JP7202091B2 - 画質評価装置、学習装置及びプログラム - Google Patents

画質評価装置、学習装置及びプログラム Download PDF

Info

Publication number
JP7202091B2
JP7202091B2 JP2018132993A JP2018132993A JP7202091B2 JP 7202091 B2 JP7202091 B2 JP 7202091B2 JP 2018132993 A JP2018132993 A JP 2018132993A JP 2018132993 A JP2018132993 A JP 2018132993A JP 7202091 B2 JP7202091 B2 JP 7202091B2
Authority
JP
Japan
Prior art keywords
image
learning
neural network
unit
image quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018132993A
Other languages
English (en)
Other versions
JP2020014042A (ja
Inventor
俊枝 三須
敦郎 市ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2018132993A priority Critical patent/JP7202091B2/ja
Publication of JP2020014042A publication Critical patent/JP2020014042A/ja
Application granted granted Critical
Publication of JP7202091B2 publication Critical patent/JP7202091B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Image Analysis (AREA)

Description

本発明は、画質を評価する装置に関し、特にリファレンス画像を要しない画質評価装置、学習装置及びプログラムに関する。
劣化した対象画像の画質を評価する方法として、劣化を受ける前の原画像と対象画像との差分に基づき評価を行うものがある。この評価の演算には、例えば、該差分に基づき演算される平均二乗誤差や、その対数に基づくピーク信号対雑音比(PSNR: Peak Signal to Noise Ratio)が用いられる。
映像符号化に起因する画質劣化を定量化する装置として、ビットストリームに含まれる映像情報(例えば、直交変換係数)及び符号化情報(例えば、量子化値)に基づき、原画像を参照せずに画質評価を可能としたものが実用化されている(例えば、特許文献1,2,3参照)。
ところで、圧縮画像の画質が良好となる符号化パラメータをニューラルネットワークに学習させることで、原画像データが与えられたときに最適な符号化パラメータを導出する画質評価装置が開示されている(例えば、特許文献4参照)。
特許第4133788号明細書 特許第6253944号明細書 特許第6087779号明細書 特許第2795147号明細書
まず、平均二乗誤差やPSNRに基づく評価法は原画像の存在が前提となるため、原画像が存在しない場合には評価値を算出することができない。
一方、特許文献1乃至特許文献3に開示される技法では、原画像を参照せずに画質評価を可能としており、直交変換係数及び量子化値など画像の圧縮符号化に用いたパラメータ情報をも利用するため、直交変換や量子化等の圧縮符号化処理を伴う特定の映像符号化方式において符号化誤差推定を有効に実行することができる。一方で、これらの技法は、種々の符号化方式に対応するためには、符号化方式ごとに個別に調整することを要する。さらに、これらの技法は、符号化以外の要因による誤差の推定に応用することを想定していない。
ところで、特許文献4に開示される技法では、ニューラルネットワークを具備する画質評価装置の実施の形態も示されているが、この技法における当該ニューラルネットワークは、圧縮後の画質が良好となるように符号化パラメータを推定するものであり、画質の評価値を演算し、演算した結果を出力するような画質評価装置及び学習装置として構成するには更なる工夫が必要となる。
そこで、本発明の目的は、上述の問題に鑑みて、参照用の原画像を用いることなく、客観的な画質評価値を高精度に得ることを可能とする画質評価装置、学習装置及びプログラムを提供することにある。
即ち、本発明による一態様の画質評価装置は、入力画像の画質を評価する画質評価装置であって、前記入力画像から部分画像を評価対象パッチとして切り出す画像パッチ切り出し部と、前記評価対象パッチを構成する画素の画素値列を基に、畳み込み層を1層以上含んで構成されるニューラルネットワークの演算により該評価対象パッチに対する評価値を生成するニューラルネットワーク部と、前記ニューラルネットワーク部によって生成した評価値に基づいて、前記入力画像又は前記部分画像の評価値を出力する出力部と前記評価対象パッチを切り出す位置を順次走査して生成する走査部と、前記ニューラルネットワーク部によって生成した評価値を前記走査部の走査に同期して積算する積算部と、を備え、前記出力部は、前記走査部が対象画像内における走査が完了した際に前記積算部により求められた積算値を、前記入力画像の評価値として出力することを特徴とする。
これにより、入力画像の画像全体としての画質評価値を、高精度且つ自動的に導出することが可能となる。
更に、本発明による一態様の学習装置は、予め用意された1以上の学習画像から、画質評価用ニューラルネットワークのパラメータを学習生成する学習装置であって、前記学習画像に対して画質劣化を与えて劣化画像を生成する画像劣化部と前記学習画像及び前記劣化画像のそれぞれから同一位置及び大きさの部分領域をそれぞれ原画像パッチ及び劣化画像パッチとして切り出す画像パッチ切り出し部と、前記劣化画像パッチの画質を前記原画像パッチの画素値を参照しつつ定量化した評価値を生成する参照画質評価部と、前記劣化画像パッチと該評価値の対からなる学習データを基に、学習用ニューラルネットワークの演算により前記学習データの該劣化画像パッチの画素値列から推定評価値を算出し、且つ該推定評価値と該評価値との差分を示す誤差値を用いて前記学習用ニューラルネットワークの演算上の結合重み係数の総体からなるパラメータを更新することにより、当該更新した該パラメータを当該画質評価用ニューラルネットワークのパラメータとして学習生成する学習用ニューラルネットワーク部と、前記推定評価値と前記学習データの評価値との差分を演算して前記誤差値を生成する減算部と、を備えることを特徴とする。
