JP7196875B2 - Controlled cooling method and controlled cooling device for steel plate - Google Patents

Controlled cooling method and controlled cooling device for steel plate Download PDF

Info

Publication number
JP7196875B2
JP7196875B2 JP2020059267A JP2020059267A JP7196875B2 JP 7196875 B2 JP7196875 B2 JP 7196875B2 JP 2020059267 A JP2020059267 A JP 2020059267A JP 2020059267 A JP2020059267 A JP 2020059267A JP 7196875 B2 JP7196875 B2 JP 7196875B2
Authority
JP
Japan
Prior art keywords
temperature
cooling device
steel plate
cooling
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020059267A
Other languages
Japanese (ja)
Other versions
JP2021154367A (en
Inventor
円仁 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020059267A priority Critical patent/JP7196875B2/en
Publication of JP2021154367A publication Critical patent/JP2021154367A/en
Application granted granted Critical
Publication of JP7196875B2 publication Critical patent/JP7196875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

本発明は、鋼板の制御冷却方法及び制御冷却装置に関する。 TECHNICAL FIELD The present invention relates to a controlled cooling method and a controlled cooling apparatus for a steel plate.

熱延鋼板や厚鋼板に代表される鋼板の冷却温度制御では、冷却開始前に水冷による鋼板の温度変化を温度予測モデルを用いて予測し、予測結果に基づいて冷却完了時に鋼板の温度が目標温度になるように冷却水バルブの使用パターン、冷却水量、及び鋼板搬送速度を算出した上で冷却を実施する。このため、水冷による鋼板の温度変化の予測精度が鋼板の温度制御の精度を左右する。冷却完了時の鋼板の温度が目標温度からかけ離れてしまうと、製品に必要な材料的特性が得られなくなるため、冷却完了時の鋼板の温度を高精度に制御することが求められている。また近年、生産効率を高めるために鋼板の長さは長くなる傾向にあり、鋼板の長手方向に亘って冷却完了時の温度を高精度に制御することが求められている。このような背景から、一般的な鋼板の冷却温度制御では、冷却中に鋼板の実績温度と予測温度との偏差である制御偏差を抑制するように冷却装置を操作するフィードバック制御が適用されている。しかしながら、実際には、冷却水をかけた後に鋼板の温度を測定するまでの時間遅れ、フィードバック制御の計算時間による時間遅れ、冷却水バルブの応答遅れ等があるため、フィードバック制御を鋼板の全長で実施することはできない。また一般に、フィードバック制御には、制御量の変動が急峻とならないように遅れ時間が設定されているため、制御偏差が大きいと制御偏差を十分に抑制するまでに多くの時間を要する。 In the cooling temperature control of steel plates, which are typified by hot-rolled steel plates and thick steel plates, temperature changes in the steel plates caused by water cooling are predicted using a temperature prediction model before the start of cooling. Cooling is performed after calculating the usage pattern of the cooling water valve, the amount of cooling water, and the steel plate conveying speed so as to achieve the temperature. Therefore, the accuracy of predicting the temperature change of the steel sheet due to water cooling affects the accuracy of temperature control of the steel sheet. If the temperature of the steel sheet at the completion of cooling deviates from the target temperature, the material characteristics necessary for the product cannot be obtained, so it is required to control the temperature of the steel sheet at the completion of cooling with high accuracy. In recent years, the length of steel sheets tends to increase in order to improve production efficiency, and it is required to control the temperature at the completion of cooling over the longitudinal direction of steel sheets with high accuracy. Against this background, in general steel plate cooling temperature control, feedback control is applied to operate the cooling device so as to suppress the control deviation, which is the deviation between the actual temperature and the predicted temperature of the steel plate during cooling. . However, in reality, there is a delay in measuring the temperature of the steel plate after cooling water is applied, a time delay due to feedback control calculation time, and a response delay in the cooling water valve. It cannot be implemented. In addition, feedback control is generally set with a delay time so that the control amount does not fluctuate steeply. Therefore, if the control deviation is large, it takes a long time to sufficiently suppress the control deviation.

そこで、鋼板の実績温度と予測温度との偏差に基づいて温度予測モデルのパラメータを修正し、以降の温度予測計算に反映させることによって、フィードバック制御が適用されない区間の温度予測偏差を抑制することが行われている。特に、冷却開始前に測定した鋼板の温度、実績冷却水量、実績鋼板搬送速度等の実績データを用いて水冷による鋼板の温度変化を予測し、冷却完了後に測定した鋼板の実績温度との偏差を抑制するように温度予測モデルのパラメータを修正する技術はこれまでに幾つか提案されている。具体的には、特許文献1には、温度予測モデルにおける熱伝達係数の修正パラメータを圧延状態による非線形方程式で表現し、鋼板の実績温度と予測温度との偏差を抑制するように非線形方程式のパラメータを修正する技術が記載されている。また、特許文献2には、鋼板の実績温度に対する温度予測偏差を抑制するように総熱流束の修正係数を算出し、操業条件と修正係数を紐付けてデータベースに格納し、以後の操業時には近しい操業条件をデータベースで検索し、温度予測計算時はデータベースで検索した修正係数を反映させる技術が記載されている。また、特許文献3には、温度予測偏差を抑制するように鋼板の変態発熱量を算出し、鋼板が100%変態した際の変態発熱量と比較することにより鋼板の変態率を算出し、算出された変態率を使用して変態率方程式のパラメータを修正する技術が記載されている。 Therefore, by correcting the parameters of the temperature prediction model based on the deviation between the actual temperature and the predicted temperature of the steel plate and reflecting it in the subsequent temperature prediction calculation, it is possible to suppress the temperature prediction deviation in the section where feedback control is not applied. It is done. In particular, using actual data such as the steel plate temperature measured before the start of cooling, the actual amount of cooling water, and the actual steel plate conveying speed, the temperature change of the steel plate due to water cooling is predicted, and the deviation from the actual steel plate temperature measured after cooling is completed is calculated. Several techniques have been proposed to modify the parameters of the temperature prediction model so as to suppress it. Specifically, in Patent Document 1, the correction parameter of the heat transfer coefficient in the temperature prediction model is expressed by a nonlinear equation according to the rolling state, and the parameters of the nonlinear equation are A technique for correcting is described. In addition, in Patent Document 2, a correction coefficient for the total heat flux is calculated so as to suppress the temperature prediction deviation from the actual temperature of the steel plate, and the operating conditions and the correction coefficient are linked and stored in a database, and are close to each other during subsequent operations. A technique is described in which a database is searched for operating conditions, and a correction factor retrieved from the database is reflected when calculating the temperature prediction. Further, in Patent Document 3, the transformation heat generation amount of the steel sheet is calculated so as to suppress the temperature prediction deviation, and the transformation rate of the steel sheet is calculated by comparing with the transformation heat generation amount when the steel sheet is 100% transformed. Techniques are described for modifying the parameters of the transformation rate equation using the estimated transformation rate.

