JPH1133616A - Controller for winding temperature of steel strip - Google Patents

Controller for winding temperature of steel strip

Info

Publication number
JPH1133616A
JPH1133616A JP9206882A JP20688297A JPH1133616A JP H1133616 A JPH1133616 A JP H1133616A JP 9206882 A JP9206882 A JP 9206882A JP 20688297 A JP20688297 A JP 20688297A JP H1133616 A JPH1133616 A JP H1133616A
Authority
JP
Japan
Prior art keywords
steel strip
cooling
value
learning
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9206882A
Other languages
Japanese (ja)
Inventor
Hiroshi Komagata
洋 駒形
Toyohiko Ueda
豊彦 上田
Akihisa Tsuruta
明久 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9206882A priority Critical patent/JPH1133616A/en
Publication of JPH1133616A publication Critical patent/JPH1133616A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Winding, Rewinding, Material Storage Devices (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform proper learning according to the change of an operation condition, and to properly cool the head part of the steel strip by obtaining a deviation from the true value of a thermal conductivity according to a difference between the predicted value of the winding temperature of the steel strip and an actual value by the sequential type least square, method setting it to a learning value, and correcting the thermal conductivity of a cooling control part. SOLUTION: The forecast cooling speed of the steel strip 1 is calculated by a cooling controller 20 in consideration of a cooling speed from the signals of finish outlet side thermometer 8, finish speed detector 13, winding thermometer 9 and winding speed detector 12. By using the thermal conductivity, water injection is controlled so that this predicted value and a target value coincide. The information of a cooling control part 20 and the information of the operation condition are inputted in a learning calculation part 30, the learning value of the thermal conductivity of the head part of the steel strip 1, is calculated previously for each group of various steel strips 1, and they are stored. According to the operation condition, the thermal conductivity of the cooling control part 20 is corrected by the stored learning value by the learning calculation part 30. For the thermal conductivity to be used for the calculation of a predicted cooling temperature in the divided area of a water injection bank 4, the sequential type least square method is applied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鋼帯の捲取温度制御
装置に関し、特に鋼帯間の熱伝達係数の学習の最適化を
行う装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling a temperature of winding a steel strip, and more particularly to an apparatus for optimizing learning of a heat transfer coefficient between steel strips.

【0002】[0002]

【従来の技術】上記鋼帯の捲取温度制御装置では、熱間
圧延された鋼帯(鋼板)の品質確保のためには、捲取温
度(CT)の制御が重要である。これによって、鋼帯の
加工性などの品質が決定されるためである。捲取温度の
制御の難しい点として、温度の実測点数が多く取れない
ことが挙げられる。温度の実測は、一般的に、仕上出側
と捲取入側のみで行われるか、多くてもこの他に中間に
2点程度の実測点が設けられるだけである。その理由
は、通常鋼帯の冷却には水を使用し温度の実測には放射
温度計を使用するが、冷却水を鋼帯に注水することによ
り発生する蒸気、板上水を温度測定のために、取り除く
ブロワー、水切りスプレー等の設備環境対策が必要とな
り、つまり、空間的な制約、コストアップが発生するた
めである。
2. Description of the Related Art In the above-mentioned steel strip winding temperature control apparatus, it is important to control the winding temperature (CT) in order to ensure the quality of a hot-rolled steel strip (steel sheet). This is because the quality such as the workability of the steel strip is determined by this. One of the difficult points in controlling the winding temperature is that it is not possible to obtain a large number of measured temperatures. The actual measurement of the temperature is generally performed only on the finishing side and the take-in side, or at most, only two actual measurement points are provided in the middle. The reason is that water is usually used to cool the steel strip and a radiation thermometer is used to measure the temperature.However, steam and water on the board generated by pouring cooling water into the steel strip are used for temperature measurement. In addition, equipment environmental measures such as a blower to be removed and a drainer spray are required, that is, a space restriction and a cost increase occur.