これにより、画質評価用ニューラルネットワークに設定すべき膨大なパラメータの最適値を、入力された学習画像と評価値の様々な対を事例として自動的に導出することが可能となる。
また、本発明による一態様の学習装置において、前記学習用ニューラルネットワーク部は、前記学習データの該劣化画像パッチの画素値列を前記学習用ニューラルネットワーク内順方向に伝播して評価値を推定することにより当該推定評価値を算出し、前記減算部により得られた当該誤差値を前記学習用ニューラルネットワーク内逆方向に伝播させて前記学習用ニューラルネットワークのパラメータを更新するようにして、前記1以上の学習画像の各々からそれぞれ得られる学習データが入力される都度、前記順方向の伝播、及び前記誤差値の逆方向の伝播により、前記学習用ニューラルネットワークのパラメータを更新し、前記1以上の学習画像に関する学習データの全て、若しくはその一部に対する前記学習用ニューラルネットワークのパラメータの更新を終えた時点を以て当該画質評価用ニューラルネットワークのパラメータとして学習生成することを特徴とする。
これにより、画質評価用ニューラルネットワークに設定すべき膨大なパラメータの最適値を、入力された学習画像と評価値の様々な対を事例として、高精度且つ自動的に導出することが可能となる。
また、本発明による一態様の学習装置において、前記画像劣化部は、前記学習画像に対して程度又は質の異なる劣化を与えて複数の劣化画像を生成し、前記画像パッチ切り出し部は、前記学習画像及び前記複数の劣化画像のそれぞれから同一位置及び大きさの部分領域をそれぞれ原画像パッチ及び複数の劣化画像パッチとして切り出し、前記参照画質評価部は、該複数の劣化画像パッチの各画質をそれぞれ前記原画像パッチの画素値を参照しつつ定量化した評価値を含むミニバッチを生成し、前記学習用ニューラルネットワーク部は、該複数の劣化画像パッチと該ミニバッチを基に、前記学習用ニューラルネットワークの演算により前記学習データの該複数の劣化画像パッチの画素値列から推定評価値を算出し、且つ該推定評価値と該評価値との差分を示す誤差値を用いて前記学習用ニューラルネットワークの演算上の結合重み係数の総体からなるパラメータを更新することにより、当該更新した該パラメータを当該画質評価用ニューラルネットワークのパラメータとして学習生成することを特徴とする。
これにより、前記ミニバッチは同一の絵柄(前記学習画像における原画像パッチ)に異なる劣化を付与した場合の劣化画像パッチと評価値とを含むことから、劣化前の絵柄の影響を受けにくいものとした、より公平な評価を可能にする当該画質評価用ニューラルネットワークのパラメータを、より高精度に、且つ自動的に導出することが可能となる。
更に、本発明による一態様の画質評価装置において、前記ニューラルネットワーク部は、本発明の学習装置における学習用ニューラルネットワーク部と同一の素子及び同一の接続によるニューラルネットワーク構造を有し、該学習装置によって演算された当該画質評価用ニューラルネットワークのパラメータを設定して、当該評価対象パッチに対する評価値を生成することを特徴とする。
これにより、当該学習装置によって事例に基づき最適化されたパラメータが画質評価装置内のニューラルネットワーク部に設定されるため、精度の高い画質評価を実現することが可能となる。
更に、本発明による一態様の画質評価装置は、本発明の学習装置を更に備え、前記ニューラルネットワーク部は、該学習装置における学習用ニューラルネットワーク部と同一の素子及び同一の接続によるニューラルネットワーク構造を有し、該学習装置によって演算された当該画質評価用ニューラルネットワークのパラメータを設定して、当該評価対象パッチに対する評価値を生成することを特徴とする。
これにより、当該学習装置にて事例に基づきパラメータを最適化する学習機能と、該パラメータを用いて画質評価対象の入力画像に対する画質評価機能とを備え持つ画質評価装置を構成することができる。この場合も、当該学習装置によって事例に基づき最適化されたパラメータが画質評価装置内のニューラルネットワーク部に設定されるため、精度の高い画質評価を実現することが可能となる。
更に、本発明のプログラムは、コンピュータを、本発明の画質評価装置として機能させるためのプログラムとして構成されている。
本発明によれば、参照用の原画像を用いることなく、客観的な画質評価値を高精度に得ることを可能となる。
本発明による一実施形態の画質評価装置の概略構成を例示するブロック図である。 本発明による一実施形態の画質評価装置におけるニューラルネットワーク部の概略構成を例示するブロック図である。 本発明による第1実施形態の学習装置の概略構成を例示するブロック図である。 本発明に係る学習装置における同一画像(学習画像の画像パッチ)に対し異なる劣化を付与した複数の劣化画像パッチと、各劣化画像パッチの参照局部評価値とによって構成したミニバッチを例示する図である。 本発明による第2実施形態の学習装置の概略構成を例示するブロック図である。
以下、図面を参照して、本発明による一実施形態の画質評価装置1、及び各実施形態の学習装置2,3について順に説明する。
〔画質評価装置〕
図1は、本発明による一実施形態に係る画質評価装置1の概略構成を例示するブロック図である。画像評価装置1は、入力画像(評価対象画像)Iの全体画質を評価し、その結果を画質評価値として外部に出力する。また、画像評価装置1は、必要に応じて外部指示に基づき入力画像(評価対象画像)Iの局所画質を評価し局部評価値分布として外部に出力する。画質評価装置1は、走査部10、画像パッチ切り出し部20、ニューラルネットワーク部30、積算部40、及び出力部30A,40Aを備える。
走査部10は、画像パッチ切り出し部20に入力される入力画像I(評価対象画像)の全体画質を評価時に、当該入力画像Iから部分画像(評価対象パッチP)を切り出すための基準となる座標値を順次生成し画像パッチ切り出し部20に出力する。
例えば、走査部10は、入力画像Iから幅w画素、高さw画素の部分画像を切り出すラスタ走査の要領で座標(0,0)から水平方向s、及び垂直方向sの間隔で座標を生成する。一例として、入力画像Iの大きさが水平方向C画素、及び垂直方向Cの場合に、走査部10はそのi番目の走査時点において、画像座標(p(i),q(i))を、次式(数1)により生成することができる。
Figure 0007202091000001
画像パッチ切り出し部20は、画像パッチ切り出し部20に入力される入力画像I(評価対象画像)の全体画質の評価時には、走査部10によって指定されるi番目の走査時点における画像座標(p(i),q(i))に基づいて、入力画像Iから部分画像(評価対象パッチP)を切り出して、ニューラルネットワーク部30に出力する。
