JP2005319470A - Lead-free solder material, electronic circuit board and their production method - Google Patents

Lead-free solder material, electronic circuit board and their production method Download PDF

Info

Publication number
JP2005319470A
JP2005319470A JP2004137212A JP2004137212A JP2005319470A JP 2005319470 A JP2005319470 A JP 2005319470A JP 2004137212 A JP2004137212 A JP 2004137212A JP 2004137212 A JP2004137212 A JP 2004137212A JP 2005319470 A JP2005319470 A JP 2005319470A
Authority
JP
Japan
Prior art keywords
solder material
lead
free solder
solder
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004137212A
Other languages
Japanese (ja)
Other versions
JP2005319470A5 (en
Inventor
Katsuaki Suganuma
克昭 菅沼
Kenichiro Suetsugu
憲一郎 末次
Toshiharu Hibino
俊治 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004137212A priority Critical patent/JP2005319470A/en
Publication of JP2005319470A publication Critical patent/JP2005319470A/en
Publication of JP2005319470A5 publication Critical patent/JP2005319470A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved Sn-Ag-Cu based lead-free solder material which can be suitably used as a joining material in the packaging process of an electronic component. <P>SOLUTION: The lead-free solder material is obtained by adding particulates, preferably nanoparticles, containing elements substantially insoluble in an Sn-Ag-Cu based solder material to the Sn-Ag-Cu based solder material. The obtained lead-free solder material is used for soldering, so that the metallic structure of the joint part of the solder material can be made more fine. Particularly, the lead-free solder material is used as the joining material in the packaging process of an electronic component, thereby producing the electronic circuit board having high reliability characteristics. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、いわゆる鉛フリーはんだ材料およびその製造方法に関する。更に、本発明は、そのような鉛フリーはんだ材料を用いて電子部品が基板に接合された(またははんだ付けされた)電子回路基板およびその製造方法に関する。   The present invention relates to a so-called lead-free solder material and a manufacturing method thereof. Furthermore, the present invention relates to an electronic circuit board in which an electronic component is bonded (or soldered) to the board using such a lead-free solder material and a method for manufacturing the same.

従来、電子機器に内蔵される電子回路基板においては、基板と電子部品とを接合するためにSn−Pb系はんだ材料、特にSn−37Pb共晶組成(融点183℃)を有するSn−Pb共晶はんだ材料が一般的に用いられて来た。しかし、近年、このようなSn−Pb系はんだ材料に含まれる鉛が不適切な廃棄物処理により環境汚染を招く可能性があることを考慮し、鉛を含有するはんだ材料の代替として、鉛を含まない、いわゆる「鉛フリー」のはんだ材料の研究開発が進められている(例えば特許文献1および2を参照のこと)。上記のような従来の鉛含有はんだ材料に代わる鉛フリーはんだ材料として現在有力視されているものの1つにSn−Ag−Cu系はんだ材料がある(例えば特許文献1を参照のこと)。   2. Description of the Related Art Conventionally, in an electronic circuit board built in an electronic device, an Sn—Pb-based solder material, particularly an Sn—Pb eutectic having an Sn-37Pb eutectic composition (melting point 183 ° C.) is used to join the board and the electronic component. Solder materials have been commonly used. However, in recent years, in view of the possibility that lead contained in such Sn-Pb solder materials may cause environmental pollution due to improper waste disposal, lead can be used as an alternative to solder materials containing lead. Research and development of a so-called “lead-free” solder material that does not include it is underway (see, for example, Patent Documents 1 and 2). One of the currently promising lead-free solder materials to replace the conventional lead-containing solder materials as described above is Sn-Ag-Cu solder material (see, for example, Patent Document 1).

Sn−Ag−Cu系材料の共晶組成は未だ定かではないが、近年ではSn−3.8Ag−0.7Cu(融点217℃)またはその付近であると考えられている。電子部品実装プロセスにおいては、おおよそSn−(0〜4)Ag−(0〜1)Cuの組成を有するSn−Ag−Cu系はんだ材料、例えばSn−3.0Ag−0.5Cu(融点219〜220℃)の組成を有するはんだ材料が実用化されている。   The eutectic composition of the Sn—Ag—Cu-based material is not yet determined, but in recent years it is considered to be Sn-3.8Ag-0.7Cu (melting point 217 ° C.) or its vicinity. In an electronic component mounting process, an Sn—Ag—Cu based solder material having a composition of approximately Sn- (0-4) Ag- (0-1) Cu, such as Sn-3.0Ag-0.5Cu (melting point 219- A solder material having a composition of 220 ° C. has been put into practical use.

尚、当業者には明白であるように、例えば「Sn−3.0Ag−0.5Cu」とは、全体基準で3.0質量%(または重量%、以下も同様)のAg、0.5質量%のCuおよび残部(この場合、96.5質量%)のSnから成る組成を意味するものであり、また、「Sn−(0〜4)Ag−(0〜1)Cu」とは、全体基準で0〜4質量%(但しゼロを除く)のAg、0〜1質量%(但しゼロを除く)のCuおよび残部(この場合、95〜100質量%(但し100を除く))のSnから成る組成を言うものである。本明細書においては、特に説明しない限り同様の表現により組成を示すものとする。また、このようにして組成が示されるはんだ材料は、列挙された元素のみから成ることを必ずしも要せず、不可避的に混入する極微量の元素を含んでいてもよい。   As will be apparent to those skilled in the art, for example, “Sn-3.0Ag-0.5Cu” means 3.0 mass% (or weight%, the same applies hereinafter) of Ag, 0.5 It means a composition composed of Cu by mass and the balance (in this case, 96.5 mass%) Sn, and "Sn- (0-4) Ag- (0-1) Cu" 0 to 4% by mass (excluding zero) of Ag, 0 to 1% by mass (excluding zero) of Cu and the balance (in this case, 95 to 100% by mass (excluding 100)) Sn The composition consisting of In the present specification, the composition is indicated by the same expression unless otherwise specified. Further, the solder material whose composition is shown in this way does not necessarily need to be composed only of the enumerated elements, and may contain a trace amount of elements inevitably mixed.

特表2001−504760号公報JP-T-2001-504760 特開2002−18589号公報JP 2002-18589 A

近年、電子機器の小型化・高性能化が益々進み、これに伴って、電子機器に内蔵される電子回路基板の信頼性特性の向上が強く望まれている。このため、電子部品の実装プロセスにおいて用いられるはんだ材料に対しても機械的強度および耐熱衝撃性等の向上が要求され、鉛フリーはんだ材料もその例外ではない。   In recent years, electronic devices have been increasingly reduced in size and performance, and accordingly, improvement in reliability characteristics of electronic circuit boards incorporated in electronic devices is strongly desired. For this reason, improvement in mechanical strength, thermal shock resistance and the like is also required for solder materials used in the mounting process of electronic components, and lead-free solder materials are no exception.

しかし、Sn−Ag−Cu系鉛フリーはんだ材料を用いて作製した電子回路基板におけるクラック(凝固割れを含む)の発生率、機械的強度および熱衝撃試験による評価ひいては信頼性特性は、Sn−Pb共晶はんだ材料を用いた場合と比べて必ずしも十分でない。   However, an evaluation of the occurrence rate of cracks (including solidification cracks), mechanical strength, and thermal shock test in an electronic circuit board manufactured using a Sn-Ag-Cu-based lead-free solder material, as well as reliability characteristics, is Sn-Pb It is not always sufficient as compared with the case where a eutectic solder material is used.

本発明は上記のような課題を解決するためになされたものであり、本発明の目的は、電子部品の実装プロセスにおいて接合材料として好適に用いることができる、改善された鉛フリーはんだ材料およびその製造方法を提供することにある。また、本発明の更なる目的は、このような鉛フリーはんだ材料を利用して得られる電子回路基板およびその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an improved lead-free solder material that can be suitably used as a bonding material in a mounting process of an electronic component, and its It is to provide a manufacturing method. Moreover, the further objective of this invention is to provide the electronic circuit board obtained using such a lead-free solder material, and its manufacturing method.

尚、本明細書において「はんだ材料」とは一般的な意味で用い、比較的低い温度(例えば約230℃以下)で少なくとも部分的に溶融可能であり、常温では固体の金属材料であって、導電性材料の部材間、例えば電極間を電気的および物理的に接合する(即ち、はんだ付けする)ために用いられ得る材料を言う。例えば、電子部品の実装プロセスにおいては、電子部品の外部電極と回路基板上に形成されたランド(または配線)などとを電気的および物理的に接合するための接合材料として用いられる。   In the present specification, the term “solder material” is used in a general sense and can be melted at least partially at a relatively low temperature (eg, about 230 ° C. or less), and is a solid metal material at room temperature, A material that can be used to electrically and physically bond (ie, solder) between members of a conductive material, eg, between electrodes. For example, in the mounting process of an electronic component, it is used as a bonding material for electrically and physically bonding an external electrode of the electronic component and a land (or wiring) formed on a circuit board.

本発明によれば、(i)Sn−Ag−Cu系はんだ材料と、(ii)該Sn−Ag−Cu系はんだ材料に実質的に溶解しない元素を含む微粒子とを含む、新規な鉛フリーはんだ材料が提供される。本発明の鉛フリーはんだ材料を用いて得られた電子回路基板は、従来のSn−Ag−Cu系鉛フリーはんだ材料を用いた電子回路基板と比較して優れた機械的特性を示し、より高い信頼性特性を有することが本発明者らにより確認された。このような本発明の効果は、いずれの理論によっても拘束されるものではないが、Sn−Ag−Cu系はんだ材料がはんだ付けプロセスにおいて一旦溶融して凝固する際、上記微粒子によってはんだ材料融液中に結晶核(または凝固を開始する核となるもの)が導入され、その結果、はんだ組織が微細化されることによると考えられる。これについては後述の実施例に関連してより詳細に説明するものとする。   According to the present invention, a novel lead-free solder comprising (i) a Sn-Ag-Cu solder material and (ii) fine particles containing an element that does not substantially dissolve in the Sn-Ag-Cu solder material Material is provided. The electronic circuit board obtained by using the lead-free solder material of the present invention exhibits superior mechanical characteristics as compared with the electronic circuit board using the conventional Sn-Ag-Cu-based lead-free solder material, and is higher. It has been confirmed by the present inventors that they have reliability characteristics. Such effects of the present invention are not limited by any theory, but when the Sn—Ag—Cu based solder material is once melted and solidified in the soldering process, the above-mentioned fine particles cause the solder material melt to melt. It is considered that crystal nuclei (or nuclei that initiate solidification) are introduced therein, and as a result, the solder structure is refined. This will be described in more detail in connection with the examples described below.

