JP7204307B2 - 形状測定装置 - Google Patents

形状測定装置 Download PDF

Info

Publication number
JP7204307B2
JP7204307B2 JP2019178982A JP2019178982A JP7204307B2 JP 7204307 B2 JP7204307 B2 JP 7204307B2 JP 2019178982 A JP2019178982 A JP 2019178982A JP 2019178982 A JP2019178982 A JP 2019178982A JP 7204307 B2 JP7204307 B2 JP 7204307B2
Authority
JP
Japan
Prior art keywords
measured
length
detection unit
positions
plate length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019178982A
Other languages
English (en)
Other versions
JP2021056087A (ja
Inventor
昌之 杉山
公平 射場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2019178982A priority Critical patent/JP7204307B2/ja
Publication of JP2021056087A publication Critical patent/JP2021056087A/ja
Application granted granted Critical
Publication of JP7204307B2 publication Critical patent/JP7204307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明の実施形態は、形状測定装置に関する。
厚板や、丸棒、角材、薄板等の鋼材の圧延工程においては、圧延工程を経ることにより、被圧延材のエッジが円弧状に湾曲する曲りが発生し得る。このような曲りを抑制したり、曲りの規格に対する良否判定を行ったりする場合に、曲り量を正確に測定する形状測定装置が用いられる。
形状測定装置では、被測定材を搬送しながら、そのエッジの位置を長さ方向にわたって、測定することによって、曲り量を測定する手法が知られている(特許文献1~3等参照)。
搬送される被測定材の長さ(板長さ)は、さまざまであり、短いものから長いものまで、その相違は、1桁程度に及ぶ場合もある。このような広い範囲の板長さを有する鋼材の曲り量を精度よく測定できる形状測定装置が望まれている。
特許第2690431号公報 特開2018-27560号公報 特開2018-141707号公報
実施形態は、長さの相違する被測定材の曲り量を正確に測定する形状測定装置を提供する。
実施形態に係る形状測定装置は、鋼材である被測定材の曲り量を測定する。この形状測定装置は、被測定材のエッジの位置のうち、少なくとも3点のエッジの位置を検出する検出部と、上位計算機から前記被測定材の板長さの情報を受信し前記検出部に送信し、前記検出部に前記板長さに応じた設定をするように指示を送信する制御部と、を備える。前記検出部は、第1長さを有する前記板長さの場合の前記3点のエッジの位置の間隔が、前記第1長さよりも短い第2長さを有する前記板長さの場合の前記3点のエッジの位置の間隔よりも広くなるように設定する。前記制御部は、前記検出部で検出された前記少なくとも3点のエッジの位置にもとづいて前記被測定材の曲り量を算出する。前記検出部は、前記被測定材の搬送方向に沿って配列され、スリット状光をそれぞれ出射する少なくとも4台のレーザ投光器と、前記少なくとも4台のレーザ投光器が出射する前記スリット状光が前記搬送方向に交差し相互に平行になるように照射されている前記被測定材の表面を撮像するカメラと、を含む。前記検出部は、前記板長さの情報にもとづいて、前記少なくとも4台のレーザ投光器から少なくとも3台のレーザ投光器を選択して動作させ、前記カメラによって撮像された画像データを解析して、前記スリット状光の先端から、前記スリット状光が前記被測定材のエッジに交差する点までの長さにもとづいて、前記エッジの位置を検出し、第1長さを有する前記板長さの場合の、前記選択された少なくとも3台のレーザ投光器のうち隣接するレーザ投光器の間の離間距離が、前記第1長さよりも短い第2長さを有する前記板長さの場合の、前記隣接するレーザ投光器の間の離間距離よりも広く設定する。
本実施形態では、長さの相違する被測定材の曲り量を正確に測定する形状測定装置が実現される。
第1の実施形態に係る形状測定装置を例示する模式的なブロック図である。 図2(a)は、第1の実施形態の形状測定装置の一部を例示する模式的な平面図である。図2(b)は、第1の実施形態の形状測定装置の一部を例示する模式的な側面図である。図2(c)は、図2(a)に示された構成要素の一部を省略して表示した模式的な平面図である。 第1の実施形態の形状測定装置の動作を説明するためのフローチャートの例である。 図4(a)および図4(b)は、曲り量の定義を説明するための模式的な平面図である。 被測定材の曲り量を測定する手法の例を説明するための模式的な平面図である。 図6(a)は、被測定材の曲り量を測定する手法の例を説明するための被測定材のエッジの位置を表す模式図である。図6(b)は、図6(a)の一部を拡大した模式図である。 被測定材の曲り量を測定する手法を説明するための例を表す表およびエッジの位置を示す模式図である。 図8(a)は、被測定材の曲り量を測定する手法を説明するための模式的な平面図である。図8(b)は、被測定材の曲り量を測定する場合に発生する誤差を説明するための模式図である。 被測定材の曲り量を測定した場合に発生した誤差の累積について説明するための表および被測定材のエッジの位置を示す模式図である。 図10(a)は、第2の実施形態の形状測定装置の一部を例示する模式的な平面図である。図10(b)は、第2の実施形態の形状測定装置の一部を例示する模式的な側面図である。図10(c)は、図10(a)に示された構成要素の一部を省略して表示した模式的な平面図である。 図11(a)は、第3の実施形態の形状測定装置の一部を例示する模式的な平面図である。図11(b)は、第3の実施形態の形状測定装置の一部を例示する模式的な側面図である。 図12(a)は、第4の実施形態の形状測定装置の一部を例示する模式的な平面図である。図12(b)は、第4の実施形態の形状測定装置の一部を例示する模式的な側面図である。 第5の実施形態に係る形状測定装置の一部を例示する模式的な平面図である。 第5の実施形態に係る形状測定装置を例示する模式的なブロック図である。 第5の実施形態の形状測定装置の動作を説明するためのフローチャートの一部の例である。 第5の実施形態の形状測定装置の動作を説明するためのフローチャートの一部の例である。
以下、図面を参照しつつ、本発明の実施形態について説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して詳細な説明を適宜省略する。
以下では、主として、厚板工場で製造される板材を測定対象とする場合について説明するが、以下説明する各実施形態の形状測定装置は、周知の技術を付加等することによって、板材のほか、丸棒や角材、薄板等を含む鋼材の曲り量についても、測定可能とすることができる。
(第1の実施形態)
図1は、本実施形態に係る形状測定装置を例示する模式的なブロック図である。
図1には、後述する他の実施形態の構成のための表記がなされている。具体的には、他の実施形態に対応する、形状測定装置、制御部および検出部の符号は、かっこ書きで表記されている。
図1に示すように、形状測定装置10は、被測定材1の曲り量を測定する。被測定材1は、上述したとおり、板材、丸棒や角材、薄板等を含む鋼材である。形状測定装置10は、板有無検知部2および搬送位置検出部3に接続されている。
板有無検知部2は、被測定材1の先端を検知したときに、板有検知信号を形状測定装置10に送信する。板有無検知部2は、被測定材1の尾端が抜けたことを検知したときに、板有検知信号の形状測定装置10への送信を終了する。つまり、形状測定装置10は、板有検知信号がアクティブの期間に被測定材1の曲り量を測定し、板有検知信号が非アクティブとなることによって、被測定材1の曲り量の測定を終了する。板有無検知部2は、上述に限らず、先端検知時に板有信号を送信し、尾端検知時に板無信号を送信する等としてももちろんかまわない。
搬送位置検出部3は、被測定材1の搬送位置を検出して、搬送位置のデータを形状測定装置10に送信する。搬送位置検出部3は、たとえばパルスジェネレータおよびパルスカウンタを含む移動距離演算回路(図示せず)を有する。パルスジェネレータは、テーブルローラ(図示せず)に結合されている。パルスジェネレータは、テーブルローラの回転に応じてパルスを生成し、生成されたパルス数をパルスカウンタによって計測する。位相距離演算回路は、パルスパウンタによって計測されたパルス数にもとづいて、被測定材1の移動距離を計算する。移動距離演算回路は、初期値に移動距離を積算することによって、被測定材1の搬送位置を計算する。搬送位置検出部3は、計算した移動距離を制御部20に送信して、制御部20によって被測定材1の搬送位置を計算するようにしてもよい。