尚、画像パッチ切り出し部20は、入力画像(評価対象画像)Iの局所画質の評価時には、外部指示によって指定される画像座標(p(i),q(i))に基づいて、入力画像Iから部分画像(評価対象パッチP)を切り出して、ニューラルネットワーク部30に出力する。この局所画質の評価時の外部指示は走査部10に対して行うものとしてもよい。
例えば、画像パッチ切り出し部20は、次式(数2)により、走査部10から指定される画像座標(p(i),q(i))を左上座標として、所定の大きさの矩形領域(例えば、水平方向s画素、垂直方向s画素の矩形領域)を評価対象パッチPとしてニューラルネットワーク部30に出力する。
Figure 0007202091000002
ニューラルネットワーク部30は、評価対象パッチPを構成する画素値列を画像パッチ切り出し部20からニューラルネットワークに入力し、評価対象パッチPの画質の推定値としての局部評価値をその出力端から出力部30A及び積算部40に出力する。
例えば図2に示すように、ニューラルネットワーク部30は、いわゆる畳み込みニューラルネットワークにより構成することができる。図2は、本発明による一実施形態の画質評価装置1におけるニューラルネットワーク部30の概略構成を示すブロック図の一例である。
ニューラルネットワーク部30を図2に例示する畳み込みニューラルネットワークにより構成した場合、ニューラルネットワーク部30は、畳み込み層を1層以上含んで構成される(図示する例では、畳み込み層32,33,35,36,…の多重構造により構成される。)。また、ニューラルネットワーク部30は、畳み込み層のほか、全結合層(図示する例では、全結合層37,38として例示する。)とプーリング層34のうち一方又は両方を備えてもよいし、或る層の出力から1以上の層を飛び越えて別の層の入力へ結合するスキップレイヤ結合(図示略)を有しても構わない(所定のニューロン(素子)に直接入力してもよいし、隣接相関を結ぶ結合部分に加算するように結合してもよい。)。また、畳み込み層やプーリング層において空間方向の間引きを行っても構わない。
そして、ニューラルネットワーク部30において、畳み込み層(図示する例では、畳み込み層32,33,35,36)及び全結合層(図示する例では、全結合層37,38)を構成する各素子への入力には重み係数が掛けられ、更に、必要に応じてバイアスが加えられる(本願明細書中、これら重み係数及びバイアスを総称して、「結合重み係数」と記す。)。また、本願明細書中、ニューラルネットワーク部30に含まれる結合重み係数の総体を、以後「パラメータ」(図2に示すパラメータ31)と称することとする。
パラメータ31は、好適には、図3乃至図5を参照して後述する学習装置2,3に基づいて最適化されたパラメータを用いることとする。ニューラルネットワーク部30において、パラメータ31は、外部から書き込み可能としてもよいし、書き換え可能としてもよいし、読み出し専用としても構わない。パラメータ31が読み出し専用の場合には、予め学習装置2,3等で導出したパラメータを畳み込み層や全結合層内の重み係数値やバイアス値として、例えば、ROM(Read Only Memory)等に記憶させておく。パラメータ31が書き換え可能の場合には、フラッシュメモリ等に予め導出したパラメータを記憶しておいてもよい。また、ニューラルネットワーク部30において、パラメータ31を記憶させずに単に入出力する構成としてもよい。また、この場合、初回使用前やバージョンアップ等の際に必要に応じてそのパラメータ31の一部又は全部を更新するよう構成することもできる。パラメータ31が書き込み可能であって、書き換え不可能な場合には、初回使用前までに学習装置2,3等で導出したものを設定するものとする。
従って、ニューラルネットワーク部30は、画像パッチ切り出し部20からの評価対象パッチPを構成する画素値列をニューラルネットワークに入力し、複数の畳み込み層の後に1層以上の全結合層を接続し、最初の畳み込み層には評価対象ブロックの2次元的な画素値列を入力し、最終の全結合層の出力に基づき評価対象パッチPの画質の推定値としての局部評価値を決定する。このとき、局部評価値は、当該ニューラルネットワークにおける最終の全結合層の1出力の値をそのまま用いてもよいし、これに線形又は非線形の関数を適用したものとしてもよい。或いは、最終の全結合層の複数の出力値に対して既定の線形変換又は非線形変換を行ってスカラー値に変換し、これを局部評価値としてもよい。
そして、画質評価装置1は、当該外部指示に基づきニューラルネットワーク部30から出力される局部評価値を出力部30Aから局部評価値分布としてそのまま外部に出力することができる。この場合、画質評価装置1は、画面内の場所ごとの局部的な画質を、高精度且つ自動的に評価することが可能となる。
一方、入力画像I(評価対象画像)の全体画質を評価時には、画質評価装置1は、上述した操作部10と共に設けられる積算部40により、画面全体の評価値を画質評価値として出力部40Aから外部に出力することができる。
積算部40は、ニューラルネットワーク部30によってi番目の評価対象パッチPに対して算出された局部評価値Lを積算し、該積算値に基づいて画面全体としての評価値としての画質評価値Eを導出し出力部40Aに出力する。
例えば、積算部40は、次式(数3)により、評価対象パッチPの局部評価値Lの相加平均値を以て画質評価値Eを定義することができる。
Figure 0007202091000003
或いは、積算部40は、次式(数4)により、i番目の評価対象パッチの切り出し位置等に応じて、重みづけβを乗じた平均値として画質評価値Eを定義してもよい。
Figure 0007202091000004
更に、例えば、積算部40は、次式(数5)により、任意の規定の関数fを用いて、画質評価値Eを定義してもよい。
Figure 0007202091000005
ここで、上式(数5)における関数fの例として、次式(数6)のような対数を用いた関数などを用いることもできる。
Figure 0007202091000006
更に、例えば、積算部40は、次式(数7)により、複数の評価対象パッチPに関する任意の規定の関数fを用いて、画質評価値Eを定義してもよい。
Figure 0007202091000007
そして、例えば、積算部40は、以上の画質評価値Eの定義例を適宜組み合わせたものとすることもできる。
以上のように、本実施形態の画質評価装置1は、入力画像(評価対象画像)Iの全体画質を評価し、その結果を画質評価値として、及び必要に応じて外部指示に基づき入力画像(評価対象画像)Iの局所画質を評価し局部評価値分布として外部に出力する。これにより、入力画像の局所的な画質評価値を出力することや、入力画像の画像全体としての画質評価値を、高精度且つ自動的に導出することが可能となる。