本発明において「Sn−Ag−Cu系はんだ材料に実質的に溶解しない元素」とは、その元素とSn−Ag−Cu系はんだ材料とを共存させた状態で高温条件下でSn−Ag−Cu系はんだ材料を完全に溶融させた後、次第に温度低下させていくときに、少なくともSn−Ag−Cu系はんだ材料が凝固し始める直前において、何らかの形態、例えば単体、合金または化合物(酸化物、炭化物、窒化物およびホウ化物ならびに金属間化合物を含む)などの形態で融液中で固体として、またはSn−Ag−Cu系はんだ材料に固溶せずに存在し得る元素を言うものとする。このような元素は、融液となるSn−Ag−Cu系はんだ材料の成分系に対して固有的に決まるものである。以下、Sn−Ag−Cu系はんだ材料に実質的に溶解しない元素を単に「非溶解元素」と言うものとする。   In the present invention, “an element that does not substantially dissolve in the Sn—Ag—Cu solder material” means that the Sn—Ag—Cu solder material coexists with the Sn—Ag—Cu solder material under high temperature conditions. When the temperature of the Sn-Ag-Cu solder material starts to solidify at least when the temperature is gradually lowered after the solder material is completely melted, some form, for example, a simple substance, an alloy or a compound (oxide, carbide) , Including nitrides and borides, and intermetallic compounds), or the like, which may be present as a solid in the melt or without being dissolved in the Sn—Ag—Cu solder material. Such an element is uniquely determined with respect to the component system of the Sn—Ag—Cu based solder material to be the melt. Hereinafter, an element that does not substantially dissolve in the Sn—Ag—Cu solder material is simply referred to as an “insoluble element”.

例えば、非溶解元素にはB、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Zr、NbおよびMoからなる群から選択される1種またはそれ以上の元素を用いることができる。   For example, one or more elements selected from the group consisting of B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, and Mo can be used as the insoluble element.

上記のような非溶解元素は、Sn−Ag−Cu系材料の物理的および電気的性質などのはんだ材料として所望される性質に実質的に影響を与えない程度に少なく、かつ、凝固割れやクラック発生、機械的特性の低下などを効果的に防止し得る程度に多い量で、Sn−Ag−Cu系材料と共存することが好ましい。本発明のはんだ材料において非溶解元素は全体基準で、例えば0〜約0.5質量%(但しゼロは除く、本明細書において以下同様)、好ましくは0〜約0.2質量%の量で含まれる。尚、本発明に言う「全体基準」とはSn−Ag−Cu系はんだ材料および非固溶元素の微粒子を合せた全体を基準とすることを意味する。   The above non-dissolved elements are so small that they do not substantially affect the desired properties of the solder material such as physical and electrical properties of the Sn-Ag-Cu-based material, and solidification cracks and cracks It is preferable to coexist with the Sn—Ag—Cu-based material in an amount large enough to effectively prevent generation, deterioration of mechanical properties, and the like. In the solder material of the present invention, the non-dissolved element is, for example, in an amount of 0 to about 0.5% by mass (excluding zero, the same applies hereinafter), preferably 0 to about 0.2% by mass. included. The “overall standard” referred to in the present invention means that the total of Sn—Ag—Cu-based solder material and fine particles of insoluble elements is used as a reference.

本発明において、微粒子は上記のような非溶解元素の少なくとも1種を任意の形態で含有し得る。例えば、微粒子は一般的にはこれら非溶解元素の単体またはその化合物(酸化物、炭化物、窒化物およびホウ化物など)から成る。また、粒子内部がこれら非溶解元素の単体から成り、粒子表面がその酸化物、炭化物、窒化物およびホウ化物などの化合物から成っていてもよい。しかし、本発明はこれに限定されず、微粒子は上記のような非溶解元素およびそれらの化合物の2種またはそれ以上から成っていてよく、例えば、非溶解元素の混合物(合金を含む)および/またはその酸化物、炭化物、窒化物およびホウ化物などの化合物から成っていてもよい。   In the present invention, the fine particles may contain at least one of the above non-dissolved elements in any form. For example, the fine particles are generally composed of a simple substance of these non-dissolved elements or a compound thereof (oxide, carbide, nitride, boride, etc.). Further, the inside of the particle may be composed of a simple substance of these insoluble elements, and the surface of the particle may be composed of a compound such as an oxide, carbide, nitride and boride. However, the present invention is not limited to this, and the fine particles may be composed of two or more of the above insoluble elements and their compounds, for example, a mixture of insoluble elements (including alloys) and / or Or you may consist of compounds, such as the oxide, carbide | carbonized_material, nitride, and boride.

本発明に言う「微粒子」は、具体的には粒径が10μm以下であってよく、好ましくは1μm以下、例えば1nm〜1μm(即ち、ナノミクロンオーダー)である。このうち、粒径が1μm未満である微粒子は一般的に「ナノ粒子」または「ナノスケール粒子」と呼ばれ得る。「微粒子」は、このような大きさの粒径を有する限り、球形、回転楕円形、不定形など任意の形状を有し得る。尚、本明細書において「粒径」とは粒子の任意断面における最大長さを言うものとする。微粒子の粒径は、概略的には、そのSEM(走査型電子顕微鏡)写真像から求めることができる。   The “fine particles” referred to in the present invention may specifically have a particle size of 10 μm or less, preferably 1 μm or less, for example, 1 nm to 1 μm (that is, nanomicron order). Among these, fine particles having a particle size of less than 1 μm can generally be referred to as “nanoparticles” or “nanoscale particles”. The “fine particles” may have any shape such as a sphere, a spheroid, and an indefinite shape as long as they have such a particle size. In the present specification, “particle size” refers to the maximum length of an arbitrary cross section of the particle. The particle diameter of the fine particles can be roughly determined from the SEM (scanning electron microscope) photographic image.

他方、Sn−Ag−Cu系はんだ材料には、はんだ付けに一般的に使用され得る組成を有するSn−Ag−Cu系材料を用いることができる。例えば、0〜約4質量%のAg、0〜約1質量%のCuおよび残部のSnを含んで成るはんだ材料を用いることができる。このようなSn−Ag−Cu系材料は約215〜約230℃の融点を有し得る。   On the other hand, as the Sn—Ag—Cu based solder material, an Sn—Ag—Cu based material having a composition that can be generally used for soldering can be used. For example, a solder material comprising 0 to about 4 mass% Ag, 0 to about 1 mass% Cu and the balance Sn can be used. Such Sn—Ag—Cu based materials can have a melting point of about 215 to about 230 ° C.

Sn−Ag−Cu系はんだ材料と非溶解元素の微粒子とを含む本発明の鉛フリーはんだ材料は、例えば、全体基準で0〜約0.2質量%の非溶解元素、0〜約4質量%のAg、0〜約1質量%のCuおよび残部のSnを含んで成る。   The lead-free solder material of the present invention containing Sn—Ag—Cu-based solder material and fine particles of insoluble elements is, for example, 0 to about 0.2 mass% of insoluble elements, 0 to about 4 mass% on the whole basis. Of Ag, from 0 to about 1% by weight of Cu and the balance of Sn.

本発明の鉛フリーはんだ材料の1つの態様において、Sn−Ag−Cu系はんだ材料は粒子(例えば粉末状の粒子、以下、単にはんだ粉末とも言う)の形態であり、非溶解元素を含む微粒子とはんだ粉末とが混在していてよい。この態様における鉛フリーはんだ材料は、少なくとも(i)Sn−Ag−Cu系はんだ材料から成る粒子と、(ii)非溶解元素を含む微粒子とを混合することによって得ることができる。よって、本発明の別の要旨によれば、以上のような鉛フリーはんだ材料の製造方法もまた提供される。   In one embodiment of the lead-free solder material of the present invention, the Sn—Ag—Cu-based solder material is in the form of particles (for example, powder particles, hereinafter also simply referred to as solder powder), and includes fine particles containing an insoluble element and Solder powder may be mixed. The lead-free solder material in this embodiment can be obtained by mixing at least (i) particles made of Sn—Ag—Cu-based solder material and (ii) fine particles containing an insoluble element. Thus, according to another aspect of the present invention, a method for producing a lead-free solder material as described above is also provided.

上記態様の本発明の鉛フリーはんだ材料は、非溶解元素の微粒子およびSn−Ag−Cu系はんだ粉末に加えてフラックスなどの他の成分を更に含んでいてもよい。このような鉛フリーはんだ材料は、例えば、非溶解元素の微粒子、Sn−Ag−Cu系はんだ粉末およびフラックス(またはフラックスの構成成分)を混合または混練して得ることができる。このような鉛フリーはんだ材料は、いわゆるはんだペースト(またはクリームはんだ)として用いることができる。もちろん、Sn−Ag−Cu系はんだ粉末を含む既存のはんだペースト(またはクリームはんだ)に非溶解元素の微粒子を添加混合して得てもよい。   The lead-free solder material of the present invention of the above aspect may further contain other components such as a flux in addition to the fine particles of the insoluble element and the Sn—Ag—Cu solder powder. Such a lead-free solder material can be obtained, for example, by mixing or kneading fine particles of an insoluble element, Sn—Ag—Cu solder powder and a flux (or a constituent component of the flux). Such a lead-free solder material can be used as a so-called solder paste (or cream solder). Of course, it may be obtained by adding and mixing fine particles of non-dissolved elements to an existing solder paste (or cream solder) containing Sn-Ag-Cu solder powder.

本発明の鉛フリーはんだ材料の別の態様において、Sn−Ag−Cu系はんだ材料が連続相(またはバルク)を形成し、その連続相中に非溶解元素の微粒子が分散していてもよい。この態様における鉛フリーはんだ材料は、例えば、溶融状態のSn−Ag−Cu系材料中に非溶解元素の微粒子を分散させることによって液状物として得てよい。このような鉛フリーはんだ材料は、いわゆるフローはんだ(またははんだ噴流)として用いることができる。   In another aspect of the lead-free solder material of the present invention, the Sn—Ag—Cu-based solder material may form a continuous phase (or bulk), and fine particles of insoluble elements may be dispersed in the continuous phase. The lead-free solder material in this embodiment may be obtained as a liquid by, for example, dispersing fine particles of insoluble elements in a molten Sn—Ag—Cu-based material. Such a lead-free solder material can be used as so-called flow solder (or solder jet).

あるいは、上記別の態様の鉛フリーはんだ材料は、溶融状態のSn−Ag−Cu系はんだ材料中に非溶解元素の微粒子を分散させた後、凝固させることによって固体として得てもよい。この場合、非溶解元素の微粒子の大きさは凝固の前後で変化し得る。得られた固体(または凝固物)は、必要に応じて成形、切削、粉砕、圧延など任意の適切な処理に付してよい。このような鉛フリーはんだ材料は任意の形態、例えばボールはんだ、糸はんだなどの形態で用いることができる。   Alternatively, the lead-free solder material according to another aspect may be obtained as a solid by dispersing fine particles of an insoluble element in a molten Sn—Ag—Cu-based solder material and then solidifying it. In this case, the size of the fine particles of the insoluble element can change before and after solidification. The obtained solid (or solidified product) may be subjected to any appropriate treatment such as molding, cutting, pulverization, and rolling as necessary. Such a lead-free solder material can be used in any form, for example, in the form of ball solder or thread solder.