特開2007-44715号公報JP 2007-44715 A 特開2011-200914号公報JP 2011-200914 A 特開2013-766号公報JP 2013-766 A

しかしながら、特許文献1-3に記載の技術は、温度予測偏差を抑制するように温度予測モデルのパラメータを修正しているが、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致しない場合の対策を開示、示唆していない。温度予測モデルにおいて用いた冷却水の設定流量と実績流量は、冷却水に含まれる不純物が配管内壁や冷却水バルブに固着することによる流量低下、送水ポンプの経年変化による流量低下、冷却水バルブの変形による流量変化等の要因によって常に一致するとは限らない。各冷却水バルブの冷却水流量が一様に変化するのであれば、特許文献1-3に記載の技術によって冷却水の流量の偏差を抑制できるが、上述した要因による実績流量の変化は冷却水バルブ間で一様とはならない。また、冷却水の設定流量と実績流量の不一致は上述したフィードバック制御により抑制可能ではあるが、上述した理由により鋼板の全長でフィードバック制御を実行することはできない。そこで、冷却開始前に流量計を用いて冷却水の設定流量と実績流量とが一致するように、温度予測モデルにおける冷却水の設定流量及び実績流量を調整することがよく行われているが、人的コストや時間的コストの面から頻繁に調整作業を行うことはできない。このため、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致していない場合であっても、多くの労力を要することなく鋼板の温度を精度よく目標温度に冷却可能な技術の提供が期待されていた。 However, the technology described in Patent Documents 1 to 3 corrects the parameters of the temperature prediction model so as to suppress the temperature prediction deviation, but the set flow rate and the actual flow rate of the cooling water used in the temperature prediction model match. It does not disclose or suggest countermeasures in case of non-compliance. The set flow rate and the actual flow rate of the cooling water used in the temperature prediction model are reduced due to the impurities contained in the cooling water sticking to the inner wall of the pipe and the cooling water valve, the flow reduction due to aging of the water pump, and the cooling water valve. They do not always match due to factors such as changes in flow rate due to deformation. If the cooling water flow rate of each cooling water valve changes uniformly, the technique described in Patent Documents 1 to 3 can suppress the deviation of the cooling water flow rate. Not uniform from valve to valve. Also, although the discrepancy between the set flow rate and the actual flow rate of the cooling water can be suppressed by the feedback control described above, the feedback control cannot be executed over the entire length of the steel plate for the reasons described above. Therefore, it is common to adjust the set flow rate and actual flow rate of cooling water in the temperature prediction model so that the set flow rate and actual flow rate of cooling water match using a flow meter before starting cooling. Frequent adjustment work cannot be performed in terms of human cost and time cost. Therefore, even if the set flow rate of the cooling water used in the temperature prediction model and the actual flow rate do not match, there is a technology that can accurately cool the steel plate to the target temperature without much effort. was expected to provide.

本発明は、上記課題に鑑みてなされたものであって、その目的は、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致していない場合であっても、多くの労力を要することなく鋼板の温度を精度よく目標温度に冷却可能な鋼板の制御冷却方法及び制御冷却装置を提供することにある。 The present invention has been made in view of the above problems, and its object is to save a lot of labor even when the set flow rate of the cooling water used in the temperature prediction model and the actual flow rate do not match. To provide a controlled cooling method and a controlled cooling device for a steel plate that can accurately cool the temperature of the steel plate to a target temperature without the need for cooling.

本発明に係る鋼板の制御冷却方法は、温度予測モデルを用いて冷却装置の出側における鋼板の温度を予測し、予測された鋼板の温度に基づいて冷却装置の出側における鋼板の温度が目標温度になるように冷却装置から噴射される冷却水の流量を制御する鋼板の制御冷却方法であって、前記冷却装置の入側及び出側における鋼板の温度を鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位である切板毎に測定する測定ステップと、前記測定ステップにおいて測定された冷却装置の入側における切板の温度、及び切板が冷却装置を通過した際の冷却水の流量設定値を用いて、前記温度予測モデルにより前記冷却装置の出側における鋼板の温度を切板毎に予測する予測ステップと、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度とが全切板に亘って一致するように前記温度予測モデルにおける冷却水の流量設定値を補正する補正ステップと、を含むことを特徴とする。 A steel plate controlled cooling method according to the present invention uses a temperature prediction model to predict the temperature of a steel plate on the delivery side of a cooling device, and based on the predicted temperature of the steel plate, the target temperature of the steel plate on the delivery side of the cooling device. A steel plate controlled cooling method for controlling the flow rate of cooling water injected from a cooling device to achieve a temperature, wherein the temperature of the steel plate at the inlet and outlet sides of the cooling device is continuously generated in the longitudinal direction of the steel plate A measurement step of measuring each cut plate, which is a control unit of a virtual steel plate, the temperature of the cut plate on the inlet side of the cooling device measured in the measurement step, and the cooling when the cut plate passes through the cooling device A prediction step of predicting the temperature of the steel plate on the outlet side of the cooling device for each cut plate using the temperature prediction model using the water flow rate setting value, and the steel plate on the outlet side of the cooling device measured in the measuring step A correction step of correcting the cooling water flow rate setting value in the temperature prediction model so that the temperature of the steel plate on the outlet side of the cooling device predicted in the prediction step matches over all the cut plates; characterized by comprising

本発明に係る鋼板の制御冷却方法は、上記発明において、前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、偏差と流量設定値との相関関係に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする。 In the steel plate controlled cooling method according to the present invention, in the above invention, the correcting step includes the temperature of the steel plate on the outlet side of the cooling device measured in the measuring step and the output of the cooling device predicted in the predicting step. calculating the deviation from the temperature of the steel sheet on the side of each cutting plate, and correcting the flow rate setting value of the cooling water in the temperature prediction model based on the correlation between the deviation and the flow rate setting value.