〔学習装置〕
次に、上述した本実施形態の画質評価装置1におけるニューラルネットワーク部30で用いるパラメータ31を最適化するための学習装置2,3の各実施形態の構成について説明する。まず、図3を参照して、第1実施形態の学習装置2を説明する。
(第1実施形態の学習装置)
図3は、本発明による第1実施形態の学習装置2の概略構成を例示するブロック図である。学習装置2は、画像劣化部50、切り出し座標値発生部51、画像パッチ切り出し部52、画像パッチ切り出し部53、参照画質評価部54、学習用ニューラルネットワーク部55、及び減算部56を備える。
画像劣化部50は、入力された学習画像T(画像の大きさを水平方向c画素、垂直方向c画素とする)に対して、画素値レベルの改変、位置ずらし、変形、回転、拡大、縮小、シア、雑音(インパルス雑音、ガウス雑音、ショット雑音など)、歪(ぼやけ、ブロック歪、非可逆画像符号化・復号に起因する歪など)等の画像改変を施し、劣化画像Dとして画像パッチ切り出し部53に出力する。
切り出し座標値発生部51は、画像パッチ切り出し部52に入力される学習画像T(原画像)から部分画像(原画像パッチQ)を切り出すための基準となる座標値を順次生成し画像パッチ切り出し部52に出力し、且つこの座標値を画像パッチ切り出し部53にも出力する。
切り出し座標値発生部51の動作は、上述した画質評価装置1における走査部10と同様の動作で画像座標値(u(i),v(i))を生成するものであっても構わないし、或いはランダムな画像座標値(u(i),v(i))を生成するものであっても構わない。
切り出し座標値発生部51が、i回目の動作時点において、ランダムな画像座標値(u(i),v(i))を生成する場合、例えば、u(i)は0以上c-W以下の整数の一様乱数値(或いは一様乱数を模擬した疑似乱数発生器からの疑似乱数値)、また、v(i)は0以上c-W以下の整数の一様乱数値(或いは一様乱数を模擬した疑似乱数発生器からの疑似乱数値)とすることができる。
画像パッチ切り出し部52は、切り出し座標値発生部51によって指定されるi番目の動作時点における画像座標(u(i),v(i))に基づいて、学習画像Tから部分画像(原画像パッチQ)を切り出して参照画質評価部54に出力する。
例えば、画像パッチ切り出し部52は、次式(数8)により、切り出し座標値発生部51から指定される画像座標(u(i),v(i))を左上座標とする所定の大きさの矩形領域(例えば、水平方向s画素、垂直方向s画素の矩形領域)を原画像パッチQとして参照画質評価部54に出力する。
Figure 0007202091000008
画像パッチ切り出し部53は、切り出し座標値発生部51によって指定されるi番目の動作時点における画像座標(u(i),v(i))に基づいて、劣化画像Dから部分画像(劣化画像パッチR)を切り出して、参照画質評価部54及び学習用ニューラルネットワーク部55に出力する。
例えば、画像パッチ切り出し部53は、次式(数9)により、切り出し座標値発生部51から指定される画像座標(u(i),v(i))を左上座標とする所定の大きさの矩形領域(例えば、水平方向s画素、垂直方向s画素の矩形領域)を原画像パッチRとして参照画質評価部54及び学習用ニューラルネットワーク部55に出力する。
Figure 0007202091000009
参照画質評価部54は、画像パッチ切り出し部52からの原画像パッチQと、画像パッチ切り出し部53からの劣化画像パッチRとに基づいて、劣化画像パッチRの画質を評価し、その結果を参照局部評価値Mとして減算部56に出力する。
参照局部評価値Mは、例えば次式(数10)により、二乗誤差和を用いて求めたものとすることができる。
Figure 0007202091000010
或いは、参照局部評価値Mは、例えば次式(数11)により、平均二乗誤差和を用いて求めたものとすることができる。
Figure 0007202091000011
学習用ニューラルネットワーク部55は、上述した画質評価装置1のニューラルネットワーク部30と同一構造(ネットワークの形状(素子の接続形態)、活性化関数の種類が同一)とする。ただし、学習用ニューラルネットワーク部55は、パラメータについては可変とし、与えられる学習データによってパラメータ値が更新され得るものとする点で上述した画質評価装置1のニューラルネットワーク部30とは相違する。
また、学習用ニューラルネットワーク部55は、順伝播と逆伝播の二つの動作状態を交互に実行する点でも上述した画質評価装置1のニューラルネットワーク部30とは相違する。
学習用ニューラルネットワーク部55は、その動作の初期において、そのパラメータ値(結合重み係数値及びバイアス値)を所定の手続きにより初期化するものとする。この初期化は、例えば、すべて一定の値(例えば、0.1のバイアス値)で初期化してもよいし、乱数値(例えば、平均0、標準偏差0.1の正規分布(または切断正規分布)に従う乱数値またはその近似値による結合重み係数)であっても構わない。
学習用ニューラルネットワーク部55は、その順伝播時において、画質評価装置1のニューラルネットワーク部30と同様に動作し、入力された劣化画像パッチRに対して当該動作時点において設定されているパラメータ値に基づいて処理を行い、該劣化画像パッチRの局部評価値を算出し仮の局部評価値Jとして減算部56に出力する。
続いて、減算部56は、当該仮の局部評価値Jと参照局部評価値Mとを入力し、当該仮の局部評価値Jと参照局部評価値Mの差分(本例では仮の局部評価値Jから参照局部評価値Mを減じた値とするが、参照局部評価値Mから局部評価値Jを減じた値としてもよい)を算出し、誤差値Δiとして学習用ニューラルネットワーク部55に出力する。
その後、学習用ニューラルネットワーク部55は、その逆伝播動作を実行する。この逆伝播動作時に、学習用ニューラルネットワーク部55は、減算部56からの誤差値Δiに基づき、そのネットワークの出力側から入力側に向かって誤差値を伝播しつつ、パラメータ値を修正していくことになる。
必要に応じて、学習用ニューラルネットワーク部55は、学習装置2に入力する学習画像Tを変えて画像劣化部50を実行しつつ、切り出し座標値発生部51、画像パッチ切り出し部52、画像パッチ切り出し部53、及び参照画質評価部54の動作を繰り返す(動作の繰り返しにより、該繰り返しの都度、インデックスiを、例えば、1ずつ増ずるものとする)。そして、学習用ニューラルネットワーク部55は、繰り返されてその都度得られる劣化画像パッチRと参照局部評価値Mの対からなる学習データに基づいて、順伝播と逆伝播を行う。該繰り返しの回数(繰り返しの条件)は、所定の値(例えば、100万回)であってもよいし、或いは減算部56によって得られた誤差値が所定値以下(または所定値未満)になるまでであってもよいし、更には、前記誤差値の繰り返しによる変化量が所定の範囲になるまでであっても構わないし、以上の2以上の組み合わせによる基準を満たすまでであっても構わない。