本発明によって得られる鉛フリーはんだ材料は電子部品の実装プロセスにおいて接合材料として好適に用いられる。よって、本発明の更に別の要旨によれば、上述のような本発明の鉛フリーはんだ材料を利用して、電子部品が基板に接合された電子回路基板およびその製造方法もまた提供される。   The lead-free solder material obtained by the present invention is suitably used as a joining material in the mounting process of electronic components. Therefore, according to still another aspect of the present invention, an electronic circuit board in which an electronic component is bonded to a board using the lead-free solder material of the present invention as described above and a method for manufacturing the same are also provided.

例えば、本発明の鉛フリーはんだ材料をクリームはんだとして用いて、リフローはんだ付けプロセスによって電子回路基板を作製することができる。あるいは、本発明の鉛フリーはんだ材料をフローはんだ(またははんだ噴流)として用いて、フローはんだ付けプロセスによって電子回路基板を作製することもできる。リフローまたはフローはんだ付けプロセスには当該技術分野において既知のプロセスを適用してよい。   For example, an electronic circuit board can be produced by a reflow soldering process using the lead-free solder material of the present invention as cream solder. Alternatively, an electronic circuit board can be produced by a flow soldering process using the lead-free solder material of the present invention as flow solder (or solder jet). Processes known in the art may be applied to the reflow or flow soldering process.

しかし、本発明によって提供される鉛フリーはんだ材料の用途は電子回路基板の作製に必ずしも限定されず、種々の部材間をはんだ付けするための接合材料として用いられ得、また、部材間を単に物理的(または機械的)にのみ接続するための接続材料としても用いられ得ることは、当業者であれば容易に想到されよう。   However, the use of the lead-free solder material provided by the present invention is not necessarily limited to the production of an electronic circuit board, and can be used as a bonding material for soldering between various members. Those skilled in the art will readily realize that it can also be used as a connection material to connect only to the target (or mechanically).

本発明によれば、改善されたSn−Ag−Cu系の鉛フリーはんだ材料およびその製造方法が提供される。本発明の鉛フリーはんだ材料は、従来のSn−Ag−Cu系はんだ材料と比較して優れた機械的特性を示し、本発明の鉛フリーはんだ材料を用いて電子回路基板を作製すれば、従来のSn−Ag−Cu系はんだ材料を用いるよりも高い信頼性特性を得ることができる。よって、本発明の鉛フリーはんだ材料は、電子部品の実装プロセスにおいて接合材料として好適に用いられる。   According to the present invention, an improved Sn-Ag-Cu-based lead-free solder material and a method for manufacturing the same are provided. The lead-free solder material of the present invention exhibits excellent mechanical properties as compared with the conventional Sn-Ag-Cu solder material, and if an electronic circuit board is produced using the lead-free solder material of the present invention, Higher reliability characteristics can be obtained than when the Sn—Ag—Cu based solder material is used. Therefore, the lead-free solder material of the present invention is suitably used as a bonding material in the electronic component mounting process.

本発明の1つの実施形態において、鉛フリーはんだ材料は、非溶解元素であるB、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Zr、NbおよびMoなどの元素の単体、ならびにその酸化物、炭化物、窒化物およびホウ化物からなる群から選択される1種またはそれ以上の材料から成る微粒子、好ましくはナノ粒子を、Sn−Ag−Cu系材料から成る一般的なはんだ粉末に添加混合して成る。この鉛フリーはんだ材料は、全体基準でSn−(0〜4)Ag−(0〜1)Cu−(0〜0.2)X(式中、Xは非溶解元素)の組成を有し得る。   In one embodiment of the present invention, the lead-free solder material is a single element of elements such as B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb and Mo, which are non-dissolving elements, and The fine particles, preferably nanoparticles, made of one or more materials selected from the group consisting of oxides, carbides, nitrides and borides, are converted into general solder powders made of Sn—Ag—Cu-based materials. Add and mix. This lead-free solder material may have a composition of Sn- (0-4) Ag- (0-1) Cu- (0-0.2) X (wherein X is an insoluble element) on the overall basis. .

非溶解元素の微粒子、好ましくはナノ粒子は、例えばガス中蒸発法により製造され得る。この方法は、不活性ガスを満たしたチャンバー内で、所定の原料物質をるつぼに配置して抵抗加熱などの蒸発源を用いて蒸発させるものである。微粒子は、発生した蒸気の凝縮によって生成したクラスターまたは超微粒子をチャンバーの内壁に付着させ、これを回収することにより得ることができる。この方法により得られる微粒子の粒径は通常は100nmを超え得るが、これは、蒸発源からの輻射などによりクラスターおよび/または超微粒子が互いに融合することによる。この方法においてチャンバー内で不活性ガスをフローさせた場合、得られる微粒子の粒径をより小さく、例えば10nm以下にすることができる。   Non-dissolved element microparticles, preferably nanoparticles, can be produced, for example, by gas evaporation. In this method, in a chamber filled with an inert gas, a predetermined source material is placed in a crucible and evaporated using an evaporation source such as resistance heating. The fine particles can be obtained by attaching clusters or ultrafine particles generated by condensation of the generated vapor to the inner wall of the chamber and collecting them. The particle size of the fine particles obtained by this method can usually exceed 100 nm, which is due to the fusion of clusters and / or ultrafine particles with each other, such as by radiation from the evaporation source. In this method, when an inert gas is flowed in the chamber, the particle size of the obtained fine particles can be made smaller, for example, 10 nm or less.

また、非溶解元素の微粒子、好ましくはナノ粒子は、いわゆる溶液法(液相中での溶液反応を用いる化学的方法)や、アーク放電法、アーク溶解法、レーザー法およびスパッター法など、微粒子/ナノ粒子の製造方法として既知の任意の適切な方法を用いて製造することもできる。   Further, fine particles of non-dissolved elements, preferably nanoparticles, can be produced by the so-called solution method (chemical method using solution reaction in the liquid phase), arc discharge method, arc melting method, laser method, sputtering method, etc. It can also be produced using any suitable method known as a method for producing nanoparticles.

他方、本発明に利用可能なSn−Ag−Cu系はんだ粉末は、当該技術分野において既知の方法、例えばアトマイズ法などによって製造され得る。アトマイズ法は、所定のSn−Ag−Cu系材料を加熱溶融させた状態で、窒素などのガス雰囲気中にノズルを通して噴霧するものである。これにより得られるはんだ粉末の粒径は、噴霧流量やノズル径によって制御可能である。しかし、これに限定されず、いずれの適切な方法によってはんだ粉末を製造してもよい。はんだ粉末の粒径は、特に限定されるものではないが、例えば約5〜40μmとされ得る。また、はんだ粉末は球形、回転楕円体形状、不定形などの任意の適切な形状を有し得る。   On the other hand, the Sn—Ag—Cu based solder powder that can be used in the present invention can be manufactured by a method known in the art, such as an atomizing method. In the atomizing method, a predetermined Sn—Ag—Cu-based material is heated and melted and sprayed through a nozzle in a gas atmosphere such as nitrogen. The particle size of the solder powder thus obtained can be controlled by the spray flow rate and the nozzle diameter. However, the present invention is not limited to this, and the solder powder may be manufactured by any appropriate method. The particle size of the solder powder is not particularly limited, but may be, for example, about 5 to 40 μm. Also, the solder powder may have any suitable shape such as a spherical shape, a spheroid shape, or an indefinite shape.

これら非溶解元素微粒子およびSn−Ag−Cu系はんだ粉末の混合は、混合技術の分野において既知の任意の適切な方法および/または装置を用いて実施してよい。   The mixing of the non-dissolved elemental fine particles and the Sn—Ag—Cu based solder powder may be performed using any appropriate method and / or apparatus known in the field of mixing technology.

以上のようにして得られる鉛フリーはんだ材料は、フラックスと混合(または混練)してクリームはんだとしてもよい。フラックスは、例えばロジン、溶剤ならびに必要に応じて活性剤およびチキソ剤などを含み得る。これにより得られるクリームはんだを用いてリフローはんだ付けにより電子回路基板を作製すると、非溶解元素の微粒子を添加していない従来のSn−Ag−Cu系材料に比べて、はんだ接合部における強度などの機械的特性が向上すると共に、はんだ付けの際に該接合部に生じるクラック(この種のクラックは凝固割れとも言う)や、電子回路基板を熱衝撃試験に付した際に生じるクラックなどの発生率が効果的に低減され、耐熱衝撃性が向上し、これにより電子回路基板の信頼性特性が向上する。このような効果は、接合部における鉛フリーはんだ材料の金属組織の微細化と密接に関係していると考えられる。これについては後述の実施例1に関連して詳細に説明するものとする。   The lead-free solder material obtained as described above may be mixed (or kneaded) with a flux to form cream solder. The flux may include, for example, rosin, solvent, and optionally active and thixotropic agents. When an electronic circuit board is produced by reflow soldering using the cream solder obtained in this way, the strength at the solder joint is higher than that of a conventional Sn-Ag-Cu-based material to which fine particles of non-dissolved elements are not added. In addition to improved mechanical properties, the incidence of cracks in the joints during soldering (this type of crack is also called solidification cracking) and cracks that occur when an electronic circuit board is subjected to a thermal shock test Is effectively reduced and the thermal shock resistance is improved, thereby improving the reliability characteristics of the electronic circuit board. Such an effect is considered to be closely related to the refinement of the metal structure of the lead-free solder material in the joint. This will be described in detail in connection with Example 1 described later.

また、本実施形態の鉛フリーはんだ材料をそのままの形態で用いてもよい。例えばフローはんだとして用いてフローはんだ付けにより電子回路基板を作製してもよい。   Further, the lead-free solder material of the present embodiment may be used as it is. For example, the electronic circuit board may be manufactured by flow soldering using it as flow solder.

以上、本発明の1つの実施形態について詳述したが、本発明はいかなる理論にも拘束されず、本発明の概念を逸脱しない範囲で種々の改変が成され得ることは当業者には容易に理解されよう。   Although one embodiment of the present invention has been described in detail above, the present invention is not limited to any theory, and various modifications can be easily made by those skilled in the art without departing from the concept of the present invention. It will be understood.

本発明の鉛フリーはんだ材料の1つの実施例として、全体基準でSn−3Ag−0.5Cu−0.1Feの組成を有する鉛フリーはんだ材料を調整した。   As one example of the lead-free solder material of the present invention, a lead-free solder material having a composition of Sn-3Ag-0.5Cu-0.1Fe on the whole basis was prepared.