本実施形態の形状測定装置10は、少なくとも1つの局所曲り量を計算する。被測定材1の曲り量は、1つの局所曲り量、または複数の局所曲り量を連結計算することにより求められる。搬送位置検出部3で検出された被測定材1の搬送位置によって、形状測定装置10は、局所曲り量を計算するための測定データを順次切り換える。
形状測定装置10は、上位計算機4に接続される。上位計算機4は、被測定材1である鋼板が流れている圧延ライン全体を管理する。上位計算機4は、圧延する鋼板に関する製造条件や製品規格等のデータベースを有している。このデータベースには、被測定材1である鋼板の板長さのデータも含まれている。上位計算機4は、被測定材1の板長さのデータをデータベースから抽出して、形状測定装置10に送信する。形状測定装置10は、受信した板長さのデータにもとづいて、より少ない局所曲り量の演算回数となるように動作する。
後に詳述するように、板長さが長い場合であっても、少ない局所曲り量の演算回数とすることによって、本実施形態の形状測定装置10は、被測定材1の曲り量を精度よく測定、演算することができる。
形状測定装置10は、算出した曲り量のデータを上位計算機4に送信する。上位計算機4は、受信した曲り量のデータをデータベースに格納する。なお、データベースに格納された曲り量のデータを含む品質データは、たとえば、別に設けられた製品品質管理システム等により製品の検査や品質管理等のために用いられる。
形状測定装置10は、表示部5に接続される。表示部5は、たとえば液晶ディスプレイ等の画像表示装置である。表示部5は、形状測定装置10から出力された曲り量に関するデータを表示する。
本実施形態の形状測定装置10の構成について説明する。
本実施形態の形状測定装置10は、制御部20と、検出部30と、を備える。形状測定装置10は、制御部20を介して、板有無検知部2、搬送位置検出部3、上位計算機4および表示部5に接続される。制御部20は、検出部30に接続されている。制御部20は、検出部30、板有無検知部2、搬送位置検出部3、上位計算機4および表示部5との間のデータ等の出力、送受信や処理の手順を制御する。
制御部20は、演算処理部22を有する。演算処理部22は、検出部30によって取得された被測定材1のエッジ位置のデータにもとづいて、被測定材1の曲り量を演算する。
制御部20および演算処理部22は、たとえば、CPU(Central Processing Unit)およびCPUによって動作するプログラムを含むコンピュータ装置やプログラマブルロジックコントローラ(PLC)である。制御部20および演算処理部22は、以下説明する、形状測定装置10の動作を統括的に制御する。形状測定装置10の動作には、後述するフローチャートの各ステップを含んでおり、各ステップを含むプログラムがインストールされたコンピュータ装置は、制御部20として動作する。
検出部30は、被測定材1のエッジの位置を少なくとも3点測定する。被測定材1のエッジとは、被測定材1の搬送方向に沿う縁をいう。エッジは、たとえば板材の場合には、板材の側面である。被測定材1のエッジの位置は、パスラインに平行な平面上の座標のデータとして表される。この座標のデータは、レーザ投光器の設置位置と、レーザ投光器から被測定材1の表面に照射されたスリット状光の一端から被測定材1のエッジまでの距離と、を用いて表される。
図2(a)は、本実施形態の形状測定装置の一部を例示する模式的な平面図である。図2(b)は、本実施形態の形状測定装置の一部を例示する模式的な側面図である。図2(c)は、図2(a)に示された構成要素の一部を省略して表示した模式的な平面図である。
図2(a)および図2(b)には、検出部30の具体的な構成例が、被測定材1とともに示されている。図2(c)は、図の煩雑さを避けるために、図2(a)に示されたレーザ投光器32a~32eおよびカメラ34を省略して図示している。図2(c)では、被測定材1、スリット状光SLa~SLeおよびカメラ34の視野CVの関係がより明確に示されている。
被測定材1は、パスライン上を搬送される。図上、XY平面は、パスラインに平行な平面である。X軸は、搬送方向に平行な方向に延伸し、Y軸は、X軸に直交する。特に断らない限り、X軸の正方向を被測定材1の搬送方向とする。Z軸は、X軸およびY軸に直交する。この三次元座標系は、右手系の直交座標系にしたがうものとする。
図2(a)および図2(b)に示すように、検出部30は、複数のレーザ投光器32a~32eと、カメラ34と、を含む。本実施形態では、レーザ投光器は、少なくとも4台用いられる。この例では、検出部30は、5台のレーザ投光器32a~32eを有している。レーザ投光器は、4台、5台に限られず、6台以上であってもよい。レーザ投光器の台数が多い場合には、曲り量を測定する被測定材1の板長さの種類を多くとったときでも、いずれも精度よく曲り量を測定し、算出することができる。
レーザ投光器32a~32eは、X軸方向に沿って、ほぼ等間隔で、一列に配列されている。レーザ投光器32a~32eは、被測定材1の上方(Z軸の正方向側)から被測定材1の表面に向けてレーザ光SBを出射する。レーザ投光器32a~32eの発光面には、スリット状に開口が設けられている。スリット状の開口から出射されたレーザ光は、直線状の輝線として被測定材1の表面に照射される。以下では、被測定材1のエッジを含む表面上に照射された直線状の輝線を、スリット状光と呼ぶこととする。
スリット状光SLa~SLeは、Y軸方向にほぼ平行するように被測定材1に照射される。スリット状光SLa~SLeは、被測定材1の一方のエッジを横切るように被測定材1に照射される。
カメラ34は、被測定材1の上方(Z軸の正方向側)に設置されている。カメラ34の視野CVは、スリット状光SLa~SLeおよび被測定材1の少なくとも一方のエッジを含むように設定されている。カメラ34が設置される被測定材1からの高さは、上述の視野CVが実現されるように、カメラ34の解像度に応じて決定される。カメラ34が設置される高さは、たとえば数m程度であり、たとえば5m程度である。被測定材1が非常に長く、カメラ34の解像度および設置高さを適切に設定しても、測定範囲を視野CVに収めることが困難な場合には、複数のカメラを用いて、撮像データを合成して、測定範囲の全景を取得するようにしてもよい。
図2(c)に示すように、視野CVは、被測定材1の表面に照射されるスリット状光SLa~SLeを含むように設定される。カメラ34は、視野CVの範囲にある画像を撮像する。検出部30は、図示しないが、画像処理回路を有している。画像処理回路は、カメラ34が撮像した画像データを画像処理して、被測定材1の表面上のスリット状光SLa~SLeの先端からエッジに交差する点までをそれぞれ抽出し、そのときの光線の長さをエッジ位置のデータとする。この場合のエッジの位置のデータは、Y座標のデータとされる。X座標のデータは、レーザ投光器32a~32eが設置された位置にもとづいて、あらかじめ設定される。X座標の基準は、たとえば搬送方向のもっとも前方側のレーザ投光器32aとすることができる。
本実施形態では、検出部30は、被測定材1の板長さに応じて、動作するレーザ投光器32a~32eが選択される。曲り量の測定時には、少なくとも3台のレーザ投光器が選択される。選択されるレーザ投光器は、被測定材1の板長さが長い場合には、離れた位置に設置されたレーザ投光器が選択される。たとえば、この例では、選択されるレーザ投光器は、32a,32c.32eなどとなる。図2(a)および図2(c)の実線で示したように、スリット状光SLa,SLc,SLeが被測定材1上に照射される。この場合には、破線で示したスリット状光SLb,SLdは照射されない。被測定材1の板長さが短い場合には、より近い位置に設置されたレーザ投光器が選択される。たとえば、この例では、選択されるレーザ投光器は、32a,32b,32cなどとなる。
このように、検出部30は、被測定材1の板長さが長い場合に、動作するレーザ投光器の間隔を広く設定する。そのため、演算処理部22は、局所曲り量を演算する回数を少なくすることができる。形状測定装置10は、局所曲り量の演算回数を少なくすることによって、被測定材1のエッジ位置のデータの誤差の累積を抑制して、高精度な曲り量の計算をすることができる。
図3は、本実施形態の形状測定装置の動作を説明するためのフローチャートの例である。
本実施形態の形状測定装置10の動作についてフローチャートを参照しつつ説明する。
図3に示すように、ステップS1において、制御部20は、上位計算機4から被測定材1の板長さの情報(データ)を受信する。
ステップS2において、制御部20は、被測定材1の板長さのデータにもとづいて、検出部30に対して、板長さに応じた設定をするように指示する。