【0003】そこで、一般的には、仕上出側の温度から
鋼帯の温度を予測計算し予測値が目標値に一致するよう
に、注水するフィードフォワード(FF)制御が行われ
ている。また、上記注水制御では、フィードバック(F
B)制御により注水修正が行われている。このフィード
バック制御では鋼帯の捲取温度実績値(実績CT)と目
標値を比較し、冷却不足の場合には注水量増加が行わ
れ、過冷却の場合には注水量減少が行われる。
Therefore, generally, feedforward (FF) control for injecting water is performed such that the temperature of the steel strip is predicted and calculated from the temperature on the finishing side and the predicted value matches the target value. In the above water injection control, feedback (F
B) Water injection correction is performed by control. In this feedback control, the actual value of the winding temperature (actual CT) of the steel strip is compared with the target value. If the cooling is insufficient, the water injection amount is increased, and if the cooling is excessive, the water injection amount is decreased.

【0004】さらに、上記注水制御では前記鋼帯の温度
の予測値と実績値との差を補正する鋼帯内学習制御によ
り温度予測精度向上が行われている。しかし、これらの
フィードバック制御、フィードフォワード制御、鋼帯内
学習制御にも拘わらず、鋼帯頭部領域の温度制御精度は
悪い。この理由は、鋼帯頭部領域は捲取温度の実績値を
利用したフィードバック制御、鋼帯内学習制御が間に合
わないため、鋼帯の温度を正確に予測してフィードフォ
ワード制御をしなければならないにもかかわらず、鋼帯
頭部領域は中央部以後に比較して冷却特性(熱伝達係
数)が異なる場合が多く、温度予測計算が外れやすいた
めである。例えば、熱間圧延前の加熱段階における過加
熱、加熱不足のような加熱ムラはスケール発生状況変化
による表面状態変化を誘起して最終的に冷却段階での熱
伝達係数変化の発生に至る。また、頭部領域冷却中は、
先端未固定のため、例えば、たわみ、たくれのような形
状変化が大きく、水のりが起こり、過冷却気味になる場
合がある。
Further, in the water injection control, the accuracy of temperature prediction is improved by learning control in the steel strip for correcting a difference between the predicted value and the actual value of the temperature of the steel strip. However, despite the feedback control, the feedforward control, and the learning control in the steel strip, the temperature control accuracy of the steel strip head region is poor. The reason is that, in the steel strip head region, the feedback control using the actual value of the winding temperature and the learning control in the steel strip are not in time, so the feedforward control must be performed by accurately predicting the temperature of the steel strip. Nevertheless, the steel strip head region often has a different cooling characteristic (heat transfer coefficient) than the central portion and thereafter, and the temperature prediction calculation is likely to deviate. For example, heating unevenness such as overheating or insufficient heating in the heating stage before hot rolling induces a change in the surface state due to a change in the scale generation state, and finally causes a change in the heat transfer coefficient in the cooling stage. Also, during the cooling of the head area,
Since the tip is not fixed, for example, there is a large change in shape such as bending or warping, water is generated, and there is a case where the cooling becomes slightly supercooled.

【0005】鋼帯頭部領域の温度精度向上する従来技術
として、特開平3−198905号公報に記載されるも
のがある。これには頭部領域について捲取温度の目標値
と実績値の差の平均から目標値に対する修正量を求めこ
れを指数平滑して制御に反映することが開示されてい
る。また、特開昭64−62206号公報に記載される
ものがあり、これには、逐次型最小二乗法で、バンク毎
に上下に分割された各領域毎に、水冷・空冷別に冷却能
の補正値を鋼帯内で学習し、これを次の鋼帯に適用する
方法が提示されている。
As a prior art for improving the temperature accuracy of the steel strip head region, there is one disclosed in Japanese Patent Application Laid-Open No. 3-198905. It discloses that a correction amount for the target value is obtained from the average of the difference between the target value and the actual value of the winding temperature for the head region, and this is exponentially smoothed and reflected in control. Japanese Patent Application Laid-Open No. 64-62206 discloses a method of correcting the cooling capacity by water-cooling and air-cooling for each area divided into upper and lower areas by a bank using a sequential least squares method. A method is proposed in which the values are learned in the steel strip and applied to the next steel strip.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記特
開平3−198905号公報に記載される方法では、第
1には、バンク毎に学習できないため、注水量・注水パ
ターンが変化したとき温度計算誤差が発生し、第2に
は、空冷分の誤差と水冷分の誤差を分割してとらえるこ
とができないため、注水量・注水パターンが変化したと
き温度計算誤差が発生するという問題がある。
However, in the method described in Japanese Patent Application Laid-Open No. 3-198905, firstly, since learning cannot be performed for each bank, a temperature calculation error occurs when the water injection amount / water injection pattern changes. Secondly, since it is impossible to divide the error of the air-cooling component and the error of the water-cooling component separately, there is a problem that a temperature calculation error occurs when the water injection amount / water injection pattern changes.