本発明に係る鋼板の制御冷却方法は、上記発明において、前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、全切板の偏差の合計値を合計偏差として算出し、算出された合計偏差に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする。 In the steel plate controlled cooling method according to the present invention, in the above invention, the correcting step includes the temperature of the steel plate on the outlet side of the cooling device measured in the measuring step and the output of the cooling device predicted in the predicting step. Calculate the deviation from the temperature of the steel plate on the side for each cut plate, calculate the total value of the deviation of all cut plates as the total deviation, and based on the calculated total deviation, adjust the cooling water flow rate setting value in the temperature prediction model It is characterized by including a step of correcting.

本発明に係る鋼板の制御冷却方法は、上記発明において、前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、全切板の偏差の合計値を合計偏差として算出し、算出された合計偏差と直近に冷却された鋼板について算出された合計偏差との和を算出し、算出された和に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする。 In the steel plate controlled cooling method according to the present invention, in the above invention, the correcting step includes the temperature of the steel plate on the outlet side of the cooling device measured in the measuring step and the output of the cooling device predicted in the predicting step. The deviation from the temperature of the steel sheet on the side is calculated for each cut sheet, the total value of the deviations of all cut sheets is calculated as the total deviation, and the calculated total deviation and the total deviation calculated for the most recently cooled steel sheet and correcting the flow rate setting value of the cooling water in the temperature prediction model based on the calculated sum.

本発明に係る鋼板の制御冷却装置は、温度予測モデルを用いて冷却装置の出側における鋼板の温度を予測し、予測された鋼板の温度に基づいて冷却装置の出側における鋼板の温度が目標温度になるように冷却装置から噴射される冷却水の流量を制御する鋼板の制御冷却装置であって、前記冷却装置の入側及び出側における鋼板の温度を鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位である切板毎に測定する測定手段と、前記測定手段によって測定された冷却装置の入側における切板の温度、及び切板が冷却装置を通過した際の冷却水の流量設定値を用いて、前記温度予測モデルにより前記冷却装置の出側における鋼板の温度を切板毎に予測し、前記測定手段によって測定された前記冷却装置の出側における鋼板の温度と予測された前記冷却装置の出側における鋼板の温度とが全切板に亘って一致するように前記温度予測モデルにおける冷却水の流量設定値を補正する制御手段と、を備えることを特徴とする。 A controlled cooling device for a steel plate according to the present invention uses a temperature prediction model to predict the temperature of a steel plate on the outlet side of the cooling device, and based on the predicted temperature of the steel plate, the temperature of the steel plate on the outlet side of the cooling device is set as a target. A controlled cooling device for a steel plate that controls the flow rate of cooling water injected from the cooling device so as to reach a temperature, the temperature of the steel plate at the inlet and outlet sides of the cooling device is continuously generated in the longitudinal direction of the steel plate A measuring means for measuring each cut plate, which is a control unit of a virtual steel plate, the temperature of the cut plate on the inlet side of the cooling device measured by the measuring means, and the cooling when the cut plate passes through the cooling device Using the water flow rate setting value, the temperature prediction model predicts the temperature of the steel sheet on the exit side of the cooling device for each cut sheet, and the temperature of the steel sheet on the exit side of the cooling device measured by the measuring means and a control means for correcting the cooling water flow rate set value in the temperature prediction model so that the predicted temperature of the steel plate on the delivery side of the cooling device matches all the cut plates. .

本発明に係る鋼板の制御冷却方法及び制御冷却装置によれば、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致していない場合であっても、多くの労力を要することなく鋼板の温度を精度よく目標温度に冷却することができる。 According to the controlled cooling method and the controlled cooling device for steel sheets according to the present invention, even if the set flow rate of the cooling water used in the temperature prediction model and the actual flow rate do not match, much effort is not required. The temperature of the steel plate can be accurately cooled to the target temperature.

図1は、本発明の一実施形態である鋼板の制御冷却方法が適用される熱延鋼板の冷却ラインの構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a cooling line for hot-rolled steel sheets to which a controlled cooling method for steel sheets according to an embodiment of the present invention is applied. 図2は、本発明の一実施形態である制御冷却処理の流れを示すフローチャートである。FIG. 2 is a flow chart showing the flow of controlled cooling processing, which is an embodiment of the present invention. 図3は、実績温度、従来例、発明例1~4を計算開始から切板番号500までの区間図示した図である。FIG. 3 is a diagram illustrating the actual temperature, the conventional example, and the invention examples 1 to 4 from the start of calculation to cutting plate number 500. In FIG. 図4は、実績温度、従来例、発明例1~4を切板番号3000から切板番号3500までの区間図示した図である。FIG. 4 is a diagram showing actual temperatures, conventional examples, and invention examples 1 to 4 in sections from cutting plate number 3000 to cutting plate number 3500. FIG. 図5は、実績温度、従来例、発明例1~4を切板番号4500から切板番号5000までの区間図示した図である。FIG. 5 is a diagram showing actual temperatures, conventional examples, and invention examples 1 to 4 in sections from cutting plate number 4500 to cutting plate number 5000. FIG.

以下、図面を参照して、本発明の一実施形態である鋼板の制御冷却方法について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION A controlled cooling method for a steel sheet, which is an embodiment of the present invention, will be described below with reference to the drawings.

〔熱延鋼板の冷却ラインの構成〕
まず、図1を参照して、本発明の一実施形態である鋼板の制御冷却方法が適用される熱延鋼板の冷却ラインの構成について説明する。
[Configuration of cooling line for hot-rolled steel]
First, with reference to FIG. 1, the configuration of a cooling line for hot-rolled steel sheets to which a controlled cooling method for steel sheets according to an embodiment of the present invention is applied will be described.

図1は、本発明の一実施形態である鋼板の制御冷却方法が適用される熱延鋼板の冷却ラインの構成を示す模式図である。図1に示すように、本発明の一実施形態である鋼板の制御冷却方法が適用される熱延鋼板の冷却ライン1(以下、冷却ライン1と略記)は、矢印で示す搬送方向に搬送される鋼板に冷却水を噴射することによって鋼板の温度を目標温度まで冷却するラインであり、冷却水バルブ2a~2o、温度計3a,3b、計算機4、及び制御盤5を備えている。 FIG. 1 is a schematic diagram showing the configuration of a cooling line for hot-rolled steel sheets to which a controlled cooling method for steel sheets according to an embodiment of the present invention is applied. As shown in FIG. 1, a hot-rolled steel sheet cooling line 1 (hereinafter abbreviated as cooling line 1) to which a steel sheet controlled cooling method according to an embodiment of the present invention is applied is conveyed in a conveying direction indicated by an arrow. This line cools the steel plate to a target temperature by injecting cooling water onto the steel plate, and includes cooling water valves 2a to 2o, thermometers 3a and 3b, a calculator 4, and a control panel 5.