ステップS3において、検出部30は、制御部20からの指示にもとづいて、エッジの位置を測定するための設定をし、完了させる。図2(a)~図2(c)の例では、検出部30は、板長さが長い場合には、レーザ投光器32a,32c,32eを動作させるように設定する。検出部30は、板長さが短い場合には、レーザ投光器32a,32b,32cを動作させるように設定する。検出部30は、制御部20から測定開始の指示を受けるまで待機する。
ステップS4において、板有無検知部2は、搬送されてきた被測定材1の先端を検知する。板有無検知部2は、板有検知信号を生成し、制御部20に送信する。
ステップS5において、制御部20は、板有検知信号を受信する。制御部20は、板有検知信号により、被測定材1が測定領域内に進入したものと判断し、検出部30に測定開始を指示する。たとえば、測定領域は、図2(a)等に示した視野CVである。板有無検知部2は、視野CVの搬送方向のもっとも前方側に設けられており、被測定材1の全体が視野CVに入り、被測定材1の先端が板有無検知部2を通過したときに、板有無検知部2は、板有検知信号を生成し、エッジ位置の測定が開始される。
ステップS6において、搬送位置検出部3は、被測定材1の搬送距離にもとづいて、被測定材1の搬送位置情報を制御部20に出力する。制御部20が板有検知信号を受信した時点から、搬送距離を算出することにより、制御部20において被測定材1の搬送位置を計算するようにしてもよい。検出部30は、視野CV内のスリット状光を撮像し、画像処理回路によって、被測定材1のエッジの位置の座標を抽出する。検出部30は、抽出したエッジ位置の座標データを制御部20に出力する。制御部20は、取得したエッジの位置座標のデータを演算処理部22に供給する。
ステップS7において、演算処理部22は、搬送位置検出部3から取得した被測定材1の搬送位置の情報およびエッジ位置の座標データにもとづいて、局所曲り量を順次演算する。制御部20は、たとえば、搬送位置情報に関連付けて、演算した局所曲り量を図示しない記憶部に記憶する。
ステップS8において、板有無検知部2は、被測定材1の尾端の抜けを検知する。板有無検知部2は、板有検知信号の生成を終了する。
ステップS9において、制御部20は、板有検知信号が非アクティブとなったことを受けて、検出部30に対してエッジ位置の測定終了を指示する。
ステップS10において、演算処理部22は、搬送位置情報および搬送位置情報に関連付けられた局所曲り量にもとづいて、被測定材1の曲り形状を復元演算する。
ステップS11において、制御部20は、算出された曲り形状のデータを上位計算機4に送信する。制御部20は、算出された曲り形状のデータを表示部5に出力する。
本実施形態の形状測定装置10の動作について、その原理を含めて詳細に説明する。
図4(a)および図4(b)は、曲り量の定義を説明するための模式的な平面図である。
図4(a)および図4(b)に示すように、被測定材1の曲り量の定義は、主に2種類ある。用途、目的等に応じて、いずれかの定義が用いられる。
図4(a)の定義では、被測定材1の有効長における曲り量として定義される。すなわち、被測定材1の曲り量は、有効長の先端T1および尾端T2を結ぶ直線と、板長さ方向の中央位置との偏差と定義される。ここで、有効長とは、被測定材1の板長さ方向の全長である。曲り量を、キャンバー量と表記することがある。なお、この定義では、有効長の1/2(中央)の位置において曲り量が最大になる例を示したが、一般には、先端T1と尾端T2との間で、最大の曲り量をその被測定材1の曲り量とする。
図4(b)の定義では、被測定材1aの基準長さにおける曲り量として定義される。ここで、被測定材1aの基準長さとは、被測定材1aの先端T1aから、あらかじめ設定された長さをいう。基準長さは、たとえば材ごとに設定されている。この定義においては、曲り量は、先端T1aから板長さ方向に基準長さ分の位置T2aにおける、被測定材1aの有効幅の中心線からの偏差で定義される。曲り量は、先端T1aにおいて、被測定材1aの有効幅の中心線からの偏差である。
以下では、図4(a)に示した定義の曲り量の測定について説明するが、図4(b)に示した定義の曲り量についても、以下の説明を適切に適用することによって、同様に測定、算出することができる。
図5は、被測定材の曲り量を測定する手法の例を説明するための模式的な平面図である。
図5に示すように、曲り量は、端部T1,T2を有する被測定材1の両端にわたって、直線性が維持できる部材Sを設けて、端部T1,T2および中央部のそれぞれにおける部材Sと被測定材1のエッジとの距離にもとづいて、測定することができる。ここで、具体的に測定する場合には、部材Sは、たとえば糸やピアノ線等である。
端部T1における部材Sとエッジとの距離をa、中央部のおける部材Sとエッジとの距離をb、端部T2における部材Sとエッジとの距離をcとすると、曲り量は、以下のように求められる。
曲り量=b-(a+c)/2
このように、3か所のエッジの位置(実際には、部材Sの位置を基準とする長さa,b,c)を検出することができれば、曲り量を算出することができる。なお、部材Sは、端部T1,T2間で直線となればよく、この例のように、X軸に平行になる必要はない。部材SがX軸から傾きを有していても、上式によって、曲り量を計算できる。また、この手法は、人手による測定方法として採用され得る。
より長い板長さの曲り量を測定するには、被測定材1を仮想的いくつかに分割して、分割された部分の曲り量を局所曲り量として測定し、局所曲り量を連結することによって、板長さ全体の曲り量を算出することができる。本実施形態の形状測定装置10では、少なくとも3点のエッジ位置のデータを測定し、これらにもとづいて局所曲り量を演算し、すべての局所曲り量を連結するように復元演算することによって、曲り量を算出する。
3点のエッジ位置は、画像処理技術を用いることによって、人手によらず、測定されることができる。圧延ライン中を搬送される被測定材1は、搬送中に振動したり、回転したりするために、エッジの位置を計測するためには、これらの時間による変動分を除去する必要がある。被測定材1のエッジの位置(軌跡)を関数F(x,t)と表すと、F(x,t)は、式(1)のように表すことができる。
Figure 0007204307000001
ここで、f(x)は、被測定材1のキャンバープロフィール、すなわち被測定材1のエッジ位置を表しており、曲り量のデータを含んでいる。R(t)は、回転による被測定材1の傾きを表しており、時間tによって変化する。R(t)・xは、時間移動を表しており、時間tおよび座標xの関数である。V(t)は、平行の斜行移動を表しており、具体的にはXY平面上での振動であり、時間によって変動する。
式(1)を2回微分することによって、式(2)を得る。
Figure 0007204307000002
式(2)に示すように、F(x,t)を位置xで2回微分することによって、時間tの項が除去される。式(2)を2回積分することによって式(3)を得ることができる。
Figure 0007204307000003
このように、局所曲り量の測定、演算では、被測定材1の回転や振動による擾乱情報を含んでいるため、これらを除去するために2回微分する。そのため、座標データは、少なくとも3点必要となる。本実施形態では、離散的に配置されたレーザ投光器によって、被測定材1のエッジの座標を測定する。以下説明するように、式(1)~式(3)の関係は、離散データの関係に変換されて用いられる。
図6(a)は、被測定材の曲り量を測定する手法の例を説明するための被測定材のエッジの位置を表す模式図である。図6(b)は、図6(a)の一部を拡大した模式図である。
図6(a)および図6(b)に示すように、被測定材1の全長はLである。ここで、X座標は、上述したように、被測定材1の搬送方向に平行なX軸に関する座標である。Y座標は、被測定材1の幅方向の座標であり、X軸がY座標の基準となる。実際の形状測定装置10の座標測定では、Y座標の基準は、被測定材1の表面に照射されているスリット状光の先端である。なお、この基準は、絶対的なものではなく、レーザ投光器の設置精度やレーザ投光器におけるスリット状光を出射する出射孔の形成精度等によって定まるものであり、誤差要因となり得る。
形状測定装置10は、全長Lをn等分した長さΔxごとにY軸方向の座標y,y,y,y,…,yn-2,yn-1,yを順次測定する。X座標は、図2(a)等に示したレーザ投光器32a,…の配置位置の座標である。測定される座標は、この例では、(x,y),(x,y),(x,y),(x,y)…,(xn-2,yn-2),(xn-1,yn-1),(x,y)である。なお、Δxは、レーザ投光器32a…の設置間隔であり、測定間隔ΔL=L/とはほぼ等しい。以下では、Δx=ΔLとして説明する。
隣接するX座標におけるY座標の差は、曲り変位差Δy,Δy,…,Δyとされる。Δy=y-y,Δy=y-y,…,Δy=Δy-Δyn-1である。局所曲り量は、以下の式(4)で表すことができる。
Figure 0007204307000004
式(2)からΔxを消去することにより、以下の式(5)を得る。
Figure 0007204307000005