【0007】また、上記特開昭64−62206号公報
に記載される方法では、特開平7−32024号公報に
記載されているように鋼帯の頭部領域と尾部領域では最
適な学習値が異なるため、その差分の誤差が発生すると
いう問題がある。加えて、類似鋼種毎にグループ分けさ
れた同一グループの鋼帯間においても最適な学習値は経
時変化するので、上記いずれの方法でもこれを適切に反
映させることができず、捲取温度の精度向上を、図るこ
とができないという問題がある。
In the method described in JP-A-64-62206, the optimum learning value is obtained in the head region and the tail region of the steel strip as described in JP-A-7-32024. Since they are different, there is a problem that an error of the difference occurs. In addition, since the optimal learning value changes with time even between steel strips of the same group grouped for each similar steel type, any of the above methods cannot appropriately reflect this, and the accuracy of the winding temperature can be reduced. There is a problem that improvement cannot be achieved.

【0008】図5は鋼帯毎の最適な学習値の変化イメー
ジを説明する図である。本図は特定鋼種の鋼帯について
各鋼帯毎の最適な学習値を鋼帯の熱間圧延時刻に対して
プロットしたものを示す。なお鋼帯は熱間圧延直後に冷
却される。圧延と冷却は連続作業であり、鋼帯間の圧延
時刻の時間差≒冷却時刻の時間差である。学習値は空冷
・水冷、バンク(分割領域)毎の複数のうち1つをプロ
ットしてある。同一鋼種にも拘わらず、最適な値は鋼帯
毎に変化する。特徴としては、第1には、連続(60分
以内程度)して熱間圧延されたものは、ある値を中心に
分布することがあり、第2には、圧延間隔が長い時間
(数時間〜数日)あいた後に冷却したものは、上記分布
の中心が変化することにある。
FIG. 5 is a diagram for explaining an image of a change in an optimum learning value for each steel strip. This figure shows the optimum learning value for each steel strip of a specific steel type plotted against the hot rolling time of the steel strip. The steel strip is cooled immediately after hot rolling. Rolling and cooling are continuous operations, and the time difference between rolling times between steel strips ≒ the time difference between cooling times. One of a plurality of learning values is plotted for each of air cooling, water cooling, and bank (divided region). The optimum value varies for each steel strip, regardless of the type of steel. As a feature, firstly, those continuously and hot-rolled (within about 60 minutes) are distributed around a certain value, and secondly, the rolling interval is long (for several hours). What cools after a few days) is that the center of the distribution changes.

【0009】この原因は、前述の加熱条件等の操業条件
が状況に応じて変化することである。生産量を重視する
場合、燃料原単位を重視する場合、制御精度を重視する
場合など、同じ鋼種でも状況によって加熱条件等の操業
条件を変えることがある。また、搬送ロールの温度や冷
却水温の変動など、温度予測モデルに組み込まれていな
いものや、組み込まれていても調整・取り込みが完全で
ないものの影響を受ける。例えば、数時間以上圧延を休
止した後は、冷却水温度、搬送ロール温度が低くなるこ
とがある。
The cause is that operating conditions such as the above-mentioned heating conditions change according to the situation. The operating conditions such as heating conditions may be changed depending on the situation even with the same steel type, such as when the production amount is emphasized, when the fuel consumption rate is emphasized, or when the control accuracy is emphasized. In addition, it is affected by factors that are not incorporated in the temperature prediction model, such as fluctuations in the temperature of the transport rolls and cooling water temperature, and components that are not completely adjusted and taken in even if incorporated. For example, after the rolling is stopped for several hours or more, the cooling water temperature and the transport roll temperature may decrease.