冷却水バルブ2a~2oは、鋼板の表面及び裏面に対向配置され、制御盤5からの制御信号に従って鋼板の表面及び裏面に向けて冷却水を噴射することにより鋼板を冷却する。 The cooling water valves 2a to 2o are arranged opposite to the front and back surfaces of the steel plate, and cool the steel plate by injecting cooling water toward the front and back surfaces of the steel plate in accordance with control signals from the control panel 5.

温度計3a,3bはそれぞれ、冷却ライン1の入側及び出側に配置され、冷却水バルブ2a~2oの制御周期以下の周期で冷却ライン1の入側及び出側における鋼板の温度を測定する。温度計3a,3bはそれぞれ、測定した鋼板の温度を示す電気信号を計算機4に出力する。 The thermometers 3a and 3b are arranged on the inlet side and the outlet side of the cooling line 1, respectively, and measure the temperature of the steel plate on the inlet side and the outlet side of the cooling line 1 with a period equal to or shorter than the control period of the cooling water valves 2a to 2o. . The thermometers 3a and 3b each output to the computer 4 an electric signal indicating the measured temperature of the steel plate.

計算機4は、コンピュータ等の情報処理装置によって構成されている。計算機4は、後述する制御冷却処理を実行することにより鋼板の温度を目標温度まで冷却する。具体的には、計算機4は、温度計3a,3bによって測定された冷却ライン1の入側及び出側における鋼板の温度に基づいて、制御盤5を介して冷却水バルブ2a~2oから噴射される冷却水の流量を制御することによって鋼板の温度を目標温度まで冷却する。 The computer 4 is configured by an information processing device such as a computer. The calculator 4 cools the temperature of the steel sheet to the target temperature by executing a controlled cooling process, which will be described later. Specifically, the calculator 4 controls the temperature of the steel sheet on the inlet side and the outlet side of the cooling line 1 measured by the thermometers 3a and 3b. The temperature of the steel plate is cooled to the target temperature by controlling the flow rate of the cooling water.

このような構成を有する熱延鋼板の冷却ライン1では、計算機4が以下に示す制御冷却処理を実行することにより、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致していない場合であっても、多くの労力を要することなく鋼板の温度を精度よく目標温度に冷却する。以下、図2を参照して、本発明の一実施形態である制御冷却処理を実行する際の計算機4の動作について説明する。 In the hot-rolled steel cooling line 1 having such a configuration, the computer 4 executes the controlled cooling process described below, so that the set flow rate of the cooling water used in the temperature prediction model does not match the actual flow rate. To accurately cool a steel plate to a target temperature without requiring much labor even in such a case. The operation of the computer 4 when executing the controlled cooling process, which is one embodiment of the present invention, will be described below with reference to FIG.

なお、本明細書中において、温度予測モデルとは、冷却水、大気、ロール等と鋼板との間の熱交換を記述した数式モデルのことを意味する。温度予測モデルの入力変数には、鋼板の初期温度及び冷却水バルブ2a~2oから噴射される冷却水の流量(流量設定値)が含まれ、温度予測モデルの出力変数は、冷却ライン1の出側における鋼板の温度である。 In this specification, the temperature prediction model means a mathematical model describing heat exchange between cooling water, air, rolls, etc. and the steel sheet. The input variables of the temperature prediction model include the initial temperature of the steel plate and the flow rate (flow rate set value) of the cooling water injected from the cooling water valves 2a to 2o, and the output variable of the temperature prediction model is the output of the cooling line 1. is the temperature of the steel plate on the side.

〔制御冷却処理〕
図2は、本発明の一実施形態である制御冷却処理の流れを示すフローチャートである。図2に示すフローチャートは、鋼板の切板(鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位)が温度計3aを通過したタイミングで開始となり、制御冷却処理はステップS1の処理に進む。
[Controlled cooling process]
FIG. 2 is a flow chart showing the flow of controlled cooling processing, which is an embodiment of the present invention. The flowchart shown in FIG. 2 starts at the timing when a cut plate of steel plate (virtual steel plate control unit continuously generated in the longitudinal direction of the steel plate) passes the thermometer 3a, and the controlled cooling process is the process of step S1. proceed to

ステップS1の処理では、計算機4が、温度計3a,3b及び周知のトラッキング技術を利用して冷却ライン1の入側及び出側における各切板iの温度を測定する。なお、iは各切板に割り当てられた固有の識別情報を示す。これにより、ステップS1の処理は完了し、制御冷却処理はステップS2の処理に進む。 In the process of step S1, the computer 4 measures the temperature of each cut plate i on the inlet and outlet sides of the cooling line 1 using thermometers 3a and 3b and well-known tracking technology. Note that i indicates unique identification information assigned to each cut plate. Thereby, the process of step S1 is completed, and the control cooling process proceeds to the process of step S2.

ステップS2の処理では、計算機4が、各切板iが冷却水バルブ2a~2oを通過した時点の各冷却水バルブkの流量設定値Q を取得する。なお、kは各冷却水バルブに割り当てられた固有の識別情報を示す。これにより、ステップS2の処理は完了し、制御冷却処理はステップS3の処理に進む。 In the process of step S2, the calculator 4 acquires the flow rate set value Q i k of each cooling water valve k at the time when each cutting plate i passes through the cooling water valves 2a to 2o. Note that k indicates unique identification information assigned to each cooling water valve. Thereby, the processing of step S2 is completed, and the controlled cooling processing proceeds to the processing of step S3.