なお、yi-2,yi-1,yの組は、同時刻に測定される。時刻tにyi-2,yi-1,yの組が同時に測定され、式(5)より、Δ2y=Δy-Δyi-1が計算される。その後、時刻ti+1にyi-1,y,yi+1の組は、同時に測定され、式(5)より、Δ2yi+1=Δyi+1-Δyが計算される。
式(5)によって求めた局所曲り量を用いて、以下のように曲り形状復元式を導く。まず、以下の式(6)を用いて、座標xにおける局所曲り量を座標xにおける局所傾きを求める。
Figure 0007204307000006
式(6)により求めた座標xにおける局所傾きを、以下の式(7)を用いて、座標xにおける局所曲り量を求める。
Figure 0007204307000007
式(6)の演算結果を、以下の式(8)を用いて、i=2~n-1にわたって積算する。
Figure 0007204307000008
式(7)および式(8)より、以下の式(9)で局所傾きをi=1~nにわたって積算し、曲り量を求める。
Figure 0007204307000009
このようにして、3点の座標データから求めた局所曲り量にもとづいて、被測定材1の曲り量を求めることができる。
被測定材の曲り量を測定する手法を説明するための例を表す表およびエッジの位置を示す模式図である。
図7は、被測定材の曲り量を測定する手法を説明するための例を表す表およびエッジの位置を示す模式図である。
図7は、上述の式(4)~式(9)を用いた曲り量の具体的な計算例を示している。この例では、図7の下の図は、曲り量が5.0[mm]で、全長Lが10,000[mm](=10[m])の曲り形状を有する被測定材1のエッジのY座標の例であり、具体的な座標データを表計算ソフトウェアに入力してグラフ表記したものである。図7の上の表は、この具体的な座標データを式(4)~式(9)にあてはめて、曲り量の復元計算をして、グラフ表記したデータと比較した結果を示したものである。
図7の表中、INDEXは、X座標を表しており、INDEXが“0”は座標x、INDEXが“1”は座標x、のように表されている。そして、座標xからの距離が2列目のLで表されている。3列目は、Y座標の値であり、座標xにおける座標yの値である。この値は、この図の下のグラフで表されている。4列目のΔ2yは、上述の式(5)により求めた座標xにおける局所曲り量の計算値である。5列面のΔyは、式(8)により求めた局所傾きの計算値である。6列目のyは、式(9)により求めた復元された曲り量の計算値である。最右列の換算差は、3列目のyと6列目のyの差である。
図7に示すように、式(4)~式(9)を用いて、被測定材1の曲り量を計算で求めた値は、実際の値と一致することが示される。
上述したとおり、この例は、レーザ投光器が、X軸に平行な直線上に配列されている理想的な条件の例である。実際には、レーザ投光器やスリット状光は、Y座標上の配置ずれ(オフセット)を生じ得る。以下では、レーザ投光器の配置がずれた場合の影響について説明する。
図8(a)は、被測定材の曲り量を測定する手法を説明するための模式的な平面図である。図8(b)は、被測定材の曲り量を測定する場合に発生する誤差を説明するための模式図である。
図8(a)に示すように、3台のレーザ投光器によって、スリット状光SLa,SLb,SLcは、被測定材1上に照射される。スリット状光と被測定材1のエッジとの交点がエッジのY座標である。この例では、スリット状光SLa,SLbの間の距離Lab、スリット状光SLb,SLcの間の距離Lbcであり、図7で説明した例のように、たとえば、Lab=Lbc=1[m]である。全長Lallは、たとえば10[m]である。
ここで、3台のレーザ投光器のうち1台がX軸に平行な直線上からずれて配置された場合には、被測定材1の表面に、スリット状光の一端の位置がずれて照射される。他のスリット状光の一端の位置からのずれがY座標の測定値の誤差となる。
図8(b)の例では、3台のレーザ投光器のうち、いちばん右のレーザ投光器の配置位置にオフセットがあり、たとえば、他のレーザ投光器とのオフセットが0.5[mm]である。カメラ34(図2)は、被測定材1が1[m]移動するたびに、視野CVのスリット状光を撮像する。
図8(b)の「1mごとの測定結果」とある3本の折れ線は、3本のスリット状光によって測定されるY座標を表している。Y座標の測定点は、被測定材1が1[m]移動するごとに測定されるので、3本のスリット状光の上から下に示されるように、Y座標の測定点が1[m]ごとにずれていく。上述した復元演算では、これらの3本の折れ線に相当するY座標の測定点を連結するようにして曲り形状の演算を行う。そのため、Y座標の測定値にオフセットがある場合には、測定ごと(撮像ごと)にオフセットの値が積算されていくこととなる。
図8(b)の「上記測定結果の連結」とある折れ線は、3本の折れ線で示されるY座標の測定点の連結された復元データを示している。被測定材1が2[m]移動した場合には、オフセットは、3回積算されている。この例では、オフセットは0.5[mm]なので、被測定材1の2[m]分では、累積される誤差は、0.5[mm]×3=1.5[mm]となる。Y座標の位置のデータのオフセットの絶対値が十分に小さくても、局所曲り量を繰り返し復元演算することによって、オフセットによる誤差が累積されて、最終的な曲り量の計算値には、大きな誤差が含まれることとなる。
具体的に説明すると、最初のY座標の測定点Ea1,Eb1,Ec1があり、Eb1,Ec1に対して、Ea1は、0.5[mm]のオフセットを有している。次に測定される測定点Ea2,Eb2,Ec2についても、Eb2,Ec2に対して、Ea2は、0.5[mm]のオフセットを有している。さらの次の測定点Ea3,Eb3,Ec3についても、Eb3,Ec3に対して、Ea3は、0.5[mm]のオフセットを有している。これらの各測定値にもとづいて、局所曲り量を演算し、連結して復元演算することによって、0.5[mm]のオフセットが測定回数分、積算される。
図9は、被測定材の曲り量を測定した場合に発生した誤差の累積について説明するための表および被測定材のエッジの位置を示す模式図である。
図9の下の図は、図7で示したグラフと同じグラフである。
図9の上の図は、図7で示した表と同じ演算を行っているが、最右列の局所曲り値の累積される積算数の値が示されている。測定されるY座標が1[m]間隔であり、被測定材1が1[m]移動するごとに、3つのY座標の組が測定されるとすると、局所曲り値の演算回数は、45回となる。0.5[mm]のオフセットがある場合には、計算上の誤差は、0.5[mm]×45回=22.5[mm]となる。鋼材の圧延工程では、10[m]の鋼材で、曲り量が5.0[mm]以下とするような場合もあり、5.0[mm]の要求値に対して、オフセットによる累積誤差が22.5[mm]となるのでは、曲り量を測定する意義が認められないこととなってしまう。
本実施形態では、被測定材1の板長さに応じて、動作するレーザ投光器32a…の位置を設定している。すなわち、板長さが短い場合には、レーザ投光器32a…の相互の間隔が狭くなるようにレーザ投光器が選択され、板長さが長い場合には、レーザ投光器32a…の相互の間隔が広くなるようにレーザ投光器が選択される。そのため、板長さが長い場合であっても、局所曲り値の演算回数を少なくすることができる。したがって、Y座標の測定値のオフセットの累積積算数を低減することができ、精度の高い曲り量を算出することができる。
図5において説明した例において、人手で曲り量を測定する場合には、圧延工程中を搬送されている被測定材を一旦停止させて、作業者が測定する必要がある。また、作業者が搬送ラインに入って測定するため、安全上の処置をする必要があり、多大な時間を要する。そのため、操業の効率が著しく低下する。
本実施形態の形状測定装置10では、上述のごとく、手動で行うべき作業はなく、効率よく、かつ、精度よく被測定材1の曲り量を測定することができる。
(第2の実施形態)
図10(a)は、本実施形態の形状測定装置の一部を例示する模式的な平面図である。図10(b)は、本実施形態の形状測定装置の一部を例示する模式的な側面図である。図10(c)は、図10(a)に示された構成要素の一部を省略して表示した模式的な平面図である。
本実施形態では、検出部230の構成が第1の実施形態の場合と相違する。本実施形態では、検出部230の相違により、検出部230を制御する制御部220の構成が第1の実施形態の場合と相違する。図1には、本実施形態の場合の構成(符号)も合わせて示されている。本実施形態に係る形状測定装置210は、制御部220と、検出部230と、を備える(図1)。
図10(a)および図10(b)には、検出部230の具体的な例が、被測定材1とともに示されている。図10(c)は、図の煩雑さを回避するために、図10(a)に示されたレーザ投光器32およびミラー236を除いて示している。そのため、図10(c)では、被測定材1、スリット状光SLa~SLeおよびカメラ34の視野CVの関係がより明確に示されている。
