食を抑制する効果を奏する。そして、0超過0.008重量%のZrを助剤として含む鉛フリーはんだ合金を用いることによって、本実施例のはんだ継手100おいても電解腐食を抑制する効果を奏する。
Moreover, as described above, by using a lead-free solder alloy containing 0.009% by weight of Ti as an auxiliary agent, the solder joint 100 of this embodiment also has the effect of suppressing galvanic corrosion.
Furthermore, by using a lead-free solder alloy containing 0.004% by weight of Mg as an auxiliary agent, the solder joint 100 of this embodiment also has the effect of suppressing galvanic corrosion. By using a lead-free solder alloy containing 0.008% by weight of Zr in excess of 0 as an auxiliary agent, the solder joint 100 of this embodiment also has the effect of suppressing galvanic corrosion.

1,1a,1b 試験片
2 はんだ合金箔
100 はんだ継手
Reference Signs List 1, 1a, 1b Test piece 2 Solder alloy foil 100 Solder joint

Claims (2)

少なくとも表面層にAlを含有する被接合部材とのはんだ付けに用いられるSn‐Ag‐Cu系の鉛フリーはんだ合金において、
3.00重量%のAg、5.00重量%のCu及び0.05重量%のNiを含み、
Mn、Ti、Mg、Zrのうち少なくとも一つの助剤を更に含んでおり、
Mnの添加量は0.003~0.010重量%、Tiの添加量は0.009重量%、Mgの添加量は0.004重量%、Zrの添加量は0.008重量%であり、
残部がSnであることを特徴とする鉛フリーはんだ合金。
In a Sn-Ag-Cu-based lead-free solder alloy used for soldering with a member to be joined containing Al in at least the surface layer,
3.00 wt% Ag, 5.00 wt% Cu and 0.05 wt% Ni,
further comprising at least one auxiliary agent selected from Mn, Ti, Mg, and Zr;
The amount of Mn added is 0.003 to 0.010% by weight, the amount of Ti added is 0.009% by weight, the amount of Mg added is 0.004% by weight, and the amount of Zr added is 0.008% by weight . ,
A lead-free solder alloy, wherein the balance is Sn .
Niが添加されたSn‐Ag‐Cu系の鉛フリーはんだ合金と、少なくとも表面層にAlを含有する被接合部材とのはんだ継手において、
請求項1に記載の鉛フリーはんだ合金を含み、
前記助剤は接合部に分布していることを特徴とするはんだ継手。
In a solder joint between a Sn-Ag-Cu-based lead-free solder alloy to which Ni is added and a member to be joined containing Al in at least the surface layer,
A lead-free solder alloy according to claim 1,
A solder joint, characterized in that said aid is distributed in the joint.
JP2019510113A 2017-03-31 2018-03-29 Lead-free solder alloys and solder joints Active JP7216419B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017072356 2017-03-31
JP2017072356 2017-03-31
PCT/JP2018/013188 WO2018181690A1 (en) 2017-03-31 2018-03-29 Lead-free solder alloy and solder joint

Publications (2)

Publication Number Publication Date
JPWO2018181690A1 JPWO2018181690A1 (en) 2020-02-13
JP7216419B2 true JP7216419B2 (en) 2023-02-01

Family

ID=63676341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019510113A Active JP7216419B2 (en) 2017-03-31 2018-03-29 Lead-free solder alloys and solder joints

Country Status (3)

Country Link
JP (1) JP7216419B2 (en)
TW (1) TWI760470B (en)
WO (1) WO2018181690A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820277B (en) * 2018-12-27 2023-11-01 美商阿爾發金屬化工公司 Lead-free solder compositions
JP6804126B1 (en) * 2019-04-11 2020-12-23 株式会社日本スペリア社 Lead-free solder alloys and solder joints

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319470A (en) 2004-05-06 2005-11-17 Katsuaki Suganuma Lead-free solder material, electronic circuit board and their production method
JP2007299722A (en) 2006-04-06 2007-11-15 Hitachi Cable Ltd Wiring conductor, its manufacturing method, terminal connection part, and pb-free solder alloy
JP2008142729A (en) 2006-12-07 2008-06-26 Hitachi Metals Ltd Solder for directly connecting aluminum member
WO2010119836A1 (en) 2009-04-14 2010-10-21 新日鉄マテリアルズ株式会社 Lead-free solder alloy, solder ball, and electronic member comprising solder bump
JP2014027122A (en) 2012-07-27 2014-02-06 Nippon Steel Sumikin Materials Co Ltd Lead-free solder bump bonding structure
JP2014136219A5 (en) 2013-01-15 2016-06-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247819B2 (en) * 2013-01-15 2017-12-13 株式会社日本スペリア社 Aluminum solder and solder joints

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319470A (en) 2004-05-06 2005-11-17 Katsuaki Suganuma Lead-free solder material, electronic circuit board and their production method
JP2007299722A (en) 2006-04-06 2007-11-15 Hitachi Cable Ltd Wiring conductor, its manufacturing method, terminal connection part, and pb-free solder alloy
JP2008142729A (en) 2006-12-07 2008-06-26 Hitachi Metals Ltd Solder for directly connecting aluminum member
WO2010119836A1 (en) 2009-04-14 2010-10-21 新日鉄マテリアルズ株式会社 Lead-free solder alloy, solder ball, and electronic member comprising solder bump
JP2014027122A (en) 2012-07-27 2014-02-06 Nippon Steel Sumikin Materials Co Ltd Lead-free solder bump bonding structure
JP2014136219A5 (en) 2013-01-15 2016-06-16

Also Published As

Publication number Publication date
TW201837194A (en) 2018-10-16
WO2018181690A1 (en) 2018-10-04
TWI760470B (en) 2022-04-11
JPWO2018181690A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6730999B2 (en) Highly reliable lead-free solder alloy for electronic applications in harsh environments
JP5943065B2 (en) Bonding method, electronic device manufacturing method, and electronic component
JP6111952B2 (en) Lead-free solder alloy, bonding material and bonded body
JP4831069B2 (en) Lead-free low-temperature solder
TWI492810B (en) Tin-copper lead-free solder alloy
JP2011156558A (en) Lead-free solder alloy
JP7216419B2 (en) Lead-free solder alloys and solder joints
JP6247819B2 (en) Aluminum solder and solder joints
JP2013000744A (en) Lead-free solder alloy, and soldered joint using the same
TW201704491A (en) High reliability lead-free solder alloys for harsh environment electronics applications
JP6165294B2 (en) Aluminum solder and solder joints
JP2012125783A (en) Lead-free solder alloy
JP2016019992A (en) Aluminium soldering and solder joint
KR101545530B1 (en) Flux for brazing aluminum materials
JP2017051984A (en) Solder alloy and solder composition
JP5773444B2 (en) Solder alloy for aluminum joining
JP2019136776A (en) Solder joint method
JP4890221B2 (en) Die bond material
JP2006167800A (en) Solder, edge face electrode material for metallized film capacitor, metallized film capacitor, and brazing material for aluminum
JP5051633B2 (en) Solder alloy
JP6389553B2 (en) Aluminum solder and solder joints
JP2017213602A (en) Soldering method and solder joint
JP2006320912A (en) High temperature solder alloy
JP2017064781A (en) Lead-free solder alloy
JP2012020331A (en) Joining structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221213

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230113

R150 Certificate of patent or registration of utility model

Ref document number: 7216419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150