学習用ニューラルネットワーク部55は、当該繰り返しをその繰り返しの条件に達するまで実行した後、学習用ニューラルネットワーク部55に設定されているパラメータを画質評価用のパラメータ31(最適化パラメータ)として、上述した画質評価装置1のニューラルネットワーク部30に出力する。
以上のように、本実施形態の学習装置2は、上述した本実施形態の画質評価装置1におけるニューラルネットワーク部30で用いるパラメータ31を最適化することができる。これにより、画質評価用ニューラルネットワークに設定すべき膨大なパラメータの最適値を、入力された学習画像と評価値の様々な対を事例として自動的に導出することが可能となる。
特に、学習装置2は、画質劣化の機序が数学的に規定されている場合において、該機序を画像劣化部50として実装することにより、入力された様々な学習画像Tを事例として画質評価値を参照画質評価部54で算出しつつ、劣化画像パッチRと該評価値の対からなる学習データに基づいて、学習用ニューラルネットワーク部55に設定すべきパラメータの最適値を自動的に導出することが可能となる。一例として、非可逆の画像符号化方式に基づく画像符号化及び局部復号の縦続接続を画像劣化部50に実装することができる。そして、学習装置2は、当該非可逆の画像符号化方式に基づく画像符号化/局部復号時に生じる画質劣化の態様に特化したパラメータ31の最適値を導出することが可能となる。
(第2実施形態の学習装置)
図4は、図5を参照して後述する学習装置3における同一画像(学習画像Tの画像パッチQ)に対し異なる劣化を付与した複数の劣化画像パッチRと、各劣化画像パッチRの参照局部評価値Mとによって構成したミニバッチを例示する図である。また、図5は、本発明による第2実施形態の学習装置3の概略構成を例示するブロック図である。
まず、上述した学習装置2のより好適な変形例として、順伝播及び逆伝播を実施する際、複数の劣化画像パッチと、劣化画像パッチRの各々に呼応する参照局部評価値Mとを束ねて用いてミニバッチ学習を行う学習装置3とすることができる。
ここで、劣化画像パッチRと参照局部評価値Mの複数の対をミニバッチと称することとする)。このとき、そのミニバッチに含まれる劣化画像パッチRは、同一の原画像パッチQに対して質と程度のいずれか一方、或いはその両者の異なる劣化を付加したものとすることができる。
図4は、図5を参照して後述する学習装置3における同一画像(学習画像Tの画像パッチQ)に対し異なる劣化を付与した複数の劣化画像パッチRと、各劣化画像パッチRの参照局部評価値Mとによって構成したミニバッチを例示する図である。
図4に示す例では、原画像パッチQを異なる画質で劣化させた3個の要素からなる劣化画像パッチRと、劣化画像パッチ各要素の画質を表す3要素からなるベクトル量としての参照局部評価値Mとによって構成される。
例えば、図4に示す例において、3個の要素からなる劣化画像パッチRは、MPEG-2の符号化処理に対応するよう劣化させたもの、H.264/MPEG-4 AVCの符号化処理に対応するよう劣化させたもの、H.265/MPEG-H HEVCの符号化処理に対応するよう劣化させたもの等とすることができる。即ち、原画像パッチQについて異なる画質で劣化させた劣化画像パッチRを複数用意することで、原画像パッチQの特徴から大きく外れることなく、後述する学習装置3にて学習させることが可能となり、画質評価の精度を向上させることができる。
図5に示す学習装置3は、画像劣化部60、切り出し座標値発生部51、画像パッチ切り出し部52、画像パッチ切り出し部63、参照画質評価部64、学習用ニューラルネットワーク部65、及び減算部66を備える。尚、図5において、図3に示すものと同様の構成要素には同一の参照番号を付している。
切り出し座標値発生部51及び画像パッチ切り出し部52については、図3に示す学習装置2おける切り出し座標値発生部51及び画像パッチ切り出し部52と同一の動作であるから、その説明を省略する。
画像劣化部60は、入力された学習画像Tに対して、質と程度のいずれか一方、或いはその両者の異なるK種類(Kは2以上の整数)の画像劣化を適用し、複数の劣化画像D(k)(kは0以上、K-1以下の整数)を画像パッチ切り出し部63に出力する。
画像パッチ切り出し部63は、切り出し座標値発生部51によって指定されるi番目の動作時点における画像座標(u(i),v(i))に基づいて、各劣化画像D(k)から部分画像(劣化画像パッチR (k))を切り出して参照画質評価部64に出力する。
例えば、画像パッチ切り出し部63は、次式(数12)により、切り出し座標値発生部51から指定される画像座標(u(i),v(i))を左上座標とする所定の大きさの矩形領域(例えば、水平方向s画素、垂直方向s画素の矩形領域)を原画像パッチRとして参照画質評価部64に出力する。
Figure 0007202091000012
参照画質評価部64は、画像パッチ切り出し部52からの原画像パッチQと、画像パッチ切り出し部63からの劣化画像パッチR (k)とに基づいて、次式(数13)により、劣化画像パッチR (k)の画質を評価した結果M (k)を異なる劣化のK種類M (0)乃至M (K-1)についてまとめたものを参照局部画質評価値Mとして減算部66に出力する。
Figure 0007202091000013
参照局部画像評価値Mを構成する成分M (k)は、例えば次式(数14)により、二乗誤差和を用いて求めたものとすることができる。
Figure 0007202091000014
或いは、参照局部評価値Mを構成する成分M (k)は、例えば次式(数15)により、平均二乗誤差和を用いて求めたものとすることができる。
Figure 0007202091000015
学習用ニューラルネットワーク部65は、その順伝播時に画質の異なるK個のパッチR (0)乃至R (K-1)からなる劣化画像パッチRを処理して、各々のパッチR (k)の仮の局部画質評価値J (k)を算出し、次式(数16)により、J (k)をk=0乃至k=K-1についてまとめた局部画質評価値Jを減算部66に出力する。
Figure 0007202091000016
各パッチに対する学習用ニューラルネットワーク部65の基本動作は、図3に示した学習用ニューラルネットワーク部55の動作と同様である。