より詳細には、Sn−3Ag−0.5Cuの組成を有する合金から成るはんだ粉末に、非溶解元素の1種であるFeから成るナノ粒子を添加混合して成る混合物を得た。ナノ粒子の粒径は約1nm〜1μm、はんだ粉末の粒径は約5〜40μmとした。Feナノ粒子は、はんだ粉末に対して0.1質量%となる量で添加混合した。このようなFeの添加量はSn−Ag−Cu系材料の量に比べてごくわずかであるので、全体基準とする場合のFeの割合は、添加前のSn−Ag−Cu系材料を基準とする場合と実質的に等しいとみなして差し支えない。よって、得られた鉛フリーはんだ材料は、全体基準でSn−3Ag−0.5Cu−0.1Feの組成を有する。また、比較のために、Sn−3Ag−0.5Cuの組成を有する鉛フリーはんだ材料を準備した。これは、Sn−3Ag−0.5Cuの組成を有する合金から成るはんだ粉末であり、Feナノ粒子を添加しない点で本実施例のはんだ材料と異なる。   More specifically, a mixture obtained by adding and mixing nanoparticles made of Fe, which is one of non-dissolved elements, to solder powder made of an alloy having a composition of Sn-3Ag-0.5Cu was obtained. The particle size of the nanoparticles was about 1 nm to 1 μm, and the particle size of the solder powder was about 5 to 40 μm. Fe nanoparticles were added and mixed in an amount of 0.1% by mass with respect to the solder powder. Since the amount of Fe added is very small compared to the amount of Sn—Ag—Cu based material, the ratio of Fe when based on the whole is based on the Sn—Ag—Cu based material before addition. Can be regarded as substantially equal to Therefore, the obtained lead-free solder material has a composition of Sn-3Ag-0.5Cu-0.1Fe on the whole basis. For comparison, a lead-free solder material having a composition of Sn-3Ag-0.5Cu was prepared. This is a solder powder made of an alloy having a composition of Sn-3Ag-0.5Cu, and is different from the solder material of this example in that no Fe nanoparticles are added.

上記のようにして得た本実施例および比較例のはんだ材料を、Sn−Ag−Cu系はんだ材料を用いる一般的なはんだ付け温度と等しい温度に加熱して一旦溶融させ、その後、凝固させて完全に固化させた。そして、この状態におけるはんだ材料の金属組織を観察した。このようにして観察される金属組織ははんだ付け後の接合部の金属組織と等しいとみなし得る。金属組織の観察は、上記のようにして得られたはんだ材料の断面を切削研磨し、エチルアルコールで研磨面を洗浄し、更に、1%濃度の硝酸でエッチングしてから行った。   The solder materials of the present example and the comparative example obtained as described above were heated to a temperature equal to a general soldering temperature using a Sn—Ag—Cu based solder material, and once melted, and then solidified. Completely solidified. And the metal structure of the solder material in this state was observed. The metal structure observed in this way can be regarded as being equal to the metal structure of the joint after soldering. Observation of the metal structure was performed after cutting and polishing the cross section of the solder material obtained as described above, washing the polished surface with ethyl alcohol, and further etching with 1% concentration of nitric acid.

図1は、Sn−3Ag−0.5Cu−0.1Feの組成を有する本実施例のはんだ材料の光学顕微鏡写真である。図2は、Feナノ粒子を添加しなかったSn−3Ag−0.5Cuの組成を有する比較例のはんだ材料の光学顕微鏡写真である。図1および図2において、淡いグレー色部分および濃いグレー色部分は互いに組成の異なる固相であって、淡いグレー色部分は初晶の相(β−Sn)であり、濃いグレー色部分は共晶の相である。   FIG. 1 is an optical micrograph of the solder material of this example having a composition of Sn-3Ag-0.5Cu-0.1Fe. FIG. 2 is an optical micrograph of a solder material of a comparative example having a composition of Sn-3Ag-0.5Cu to which no Fe nanoparticles were added. 1 and 2, the light gray portion and the dark gray portion are solid phases having different compositions, the light gray portion is a primary crystal phase (β-Sn), and the dark gray portion is a common portion. It is a crystal phase.

図1および2を参照して、初晶(β−Sn)の相がデンドライト(これは樹枝状晶とも呼ばれる)として存在し、その周囲を共晶の相が取り囲んだ金属組織が観察される。溶融状態のSn−Ag−Cu系材料が凝固する際、まず、初晶(β−Sn)がデンドライトとなって融液中で成長する。このとき、Agおよび/またはCuは初晶の相に極わずかに固溶してデンドライト(固相)中に取り込まれ得るが、大部分のAgおよびCuは初晶の相に固溶しきれずにデンドライトから排出されて融液中に分配される。このため、まだ凝固していない融液では、デンドライトの成長につれて融液中のAgおよびCuの濃度が上昇し、融液の組成が変化して最終的にSn−Ag−Cu系材料の共晶組成に達する(以下、単に共晶融液と言う)。よって、Sn−Ag−Cu系材料が完全に凝固する(即ち、凝固を完了する)直前の状態では、初晶のデンドライト(固相)の周囲を共晶融液が取り囲んだ状態となる。その後、共晶融液が凝固してSn−Ag−Cu系材料が完全に凝固すると、上記のような金属組織が得られる。   Referring to FIGS. 1 and 2, a primary microstructure (β-Sn) phase is present as dendrites (also called dendrites), and a metal structure surrounding the eutectic phase is observed. When the molten Sn—Ag—Cu-based material solidifies, first, the primary crystal (β-Sn) becomes dendrites and grows in the melt. At this time, Ag and / or Cu can be slightly dissolved in the primary crystal phase and taken into the dendrite (solid phase), but most of the Ag and Cu cannot be completely dissolved in the primary crystal phase. It is discharged from the dendrites and distributed in the melt. For this reason, in the melt that has not yet solidified, the concentration of Ag and Cu in the melt increases as the dendrite grows, the composition of the melt changes, and finally the eutectic of the Sn—Ag—Cu-based material. The composition is reached (hereinafter simply referred to as eutectic melt). Therefore, immediately before the Sn—Ag—Cu-based material is completely solidified (that is, solidification is completed), the eutectic melt surrounds the primary crystal dendrite (solid phase). Thereafter, when the eutectic melt is solidified and the Sn—Ag—Cu-based material is completely solidified, the metal structure as described above is obtained.

比較例のような従来のはんだ材料では、以上のようにしてデンドライトの周囲で共晶融液の凝固が進行するときに、例えばはんだ材料の凝固収縮力などの力が加わると、最後に凝固する共晶の相の部分(これは共晶融液であった部分に対応する)に亀裂が入る場合がある。この結果、完全に凝固したSn−Ag−Cu系材料において、共晶の相の部分に凝固割れが導入される傾向にあると考えられる。このようなメカニズムによって、はんだ付けの際(即ち、はんだ材料が一旦溶融して完全に凝固する際)にはんだ材料から成る接合部に凝固割れが導入されるものと考えられる。凝固割れは接合部の強度を低下させる要因となる。   In the conventional solder material as in the comparative example, when solidification of the eutectic melt proceeds around the dendrite as described above, for example, when a force such as a solidification shrinkage force of the solder material is applied, the solidification finally solidifies. A portion of the eutectic phase (which corresponds to the portion that was the eutectic melt) may crack. As a result, in the completely solidified Sn—Ag—Cu-based material, it is considered that solidification cracks tend to be introduced into the eutectic phase portion. By such a mechanism, it is considered that solidification cracks are introduced into the joint made of the solder material during soldering (that is, when the solder material is once melted and completely solidified). Solidification cracks cause a reduction in the strength of the joint.

これに対して、本実施例のはんだ材料では比較例のはんだ材料よりも金属組織が微細化されていることは図1および2を比較すれば明らかである。これは、本実施例のはんだ材料ではFeナノ粒子によって結晶核が導入されることによると考えられる。一般に、はんだ材料などの金属材料の凝固は、何らかの結晶核からデンドライトが成長することにより進行する。本実施例のように、結晶核として機能し得る物質を意図的に増やすことにより、より多くの結晶核からより多くのデンドライトが成長し、その結果、より微細な金属組織が形成され得ると考える。   On the other hand, it is clear from the comparison of FIGS. 1 and 2 that the solder material of this embodiment has a finer metal structure than the solder material of the comparative example. This is thought to be due to the introduction of crystal nuclei by Fe nanoparticles in the solder material of this example. In general, solidification of a metal material such as a solder material proceeds as dendrites grow from some crystal nuclei. As in this example, by intentionally increasing the number of substances that can function as crystal nuclei, more dendrites grow from more crystal nuclei, and as a result, a finer metal structure can be formed. .

結晶核は、一般的には、原子が数個集まった程度の大きさを有するとされている。非溶解元素の微粒子、好ましくはナノ粒子を添加するとSn−Ag−Cu系はんだ材料の融液中に結晶核を効果的に導入することが可能となると考えられる。結晶核は、非溶解元素の微粒子自身であってもよいし、あるいは、微粒子に起因して形成される金属間化合物などであってもよい。前者は、非溶解元素の微粒子が融液中で安定に存在し、実質的にそのままの状態(または大きさ)を維持して結晶核として機能し得る場合である。他方、後者は、非溶解元素の微粒子が融液中で安定に存在せず、微粒子に含まれる1種またはそれ以上の非溶解元素が、Sn、AgおよびCuの少なくとも1種の金属元素と金属間化合物を形成する場合である。もちろん、前者と後者の場合が複合して起こる場合もあり得るであろう。   In general, the crystal nucleus is supposed to have a size such that several atoms are gathered. It is considered that the addition of fine particles of non-dissolved elements, preferably nanoparticles, makes it possible to effectively introduce crystal nuclei into the melt of Sn—Ag—Cu solder material. The crystal nucleus may be fine particles of non-dissolved elements themselves, or may be an intermetallic compound formed due to the fine particles. The former is a case where fine particles of non-dissolved elements exist stably in the melt, and can function as crystal nuclei while maintaining the state (or size) as it is. On the other hand, in the latter case, fine particles of insoluble elements are not stably present in the melt, and one or more non-soluble elements contained in the fine particles are at least one metal element of Sn, Ag and Cu and a metal This is a case where an intermetallic compound is formed. Of course, the former case and the latter case may occur in combination.

非溶解元素の微粒子が、融液中で安定に存在するかどうか、また、金属間化合物を形成するかどうかは、微粒子を構成する物質に依存する。本実施例で用いたFeナノ粒子は、Sn−Ag−Cu系材料の融液中で金属間化合物であるFeSnなどを形成し、この金属間化合物が結晶核として機能し得ると考えられる。また、例えば、非溶解元素の酸化物、炭化物、窒化物およびホウ化物などの化合物から成る微粒子は、はんだ付け温度においても分解せず、融液中で安定に存在し、実質的にそのままの大きさを維持したままで、それ自体が結晶核として機能し得ると考えられる。 Whether or not the fine particles of the non-dissolved element exist stably in the melt and whether or not to form an intermetallic compound depend on the substance constituting the fine particles. The Fe nanoparticles used in this example form an intermetallic compound such as FeSn 2 in the melt of Sn—Ag—Cu-based material, and it is considered that this intermetallic compound can function as a crystal nucleus. Also, for example, fine particles composed of compounds such as oxides, carbides, nitrides and borides of non-dissolved elements do not decompose even at the soldering temperature, exist stably in the melt, and are substantially as large as they are. It is thought that itself can function as a crystal nucleus while maintaining the thickness.

微粒子および/または微粒子に起因して形成される金属間化合物は、はんだ接合部において約10μm以下、好ましくは1μm以下、例えば1nm〜1μmの大きさで存在していることを、例えばSEM(走査型電子顕微鏡)観察により確認できれば、結晶核として機能し得るものと考えられる。   For example, SEM (scanning type) indicates that the fine particles and / or the intermetallic compound formed due to the fine particles are present in the solder joint at a size of about 10 μm or less, preferably 1 μm or less, for example, 1 nm to 1 μm. If it can be confirmed by observation with an electron microscope, it can be considered to function as a crystal nucleus.