【0010】図6は従来技術の学習値の変化イメージを
説明する図である。図に示す如く、圧延間隔が長い時間
あいた後、連続圧延を再開した場合に、分布の中心が異
なる相関のうすい過去の値にひきづられて鋼帯の学習値
の誤差が大きくなる。このように同一の鋼種における鋼
帯間で最適な学習値が経時変化するため、これを適切に
反影しないかぎり、鋼帯頭部領域の制御精度は向上しな
い。
FIG. 6 is a diagram for explaining a change image of a learning value according to the prior art. As shown in the figure, when continuous rolling is restarted after a long rolling interval, the error of the learned value of the steel strip increases due to the correlation value of the center of the distribution being different from the past value. As described above, since the optimal learning value changes over time between steel strips of the same steel type, the control accuracy of the steel strip head region does not improve unless this is appropriately reflected.

【0011】したがって、本発明は、上記問題点に鑑
み、操業条件変化に応じて適切な学習を行うことがで
き、鋼帯頭部の冷却を適切に行える鋼帯の捲取温度制御
装置を提供することを目的とする。
Accordingly, the present invention has been made in view of the above problems, and provides a steel strip winding temperature control apparatus capable of performing appropriate learning according to changes in operating conditions and appropriately cooling a steel strip head. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】本発明は、前記問題点を
解決するために熱間圧延が行われた鋼帯を、個々に冷却
能の操作が可能な複数の冷却バンクからなる冷却手段
で、冷却後に測定される捲取温度が目標値になるように
冷却する捲取温度制御装置において、前記目標値を達成
するために、あらかじめ決定された熱伝達係数を用いて
鋼帯温度を予測して各冷却バンクの冷却能を制御する冷
却制御部と、同鋼種の前記鋼帯の頭部に温度変動を起こ
す原因を予め特定するように、鋼帯が属する鋼種を類似
鋼種毎にグループに分け、鋼帯の頭部領域について鋼帯
が一定長進む毎に捲取温度の予測値と実績値の差を基に
予測に用いた熱伝達係数の真値からの偏差を逐次型最小
二乗法により求め、同一グループ内で直前に熱間圧延さ
れた鋼帯との時間差がある一定の忘却時間以内であれば
前記偏差を指数平滑で更新して学習値として求め、前記
冷却制御部の熱伝達係数を前記学習値で補正する鋼帯間
の学習計算部とを備えることを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a cooling means comprising a plurality of cooling banks each capable of individually controlling the cooling capacity of a steel strip which has been subjected to hot rolling to solve the above-mentioned problems. In a winding temperature control device that cools so that a winding temperature measured after cooling becomes a target value, in order to achieve the target value, a steel strip temperature is predicted using a predetermined heat transfer coefficient. A cooling control unit for controlling the cooling capacity of each cooling bank, and dividing the steel type to which the steel strip belongs into groups for each similar steel type so as to identify in advance the cause of the temperature fluctuation at the head of the steel strip of the same steel type. The deviation from the true value of the heat transfer coefficient used for the prediction based on the difference between the predicted value of the winding temperature and the actual value every time the steel strip advances by a certain length for the head region of the steel strip is calculated by the sequential least squares method. Time difference from the last hot-rolled strip in the same group A learning calculation unit for correcting the heat transfer coefficient of the cooling control unit with the learning value by updating the deviation by exponential smoothing within a certain forgetting time and obtaining the learning value as a learning value. Features.

【0013】この手段により、操業条件変化に応じて適
切に熱伝達係数の学習を行うことができ且つ鋼帯の頭部
の冷却を適切に行うことが可能になる。
According to this means, it is possible to appropriately learn the heat transfer coefficient in accordance with the change in the operating conditions, and to appropriately cool the head of the steel strip.

【0014】[0014]

【発明の実施の形態】以下本発明の実施の形態について
図面を参照して説明する。図1は本発明に係る熱延冷却
工程の概略を説明する図である。本図に示す如く、鋼帯
1は仕上ミル2からコイラー3に通板し、冷却設備であ
る注水バンク4を通板中にに冷却される。注水バンク4
の入口には仕上出側温度(FT)を測定する仕上出側温
度計8、その出口には捲取温度(CT)を測定する捲取
温度計9が設けられている。そして、注水バンク4は制
御バルブ10と、注水ヘッダ11とからなる。捲取速度
検出器12はコイラ3の捲取速度を検出する。仕上速度
検出器13は仕上ミル2の速度を検出する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating an outline of a hot rolling cooling step according to the present invention. As shown in the figure, the steel strip 1 passes from a finishing mill 2 to a coiler 3 and is cooled while passing a water injection bank 4 as a cooling facility. Water injection bank 4
A finishing thermometer 8 for measuring the finishing temperature (FT) is provided at the entrance of the, and a winding thermometer 9 for measuring the winding temperature (CT) is provided at the outlet. The water injection bank 4 includes a control valve 10 and a water injection header 11. The winding speed detector 12 detects the winding speed of the coiler 3. The finishing speed detector 13 detects the speed of the finishing mill 2.