ステップS3の処理では、計算機4が、温度予測モデルを利用して、ステップS1の処理において取得した冷却ライン1の入側における各切板iの温度とステップS2の処理において取得した各切板iが通過した時点の冷却水バルブkの流量設定値Q とから冷却ライン1の出側における各切板iの温度を予測する。なお、この処理では、冷却水による熱流束を冷却水の設定流量f(V)の関数で表すものとすると、冷却水バルブkから噴射される冷却水の流量を補正する流量補正係数Wを用いて、冷却水による熱流束をf(V,W)として各切板iの温度を予測する。初回の制御冷却処理では、流量補正係数Wは初期値に設定されている。これにより、ステップS3の処理は完了し、制御冷却処理はステップS4の処理に進む。 In the process of step S3, the computer 4 uses the temperature prediction model to determine the temperature of each cut plate i on the inlet side of the cooling line 1 obtained in the process of step S1 and the temperature of each cut plate i obtained in the process of step S2. The temperature of each cut plate i on the outlet side of the cooling line 1 is predicted from the flow rate setting value Q i k of the cooling water valve k at the time when . In this process, assuming that the heat flux due to the cooling water is expressed as a function of the set flow rate f(V) of the cooling water, the flow rate correction coefficient Wk for correcting the flow rate of the cooling water injected from the cooling water valve k is is used to predict the temperature of each cutting plate i with the heat flux by the cooling water as f(V, W k ). In the first control cooling process, the flow rate correction coefficient Wk is set to the initial value. Thereby, the processing of step S3 is completed, and the controlled cooling processing proceeds to the processing of step S4.

ステップS4の処理では、計算機4が、各冷却水バルブkから噴射される冷却水の流量変動を冷却ライン1の出側における各切板iの温度予測計算に反映させるために、鋼板が冷却ライン1を通過した後、各冷却水バルブkの流量補正係数Wを補正する。具体的には、まず、計算機4は、ステップS1の処理において測定された冷却ライン1の出側における各切板iの温度とステップS3の処理において計算された冷却ライン1の出側における各切板iの温度との偏差ΔTを切板i毎に算出する。次に、計算機4は、算出された偏差ΔTと冷却水バルブkの流量設定値Q との相関関係を算出する。詳しくは、計算機4は、冷却水バルブkについて、流量設定値Q によって偏差ΔTを最小二乗法で線形回帰して以下に示す数式(1)を構築する。そして、計算機4は、式(1)の傾きAが所定値x以上である場合、流量補正係数Wを流量補正係数W’(=W-α)に補正し、式(1)の傾きAが所定値x未満である場合には、流量補正係数Wを流量補正係数W’(=W+α)に補正する。但し、αは所定の定数を示す。なお、流量設定値Q が変わらない冷却水バルブkについては、このステップS4の処理は実行しないものとする。これにより、ステップS4の処理は完了し、制御冷却処理はステップS5の処理に進む。 In the processing of step S4, the computer 4 causes the steel plate to flow through the cooling line so that the flow rate fluctuation of the cooling water injected from each cooling water valve k is reflected in the temperature prediction calculation of each cut plate i on the outlet side of the cooling line 1. 1, the flow rate correction coefficient Wk of each cooling water valve k is corrected. Specifically, first, the computer 4 calculates the temperature of each cut plate i on the output side of the cooling line 1 measured in the process of step S1 and the temperature of each cut plate i on the output side of the cooling line 1 calculated in the process of step S3. A deviation ΔT i from the temperature of the plate i is calculated for each cutting plate i. Next, the calculator 4 calculates the correlation between the calculated deviation ΔT i and the flow rate set value Q i k of the cooling water valve k. Specifically, the computer 4 performs linear regression of the deviation ΔT i with the flow rate set value Q i k for the cooling water valve k using the least-squares method to construct Equation (1) shown below. Then, when the slope A k of equation (1) is equal to or greater than the predetermined value x, the calculator 4 corrects the flow rate correction coefficient W k to the flow rate correction coefficient W k ' (=W k −α), and formula (1) is less than the predetermined value x, the flow rate correction coefficient W k is corrected to the flow rate correction coefficient W k ′ (=W k + α). However, α indicates a predetermined constant. Note that the process of step S4 is not executed for the cooling water valve k for which the flow rate set value Q i k does not change. Thereby, the processing of step S4 is completed, and the controlled cooling processing proceeds to the processing of step S5.

Figure 0007196875000001
Figure 0007196875000001

ステップS5の処理では、計算機4が、熱延鋼板に噴射される冷却水の全流量の短期的な変動を冷却ライン1の出側における各切板iの温度予測計算に反映させるために、冷却水を噴射している全冷却水バルブについて、流量補正係数Wを一律に補正する。具体的には、まず、計算機4は、ステップS4の処理において算出された偏差ΔTを用いて全切板の偏差ΔTの合計値を合計偏差ΣΔTとして算出する。次に、計算機4が、熱延鋼板の冷却中に冷却水を噴射した冷却水バルブについて、合計偏差ΣΔTが所定値y以上である場合、流量補正係数Wを流量補正係数W’(=W×(1+β))に補正し、合計偏差ΣΔTが所定値y未満である場合には、流量補正係数Wを流量補正係数W’(=W×(1-β))に補正する。但し、βは所定の定数を示す。これにより、ステップS5の処理は完了し、制御冷却処理はステップS6の処理に進む。 In the process of step S5, the computer 4 controls the temperature prediction calculation of each cut plate i on the outlet side of the cooling line 1 to reflect short-term fluctuations in the total flow rate of the cooling water injected to the hot rolled steel plate. The flow rate correction coefficient Wk is uniformly corrected for all cooling water valves injecting water. Specifically, first, the calculator 4 calculates the total value of the deviations ΔT i of all the cut plates as the total deviation ΣΔT i using the deviations ΔT i calculated in the process of step S4. Next, when the total deviation ΣΔT i of the cooling water valve that injected cooling water during cooling of the hot-rolled steel sheet is equal to or greater than a predetermined value y, the calculator 4 replaces the flow rate correction coefficient W k with the flow rate correction coefficient W k ′ ( = W k × (1 + β)), and when the total deviation ΣΔT i is less than the predetermined value y, the flow rate correction coefficient W k is corrected to the flow rate correction coefficient W k ' (= W k × (1-β)) corrected to However, β indicates a predetermined constant. Thereby, the processing of step S5 is completed, and the controlled cooling processing proceeds to the processing of step S6.