続いて、減算部66は、仮の局部評価値Jと参照局部評価値Mとを入力し、当該仮の局部評価値Jと参照局部評価値Mの差分を算出し、誤差値Δiとして出力する。尚、本例では、当該仮の局部評価値Jと参照局部評価値Mの差分を、仮の局部評価値Jから参照局部評価値Mを減じた値とするが、参照局部評価値Mから局部評価値Jを減じた値としてもよい。
尚、図3に示した減算部56はスカラー同士の減算によりスカラー値の誤差値Δiを出力するものであるのに対し、図5に示す減算部66は、ベクトル値同士の減算によりベクトル値の誤差値Δiを出力する点のみ動作が異なる。
その後、学習用ニューラルネットワーク部65は、その逆伝播動作を実行する。この逆伝播動作時に、学習用ニューラルネットワーク部65は、減算部66からの誤差値Δiに基づき、そのネットワークの出力側から入力側に向かって誤差値を伝播しつつ、パラメータ値を修正していくことになる。
必要に応じて、学習装置3に入力する学習画像Tを変えて画像劣化部60を実行しつつ、切り出し座標値発生部51、画像パッチ切り出し部52、画像パッチ切り出し部63、及び参照画質評価部64の動作を繰り返す(該繰り返しの都度、インデックスiを、例えば、1ずつ増ずるものとする)。そして、学習用ニューラルネットワーク部65は、繰り返されてその都度得られる劣化画像パッチRと参照局部評価値Mの対からなる学習データに基づいて、順伝播と逆伝播を行う。該繰り返しの回数(繰り返しの条件)は、所定の値(例えば、100万回)であってもよいし、或いは減算部66によって得られた誤差値が所定値以下(または所定値未満)になるまでであってもよいし、さらには、前記誤差値の繰り返しによる変化量が所定の範囲になるまでであっても構わないし、以上の2以上の組み合わせによる基準を満たすまでであっても構わない。
学習用ニューラルネットワーク部65は、当該繰り返しをその繰り返しの条件に達するまで実行した後、学習用ニューラルネットワーク部65に設定されているパラメータを画質評価用のパラメータ31(最適化パラメータ)として、上述した画質評価装置1のニューラルネットワーク部30に出力する。
以上のように、本実施形態の学習装置3は、上述した本実施形態の画質評価装置1におけるニューラルネットワーク部30で用いるパラメータ31を最適化することができる。これにより、当該ミニバッチは同一の絵柄(学習画像Tにおける原画像パッチQ)に異なる劣化を付与した場合の劣化画像パッチRとその評価値とを含むことから、学習用ニューラルネットワーク部65はその評価値について絵柄よりも劣化形態に対する感受性が高まるよう学習を進行させることができる。その結果、当該画質評価装置1用のニューラルネットワーク部30のパラメータについて劣化前の絵柄の影響を受けにくいものとした、より公平な評価を可能とし、より高精度に、且つ自動的に導出することが可能となる。
ここで、本発明に係る画質評価装置1において、ニューラルネットワーク部30は、本発明に係る学習装置2(3)における学習用ニューラルネットワーク部55(65)と同一の素子及び同一の接続によるニューラルネットワーク構造を有している。このため、該学習装置2(3)によって演算された当該画質評価用ニューラルネットワークのパラメータ31をニューラルネットワーク部30に設定して、当該評価対象パッチPに対する評価値を生成することで、精度の高い画質評価を実現することできる。
特に、本発明に係る学習装置2(3)における学習用ニューラルネットワーク部55(65)の事例数を十分に多くすることでニューラルネットワークにおける個々のパラメータを手作業で設定した場合よりも画質評価の精度を向上することができる。また、当該事例を特定の絵柄(例えば、風景、人物、人工物、コンピュータグラフィクス、イラストなど)に限定すれば、当該絵柄に特化した高精度の画質評価を実現することも可能である。
更に、本発明による一態様の画質評価装置1は、本発明に係る学習装置2(3)を備えるように構成することで、当該学習装置2(3)にて事例に基づきパラメータを最適化する学習機能と、該パラメータを用いて画質評価対象の入力画像に対する画質評価機能とを備え持つ画質評価装置1を構成することができる。この場合も、当該学習装置2(3)によって事例に基づき最適化されたパラメータが画質評価装置1内のニューラルネットワーク部に設定されるため、精度の高い画質評価を実現することが可能となる。
上述した実施形態の例に関して、画質評価装置1、又は各学習装置2,3、或いは画質評価装置1と各学習装置2,3とを組み合わせて機能するコンピュータを構成し、これらの装置の各手段を機能させるためのプログラムを好適に用いることができる。具体的には、各手段を制御するための制御部をコンピュータ内の中央演算処理装置(CPU)で構成でき、且つ、各手段を動作させるのに必要となるプログラムを適宜記憶する記憶部を少なくとも1つのメモリで構成させることができる。即ち、そのようなコンピュータに、CPUによって該プログラムを実行させることにより、上述した各手段の有する機能を実現させることができる。更に、各手段の有する機能を実現させるためのプログラムを、前述の記憶部(メモリ)の所定の領域に格納させることができる。そのような記憶部は、装置内部のRAM又はROMなどで構成させることができ、或いは又、外部記憶装置(例えば、ハードディスク)で構成させることもできる。また、そのようなプログラムは、コンピュータで利用されるOS上のソフトウェア(ROM又は外部記憶装置に格納される)の一部で構成させることができる。更に、そのようなコンピュータに、各手段として機能させるためのプログラムは、コンピュータ読取り可能な記録媒体に記録することができる。また、上述した各手段をハードウェア又はソフトウェアの一部として構成させ、各々を組み合わせて実現させることもできる。
上述の各実施形態については代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換することができることは当業者に明らかである。従って、本発明は、上述の各実施形態によって制限するものと解するべきではなく、特許請求の範囲によってのみ制限される。
本発明によれば、参照用の原画像を用いることなく、客観的な画質評価値を、高精度に得ることを可能となるので、画質評価を要する用途に有用である。
1 画質評価装置
2 学習装置
3 学習装置
10走査部
20画像パッチ切り出し部
30ニューラルネットワーク部
30A 出力部
40積算部
40A 出力部
31パラメータ
32畳み込み層
33畳み込み層
34プーリング層
35畳み込み層
36畳み込み層
37全結合層
38全結合層
50画像劣化部
51切り出し座標値発生部
52画像パッチ切り出し部
53画像パッチ切り出し部
54参照画質評価部
55学習用ニューラルネットワーク部
56減算部
60画像劣化部
63画像パッチ切り出し部
64参照画質評価部
65学習用ニューラルネットワーク部
66減算部