【0015】図2は鋼帯の捲取温度制御装置を説明する
図である。本図に示す如く、捲取温度制御装置は冷却制
御部20と鋼帯間の学習計算部30からなる。冷却制御
部20は、仕上出側温度計8、仕上速度検出器13、捲
取温度計9、捲取速度検出器12からの信号を入力し
て、冷却速度を考慮して鋼帯1の予想冷却温度(CT)
を計算し、計算した予測値と目標値が一致するように注
水制御を行う。この注水制御において熱伝達係数が使用
される。具体的には下記式(1)、(2)を用いて目標
温度となるまで繰り返し計算が行われる。
FIG. 2 is a diagram for explaining a steel strip winding temperature control device. As shown in the figure, the winding temperature control device includes a cooling control unit 20 and a learning calculation unit 30 between steel strips. The cooling control unit 20 receives signals from the finishing output side thermometer 8, the finishing speed detector 13, the winding thermometer 9, and the winding speed detector 12, and estimates the steel strip 1 in consideration of the cooling speed. Cooling temperature (CT)
Is calculated, and water injection control is performed so that the calculated predicted value matches the target value. The heat transfer coefficient is used in this water injection control. Specifically, the calculation is repeatedly performed using the following equations (1) and (2) until the target temperature is reached.

【0016】[0016]

【数1】 (Equation 1)

【0017】このような計算で得られた計算CTを実績
で得られた実績CTを基に以下のように補正を行う。鋼
帯間の学習計算部30は、仕上出側温度計8、仕上速度
検出器13、捲取温度計9、捲取速度検出器12からの
信号を入力し、さらに操業条件の情報を入力し、種々の
鋼帯1のグループ毎に予め鋼帯1の頭部の熱伝達係数の
学習値を計算して格納しておく。学習計算部30は操業
条件に応じて格納された学習値で冷却制御部20の熱伝
達係数を補正する。
The calculated CT obtained by such a calculation is corrected as follows based on the actual CT obtained by the actual. The learning calculation unit 30 between the steel strips inputs signals from the finishing output side thermometer 8, the finishing speed detector 13, the winding thermometer 9, and the winding speed detector 12, and further inputs information on operating conditions. The learning value of the heat transfer coefficient of the head of the steel strip 1 is calculated and stored in advance for each group of various steel strips 1. The learning calculation unit 30 corrects the heat transfer coefficient of the cooling control unit 20 with the learning value stored according to the operation condition.

【0018】なお、鋼帯間の学習計算部30は注水バン
ク4を、説明の簡単化のため、例えば、前後、上下の4
つの領域に分割し、各領域で予測冷却温度の計算に使用
する熱伝達係数をα1 ,α2 ,α3 ,α4 として、以下
の如く、逐次型最小二乗法を適用する。以下詳細に説明
する。図3は鋼帯間の学習計算部30の動作を説明する
フローチャートである。
The learning calculator 30 between the steel strips, for simplicity of description, for example, arranges the water injection bank 4 in front, back, up and down 4
The region is divided into two regions, and the heat transfer coefficients used in the calculation of the predicted cooling temperature in each region are set as α 1 , α 2 , α 3 , and α 4 , and the sequential least squares method is applied as follows. This will be described in detail below. FIG. 3 is a flowchart for explaining the operation of the learning calculator 30 between steel strips.