ステップS6の処理では、計算機4が、ステップS4及びステップS5の処理における流量補正係数Wの補正処理が他の熱延鋼板における流量補正係数Wの補正処理と同傾向であるか否かを判定し、判定結果に基づいてステップS4及びステップS5の補正処理を抑制又は促進するように流量補正係数Wを補正する。具体的には、まず、計算機4は、ステップS5の処理において算出した合計偏差ΣΔTを直近で冷却した複数の熱延鋼板についてのΣΔTと合わせた合計偏差ΣΣΔTを算出する。次に、計算機4は、複数の熱延鋼板に対して冷却水を噴射した冷却水バルブについて、合計偏差ΣΣΔTが所定値z以上である場合、流量補正係数Wを流量補正係数W’(=W×(1+γ))に補正し、合計偏差ΣΣΔTが所定値z以上である場合、流量補正係数Wを流量補正係数W’(=W×(1-γ))に補正する。但し、γは所定の定数を示す。これにより、ステップS6の処理は完了し、制御冷却処理はステップS7の処理に進む。 In the processing of step S6, the computer 4 determines whether or not the correction processing of the flow correction coefficient Wk in the processing of steps S4 and S5 has the same tendency as the correction processing of the flow correction coefficient Wk for other hot-rolled steel sheets. Based on the determination result, the flow rate correction coefficient Wk is corrected so as to suppress or promote the correction processing in steps S4 and S5. Specifically, first, the calculator 4 calculates the total deviation ΣΣΔT i by combining the total deviation ΣΔT i calculated in the process of step S5 with ΣΔT i for the plurality of hot-rolled steel sheets that have been cooled most recently. Next, if the total deviation ΣΣΔT i of the cooling water valve that jets the cooling water to a plurality of hot-rolled steel sheets is equal to or greater than a predetermined value z, the calculator 4 replaces the flow rate correction coefficient W k with the flow rate correction coefficient W k ′. (= W k × (1 + γ)), and if the total deviation ΣΣΔT i is equal to or greater than the predetermined value z, the flow correction coefficient W k is changed to the flow correction coefficient W k ' (= W k × (1-γ)) to correct. However, γ indicates a predetermined constant. Thereby, the processing of step S6 is completed, and the controlled cooling processing proceeds to the processing of step S7.

〔実施例〕
本実施例では、熱延鋼板の温度予測シミュレーションを行った。具体的には、本シミュレーションでは、接続された92個のコイルの先端部から連続的に生成した所定長さの5000切板(先端部から順に切板番号1~5000)の冷却実績に対して、従来の温度予測計算(従来例)、図2に示すステップS4,S5,S6の処理をそれぞれ単独で実施した温度予測計算(発明例1~3)、図2に示すステップS4~S6の処理を全て実施した温度予測計算(発明例4)を行った。ステップS4~S6の各計算における定数は、x=10℃、α=0.050、y=10℃、β=0.02、z=10℃、γ=0.0とした。また、流量補正係数の初期値は全て1とした。
〔Example〕
In this example, a temperature prediction simulation of a hot-rolled steel sheet was performed. Specifically, in this simulation, 5000 cut plates of a predetermined length (cut plate numbers 1 to 5000 in order from the tip) continuously generated from the tip of 92 connected coils were cooled. , conventional temperature prediction calculation (conventional example), temperature prediction calculation (invention examples 1 to 3) in which the processes of steps S4, S5, and S6 shown in FIG. 2 are performed independently, and the processes of steps S4 to S6 shown in FIG. A temperature prediction calculation (Invention Example 4) was performed in which all were performed. The constants in each calculation in steps S4 to S6 were x=10° C., α=0.050, y=10° C., β=0.02, z=10° C., and γ=0.0. The initial values of the flow rate correction coefficients are all set to 1.

図3は、実績温度(線L1)、従来例(線L2)、発明例1(線L3)、発明例2(線L4)、発明例3(線L5)、及び発明例4(線L6)を計算開始から切板番号500までの区間図示したものである。図3に示すように、流量補正係数の初期値を1としているため、はじめは従来例と発明例1~4とが一致している。また、切板番号200までの区間では、実績温度と発明例1~4の大小が交互に現れているため、流量補正係数の修正方向も交互となり、従来例と発明例1~4はあまり変わらない。 FIG. 3 shows actual temperature (line L1), conventional example (line L2), invention example 1 (line L3), invention example 2 (line L4), invention example 3 (line L5), and invention example 4 (line L6). is illustrated in the section from the start of calculation to cutting plate number 500. As shown in FIG. 3, since the initial value of the flow rate correction coefficient is set to 1, the conventional example and the invention examples 1 to 4 are the same at first. In addition, in the section up to cutting plate number 200, the actual temperature and invention examples 1 to 4 appear alternately, so the correction direction of the flow rate correction coefficient also alternates, and there is not much difference between the conventional example and invention examples 1 to 4. No.

しかしながら、切板番号200~480の区間では、発明例1~4より実績温度の方が20℃程度高めになっている熱延鋼板が続くため、予測温度が高くなるようにステップS5の処理において流量補正係数をマイナス方向に連続して修正していることがこの区間における発明例2(線L4)からわかる。一方で、各冷却水バルブの設定流量の違いによる温度予測誤差の傾向があまりないため、ステップS4の処理による補正はあまり実施されていない(発明例1(線L3))。また、切板番号430付近では、直近の複数の熱延鋼板にわたって同じ符号の偏差が続くため、ステップS6の処理による補正が行われている(発明例3(L5))。 However, in the section of cut plate numbers 200 to 480, hot-rolled steel sheets whose actual temperatures are about 20 ° C higher than those of Invention Examples 1 to 4 continue, so in the process of step S5, the predicted temperature is increased. It can be seen from invention example 2 (line L4) in this section that the flow rate correction coefficient is continuously corrected in the negative direction. On the other hand, since there is little tendency for temperature prediction errors due to differences in the set flow rates of the cooling water valves, the correction by the processing in step S4 is not often performed (Invention Example 1 (line L3)). Further, in the vicinity of the cut plate number 430, since the deviation of the same sign continues over the most recent hot-rolled steel sheets, correction is performed by the processing of step S6 (Invention Example 3 (L5)).