図10(a)~図10(c)に示すように、検出部230は、レーザ投光器32と、カメラ34と、ミラー236と、を含む。レーザ投光器32は、カメラ34の視野CVの上方に設けられている。レーザ投光器32は、スリット状のレーザ光SBを出力する。レーザ光SBの面は、XY平面にほぼ平行となるように設定されている。
ミラー236は、レーザ投光器32がレーザ光SBを出射する方向に配置されている。ミラー236は、被測定材1の搬送方向にほぼ直交する方向(X軸に平行な方向)に沿った回転軸を有している。ミラー236は、この回転軸を中心に回転することができる。ミラー236は、図示しない回転制御機構によって、所望の回転位置、つまり角度となるように設定される。回転制御機構は、図1の制御部220から指示された被測定材1の板長さに応じたミラー角度となるように動作する。
カメラ34は、被測定材1のエッジおよびスリット状光SLa~SLcの先端を視野CVに含むような位置に配置される。この例では、被測定材1の搬送方向前方斜め上方に配置されている。カメラ34の配置位置は、これに限らず、視野CVに被測定材1のエッジが入るようにされていればよく、被測定材1の上方に配置されてもよい。
ミラー236は、レーザ投光器32から出射されるスリット状光の反射像を視野CVに結ぶようにレーザ光SBを反射する。レーザ投光器32およびミラー236は、スリット状光の反射像(スリット状光SLa,SLb,SLcという)が被測定材1のエッジにほぼ直交して交差するように、その位置が設定される。
ミラー236の角度は、3本のスリット状光SLa,SLb,SLcのそれぞれが被測定材1のエッジに交差するように設定される。スリット状光SLaは、被測定材1の搬送方向の前方側に照射され、スリット状光SLcは、被測定材1の搬送方向の後方側に照射される。スリット状光SLbは、スリット状光SLa,SLcの間に照射される。
スリット状光SLa,SLb,SLcの照射位置は、被測定材1の板長さに応じて、制御部220によって設定される。被測定材1の板長さが長い場合には、スリット状光SLa,SLb,SLcの間隔は、広くなるように設定され、被測定材1の板長さが短い場合には、スリット状光SLa,SLb,SLcの間隔がより短くなるように設定される。
なお、スリット状光SLaの一部が視野CV外となると、オフセットの要因となり得るので、カメラ34は、視野CVにスリット状光の先端が十分に含まれるように設定されることが好ましい。
本実施形態の形状測定装置210の動作について説明する。
本実施形態の形状測定装置210は、上述した他の実施形態の場合と検出部230の構成が異なっているが、ほぼ同様に動作する。
すなわち、図3のステップS2において、制御部220は、被測定材1の板長さの情報にもとづいて、検出部230に対して、板長さの情報に応じた設定をするように指示する。
ステップS3において、検出部230は、制御部220からの指示にもとづいて、被測定材1のエッジの位置の測定をするための設定をする。検出部230は、被測定材1の板長さに応じて、回転制御部に対して、ミラー236の角度を調整し、スリット状光SLa,SLb,SLcの間隔を設定する。ステップS5以降の処理は、上述と同様に実行される。
本実施形態では、ミラー236の角度を調整することによって、被測定材1の表面に照射されるスリット状光SLa,SLb,SLcの位置を設定することができる。そのため、1台のレーザ投光器32を用いて、少なくとも3点のエッジ位置を測定することができる。
(第3の実施形態)
図11(a)は、本実施形態の形状測定装置の一部を例示する模式的な平面図である。図11(b)は、本実施形態の形状測定装置の一部を例示する模式的な側面図である。
本実施形態では、検出部330の構成が上述の他の実施形態の場合と相違する。本実施形態では、検出部330の相違により、検出部330を制御する制御部320の構成が上述の他の実施形態の場合と相違する。図1には、本実施形態の場合の構成(符号)も合わせて示されている。本実施形態に係る形状測定装置310は、制御部320と、検出部330と、を備える(図1)。
図11(a)および図11(b)には、検出部330の具体的な例が、被測定材1とともに示されている。
図11(a)および図11(b)に示すように、検出部330は、レーザ距離計333a,333b,333cを含む。レーザ距離計333a~333cは、被測定材1の側面に配置されている。レーザ距離計は、搬送方向(X軸に平行な方向)に沿って一列に配列されている。レーザ距離計333a~333cは、被測定材1の搬送方向にほぼ直交する方向にレーザ光を出射し、被測定材1の側面からのレーザ光の反射光を受光できるよう配置されている。このようにして、レーザ距離計333a~333cは、レーザ距離計333a~333cが設置された位置から、被測定材の側面までの距離をそれぞれ測定して、被測定材1のエッジの位置のデータを取得する。
レーザ距離計333a~333cは、図示しない位置設定駆動機構によって、その配置位置が設定される。位置設定駆動機構は、制御部320から供給された被測定材1の板長さの情報にもとづいて、レーザ距離計333a~333cの位置を設定する。より具体的には、被測定材1の板長さが長い場合には、2つの隣接するレーザ距離計の間の距離を長くなるように設定する。被測定材1の板長さが短い場合には、2つの隣接するレーザ距離計の間の距離をより短くなるように設定する。
たとえば、この例では、被測定材1の板長さがLの場合には、レーザ距離計333aは、被測定材1の搬送方向の前方側の端部付近に設けられている。レーザ距離計333bは、レーザ距離計333aからL/2だけ搬送方向の後方側に配置されている。レーザ距離計333cは、レーザ距離計333bからL/2だけ搬送方向L/2だけ搬送方向の後方側に配置されている。レーザ距離計333b,333cは、Lに応じて、位置設定駆動機構によって、エッジの位置の測定前に上述の位置になるように駆動される。
本実施形態の形状測定装置310の動作について説明する。
本実施形態の形状測定装置310は、上述した他の実施形態の場合と検出部330の構成が異なっているが、ほぼ同様に動作する。
すなわち、図3のステップS2において、制御部320は、被測定材1の板長さの情報にもとづいて、検出部330に対して、板長さの情報に応じた設定をするように指示する。
ステップS3において、検出部330は、制御部320からの指示にもとづいて、被測定材1のエッジの位置の測定をするための設定をする。検出部330は、被測定材1の板長さに応じて、レーザ距離計333b,333cの位置を設定する。たとえば、レーザ距離計333a,333b間の距離は、板長さLの1/2の位置であり、レーザ距離計333b,333c間の距離は、板長さLの1/2の位置である。これらの位置の設定は、たとえば、検出部330に設けられた位置設定駆動機構によって行われる。
本実施形態では、被測定材1の板長さに応じて、レーザ距離計333a~333cの相互の離間距離を設定するので、簡便な位置設定駆動機構を導入することによって、容易に高精度な曲り量を測定を行うことができる。
(第4の実施形態)
図12(a)は、本実施形態の形状測定装置の一部を例示する模式的な平面図である。図12(b)は、本実施形態の形状測定装置の一部を例示する模式的な側面図である。
本実施形態では、検出部430の構成が上述の他の実施形態の場合と相違する。本実施形態では、検出部430の相違により、検出部430を制御する制御部420の構成が上述の他の実施形態の場合と相違する。図1には、本実施形態の場合の構成(符号)も合わせて示されている。本実施形態に係る形状測定装置410は、制御部420と、検出部430と、を備える(図1)。
図12(a)および図12(b)には、検出部430の具体的な例が、被測定材1とともに示されている。
図12(a)および図12(b)に示すように、検出部430は、カメラ434a,434b,434cと、目盛り盤438と、を含む。カメラ434a~434cは、被測定材1の側面に配置されている。カメラ434a~434cは、搬送方向(X軸に平行な方向)に沿って一列に配列されている。カメラ434a~434cは、被測定材1のエッジを視野に含むように配置されている。カメラ434a~434cは、その視野に目盛り盤438上に設けられた目盛りも含むように配置されている。
目盛り盤438は、パスラインに設けられている。目盛り盤438は、被測定材1の搬送方向に平行な目盛りを有している。カメラ434a~434cの視野には、この目盛りの基準から被測定材1のエッジまでが少なくとも含まれるように設定されている。目盛りの基準となる基準目盛りは、たとえば目盛り盤438の下端の目盛りに設定される。目盛り盤438の下端とは、目盛り盤438のうち、カメラ434a~434cの配置されている位置にもっとも近い目盛りである。カメラ434a~434cの配置されている位置にもっとも近い目盛りに限らず、他の目盛りよりも太さの太い線とする等によって他の線から区別できるようにしてもよい。
被測定材1が搬送方向に搬送されると、カメラ434a~434cは、基準目盛りから、被測定材1のエッジに覆われている目盛りまでを撮像する。検出部430は、カメラ434a~434cによって撮像された画像データは、図示しない画像処理機能によって、画像処理され、画像データに含まれる目盛りの数にもとづいて、基準目盛りから被測定材1のエッジまでの距離を求める。検出部430は、この距離をエッジの位置のデータとして、制御部420に出力する。