従って、本発明によれば、非溶解元素の微粒子に起因して接合部の金属組織を微細化することができるので、微細で入り組んだ相界面によって、はんだ付けの際に起こり得る凝固割れの導入を阻害することができると考えられる。この結果、従来のSn−Ag−Cu系鉛フリーはんだ材料よりも、強度などの接合部の機械的特性が向上し、接合部における凝固割れの発生を効果的に低減することができる。   Therefore, according to the present invention, since the metal structure of the joint can be refined due to the fine particles of the insoluble element, the introduction of solidification cracks that can occur during soldering due to the fine and complicated phase interface It is thought that can be inhibited. As a result, the mechanical properties of the joint, such as strength, can be improved and the occurrence of solidification cracks in the joint can be effectively reduced as compared with conventional Sn—Ag—Cu-based lead-free solder materials.

更に、以上のようにして接合部の金属組織が微細化されることにより、熱衝撃試験の際に発生するクラックもまた、微細で入り組んだ相界面によって阻害することができる。この結果、熱衝撃試験において、従来のSn−Ag−Cu系鉛フリーはんだ材料よりも、接合部におけるクラック発生を効果的に低減することができ、耐熱衝撃性を向上させ、よって電子回路基板の信頼性特性を向上させることが可能となる。   Furthermore, since the metal structure of the joint is refined as described above, cracks generated during the thermal shock test can also be inhibited by the fine and complicated phase interface. As a result, in the thermal shock test, it is possible to effectively reduce the occurrence of cracks at the joint, compared with the conventional Sn-Ag-Cu-based lead-free solder material, and to improve the thermal shock resistance. Reliability characteristics can be improved.

上記のような説明は本発明を限定することを意図するものではなく、本発明はいずれの理論によっても拘束されない点に留意されるべきである。   It should be noted that the above description is not intended to limit the present invention and that the present invention is not bound by any theory.

本発明の電子回路基板の1つの実施例としてカーオーディオ基板を作製した。   A car audio board was manufactured as one example of the electronic circuit board of the present invention.

まず、Sn−3.0Ag−0.5Cuの組成を有する合金から成るはんだ粉末がフラックスと混合されたはんだペーストにFeから成るナノ粒子を添加し、ミキサで混合してはんだペーストを得た。ナノ粒子の粒径は約1nm〜1μm、はんだ粉末の粒径は約5〜40μmとした。Feナノ粒子は、はんだ粉末に対して0.1質量%となる量で添加した。フラックスは、ロジン、溶剤ならびに必要に応じて活性剤およびチキソ剤などの他の成分を含む一般的なフラックスであった。また、比較のために、Sn−3.0Ag−0.5Cuの組成を有する合金から成るはんだ粉末がフラックスと混合されたはんだペーストを用意した。これは、Feナノ粒子を添加しない点で上記のはんだペーストと異なる。これら2種のはんだペーストは、実施例1およびその比較例の鉛フリーはんだ材料をはんだペーストとしたものに対応する。   First, Fe nanoparticles were added to a solder paste in which a solder powder made of an alloy having a composition of Sn-3.0Ag-0.5Cu was mixed with a flux and mixed with a mixer to obtain a solder paste. The particle size of the nanoparticles was about 1 nm to 1 μm, and the particle size of the solder powder was about 5 to 40 μm. Fe nanoparticles were added in an amount of 0.1% by mass with respect to the solder powder. The flux was a general flux containing rosin, solvent and optionally other components such as activators and thixotropic agents. For comparison, a solder paste prepared by mixing a solder powder made of an alloy having a composition of Sn-3.0Ag-0.5Cu with a flux was prepared. This is different from the above solder paste in that no Fe nanoparticles are added. These two types of solder pastes correspond to solder pastes made from the lead-free solder material of Example 1 and its comparative example.

以上のようにして得られた2種のはんだペーストを用いて、200mm×200mmのサイズのガラスエポキシ基板に半導体などの電子部品をリフローはんだ付けにより接合してカーオーディオ基板を作製した。この基板において、電子部品のパッケージから引き出されたリードと基板に設けられたランドとがはんだ付けされた。リードにはCu系合金から成る母材にNi−Pdから成るめっきが施されたものを使用し、ランド材料にはCuを使用した。   Using the two types of solder paste obtained as described above, an electronic component such as a semiconductor was joined to a glass epoxy substrate having a size of 200 mm × 200 mm by reflow soldering to produce a car audio substrate. In this board, the lead pulled out from the package of the electronic component and the land provided on the board were soldered. The lead used was a base material made of a Cu-based alloy and plated with Ni—Pd, and the land material was Cu.

得られたカーオーディオ基板を熱衝撃試験に付した。熱衝撃試験では、−30℃および+125℃でそれぞれ30分間維持することを1サイクルとし、この熱サイクルを繰り返して実施した。比較例の鉛フリーはんだ材料を用いたカーオーディオ基板では、700サイクル程度から、クラック発生が基板のパッケージ端部の接合部において目視により認められた。これに対して本実施例の鉛フリーはんだ材料を用いたカーオーディオ基板では、1000サイクルにおいてもクラック発生が目視では認められず、1000サイクル以上までクラック発生が抑えられた。   The obtained car audio board was subjected to a thermal shock test. In the thermal shock test, each cycle was maintained at −30 ° C. and + 125 ° C. for 30 minutes, and this thermal cycle was repeated. In the car audio board using the lead-free solder material of the comparative example, the occurrence of cracks was visually observed at the joint portion of the package edge of the board from about 700 cycles. On the other hand, in the car audio board using the lead-free solder material of this example, the occurrence of cracks was not visually recognized even at 1000 cycles, and the occurrence of cracks was suppressed to 1000 cycles or more.

以上の結果から、本発明の鉛フリーはんだ材料を用いて電子回路基板を作製すれば、従来のものを用いる場合よりも熱衝撃試験におけるクラックの発生が効果的に低減され、耐熱衝撃性が向上し、ひいては信頼性特性が向上することが確認された。   From the above results, when an electronic circuit board is produced using the lead-free solder material of the present invention, the occurrence of cracks in the thermal shock test is effectively reduced and the thermal shock resistance is improved as compared with the case of using the conventional one. As a result, it was confirmed that the reliability characteristics were improved.

添加するナノ粒子を種々変化させたこと以外は実施例2と同様にして、鉛フリーはんだ材料を用いたはんだペーストを得た。ナノ粒子には、約20nmの粒径を有する粒子であって、Coから成るナノ粒子とFeから成るナノ粒子との2種類を用いた。また、CoおよびFeナノ粒子は、それぞれにつき、はんだ粉末に対して0.1質量%および0.05質量%の2種の割合で混合した。よって、得られた鉛フリーはんだ材料は、フラックス成分を除いて、全体基準でSn−3.0Ag−0.5Cu−0.1Co、Sn−3.0Ag−0.5Cu−0.05Co、Sn−3.0Ag−0.5Cu−0.1Fe、Sn−3.0Ag−0.5Cu−0.05Feの組成を有する。   A solder paste using a lead-free solder material was obtained in the same manner as in Example 2 except that the nanoparticles to be added were variously changed. As the nanoparticles, two types of particles having a particle diameter of about 20 nm, that is, nanoparticles made of Co and nanoparticles made of Fe were used. Further, Co and Fe nanoparticles were mixed in two proportions of 0.1% by mass and 0.05% by mass with respect to the solder powder, respectively. Therefore, the obtained lead-free solder material is Sn-3.0Ag-0.5Cu-0.1Co, Sn-3.0Ag-0.5Cu-0.05Co, Sn- It has a composition of 3.0Ag-0.5Cu-0.1Fe, Sn-3.0Ag-0.5Cu-0.05Fe.

以上のようにして得られた4種のはんだペーストを銅板上に約100μmの厚さでそれぞれ印刷し、当該技術分野において既知のリフロー装置に通して熱負荷をかけた。このような操作により、電子部品を基板にはんだ付けする際にはんだ材料が曝される環境をシミュレートすることができる。このとき、いわゆるプリヒートは150℃/分の割合で実施し、また、リフロー時のピーク温度は約260℃とした(いずれも、銅板の表面温度とする)。リフローによってクリームはんだ中のフラックスははんだ接合部から排除されるので、リフロー後に銅板と接触しているはんだ接合部は実質的にフラックス成分を含まない鉛フリーはんだ材料から成ると考えてよい。その後、はんだ材料と銅板(Cu)との界面近傍の様子をSEM観察により調べた。   The four types of solder pastes obtained as described above were each printed on a copper plate with a thickness of about 100 μm, and subjected to a heat load through a reflow apparatus known in the art. Such an operation can simulate an environment where the solder material is exposed when the electronic component is soldered to the substrate. At this time, so-called preheating was performed at a rate of 150 ° C./min, and the peak temperature during reflow was set to about 260 ° C. (both are the surface temperature of the copper plate). Since the flux in the cream solder is removed from the solder joint by reflow, it can be considered that the solder joint in contact with the copper plate after reflow is made of a lead-free solder material that does not substantially contain a flux component. Thereafter, the vicinity of the interface between the solder material and the copper plate (Cu) was examined by SEM observation.

他方、比較のために、Sn−3.0Ag−0.5Cuの組成を有する合金から成るはんだ粉末がフラックスと混合されたはんだペーストを用意した。このはんだペーストは、CoまたはFeナノ粒子を添加しない点で本実施例のはんだペーストと異なる。この比較例のはんだペーストを上記と同様にして銅板上に印刷し、リフロー装置に通して、はんだ材料と銅板との界面近傍の様子をSEM観察により調べた。   On the other hand, for comparison, a solder paste in which a solder powder made of an alloy having a composition of Sn-3.0Ag-0.5Cu was mixed with a flux was prepared. This solder paste differs from the solder paste of this example in that no Co or Fe nanoparticles are added. The solder paste of this comparative example was printed on a copper plate in the same manner as described above, passed through a reflow apparatus, and the state in the vicinity of the interface between the solder material and the copper plate was examined by SEM observation.

また、更なる比較例として、Sn−3.0Ag−0.5Cu組成を有する合金から成るはんだ材料の塊に、CoおよびFeから成る粗大粒子をそれぞれ加えて、約800℃で2時間加熱し、次いで冷却(または放冷)することにより鋳造して、鉛フリーはんだ材料を鋳造品(または鋳物)の形態で得た。CoおよびFeは、はんだ材料に対して0.1質量%の割合で混合した。このようにして得られた比較例の鉛フリーはんだ材料を、300℃で1時間加熱して再溶解させ、厚さ約120μm、直径約3mmの略円板状にして、銅板上に形成した。以上により得られた銅板についても、上記と同様にしてリフロー装置に通して、はんだ材料と銅板との界面近傍の様子をSEM観察により調べた。   As a further comparative example, coarse particles made of Co and Fe were added to a lump of solder material made of an alloy having a Sn-3.0Ag-0.5Cu composition, respectively, and heated at about 800 ° C. for 2 hours. The lead-free solder material was then obtained in the form of a cast (or casting) by casting by cooling (or allowing to cool). Co and Fe were mixed at a ratio of 0.1% by mass with respect to the solder material. The lead-free solder material of the comparative example thus obtained was remelted by heating at 300 ° C. for 1 hour to form a substantially disk shape having a thickness of about 120 μm and a diameter of about 3 mm, and formed on a copper plate. About the copper plate obtained by the above, it passed through the reflow apparatus similarly to the above, and the mode of the interface vicinity of a solder material and a copper plate was investigated by SEM observation.