図4は、実績温度(線L1)、従来例(線L2)、発明例1(線L3)、発明例2(線L4)、発明例3(線L5)、及び発明例4(線L6)を切板番号3000から切板番号3500までの区間図示したものである。図4に示すように、ステップS4~S6の各処理による補正が進んでおり、発明例1~3は従来例より精度が良いことがわかる。また、図5は、実績温度(線L1)、従来例(線L2)、発明例1(線L3)、発明例2(線L4)、発明例3(線L5)、及び発明例4(線L6)を切板番号4500から切板番号5000までの区間図示したものである。ステップS5及びステップS6の処理による補正が有効に働き、発明例2,3が実績温度に追従している一方、バルブの流量変化が小さく、ステップS4の処理による補正が行われていないため、発明例1は実績温度の変化に追従できていない。以上の結果をまとめると以下に示す表1のようになり、発明例1~3でも従来例より精度向上しているが、発明例4が最も精度が良いことがわかる。以上の結果より、本発明の実施による温度予測精度向上の効果が確認された。 FIG. 4 shows actual temperature (line L1), conventional example (line L2), invention example 1 (line L3), invention example 2 (line L4), invention example 3 (line L5), and invention example 4 (line L6). is illustrated in the section from cutting plate number 3000 to cutting plate number 3500. As shown in FIG. 4, the correction by each process of steps S4 to S6 has progressed, and it can be seen that invention examples 1 to 3 are more accurate than the conventional example. In addition, FIG. 5 shows actual temperature (line L1), conventional example (line L2), invention example 1 (line L3), invention example 2 (line L4), invention example 3 (line L5), and invention example 4 (line L6) is illustrated in the section from cut plate number 4500 to cut plate number 5000. The correction by the processing of steps S5 and S6 works effectively, and invention examples 2 and 3 follow the actual temperature. Example 1 cannot follow changes in the actual temperature. The above results are summarized in Table 1 below, and it can be seen that invention examples 1 to 3 are also more accurate than the conventional example, but invention example 4 is the most accurate. From the above results, it was confirmed that the temperature prediction accuracy is improved by implementing the present invention.

Figure 0007196875000002
Figure 0007196875000002

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 Although the embodiments to which the inventions made by the present inventors are applied have been described above, the present invention is not limited by the descriptions and drawings forming part of the disclosure of the present invention according to the embodiments. That is, other embodiments, examples, operation techniques, etc. made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

1 熱延鋼板の冷却ライン
2a~2o 冷却水バルブ
3a,3b 温度計
4 計算機
5 制御盤
1 Cooling line for hot-rolled steel sheet 2a to 2o Cooling water valves 3a, 3b Thermometer 4 Computer 5 Control panel

Claims (4)

温度予測モデルを用いて冷却装置の出側における鋼板の温度を予測し、予測された鋼板の温度に基づいて冷却装置の出側における鋼板の温度が目標温度になるように冷却装置から噴射される冷却水の流量を制御する鋼板の制御冷却方法であって、
前記冷却装置の入側及び出側における鋼板の温度を鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位である切板毎に測定する測定ステップと、
前記測定ステップにおいて測定された冷却装置の入側における切板の温度、及び切板が冷却装置を通過した際の冷却水の流量設定値を用いて、前記温度予測モデルにより前記冷却装置の出側における鋼板の温度を切板毎に予測する予測ステップと、
前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度とが全切板に亘って一致するように前記温度予測モデルにおける冷却水の流量設定値を補正する補正ステップと、
を含み、
前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、全切板の偏差の合計値を合計偏差として算出し、算出された合計偏差に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする鋼板の制御冷却方法。
A temperature prediction model is used to predict the temperature of the steel plate on the outlet side of the cooling device, and based on the predicted temperature of the steel plate, the cooling device sprays so that the temperature of the steel plate on the outlet side of the cooling device reaches the target temperature. A controlled cooling method for a steel plate that controls the flow rate of cooling water,
a measuring step of measuring the temperature of the steel plate at the entrance side and the exit side of the cooling device for each cutting plate, which is a control unit of a virtual steel plate continuously generated in the longitudinal direction of the steel plate;
Using the cut plate temperature on the inlet side of the cooling device measured in the measurement step and the cooling water flow rate setting value when the cut plate passes through the cooling device, the temperature prediction model is used to determine the outlet side of the cooling device. A prediction step for predicting the temperature of the steel plate in each cut plate,
The temperature prediction is performed so that the temperature of the steel sheet on the delivery side of the cooling device measured in the measuring step and the temperature of the steel plate on the delivery side of the cooling device predicted in the prediction step match over all the cut plates. a correction step for correcting the cooling water flow setpoint in the model;
including
The correction step calculates, for each cut plate, the deviation between the temperature of the steel sheet on the exit side of the cooling device measured in the measuring step and the temperature of the steel sheet on the exit side of the cooling device predicted in the prediction step. , calculating the total value of the deviations of all the cut plates as the total deviation, and correcting the flow rate setting value of the cooling water in the temperature prediction model based on the calculated total deviation. .
前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、偏差と流量設定値との相関関係に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする請求項1に記載の鋼板の制御冷却方法。 The correction step calculates, for each cut plate, the deviation between the temperature of the steel sheet on the exit side of the cooling device measured in the measuring step and the temperature of the steel sheet on the exit side of the cooling device predicted in the prediction step. 2. The controlled cooling method for a steel plate according to claim 1, further comprising the steps of correcting the flow rate setting value of the cooling water in the temperature prediction model based on the correlation between the deviation and the flow rate setting value. 前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、全切板の偏差の合計値を合計偏差として算出し、算出された合計偏差と直近に冷却された鋼板について算出された合計偏差との和を算出し、算出された和に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする請求項1又は2に記載の鋼板の制御冷却方法。 The correction step calculates, for each cut plate, the deviation between the temperature of the steel sheet on the exit side of the cooling device measured in the measuring step and the temperature of the steel sheet on the exit side of the cooling device predicted in the prediction step. , Calculate the sum of the deviations of all cut plates as the total deviation, calculate the sum of the calculated total deviation and the total deviation calculated for the most recently cooled steel plate, and predict the temperature based on the calculated sum 3. The controlled cooling method for a steel plate according to claim 1, further comprising a step of correcting the set value of the cooling water flow rate in the model. 温度予測モデルを用いて冷却装置の出側における鋼板の温度を予測し、予測された鋼板の温度に基づいて冷却装置の出側における鋼板の温度が目標温度になるように冷却装置から噴射される冷却水の流量を制御する鋼板の制御冷却装置であって、
前記冷却装置の入側及び出側における鋼板の温度を切板毎に測定する測定手段と、
前記測定手段によって測定された冷却装置の入側における切板の温度、及び切板が冷却装置を通過した際の冷却水の流量設定値を用いて、前記温度予測モデルにより前記冷却装置の出側における鋼板の温度を鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位である切板毎に予測し、前記測定手段によって測定された前記冷却装置の出側における鋼板の温度と予測された前記冷却装置の出側における鋼板の温度とが全切板に亘って一致するように前記温度予測モデルにおける冷却水の流量設定値を補正する制御手段と、
を備え
前記制御手段は、前記測定手段によって測定された前記冷却装置の出側における鋼板の温度と予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、全切板の偏差の合計値を合計偏差として算出し、算出された合計偏差に基づいて温度予測モデルにおける冷却水の流量設定値を補正することを特徴とする鋼板の制御冷却装置。
A temperature prediction model is used to predict the temperature of the steel plate on the outlet side of the cooling device, and based on the predicted temperature of the steel plate, the cooling device sprays so that the temperature of the steel plate on the outlet side of the cooling device reaches the target temperature. A controlled cooling device for a steel plate that controls the flow rate of cooling water,
measuring means for measuring the temperature of the steel plate on the inlet side and the outlet side of the cooling device for each cut plate;
Using the temperature of the cut plate on the inlet side of the cooling device measured by the measuring means and the flow rate setting value of the cooling water when the cut plate passes through the cooling device, the temperature prediction model is used to determine the outlet side of the cooling device. Predict the temperature of the steel sheet at the outlet side of the cooling device measured by the measuring means and predict the temperature of the steel sheet at the exit side of the cooling device measured by the measuring means. a control means for correcting the cooling water flow rate set value in the temperature prediction model so that the temperature of the steel plate on the outlet side of the cooling device that has been set is consistent over all the cut plates;
with
The control means calculates, for each cut plate, a deviation between the temperature of the steel plate on the delivery side of the cooling device measured by the measuring device and the predicted temperature of the steel plate on the delivery side of the cooling device. is calculated as the total deviation, and the set value of the cooling water flow rate in the temperature prediction model is corrected based on the calculated total deviation .
JP2020059267A 2020-03-30 2020-03-30 Controlled cooling method and controlled cooling device for steel plate Active JP7196875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020059267A JP7196875B2 (en) 2020-03-30 2020-03-30 Controlled cooling method and controlled cooling device for steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020059267A JP7196875B2 (en) 2020-03-30 2020-03-30 Controlled cooling method and controlled cooling device for steel plate