カメラ434a~434cは、図示しない位置設定駆動機構によって、その配置位置が設定される。位置設定駆動機構は、制御部420から供給された被測定材1の板長さの情報にもとづいて、カメラ434a~434cの位置を設定する。より具体的には、被測定材1の板長さが長い場合には、2つの隣接するカメラの間の距離を長くなるように設定する。被測定材1の板長さが短い場合には、2つの隣接するカメラの間の距離をより短くなるように設定する。
たとえば、この例では、被測定材1の板長さがLの場合には、カメラ434aは、被測定材1の搬送方向の前方側の端部付近に設けられている。カメラ434bは、隣接するカメラ434aからL/2だけ搬送方向の後方側に配置されている。カメラ434cは、隣接するカメラ434bからL/2だけ搬送方向にL/2だけ搬送方向の後方側に配置されている。カメラ434b,434cは、Lに応じて、位置設定駆動機構によって、エッジの位置の測定前に上述の位置になるように駆動される。
本実施形態の形状測定装置410では、基準目盛りを有する目盛り盤438を用いて、カメラ434a~434cによって、被測定材1のエッジの位置を測定するので、カメラ434a~434cの配置に多少のずれを生じても、エッジ位置の測定に誤差を含みにくくなるので、高精度な曲り量を測定することが可能になる。
(第5の実施形態)
第4の実施形態において説明したように、被測定材1のエッジの位置を測定する際に、少なくとも3台設置するレーザ投光器等の設置位置にずれが生じると、局所曲り量を繰り返し測定、演算して曲り量を復元すると、設置位置ずれによる誤差の累積が生じ得る。そこで、本実施形態では、エッジ位置の測定時の基準位置を提供して、実際のエッジ位置測定時に、あらかじめ測定した基準位置にもとづいて、エッジ位置の補正をすることによって、より高精度の曲り量を測定することを可能にする。
図13は、本実施形態に係る形状測定装置の一部を例示する模式的な平面図である。
図13に示すように、本実施形態では、形状測定装置10は、直線基準補正器500を備える。直線基準補正器500は、検出部に設けられる。この例では、第1の実施形態の場合の検出部30に設けた場合について説明する。
直線基準補正器500は、支柱501a,501bと、直線基準部材502と、を含む。支柱501a,501bは、支柱501a,501b間に、視野CVが入るように搬送方向の前方および後方に設けられる。支柱501a,501bには、直線基準部材502の両端が結合されている。直線基準部材502は、両端に張力をかけると直線基準となる部材で形成されている。たとえば直線基準部材502は、金属製のワイヤ(ピアノ線等)からなる。
支柱501a,501bには、図示しないが、張力調整機構が設けられている。支柱501a,501bのそれぞれの張力調整機構は、直線基準部材502の両端に接続されている。張力調整機構を調整することによって、直線基準部材502に張力をかけて、直線基準を提供できるようにする。
直線基準部材502は、搬送方向にほぼ平行になるように、視野CVにわたって設けられる。直線基準部材502は、支柱501a,501bの張力調整機構によって、十分な張力がかけられ、直線の状態が維持される。
第1の実施形態の場合には、直線基準部材502は、各スリット状光SLa~SLeと交差するように設けられる。カメラ34は、被測定材1を含む画像を撮像するのに先駆けて、被測定材1を撮像することに代えて、直線基準部材502および各スリット状光SLa~SLeの画像を撮像する。カメラ34は、各スリット状光SLa~SLeの少なくとも先端を含み、直線基準部材502および各スリット状光SLa~SLeが交差している様子を撮像する。
詳細は、後述するが、たとえば検出部30は、撮像した画像データを画像処理して、スリット状光SLaの先端から、直線基準部材502とスリット状光SLaとの交点までの長さを測定する。他のスリット状光についても、スリット状光の先端から直線基準部材502との交点までの長さを測定する。検出部30は、たとえば、あらかじめ設定された長さと、直線基準部材502と各スリット状光との交点までの長さの差分を計算して、補正値として、各スリット状光に紐づける。
図14は、本実施形態に係る形状測定装置を例示する模式的なブロック図である。
図14に示すように、本実施形態では、第1の実施形態の場合の形状測定装置10に直線基準補正器500が追加されている。図13において説明したように、検出部30は、被測定材1の測定に先立って、あらかじめ、直線基準補正器500を用いて、基準位置の補正値のデータを取得する。補正値は、演算処理部22に出力され、演算処理部22は、補正値を用いて、被測定材1のエッジの位置を計算し、局所曲り量を演算する。
本実施形態の形状測定装置10の動作について、フローチャートを参照して説明する。
図15は、本実施形態の形状測定装置の動作を説明するためのフローチャートの一部の例である。
図15に示すように、ステップS501において、所定の位置に直線基準補正器500がセッティングされる。所定の位置は、たとえば上述したように、カメラ34の視野CV内であって、各スリット状光SLa~SLeの先端から、直線基準部材502とスリット状光との交点までを撮像できる位置である。
たとえば、形状測定装置10を構成するプログラムがインストールされたコンピュータ端末は、操作者がデータ取込操作の指令を受け付ける。ステップS502において、コンピュータ端末は、データ取込操作を制御部20に対して指示する。
ステップS503において、制御部20は、データ取込操作を検出部30に指示する。
ステップS504において、検出部30は、各スリット状光SLa~SLeの先端から、直線基準部材502とスリット状光との交点までの画像を撮像し、各スリット状光SLa~SLeの先端から、直線基準部材502とスリット状光との交点までの長さのデータを取得する。検出部30は、取得した長さのデータを演算処理部22に送信する。
S505において、演算処理部22は、あらかじめ設定された基準長さを、検出部30から受信した各スリット状光SLa~SLeに対応する長さのデータから差し引いて、差分を計算する。演算処理部22は、計算した差分を、各スリット状光SLa~SLeに対応する補正データとして保存する。
図16は、本実施形態の形状測定装置の動作を説明するためのフローチャートの一部の例である。
図16のフローチャートにおいて、ステップS1~S7は、すでに説明した図3のフローチャートと同じ処理を行っている。また、ステップS8以降についても、図3のフローチャートと同じ処理を行っている。本実施形態では、ステップS7の後に、上述のステップS501~S505において、取得された補正データを用いて、被測定材1のエッジの位置を補正する処理が追加されている。
すなわち、ステップS7の後にステップS500において、演算処理部22は、スリット状光に対応するエッジの位置のデータを、補正データで補正して、補正後のエッジの位置のデータとする。演算処理部22は、補正後のエッジの位置のデータを用いて、局所曲り量を演算する。
以降、ステップS8において、第1の実施形態の場合と同様に、処理が進められる。
上述では、第1の実施形態の場合の検出部30に対して、適用することを説明したが、第2の実施形態や第3の実施形態の場合であっても、同様に適用することができるのはいうまでもない。第3の実施形態に適用する場合に、直線基準部材502を細いワイヤにした場合に、距離検出が難しくなるような場合には、直線基準部材502として、板状の部材を利用するようにしてもよい。
また、第4の実施形態の場合にも、本実施形態を適用してももちろんかまわない。第4の実施形態の場合に、各カメラ434a~434cのすべての視野に、規準目盛りが入らないような場合には、直線基準補正器500を用いることによって、正確に基準値を取得することができ、高精度な曲り量を測定することができる。
第2~第4の実施形態に適用する場合においては、カメラ等のセンサが移動し得るすべての位置における補正データが取得されるべきであることはいうまでもない。
以上説明した実施形態によれば、長さの相違する被測定材の曲り量を正確に測定する形状測定装置を実現することができる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明およびその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1 被測定材、2 板有無検知部、3 搬送位置検出部、4 上位計算機、5 表示部、10,210,310,410 形状測定装置、20,220,320,420 制御部、22 演算処理部、30,230,330,430 演出部、32,32a~32e レーザ投光器、34,434a~434c カメラ、236 ミラー、333a~333c レーザ距離計、438 目盛り盤、500 直線基準補正器、501a,501b 支柱、502 直線基準部材