【0019】鋼帯1の先端が仕上出側温度計8に達する
と処理が開始する。図3に示す如く、ステップF10に
おいて現在冷却している鋼帯1の分類を行い、学習層別
(グループ)を決定する。例えば、成分、板厚、捲取温
度、冷却速度、目標温度パターンが類似する鋼種毎に鋼
帯1を分類する。なお、グループ内では注水パターンの
ような操業条件の変動を可能な限り小さくする。また、
学習を行う鋼帯1の頭部領域について、目標温度パター
ンが詳細に設定され且つ頭部の温度変動の主原因とな
る、例えば薄物の場合は形状、厚物の場合は加熱条件が
設定される。ステップF11において冷却開始時刻を保
存する。ステップF12において、前回の学習値および
冷却開始時刻をとり込む。ステップF13において前回
の冷却は忘却時間以上前かを判定する。すなわち、1本
前の同層別鋼帯の冷却開始時刻と、現在時刻との差を求
め、忘却時間と比較する。なお、忘却時間は鋼帯間の冷
却待ち時間が大きくなり、図6に示す連続圧延の1つの
相関の少ない過去の値にひきづられて鋼帯の学習値の平
滑化が悪化するのを防止するために設けられる。ステッ
プF14において忘却時間以上の場合には学習値Δαi
を規定値にリセットして処理を終了する。この値は長期
間、例えば1年間の学習値の平均値とする。ステップF
15において、冷却制御部に学習値をわたし、熱伝達係
数を補正する。ステップF16において鋼帯1の頭部指
定領域が捲取温度計9を通過完了したか判定する。ステ
ップF17において、通過未完了ならば、仕上温度、通
板速度、注水実績をサンプリングし、鋼帯1の成分、サ
イズ(厚み、幅)等を考慮して、逐次型最小二乗法を適
用するために、冷却制御部20で行う予測冷却温度の計
算と同様にして捲取温度の計算誤差ΔCT(=実績CT
−計算CT)と、各領域の熱伝達係数α1 ,α2 ,α
3 ,α4 の影響係数(偏微分)を計算する。ステップF
18において逐次型最小二乗法で温度の計算誤差ΔCT
が最小となる熱伝達係数α1 ,α2 ,α3 ,α4 の真値
からの偏差Δβ1 ,Δβ2 ,Δβ3 ,Δβ4 を計算す
る。すなわち、Δβ1 ,Δβ2 ,Δβ3 ,Δβ4 が熱伝
達係数α1 ,α2,α3 ,α4 を補正する学習値とな
る。ステップF16に戻り、鋼帯の頭部指定領域が捲取
温度計9を通過するまで一定周期で上記計算が繰り返し
行われる。ステップF19においてステップF14で通
過完了して頭部指定領域の計算が終了したならば、指数
平滑により学習値を更新する。また、上記逐次型最小二
乗法を適用するに当たり、忘却係数を設けてこれを調整
する場合、捲取温度外れのパターンに応じて調整するこ
とが必要である。
When the end of the steel strip 1 reaches the finishing thermometer 8, the process starts. As shown in FIG. 3, in step F10, the currently cooled steel strip 1 is classified, and a learning layer (group) is determined. For example, the steel strip 1 is classified for each steel type having similar components, plate thickness, winding temperature, cooling rate, and target temperature pattern. In the group, fluctuations in operating conditions such as a water injection pattern are minimized. Also,
For the head region of the steel strip 1 on which the learning is performed, the target temperature pattern is set in detail and the main cause of the temperature fluctuation of the head, for example, the shape is set for a thin object, and the heating condition is set for a thick object. . In step F11, the cooling start time is stored. In step F12, the previous learning value and the cooling start time are taken. In step F13, it is determined whether or not the last cooling was earlier than the forgetting time. That is, the difference between the cooling start time of the previous steel strip in the same layer and the current time is obtained and compared with the forgetting time. In addition, the forgetting time prevents the cooling waiting time between the steel strips from increasing, and prevents the smoothing of the learning values of the steel strips from being deteriorated due to one of the past values having little correlation in the continuous rolling shown in FIG. It is provided in order to. If it is longer than the forgetting time in step F14, the learning value Δαi
Is reset to the specified value, and the process ends. This value is an average value of learning values for a long period, for example, one year. Step F
At 15, the learned value is transmitted to the cooling control unit, and the heat transfer coefficient is corrected. In step F16, it is determined whether or not the head designation area of the steel strip 1 has completed passing through the winding thermometer 9. If the passage is not completed in step F17, the finishing temperature, the passing speed, and the actual water injection are sampled, and the sequential least square method is applied in consideration of the components, size (thickness, width) of the steel strip 1, and the like. In the same manner as the calculation of the predicted cooling temperature performed by the cooling control unit 20, a calculation error ΔCT of the winding temperature (= actual CT)
Calculation CT) and heat transfer coefficients α 1 , α 2 , α
3. Calculate the influence coefficient (partial derivative) of α 4 . Step F
18 is a temperature calculation error ΔCT by the recursive least squares method.
The deviations Δβ 1 , Δβ 2 , Δβ 3 , and Δβ 4 from the true values of the heat transfer coefficients α 1 , α 2 , α 3 , and α 4 at which is minimized are calculated. That is, Δβ 1 , Δβ 2 , Δβ 3 , and Δβ 4 are learning values for correcting the heat transfer coefficients α 1 , α 2 , α 3 , and α 4 . Returning to step F16, the above calculation is repeatedly performed at a constant cycle until the head designation area of the steel strip passes through the winding thermometer 9. In step F19, when the passage is completed in step F14 and the calculation of the head designation area is completed, the learning value is updated by exponential smoothing. In addition, when applying the above-mentioned sequential least squares method and providing a forgetting factor to adjust the forgetting factor, it is necessary to adjust the forgetting factor in accordance with a pattern in which the winding temperature deviates.