Claims (7)

  1. 入力画像の画質を評価する画質評価装置であって、
    前記入力画像から部分画像を評価対象パッチとして切り出す画像パッチ切り出し部と、
    前記評価対象パッチを構成する画素の画素値列を基に、畳み込み層を1層以上含んで構成されるニューラルネットワークの演算により該評価対象パッチに対する評価値を生成するニューラルネットワーク部と、
    前記ニューラルネットワーク部によって生成した評価値に基づいて、前記入力画像又は前記部分画像の評価値を出力する出力部と
    前記評価対象パッチを切り出す位置を順次走査して生成する走査部と、
    前記ニューラルネットワーク部によって生成した評価値を前記走査部の走査に同期して積算する積算部と、を備え、
    前記出力部は、前記走査部が対象画像内における走査が完了した際に前記積算部により求められた積算値を、前記入力画像の評価値として出力することを特徴とする画質評価装置。
  2. 予め用意された1以上の学習画像から、画質評価用ニューラルネットワークのパラメータを学習生成する学習装置であって、
    前記学習画像に対して画質劣化を与えて劣化画像を生成する画像劣化部と
    前記学習画像及び前記劣化画像のそれぞれから同一位置及び大きさの部分領域をそれぞれ原画像パッチ及び劣化画像パッチとして切り出す画像パッチ切り出し部と、
    前記劣化画像パッチの画質を前記原画像パッチの画素値を参照しつつ定量化した評価値を生成する参照画質評価部と、
    前記劣化画像パッチと該評価値の対からなる学習データを基に、学習用ニューラルネットワークの演算により前記学習データの該劣化画像パッチの画素値列から推定評価値を算出し、且つ該推定評価値と該評価値との差分を示す誤差値を用いて前記学習用ニューラルネットワークの演算上の結合重み係数の総体からなるパラメータを更新することにより、当該更新した該パラメータを当該画質評価用ニューラルネットワークのパラメータとして学習生成する学習用ニューラルネットワーク部と、
    前記推定評価値と前記学習データの評価値との差分を演算して前記誤差値を生成する減算部と、
    を備えることを特徴とする学習装置。
  3. 前記学習用ニューラルネットワーク部は、前記学習データの該劣化画像パッチの画素値列を前記学習用ニューラルネットワーク内順方向に伝播して評価値を推定することにより当該推定評価値を算出し、前記減算部により得られた当該誤差値を前記学習用ニューラルネットワーク内逆方向に伝播させて前記学習用ニューラルネットワークのパラメータを更新するようにして、前記1以上の学習画像の各々からそれぞれ得られる学習データが入力される都度、前記順方向の伝播、及び前記誤差値の逆方向の伝播により、前記学習用ニューラルネットワークのパラメータを更新し、前記1以上の学習画像に関する学習データの全て、若しくはその一部に対する前記学習用ニューラルネットワークのパラメータの更新を終えた時点を以て当該画質評価用ニューラルネットワークのパラメータとして学習生成することを特徴とする、請求項2に記載の学習装置。
  4. 前記画像劣化部は、前記学習画像に対して程度又は質の異なる劣化を与えて複数の劣化画像を生成し、
    前記画像パッチ切り出し部は、前記学習画像及び前記複数の劣化画像のそれぞれから同一位置及び大きさの部分領域をそれぞれ原画像パッチ及び複数の劣化画像パッチとして切り出し、
    前記参照画質評価部は、該複数の劣化画像パッチの各画質をそれぞれ前記原画像パッチの画素値を参照しつつ定量化した評価値を含むミニバッチを生成し、
    前記学習用ニューラルネットワーク部は、該複数の劣化画像パッチと該ミニバッチを基に、前記学習用ニューラルネットワークの演算により前記学習データの該複数の劣化画像パッチの画素値列から推定評価値を算出し、且つ該推定評価値と該評価値との差分を示す誤差値を用いて前記学習用ニューラルネットワークの演算上の結合重み係数の総体からなるパラメータを更新することにより、当該更新した該パラメータを当該画質評価用ニューラルネットワークのパラメータとして学習生成することを特徴とする、請求項2又は3に記載の学習装置。
  5. 前記ニューラルネットワーク部は、
    請求項2から4のいずれか一項に記載の学習装置における学習用ニューラルネットワーク部と同一の素子及び同一の接続によるニューラルネットワーク構造を有し、
    該学習装置によって演算された当該画質評価用ニューラルネットワークのパラメータを設定して、当該評価対象パッチに対する評価値を生成することを特徴とする、請求項に記載の画質評価装置。
  6. 請求項2から4のいずれか一項に記載の学習装置を更に備え、
    前記ニューラルネットワーク部は、該学習装置における学習用ニューラルネットワーク部と同一の素子及び同一の接続によるニューラルネットワーク構造を有し、
    該学習装置によって演算された当該画質評価用ニューラルネットワークのパラメータを設定して、当該評価対象パッチに対する評価値を生成することを特徴とする、請求項に記載の画質評価装置。
  7. コンピュータを、請求項5又は6に記載の画質評価装置として機能させるためのプログラム。
JP2018132993A 2018-07-13 2018-07-13 画質評価装置、学習装置及びプログラム Active JP7202091B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018132993A JP7202091B2 (ja) 2018-07-13 2018-07-13 画質評価装置、学習装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018132993A JP7202091B2 (ja) 2018-07-13 2018-07-13 画質評価装置、学習装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2020014042A JP2020014042A (ja) 2020-01-23
JP7202091B2 true JP7202091B2 (ja) 2023-01-11