Claims (5)

  1. 鋼材である被測定材の曲り量を測定する形状測定装置であって、
    被測定材のエッジの位置のうち、少なくとも3点のエッジの位置を検出する検出部と、
    上位計算機から前記被測定材の板長さの情報を受信し前記検出部に送信し、前記検出部に前記板長さに応じた設定をするように指示を送信する制御部と、
    を備え、
    前記検出部は、第1長さを有する前記板長さの場合の前記3点のエッジの位置の間隔が、前記第1長さよりも短い第2長さを有する前記板長さの場合の前記3点のエッジの位置の間隔よりも広くなるように設定し、
    前記制御部は、前記検出部で検出された前記少なくとも3点のエッジの位置にもとづいて前記被測定材の曲り量を算出し、
    前記検出部は、
    前記被測定材の搬送方向に沿って配列され、スリット状光をそれぞれ出射する少なくとも4台のレーザ投光器と、
    前記少なくとも4台のレーザ投光器が出射する前記スリット状光が前記搬送方向に交差し相互に平行になるように照射されている前記被測定材の表面を撮像するカメラと、
    を含み、
    前記検出部は、前記板長さの情報にもとづいて、前記少なくとも4台のレーザ投光器から少なくとも3台のレーザ投光器を選択して動作させ、
    前記カメラによって撮像された画像データを解析して、前記スリット状光の先端から、前記スリット状光が前記被測定材のエッジに交差する点までの長さにもとづいて、前記エッジの位置を検出し、
    第1長さを有する前記板長さの場合の、前記選択された少なくとも3台のレーザ投光器のうち隣接するレーザ投光器の間の離間距離が、前記第1長さよりも短い第2長さを有する前記板長さの場合の、前記隣接するレーザ投光器の間の離間距離よりも広く設定する形状測定装置。
  2. 鋼材である被測定材の曲り量を測定する形状測定装置であって、
    被測定材のエッジの位置のうち、少なくとも3点のエッジの位置を検出する検出部と、
    上位計算機から前記被測定材の板長さの情報を受信し前記検出部に送信し、前記検出部に前記板長さに応じた設定をするように指示を送信する制御部と、
    を備え、
    前記検出部は、第1長さを有する前記板長さの場合の前記3点のエッジの位置の間隔が、前記第1長さよりも短い第2長さを有する前記板長さの場合の前記3点のエッジの位置の間隔よりも広くなるように設定し、
    前記制御部は、前記検出部で検出された前記少なくとも3点のエッジの位置にもとづいて前記被測定材の曲り量を算出し、
    前記検出部は、
    スリット状光を出射するレーザ投光器と、
    前記スリット状光を反射して、反射された前記スリット状光が前記被測定材の表面に前記搬送方向に交差する方向に互いに平行に照射するように設けられたミラーと、
    前記反射されたスリット状光が照射された前記被測定材の表面を撮像可能に配置されたカメラと、
    を含み、
    前記ミラーは、前記板長さの情報にもとづいて、前記被測定材の表面の異なる位置に少なくとも3本の前記反射されたスリット状光を順次照射するように角度を順次設定され、
    前記カメラは、前記少なくとも3本の前記反射されたスリット状光を撮像し、
    前記検出部は、前記カメラによって撮像された画像データを解析して、前記少なくとも3本の前記反射されたスリット状光の先端から、前記反射されたスリット状光が前記被測定材のエッジに交差する点までの長さにもとづいて、前記エッジの位置を検出し、
    第1長さを有する前記板長さの場合の、前記少なくとも3本の前記反射されたスリット状光のうち、隣接する前記反射されたスリット状光の間の離間距離が、前記第1長さよりも短い第2長さを有する前記板長さの場合の、前記隣接する前記反射されたスリット状光の間の離間距離よりも広くするように前記ミラーの角度を設定する請求項1記載の形状測定装置。
  3. 鋼材である被測定材の曲り量を測定する形状測定装置であって、
    被測定材のエッジの位置のうち、少なくとも3点のエッジの位置を検出する検出部と、
    上位計算機から前記被測定材の板長さの情報を受信し前記検出部に送信し、前記検出部に前記板長さに応じた設定をするように指示を送信する制御部と、
    を備え、
    前記検出部は、第1長さを有する前記板長さの場合の前記3点のエッジの位置の間隔が、前記第1長さよりも短い第2長さを有する前記板長さの場合の前記3点のエッジの位置の間隔よりも広くなるように設定し、
    前記制御部は、前記検出部で検出された前記少なくとも3点のエッジの位置にもとづいて前記被測定材の曲り量を算出し、
    前記検出部は、
    前記被測定材の搬送方向に沿って配列され、前記搬送方向に交差する方向の前記被測定材の側面までの距離を計測し、前記搬送方向にそれぞれ可動する少なくとも3台の光学距離計と、
    前記3台の光学距離計のそれぞれの配置位置を設定して移動させる位置設定駆動機構と、
    を含み、
    前記検出部は、
    前記板長さの情報にもとづいて、前記少なくとも3台の光学距離計のうち隣接する光学距離計の離間距離を設定し、
    第1長さを有する前記板長さの場合の、前記少なくとも3台の光学距離計のうち、隣接する光学距離計の間の離間距離が、前記第1長さよりも短い第2長さを有する前記板長さの場合の、前記隣接する光学距離計の間の離間距離よりも広く設定して、前記位置設定駆動機構によって前記隣接する光学距離計を移動させる形状測定装置。
  4. 鋼材である被測定材の曲り量を測定する形状測定装置であって、
    被測定材のエッジの位置のうち、少なくとも3点のエッジの位置を検出する検出部と、
    上位計算機から前記被測定材の板長さの情報を受信し前記検出部に送信し、前記検出部に前記板長さに応じた設定をするように指示を送信する制御部と、
    を備え、
    前記検出部は、第1長さを有する前記板長さの場合の前記3点のエッジの位置の間隔が、前記第1長さよりも短い第2長さを有する前記板長さの場合の前記3点のエッジの位置の間隔よりも広くなるように設定し、
    前記制御部は、前記検出部で検出された前記少なくとも3点のエッジの位置にもとづいて前記被測定材の曲り量を算出し、
    前記検出部は、
    前記搬送方向に沿って設けられた目盛り線を有し、前記目盛り線上を搬送されている前記被測定材によって前記目盛りの一部を覆われる目盛り盤と、
    前記被測定材の搬送方向に沿って配列され、前記目盛り盤および前記被測定材のエッジを撮像する少なくとも3台のカメラと、
    を含み、
    前記検出部は、
    前記板長さの情報にもとづいて、前記少なくとも3台のカメラのうち隣接するカメラの離間距離を設定し、
    前記少なくとも3台のカメラによって撮像された画像データを解析して、撮像されている前記目盛り線の数にもとづいて、前記エッジの位置を検出し、
    第1長さを有する前記板長さの場合の、前記少なくとも3台のカメラのうち、隣接するカメラの間の離間距離が、前記第1長さよりも短い第2長さを有する前記板長さの場合の、前記隣接するカメラの間の離間距離よりも広く設定する形状測定装置。
  5. 前記エッジの位置の基準を提供する直線基準補正器
    をさらに備え、
    前記検出部は、
    前記エッジの位置の基準にもとづいて、前記エッジの位置を補正する補正データをあらかじめ検出し、
    前記制御部は、
    前記補正データにもとづいて、実際に検出された前記エッジの位置のデータを補正する請求項1~のいずれか1つに記載の形状測定装置。
JP2019178982A 2019-09-30 2019-09-30 形状測定装置 Active JP7204307B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019178982A JP7204307B2 (ja) 2019-09-30 2019-09-30 形状測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019178982A JP7204307B2 (ja) 2019-09-30 2019-09-30 形状測定装置