【0020】図7は鋼帯の頭部捲取温度高め外れの例を
説明する図である。本図に示す如く、温度が目標から公
差以上はずれる領域が頭部領域の大半を占めることがわ
かっている場合、計算の収束を早めるように忘却係数を
調整する必要がある。図8は捲取温度温度局部落ち込み
の例を説明する図である。本図に示す如く、温度が落ち
込んで目標から公差以上はずれる領域が頭部領域のごく
一部であることがわかっている場合、落ち込み部の影響
が小さくなるように忘却係数を調整する必要がある。
FIG. 7 is a diagram for explaining an example in which the head winding temperature of the steel strip rises and goes off. As shown in this figure, when it is known that the region where the temperature deviates from the target by more than the tolerance occupies most of the head region, it is necessary to adjust the forgetting factor so that the convergence of the calculation is accelerated. FIG. 8 is a diagram for explaining an example of a drop in the winding temperature and the local temperature. As shown in this figure, if it is known that the area where the temperature drops and deviates from the target by more than the tolerance is only a small part of the head area, it is necessary to adjust the forgetting coefficient so that the effect of the drop is reduced. .

【0021】図4は本発明に係る学習値の変化イメージ
を説明する図である。鋼種のグループ、鋼帯の頭部の温
度変動の原因、鋼帯の冷却時刻を考慮して、本図に示す
如く連続して圧延した鋼帯の学習値を最適に平滑化で
き、かつ圧延間隔が長時間あいても、相関のうすい過却
の値にひきづられることなく、つまり学習値の誤差が小
さくでき、鋼帯間の学習値が最適に設定できるようにな
った。すなわち、鋼帯頭部では、熱伝達係数α1 ,α
2 ,α3 ,α4 にこのようにして得られた最新の更新学
習値Δα1 ,Δα2 ,Δα3 ,Δα4 をそれぞれ加えた
値を用いて時間遅れなしに注水が制御される。なお、注
水バンク4を前後に2よりも大きな複数に分割し、上下
に2分割して上記の適用を行うことにより補正精度がさ
らに向上できる。このように注水バンク4を複数に分割
して補正を行うことにより、計算量を減らして計算機負
担を下げることが可能となる。
FIG. 4 is a diagram for explaining a change image of the learning value according to the present invention. Considering the steel type group, the cause of temperature fluctuation of the head of the steel strip, and the cooling time of the steel strip, the learning value of the continuously rolled steel strip can be optimally smoothed as shown in this figure, and the rolling interval Even for a long time, the error of the learning value can be reduced without being influenced by the value of the overestimation of the correlation, that is, the learning value between the steel strips can be set optimally. That is, at the head of the steel strip, the heat transfer coefficients α 1 and α
Water injection is controlled without time delay by using values obtained by adding the latest updated learning values Δα 1 , Δα 2 , Δα 3 , and Δα 4 obtained in this manner to 2 , α 3 , and α 4 . It should be noted that the correction accuracy can be further improved by dividing the water injection bank 4 into a plurality of parts before and after and dividing the water injection bank 4 into two parts vertically and two parts vertically. As described above, by performing the correction by dividing the water injection bank 4 into a plurality of parts, it is possible to reduce the calculation amount and the computer load.