図3〜6は非溶解元素のナノ粒子を添加した本実施例の鉛フリーはんだ材料に関し、図3はSn−3.0Ag−0.5Cu−0.1Co/Cuの界面近傍のSEM写真、図4はSn−3.0Ag−0.5Cu−0.05Co/Cuの界面近傍のSEM写真、図5はSn−3.0Ag−0.5Cu−0.1Fe/Cuの界面近傍のSEM写真、図6はSn−3.0Ag−0.5Cu−0.05Fe/Cuの界面近傍のSEM写真である。図7は非溶解元素の粒子を添加しない比較例に関し、Sn−3.0Ag−0.5Cu/Cuの界面近傍のSEM写真である。図8および9は非溶解元素の粗大粒子を添加した比較例に関し、図8はSn−3.0Ag−0.5Cu−0.1Co/Cuの界面近傍のSEM写真、図9はSn−3.0Ag−0.5Cu−0.1Fe/Cuの界面近傍のSEM写真である。図3〜9において、SEM写真の色の濃い下方部分がCu(銅板)の部分であり、色の薄い上方部分がはんだ材料のバルクにあたる。   FIGS. 3 to 6 relate to the lead-free solder material of this example to which nanoparticles of non-dissolved elements are added, and FIG. 3 is an SEM photograph of the vicinity of the Sn-3.0Ag-0.5Cu-0.1Co / Cu interface. 4 is an SEM photograph in the vicinity of the Sn-3.0Ag-0.5Cu-0.05Co / Cu interface, and FIG. 5 is an SEM photograph in the vicinity of the Sn-3.0Ag-0.5Cu-0.1Fe / Cu interface. 6 is an SEM photograph in the vicinity of the Sn-3.0Ag-0.5Cu-0.05Fe / Cu interface. FIG. 7 is an SEM photograph in the vicinity of the Sn-3.0Ag-0.5Cu / Cu interface for a comparative example in which particles of non-dissolved elements are not added. 8 and 9 relate to a comparative example in which coarse particles of undissolved elements are added, FIG. 8 is an SEM photograph in the vicinity of the Sn-3.0Ag-0.5Cu-0.1Co / Cu interface, and FIG. It is a SEM photograph of the interface vicinity of 0Ag-0.5Cu-0.1Fe / Cu. 3 to 9, the darker lower portion of the SEM photograph is the Cu (copper plate) portion, and the lighter upper portion is the bulk of the solder material.

図3〜7を参照して、非溶解元素から成るナノ粒子を添加した本実施例のはんだ材料(図3〜6)では、非溶解元素の粒子を添加しない比較例のはんだ材料(図7)よりも、接合部にあたるはんだ材料の金属組織が微細化されていることがわかる。また、非溶解元素の粒子を添加しない場合(図7)には、CuSn(またはCuSn)の大きな金属間化合物が界面反応層として形成された(この金属間化合物は、図中のはんだ材料のバルク(上方部分)において銅板(下方部分)の界面近傍に形成されている不規則な凸部として観察される)。これに対して、ナノ粒子を添加した場合(図3〜6)のうち、特にCoから成るナノ粒子を添加した場合(図3および4)では、界面反応層がより薄くなることが確認された。このような金属組織の微細化および場合により界面反応層の薄層化は、はんだ接合部の接続信頼性を向上させるという効果を奏し得る。 Referring to FIGS. 3 to 7, in the solder material of this example (FIGS. 3 to 6) to which nanoparticles composed of non-dissolved elements were added, the solder material of a comparative example in which particles of non-soluble elements were not added (FIG. 7) It can be seen that the metal structure of the solder material corresponding to the joint is made finer. In addition, in the case where particles of non-dissolved elements were not added (FIG. 7), a large intermetallic compound of Cu 6 Sn 5 (or Cu 3 Sn) was formed as an interfacial reaction layer (this intermetallic compound is In the bulk of the solder material (upper part) of the solder material (observed as irregular protrusions formed near the interface of the copper plate (lower part)). On the other hand, among the cases where nanoparticles were added (FIGS. 3 to 6), it was confirmed that the interface reaction layer became thinner particularly when nanoparticles made of Co were added (FIGS. 3 and 4). . Such refinement of the metal structure and, in some cases, the thinning of the interface reaction layer can have the effect of improving the connection reliability of the solder joint.

また、非溶解元素の添加割合を0.1質量%とした図3、5、8および9を参照して、非溶解元素のナノ粒子の形態で添加した本実施例のはんだ材料(図3および図5)では、粗大粒子の形態で添加した比較例のはんだ材料(図8および9)よりも、はんだ材料の金属組織が微細化されていることがわかる。また、Co粗大粒子を添加した場合(図8)には、CuSnおよびCo−Cu−Snの大きな金属間化合物が形成され、Fe粗大粒子を添加した場合(図9)には、FeSnの大きな金属間化合物が形成された。これに対して、Coナノ粒子およびFeナノ粒子をそれぞれ添加した場合(図3および5)には、このような大きな金属間化合物は形成されず、金属組織が微細化されていることがわかる。 Further, referring to FIGS. 3, 5, 8 and 9 in which the addition ratio of the insoluble element was 0.1% by mass, the solder material of this example added in the form of nanoparticles of the insoluble element (FIG. 3 and FIG. FIG. 5) shows that the metal structure of the solder material is made finer than the solder material of the comparative example (FIGS. 8 and 9) added in the form of coarse particles. When Co coarse particles are added (FIG. 8), large intermetallic compounds of Cu 6 Sn 5 and Co—Cu—Sn are formed, and when Fe coarse particles are added (FIG. 9), FeSn. Two large intermetallic compounds were formed. In contrast, when Co nanoparticles and Fe nanoparticles are added (FIGS. 3 and 5), it can be seen that such a large intermetallic compound is not formed and the metal structure is refined.

加えて、Coナノ粒子を添加した本実施例のSn−3.0Ag−0.5Cu−0.1Coはんだ材料(図3に示す材料)と、Co粗大粒子を添加した比較例のSn−3.0Ag−0.5Cu−0.1Coはんだ材料(図8に示す材料)について、はんだ材料と銅板との界面近傍のEPMA(Electron Probe Micro Analyzer)面分析を行った。図10および11は、それぞれ前者および後者の場合のSEM写真およびこれに対応するEPMA面分析象である。図10および11は各々4つの像を示しているが、左上の像はSEM写真(ぞれぞれ図3および図8に対応する)であり、右上の像はSnについてのEPMA面分析像、右下の像はCuについてのEPMA面分析像、左下の像はCoについてのEPMA面分析像である。EPMA面分析像において淡いグレー色部分は着目元素の存在を示す。   In addition, the Sn-3.0Ag-0.5Cu-0.1Co solder material (the material shown in FIG. 3) of this example to which Co nanoparticles were added and the Sn-3.3 of the comparative example to which Co coarse particles were added. The 0Ag-0.5Cu-0.1Co solder material (material shown in FIG. 8) was subjected to EPMA (Electron Probe Micro Analyzer) surface analysis in the vicinity of the interface between the solder material and the copper plate. 10 and 11 are SEM photographs and EPMA surface analysis elephants corresponding to the former and latter cases, respectively. 10 and 11 each show four images, the upper left image is an SEM photograph (corresponding to FIGS. 3 and 8 respectively), the upper right image is an EPMA surface analysis image of Sn, The lower right image is an EPMA surface analysis image of Cu, and the lower left image is an EPMA surface analysis image of Co. In the EPMA surface analysis image, the light gray portion indicates the presence of the element of interest.

図10および11を参照して、Coをナノ粒子の形態で添加した場合(図10)と、粗大粒子の形態で添加した場合(図11)とでは、CoおよびCuの分布(それぞれ左下および右下の面分析像を参照のこと)に差が生じていることがわかる。例えばCoに着目すると、粗大粒子として添加した場合には、Coが数μmの大きさで析出しているが、ナノ粒子として添加した場合は、より微細な状態で析出していることがわかる。   10 and 11, when Co is added in the form of nanoparticles (FIG. 10) and when it is added in the form of coarse particles (FIG. 11), the distribution of Co and Cu (lower left and right respectively) It can be seen that there is a difference in the area analysis image below). For example, when attention is focused on Co, it can be seen that Co is precipitated in a size of several μm when added as coarse particles, whereas it is precipitated in a finer state when added as nanoparticles.

本発明の1つの実施例における鉛フリーはんだ材料の金属組織を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the metal structure of the lead-free solder material in one Example of this invention. 比較例の鉛フリーはんだ材料の金属組織を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the metal structure of the lead-free solder material of a comparative example. 本発明のもう1つの実施例における鉛フリーはんだ材料を用いたときのSn−3.0Ag−0.5Cu−0.1Co/Cuの界面近傍のSEM写真である。It is a SEM photograph of the interface vicinity of Sn-3.0Ag-0.5Cu-0.1Co / Cu when the lead-free solder material in another Example of this invention is used. 本発明のもう1つの実施例における鉛フリーはんだ材料を用いたときのSn−3.0Ag−0.5Cu−0.05Co/Cuの界面近傍のSEM写真である。It is a SEM photograph of the interface vicinity of Sn-3.0Ag-0.5Cu-0.05Co / Cu when the lead-free solder material in another Example of this invention is used. 本発明のもう1つの実施例における鉛フリーはんだ材料を用いたときのSn−3.0Ag−0.5Cu−0.1Fe/Cuの界面近傍のSEM写真である。It is a SEM photograph near the interface of Sn-3.0Ag-0.5Cu-0.1Fe / Cu when the lead-free solder material in another Example of this invention is used. 本発明のもう1つの実施例における鉛フリーはんだ材料を用いたときのSn−3.0Ag−0.5Cu−0.05Fe/Cuの界面近傍のSEM写真である。It is a SEM photograph near the interface of Sn-3.0Ag-0.5Cu-0.05Fe / Cu when the lead-free solder material in another Example of this invention is used. 比較例における鉛フリーはんだ材料を用いたときのSn−3.0Ag−0.5Cu/Cuの界面近傍のSEM写真である。It is a SEM photograph of the interface vicinity of Sn-3.0Ag-0.5Cu / Cu when the lead-free solder material in a comparative example is used. 比較例における鉛フリーはんだ材料を用いたときのSn−3.0Ag−0.5Cu−0.1Co/Cuの界面近傍のSEM写真である。It is a SEM photograph of the interface vicinity of Sn-3.0Ag-0.5Cu-0.1Co / Cu when the lead-free solder material in a comparative example is used. 比較例における鉛フリーはんだ材料を用いたときのSn−3.0Ag−0.5Cu−0.1Fe/Cuの界面近傍のSEM写真である。It is a SEM photograph of the interface vicinity of Sn-3.0Ag-0.5Cu-0.1Fe / Cu when the lead-free solder material in a comparative example is used. 本発明のもう1つの実施例における鉛フリーはんだ材料を用いたときのSn−3.0Ag−0.5Cu−0.1Co/Cuの界面近傍のSEM写真およびこれに対応するEPMA面分析象である。It is an SEM photograph of the vicinity of the Sn-3.0Ag-0.5Cu-0.1Co / Cu interface when using a lead-free solder material according to another embodiment of the present invention, and an EPMA surface analysis elephant corresponding thereto. . 比較例における鉛フリーはんだ材料を用いたときのSn−3.0Ag−0.5Cu−0.1Co/Cuの界面近傍のSEM写真およびこれに対応するEPMA面分析象である。It is a SEM photograph near the interface of Sn-3.0Ag-0.5Cu-0.1Co / Cu when the lead-free solder material in a comparative example is used, and the EPMA surface analysis elephant corresponding to this.