Publications (2)

Publication Number Publication Date
JP2021154367A JP2021154367A (en) 2021-10-07
JP7196875B2 true JP7196875B2 (en) 2022-12-27

Family

ID=77916531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020059267A Active JP7196875B2 (en) 2020-03-30 2020-03-30 Controlled cooling method and controlled cooling device for steel plate

Country Status (1)

Country Link
JP (1) JP7196875B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300633A (en) 2000-04-24 2001-10-30 Nisshin Steel Co Ltd Low temperature coiling method of high strength hot rolled steel strip
JP2009148809A (en) 2007-12-21 2009-07-09 Hitachi Ltd Device and method for controlling winding temperature
JP2011212685A (en) 2010-03-31 2011-10-27 Jfe Steel Corp Method for controlling winding temperature of metal strip in hot rolling line
JP2013123734A (en) 2011-12-14 2013-06-24 Jfe Steel Corp Method and device for controlling hot finishing temperature
WO2015118606A1 (en) 2014-02-04 2015-08-13 東芝三菱電機産業システム株式会社 Temperature control unit of hot-rolling machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170375B2 (en) * 1993-01-25 2001-05-28 日新製鋼株式会社 Temperature prediction method for hot rolled steel sheet
JPH1133616A (en) * 1997-05-23 1999-02-09 Nippon Steel Corp Controller for winding temperature of steel strip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300633A (en) 2000-04-24 2001-10-30 Nisshin Steel Co Ltd Low temperature coiling method of high strength hot rolled steel strip
JP2009148809A (en) 2007-12-21 2009-07-09 Hitachi Ltd Device and method for controlling winding temperature
JP2011212685A (en) 2010-03-31 2011-10-27 Jfe Steel Corp Method for controlling winding temperature of metal strip in hot rolling line
JP2013123734A (en) 2011-12-14 2013-06-24 Jfe Steel Corp Method and device for controlling hot finishing temperature
WO2015118606A1 (en) 2014-02-04 2015-08-13 東芝三菱電機産業システム株式会社 Temperature control unit of hot-rolling machine

Also Published As

Publication number Publication date
JP2021154367A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
KR100977373B1 (en) Cooling control method, cooling control device, device for calculating quantity of cooling water and computer-readable recording medium storing computer program
US20130030561A1 (en) Rolled material cooling control apparatus, rolled material cooling control method, and rolled material cooling control program
JP4221002B2 (en) Cooling control method, cooling control device, and cooling water amount calculation device
JPWO2006040823A1 (en) Material control method and apparatus for rolling, forging or straightening line
KR101516476B1 (en) Apparatus for calculating set value, method of calculating set value, and program recording medium for calculating set value
WO2010058457A1 (en) Controller
JP2006281300A (en) Cooling control method, device, and computer program
JP7135962B2 (en) Steel plate finishing delivery side temperature control method, steel plate finishing delivery side temperature control device, and steel plate manufacturing method
JP7196875B2 (en) Controlled cooling method and controlled cooling device for steel plate
US20220371066A1 (en) Method for controlling a cooling device in a rolling train
CN112437702B (en) Temperature control device of hot rolling production line
JP7205517B2 (en) Rolled material cooling control method and cooling control device
JP2016209897A (en) Cooling control method for thick steel plate, cooling control apparatus, manufacturing method, and manufacturing apparatus
JP5948967B2 (en) Temperature prediction method, cooling control method and cooling control device for metal plate in hot rolling
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JP7251533B2 (en) Method for calculating water cooling heat transfer coefficient of steel plate, method for cooling steel plate, and method for manufacturing steel plate
TWI749347B (en) Rolling shape control apparatus
JP2015167976A (en) Winding temperature control method of hot rolled steel sheet
JP6645036B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP2008188604A (en) Temperature control method in cooling of steel sheet
US11779977B2 (en) Method for setting different cooling curves of rolling material over the strip width of a cooling stretch in a hot-strip mill or heavy-plate mill
JP2003293030A (en) Method for cooling steel plate
RU2783688C1 (en) Method for controlling the cooling device in the rolling mill line
JP2023030272A (en) Temperature prediction device of steel material, cooling control device, method and program
JP6822390B2 (en) Rough rolling time calculation method for thick steel sheets, rough rolling time calculation device for thick steel sheets, and manufacturing method for thick steel sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150