Publications (2)

Publication Number Publication Date
JP2021056087A JP2021056087A (ja) 2021-04-08
JP7204307B2 true JP7204307B2 (ja) 2023-01-16

Family

ID=75273051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019178982A Active JP7204307B2 (ja) 2019-09-30 2019-09-30 形状測定装置

Country Status (1)

Country Link
JP (1) JP7204307B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113814292A (zh) * 2021-08-10 2021-12-21 天津恒兴机械设备有限公司 一种汽车冲压件冲压开裂缺陷检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156622A (ja) 2008-12-27 2010-07-15 Jfe Steel Corp 鋼板の形状計測方法及び形状計測装置
JP2016176708A (ja) 2015-03-18 2016-10-06 住友重機械工業株式会社 形状計測装置、加工装置及び形状計測装置の校正方法
JP2018027560A (ja) 2016-08-18 2018-02-22 東芝三菱電機産業システム株式会社 形状測定装置及びそれを備えた圧延システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157549A (ja) * 1991-12-06 1993-06-22 Nippon Steel Corp 帯状体のキャンバー検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156622A (ja) 2008-12-27 2010-07-15 Jfe Steel Corp 鋼板の形状計測方法及び形状計測装置
JP2016176708A (ja) 2015-03-18 2016-10-06 住友重機械工業株式会社 形状計測装置、加工装置及び形状計測装置の校正方法
JP2018027560A (ja) 2016-08-18 2018-02-22 東芝三菱電機産業システム株式会社 形状測定装置及びそれを備えた圧延システム

Also Published As

Publication number Publication date
JP2021056087A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US7746481B2 (en) Method for measuring center of rotation of a nozzle of a pick and place machine using a collimated laser beam
US20120229620A1 (en) Image processing apparatus and image processing system, and guidance apparatus therefor
TWI453102B (zh) 用於因高速機械手臂運輸中成像工件部件表面而具有移動引起的扭曲的修正之方法
JPH0820234B2 (ja) タンデム―配置軸の検査方法
CN111065947B (zh) 用于确定相干断层摄影机的光学设备的定向的设备、相干断层摄影机和激光加工系统
US20090262319A1 (en) Maskless exposure method
US6831736B2 (en) Method of and apparatus for line alignment to compensate for static and dynamic inaccuracies in scanning
WO2006118133A1 (ja) ワーク位置情報取得方法および装置
JP7204307B2 (ja) 形状測定装置
JP4970204B2 (ja) 真直度測定装置、厚み変動測定装置及び直交度測定装置
JP2015132540A (ja) 測距装置及びロボットピッキングシステム
TWI609171B (zh) Shape measuring device, processing device, and shape measuring device calibration method
TWI507280B (zh) 用於因高速機械手臂運輸中成像工作部件表面而具有移動引起的扭曲的減少或防止之方法
JP2012242138A (ja) 形状計測装置
JP2009109355A (ja) 距離測定装置及びその方法、距離測定装置を用いた厚さ測定装置
JP2001330430A (ja) 平面度測定方法および平面度測定装置
US20210231783A1 (en) Measurement-distance correction method, distance measuring device, and distance measuring system
JP2019211348A (ja) 長尺材の曲がり検出システム
JPH0545117A (ja) 光学式3次元位置計測方法
JP2008032496A (ja) 光学式測定装置
JP2718249B2 (ja) ロボットの位置ずれ検出装置
JP7337637B2 (ja) レーザープローブ、及び光学調整方法
KR100317437B1 (ko) 레이저를 이용한 광축 자동정렬 시스템 및 이를 이용한 광축 정렬 방법
JP2008209295A (ja) 寸法測定装置
JP2019049413A (ja) 欠陥検査装置および欠陥検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221227

R150 Certificate of patent or registration of utility model

Ref document number: 7204307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150