Claims (11)

Sn−Ag−Cu系はんだ材料と、
該Sn−Ag−Cu系はんだ材料に実質的に溶解しない元素を含む微粒子と
を含む、鉛フリーはんだ材料。
Sn-Ag-Cu solder material;
A lead-free solder material comprising fine particles containing an element that does not substantially dissolve in the Sn-Ag-Cu solder material.
前記微粒子は10μm以下の粒径を有する、請求項1に記載の鉛フリーはんだ材料。   The lead-free solder material according to claim 1, wherein the fine particles have a particle size of 10 μm or less. 前記元素は、B、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Zr、NbおよびMoからなる群から選択される1種またはそれ以上の元素を含む、請求項1または2に記載の鉛フリーはんだ材料。   3. The element according to claim 1, wherein the element includes one or more elements selected from the group consisting of B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, and Mo. The lead-free solder material described. 前記微粒子は、B、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Zr、NbおよびMoの単体ならびにその酸化物、炭化物、窒化物およびホウ化物からなる群から選択される1種またはそれ以上の材料から成る、請求項1〜3のいずれかに記載の鉛フリーはんだ材料。   The fine particles are selected from the group consisting of simple substances of B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb and Mo and oxides, carbides, nitrides and borides thereof. The lead-free solder material according to any one of claims 1 to 3, wherein the lead-free solder material is made of a material higher than that. 前記元素を鉛フリーはんだ材料全体基準で0〜0.5質量%(但しゼロは除く)の量で含む、請求項1〜4のいずれかに記載の鉛フリーはんだ材料。   The lead-free solder material in any one of Claims 1-4 which contains the said element in the quantity of 0-0.5 mass% (however, except zero) on the whole lead-free solder material basis. 鉛フリーはんだ材料全体基準で0〜0.2質量%の前記元素、0〜4質量%のAg、0〜1質量%のCu(但しいずれもゼロは除く)および残部のSnを含んで成る、請求項1〜5のいずれかに記載の鉛フリーはんだ材料。   Comprising 0 to 0.2% by weight of the element, 0 to 4% by weight of Ag, 0 to 1% by weight of Cu (except for zero) and the balance of Sn, based on the total amount of lead-free solder material; The lead-free solder material according to any one of claims 1 to 5. Sn−Ag−Cu系はんだ材料から成る粒子と、Sn−Ag−Cu系はんだ材料に実質的に溶解しない元素を含む微粒子とを混合することを含む、鉛フリーはんだ材料の製造方法。   A method for producing a lead-free solder material, comprising mixing particles made of a Sn-Ag-Cu solder material and fine particles containing an element that does not substantially dissolve in the Sn-Ag-Cu solder material. 請求項1〜6のいずれかに記載の鉛フリーはんだ材料を得る、請求項7に記載の鉛フリーはんだ材料の製造方法。   The method for producing a lead-free solder material according to claim 7, wherein the lead-free solder material according to any one of claims 1 to 6 is obtained. 請求項1〜6のいずれかに記載の鉛フリーはんだ材料を利用して、電子部品が基板に接合された電子回路基板。   An electronic circuit board in which an electronic component is bonded to a board using the lead-free solder material according to claim 1. 請求項1〜6のいずれかに記載の鉛フリーはんだ材料を利用して、リフローはんだ付けにより電子部品を基板に接合することを含む、電子回路基板の製造方法。   The manufacturing method of an electronic circuit board including joining an electronic component to a board | substrate by reflow soldering using the lead-free solder material in any one of Claims 1-6. 請求項1〜6のいずれかに記載の鉛フリーはんだ材料を利用して、フローはんだ付けにより電子部品を基板に接合することを含む、電子回路基板の製造方法。
The manufacturing method of an electronic circuit board including joining an electronic component to a board | substrate by flow soldering using the lead-free solder material in any one of Claims 1-6.
JP2004137212A 2004-05-06 2004-05-06 Lead-free solder material, electronic circuit board and their production method Pending JP2005319470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137212A JP2005319470A (en) 2004-05-06 2004-05-06 Lead-free solder material, electronic circuit board and their production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137212A JP2005319470A (en) 2004-05-06 2004-05-06 Lead-free solder material, electronic circuit board and their production method

Publications (2)

Publication Number Publication Date
JP2005319470A true JP2005319470A (en) 2005-11-17
JP2005319470A5 JP2005319470A5 (en) 2007-06-07

Family

ID=35467135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137212A Pending JP2005319470A (en) 2004-05-06 2004-05-06 Lead-free solder material, electronic circuit board and their production method

Country Status (1)

Country Link
JP (1) JP2005319470A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012576A (en) * 2006-07-07 2008-01-24 Fuji Electric Holdings Co Ltd Solder paste composition, and method for mounting electronic component onto printed wiring board using the same
JP2008027954A (en) * 2006-07-18 2008-02-07 Furukawa Electric Co Ltd:The Process for producing electronic component mounting substrate
CN101314199A (en) * 2007-05-28 2008-12-03 播磨化成株式会社 Solder paste composite and its application
JP2009028746A (en) * 2007-07-25 2009-02-12 Nippon Steel Materials Co Ltd Solder alloy, solder ball and electronic member having solder bump
EP2101951A1 (en) * 2006-12-29 2009-09-23 Iljin Copper Foil Co., Ltd. Pb-free solder alloy
KR101146410B1 (en) * 2006-07-27 2012-05-17 주식회사 엘지화학 Alloy nano particle comprising silver, copper, and tin and preparation method thereof
WO2012137901A1 (en) 2011-04-08 2012-10-11 株式会社日本スペリア社 Solder alloy
JP2013511392A (en) * 2009-11-20 2013-04-04 エプコス アーゲー Solder material for joining external electrodes to piezoelectric component, and piezoelectric component having solder material
CN103056543A (en) * 2013-01-18 2013-04-24 江苏师范大学 Lead-free nanometer solder containing Yb, A1 and B
US8501088B2 (en) 2007-07-25 2013-08-06 Nippon Steel & Sumikin Materials Co., Ltd. Solder alloy, solder ball and electronic member having solder bump
CN103639614A (en) * 2013-12-04 2014-03-19 马鑫 Nanoscale/micron size particle mixing type lead-free solder paste with size effect and manufacturing method thereof
JP2014527466A (en) * 2011-08-02 2014-10-16 アルファ・メタルズ・インコーポレイテッドAlpha Metals,Inc. Solder composition
US20150029670A1 (en) * 2011-12-27 2015-01-29 Senju Metal Industry Co., Ltd. Sn-cu-based lead-free solder alloy
JP2015020181A (en) * 2013-07-17 2015-02-02 ハリマ化成株式会社 Solder composition, solder paste, and electronic circuit board
JP2015020182A (en) * 2013-07-17 2015-02-02 ハリマ化成株式会社 Solder composition, solder paste, and electronic circuit board
WO2016028058A1 (en) * 2014-08-18 2016-02-25 주식회사 경동원 Lead-free solder alloy composition and method for preparing lead-free solder alloy
KR20160070613A (en) * 2014-12-10 2016-06-20 서울시립대학교 산학협력단 LOW TEMPERATURE Al BRAZING ALLOY COMPOSITION AND MANUFACTURING METHOD OF LOW TEMPERATURE Al BRAZING ALLOY
WO2017200361A3 (en) * 2016-05-20 2018-01-04 서울시립대학교 산학협력단 Lead-free solder alloy composition and preparation method therefor
WO2018181690A1 (en) * 2017-03-31 2018-10-04 株式会社日本スペリア社 Lead-free solder alloy and solder joint
KR20190013316A (en) * 2017-08-01 2019-02-11 서울시립대학교 산학협력단 High performance lead-free solder composition and manufacturing method of the same
KR20190034008A (en) * 2017-09-22 2019-04-01 서울시립대학교 산학협력단 Lead-free solder composition and method for maunfacturing thereof
KR20190040726A (en) * 2017-10-11 2019-04-19 서울시립대학교 산학협력단 Lead-free solder composition and method for maunfacturing thereof
KR20190050583A (en) * 2017-11-03 2019-05-13 서울시립대학교 산학협력단 Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
KR20190050585A (en) * 2017-11-03 2019-05-13 서울시립대학교 산학협력단 Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
CN109848606A (en) * 2018-12-17 2019-06-07 中南大学 A kind of Sn-Ag-Cu lead-free solder of high interfacial bonding strength and preparation method thereof
KR20190082569A (en) * 2018-01-02 2019-07-10 서울시립대학교 산학협력단 Lead free solder composition and manufacturing method of the same
KR20190086230A (en) * 2018-01-12 2019-07-22 서울시립대학교 산학협력단 Lead-Free Solder Composition and Method for Manufacturing Thereof
KR20190103760A (en) * 2018-02-28 2019-09-05 서울시립대학교 산학협력단 Lead free solder composition and manufacturing method of the same, manufacturing method of piezoelectric element using lead free solder composition
KR20190126757A (en) * 2019-11-06 2019-11-12 서울시립대학교 산학협력단 Lead-free solder composition and method for maunfacturing thereof
KR20200008897A (en) * 2018-07-17 2020-01-29 서울시립대학교 산학협력단 Lead free solder composition and manufacturing method of the same
JP2021502260A (en) * 2017-11-09 2021-01-28 ケスター エルエルシー Highly reliable lead-free solder alloy for electronic applications in extreme environments
CN114367762A (en) * 2020-06-11 2022-04-19 中山翰华锡业有限公司 Solder alloy powder, low dielectric loss high reliability soldering paste and preparation method thereof