Family

ID=69170800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018132993A Active JP7202091B2 (ja) 2018-07-13 2018-07-13 画質評価装置、学習装置及びプログラム

Country Status (1)

Country Link
JP (1) JP7202091B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111583259B (zh) * 2020-06-04 2022-07-22 南昌航空大学 一种文档图像质量评价方法
EP3958167B1 (en) * 2020-08-21 2024-03-20 Toyota Jidosha Kabushiki Kaisha A method for training a neural network to deliver the viewpoints of objects using unlabeled pairs of images, and the corresponding system
CN112418292B (zh) * 2020-11-17 2024-05-10 平安科技(深圳)有限公司 一种图像质量评价的方法、装置、计算机设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4302272B2 (ja) 2000-01-24 2009-07-22 株式会社カネカ ヒドロシリル化反応の促進方法
WO2017158058A1 (en) 2016-03-15 2017-09-21 Imra Europe Sas Method for classification of unique/rare cases by reinforcement learning in neural networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447470A (ja) * 1990-06-14 1992-02-17 Canon Inc ニューラルネットを用いた画像処理方式及び同方式を用いた画像処理装置
JP3119371B2 (ja) * 1991-03-29 2000-12-18 キヤノン株式会社 画像処理方法
JP2014056442A (ja) * 2012-09-12 2014-03-27 Samsung R&D Institute Japan Co Ltd 画質推定装置、画質推定方法および画質推定プログラム
JP2016031747A (ja) * 2014-07-30 2016-03-07 キヤノン株式会社 情報処理装置、情報処理方法
JP6549546B2 (ja) * 2016-10-18 2019-07-24 北海道瓦斯株式会社 融雪制御装置、ニューラルネットワークの学習方法、融雪制御方法及び融雪制御用プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4302272B2 (ja) 2000-01-24 2009-07-22 株式会社カネカ ヒドロシリル化反応の促進方法
WO2017158058A1 (en) 2016-03-15 2017-09-21 Imra Europe Sas Method for classification of unique/rare cases by reinforcement learning in neural networks

Also Published As

Publication number Publication date
JP2020014042A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
US7215831B2 (en) Video enhancement using multiple frame techniques
JP6214562B2 (ja) 適応型多次元データ分解
JP7202091B2 (ja) 画質評価装置、学習装置及びプログラム
US7620108B2 (en) Integrated spatial-temporal prediction
KR101001086B1 (ko) 주파수 도메인에서 필름 그레인 패턴을 모델링하는 방법 및장치
KR100907120B1 (ko) 열화 정보 복원 방법, 복원 장치 및 프로그램이 기록된 기록 매체
US8396313B2 (en) Image compression and decompression using the PIXON method
JP4859516B2 (ja) 画像処理装置および画像復元方法
JP2019023798A (ja) 超解像装置およびプログラム
JP6541454B2 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
KR20220154578A (ko) 이미지 디노이징을 수행하는 이미지 프로세싱 장치
JP4945533B2 (ja) 画像処理装置及び画像処理方法
CN111612721B (zh) 一种图像修复模型训练、卫星图像修复方法及装置
JP2021090129A (ja) 画像処理装置、撮像装置、画像処理方法およびプログラム
WO2011086594A1 (ja) 画像処理装置、及びその方法
CN106447610B (zh) 图像重建方法及装置
KR101362545B1 (ko) 비디오 시퀀스에서 가변 외형 움직임 추정
Mahmoudi et al. Sparse representations for three-dimensional range data restoration
JP7075012B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2023035928A (ja) 一貫性損失に基づくニューラルネットワークのトレーニング
CN113780340A (zh) 一种基于深度学习的压缩图像识别方法
JP2007116206A (ja) 画像評価方法、画像評価装置、画像符号化方法及び画像符号化装置
JP2009069901A (ja) 画像処理方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221223

R150 Certificate of patent or registration of utility model

Ref document number: 7202091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150