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012576A (en) * 2006-07-07 2008-01-24 Fuji Electric Holdings Co Ltd Solder paste composition, and method for mounting electronic component onto printed wiring board using the same
JP2008027954A (en) * 2006-07-18 2008-02-07 Furukawa Electric Co Ltd:The Process for producing electronic component mounting substrate
KR101146410B1 (en) * 2006-07-27 2012-05-17 주식회사 엘지화학 Alloy nano particle comprising silver, copper, and tin and preparation method thereof
EP2101951A1 (en) * 2006-12-29 2009-09-23 Iljin Copper Foil Co., Ltd. Pb-free solder alloy
EP2101951A4 (en) * 2006-12-29 2010-01-27 Iljin Copper Foil Co Ltd Pb-free solder alloy
JP2010514931A (en) * 2006-12-29 2010-05-06 イルジン カッパー ホイル カンパニー リミテッド Lead-free solder alloy
CN101314199A (en) * 2007-05-28 2008-12-03 播磨化成株式会社 Solder paste composite and its application
US8501088B2 (en) 2007-07-25 2013-08-06 Nippon Steel & Sumikin Materials Co., Ltd. Solder alloy, solder ball and electronic member having solder bump
JP2009028746A (en) * 2007-07-25 2009-02-12 Nippon Steel Materials Co Ltd Solder alloy, solder ball and electronic member having solder bump
US8823245B2 (en) 2009-11-20 2014-09-02 Epcos Ag Solder material for fastening an outer electrode on a piezoelectric component and piezoelectric component comprising a solder material
JP2013511392A (en) * 2009-11-20 2013-04-04 エプコス アーゲー Solder material for joining external electrodes to piezoelectric component, and piezoelectric component having solder material
WO2012137901A1 (en) 2011-04-08 2012-10-11 株式会社日本スペリア社 Solder alloy
US9999945B2 (en) 2011-04-08 2018-06-19 Nihon Superior Co., Ltd. Solder alloy
EP2739431B1 (en) * 2011-08-02 2020-06-24 Alpha Assembly Solutions Inc. Solder compositions
EP3766631A3 (en) * 2011-08-02 2021-03-24 Alpha Assembly Solutions Inc. Solder compositions
JP2014527466A (en) * 2011-08-02 2014-10-16 アルファ・メタルズ・インコーポレイテッドAlpha Metals,Inc. Solder composition
US20150029670A1 (en) * 2011-12-27 2015-01-29 Senju Metal Industry Co., Ltd. Sn-cu-based lead-free solder alloy
US10137536B2 (en) * 2011-12-27 2018-11-27 Senju Metal Industry Co., Ltd. Sn-Cu-based lead-free solder alloy
CN103056543B (en) * 2013-01-18 2015-03-25 江苏师范大学 Lead-free nanometer solder containing Yb, A1 and B
CN103056543A (en) * 2013-01-18 2013-04-24 江苏师范大学 Lead-free nanometer solder containing Yb, A1 and B
JP2015020181A (en) * 2013-07-17 2015-02-02 ハリマ化成株式会社 Solder composition, solder paste, and electronic circuit board
JP2015020182A (en) * 2013-07-17 2015-02-02 ハリマ化成株式会社 Solder composition, solder paste, and electronic circuit board
CN103639614A (en) * 2013-12-04 2014-03-19 马鑫 Nanoscale/micron size particle mixing type lead-free solder paste with size effect and manufacturing method thereof
US20170225277A1 (en) * 2014-08-18 2017-08-10 Kyung Dong One Corporation Lead-free solder alloy composition and method for preparing lead-free solder alloy
JP2017528327A (en) * 2014-08-18 2017-09-28 キュン ドン ワン コーポレーションKyung Dong One Corporation Lead-free solder alloy composition and method for producing lead-free solder alloy
EP3184234A4 (en) * 2014-08-18 2018-01-24 Kyung Dong One Corporation Lead-free solder alloy composition and method for preparing lead-free solder alloy
WO2016028058A1 (en) * 2014-08-18 2016-02-25 주식회사 경동원 Lead-free solder alloy composition and method for preparing lead-free solder alloy
CN106660178A (en) * 2014-08-18 2017-05-10 (株)庆东One Lead-free solder alloy composition and method for preparing lead-free solder alloy
CN113977132B (en) * 2014-08-18 2024-03-19 (株)庆东One Lead-free solder alloy composition and method for preparing lead-free solder alloy
CN113977132A (en) * 2014-08-18 2022-01-28 (株)庆东One Lead-free solder alloy composition and method for preparing lead-free solder alloy
US10286498B2 (en) 2014-08-18 2019-05-14 Kyung Dong One Corporation Lead-free solder alloy composition and method for preparing lead-free solder alloy
KR101671062B1 (en) * 2014-08-18 2016-10-31 주식회사 경동원 Lead-free solder composition and manufacturing method of lead-free solder composition
KR101657459B1 (en) * 2014-12-10 2016-09-19 서울시립대학교 산학협력단 LOW TEMPERATURE Al BRAZING ALLOY COMPOSITION AND MANUFACTURING METHOD OF LOW TEMPERATURE Al BRAZING ALLOY
KR20160070613A (en) * 2014-12-10 2016-06-20 서울시립대학교 산학협력단 LOW TEMPERATURE Al BRAZING ALLOY COMPOSITION AND MANUFACTURING METHOD OF LOW TEMPERATURE Al BRAZING ALLOY
WO2017200361A3 (en) * 2016-05-20 2018-01-04 서울시립대학교 산학협력단 Lead-free solder alloy composition and preparation method therefor
WO2018181690A1 (en) * 2017-03-31 2018-10-04 株式会社日本スペリア社 Lead-free solder alloy and solder joint
JP7216419B2 (en) 2017-03-31 2023-02-01 株式会社日本スペリア社 Lead-free solder alloys and solder joints
JPWO2018181690A1 (en) * 2017-03-31 2020-02-13 株式会社日本スペリア社 Lead-free solder alloys and solder joints
KR20190013316A (en) * 2017-08-01 2019-02-11 서울시립대학교 산학협력단 High performance lead-free solder composition and manufacturing method of the same
KR102040279B1 (en) * 2017-08-01 2019-11-04 서울시립대학교 산학협력단 High performance lead-free solder composition and manufacturing method of the same
KR102048210B1 (en) * 2017-09-22 2019-11-26 주식회사 경동엠텍 Lead-free solder composition and method for maunfacturing thereof
KR20190034008A (en) * 2017-09-22 2019-04-01 서울시립대학교 산학협력단 Lead-free solder composition and method for maunfacturing thereof
KR20190040726A (en) * 2017-10-11 2019-04-19 서울시립대학교 산학협력단 Lead-free solder composition and method for maunfacturing thereof
KR102070317B1 (en) * 2017-10-11 2020-01-28 서울시립대학교 산학협력단 Lead-free solder composition and method for maunfacturing thereof
KR20190050583A (en) * 2017-11-03 2019-05-13 서울시립대학교 산학협력단 Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
KR20190050585A (en) * 2017-11-03 2019-05-13 서울시립대학교 산학협력단 Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
KR102040278B1 (en) * 2017-11-03 2019-11-04 서울시립대학교 산학협력단 Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
KR102040280B1 (en) * 2017-11-03 2019-11-04 서울시립대학교 산학협력단 Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
JP7337822B2 (en) 2017-11-09 2023-09-04 アルファ・アセンブリー・ソリューションズ・インコーポレイテッド High Reliability Lead-Free Solder Alloys for Electronic Applications in Extreme Environments
JP2021502260A (en) * 2017-11-09 2021-01-28 ケスター エルエルシー Highly reliable lead-free solder alloy for electronic applications in extreme environments
KR20190082569A (en) * 2018-01-02 2019-07-10 서울시립대학교 산학협력단 Lead free solder composition and manufacturing method of the same
KR102062172B1 (en) * 2018-01-02 2020-02-11 서울시립대학교 산학협력단 Lead free solder composition and manufacturing method of the same
KR20190086230A (en) * 2018-01-12 2019-07-22 서울시립대학교 산학협력단 Lead-Free Solder Composition and Method for Manufacturing Thereof
KR102078329B1 (en) * 2018-01-12 2020-02-17 서울시립대학교 산학협력단 Lead-Free Solder Composition and Method for Manufacturing Thereof
KR102078328B1 (en) * 2018-02-28 2020-04-08 서울시립대학교 산학협력단 Lead free solder composition and manufacturing method of the same, manufacturing method of piezoelectric element using lead free solder composition
KR20190103760A (en) * 2018-02-28 2019-09-05 서울시립대학교 산학협력단 Lead free solder composition and manufacturing method of the same, manufacturing method of piezoelectric element using lead free solder composition
KR102102259B1 (en) * 2018-07-17 2020-04-20 서울시립대학교 산학협력단 Lead free solder composition and manufacturing method of the same
KR20200008897A (en) * 2018-07-17 2020-01-29 서울시립대학교 산학협력단 Lead free solder composition and manufacturing method of the same
CN109848606A (en) * 2018-12-17 2019-06-07 中南大学 A kind of Sn-Ag-Cu lead-free solder of high interfacial bonding strength and preparation method thereof
KR20190126757A (en) * 2019-11-06 2019-11-12 서울시립대학교 산학협력단 Lead-free solder composition and method for maunfacturing thereof
KR102067678B1 (en) * 2019-11-06 2020-01-17 서울시립대학교 산학협력단 Lead-free solder composition and method for maunfacturing thereof
CN114367762A (en) * 2020-06-11 2022-04-19 中山翰华锡业有限公司 Solder alloy powder, low dielectric loss high reliability soldering paste and preparation method thereof
CN114367762B (en) * 2020-06-11 2023-08-18 中山翰华锡业有限公司 Solder alloy powder, low dielectric loss and high reliability solder paste and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2005319470A (en) Lead-free solder material, electronic circuit board and their production method
JP6842500B2 (en) Lead-free solder paste and its manufacturing method
GB2452229A (en) Conductive filler
JPH1133775A (en) Tin-containing lead free solder alloy, its cream solder, and manufacture
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
JP4722751B2 (en) Powder solder material and bonding material
JP2017110251A (en) Solder powder and method for producing the same, and method for preparing paste for solder using the same powder
TW201829796A (en) Solder material and electronic component
TWI343295B (en)
KR102253739B1 (en) Solder paste
Bashir et al. Effects of tin particles addition on structural and mechanical properties of eutectic Sn–58Bi solder joint
JP5188999B2 (en) Metal filler and solder paste
JP5975377B2 (en) Metal filler, solder paste, and connection structure
JP5724088B2 (en) Metal filler and lead-free solder containing the same
KR20190103760A (en) Lead free solder composition and manufacturing method of the same, manufacturing method of piezoelectric element using lead free solder composition
JP2009131872A (en) Solder paste, and manufacturing method of soldered part
Nadia et al. Fabrication and properties of Sn-3.5 Ag-XCu solder by ball milling and paste Mixing
JP2017177122A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE AND MANUFACTURING METHOD THEREOF
JP5609774B2 (en) Ternary alloy particles
Palmer et al. Forming high temperature solder joints through liquid phase sintering of solder paste
JP2004095907A (en) Solder joint structure and solder paste
KR102067678B1 (en) Lead-free solder composition and method for maunfacturing thereof
KR20170097283A (en) Lead-free solder composition and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A621 Written request for application examination

Effective date: 20070418

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Effective date: 20091106

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119