【0022】さらに、鋼帯1の頭部以外の中央部等は前
述の如く、学習値で補正を行わず、式(4)、(5)か
ら直接得られた熱伝達係数α1 ,α2 ,α3 ,α4 を用
いてもよい。または、鋼帯内学習をあわせて行わせても
よい。
Further, as described above, the central part of the steel strip 1 other than the head is not corrected by the learning value, and the heat transfer coefficients α 1 and α 2 directly obtained from the equations (4) and (5). , Α 3 , α 4 may be used. Alternatively, learning in the steel strip may be performed together.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
操業条件変化に応じて適切な熱伝達係数の学習を行うこ
とができるようになった。
As described above, according to the present invention,
It has become possible to learn an appropriate heat transfer coefficient according to changes in operating conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る熱延冷却工程の概略を説明する図
である。
FIG. 1 is a view schematically illustrating a hot rolling cooling step according to the present invention.

【図2】鋼帯の捲取温度制御装置を説明する図である。FIG. 2 is a diagram illustrating a steel strip winding temperature control device.

【図3】鋼帯間の学習計算部30の動作を説明するフロ
ーチャートである。
FIG. 3 is a flowchart illustrating an operation of a learning calculation unit 30 between steel strips.

【図4】本発明に係る学習値の変化イメージを説明する
図である。
FIG. 4 is a diagram illustrating a change image of a learning value according to the present invention.

【図5】鋼帯毎の最適な学習値の変化イメージを説明す
る図である。
FIG. 5 is a diagram illustrating an image of a change in an optimum learning value for each steel strip.

【図6】従来技術の学習値の変化イメージを説明する図
である。
FIG. 6 is a diagram illustrating a change image of a learning value according to the related art.

【図7】鋼帯の頭部温度高め外れの例を説明する図であ
る。
FIG. 7 is a diagram illustrating an example in which the head temperature of a steel strip rises and goes off.

【図8】温度局部落ち込み例を説明する図である。FIG. 8 is a diagram illustrating an example of a temperature local drop.

【符号の説明】[Explanation of symbols]

1…鋼板 4…注水バンク 8…仕上出側温度計 9…捲取温度計 20…冷却制御部 30…鋼帯間の学習計算部 DESCRIPTION OF SYMBOLS 1 ... Steel plate 4 ... Water injection bank 8 ... Finishing thermometer 9 ... Winding thermometer 20 ... Cooling control part 30 ... Learning calculation part between steel strips

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延が行われた鋼帯を、個々に冷却
能の操作が可能な複数の冷却バンクからなる冷却手段
で、冷却後に測定される捲取温度が目標値になるように
冷却する捲取温度制御装置において、 前記目標値を達成するために、あらかじめ決定された熱
伝達係数を用いて鋼帯温度を予測して各冷却バンクの冷
却能を制御する冷却制御部と、 同鋼種の前記鋼帯の頭部に温度変動を起こす原因を予め
特定するように、鋼帯が属する鋼種を類似鋼種毎にグル
ープに分け、鋼帯の頭部領域について鋼帯が一定長進む
毎に捲取温度の予測値と実績値の差を基に予測に用いた
熱伝達係数の真値からの偏差を逐次型最小二乗法により
求め、同一グループ内で直前に熱間圧延された鋼帯との
時間差がある一定の忘却時間以内であれば前記偏差を指
数平滑で更新して学習値として求め、前記冷却制御部の
熱伝達係数を前記学習値で補正する鋼帯間の学習計算部
とを備えることを特徴とする鋼帯の捲取温度制御装置。
1. A cooling means comprising a plurality of cooling banks each capable of individually controlling the cooling capacity of a steel strip subjected to hot rolling so that a winding temperature measured after cooling becomes a target value. A cooling control unit for controlling a cooling capacity of each cooling bank by predicting a steel strip temperature using a predetermined heat transfer coefficient in order to achieve the target value; To identify in advance the cause of temperature fluctuations in the head of the steel strip of the steel type, the steel type to which the steel strip belongs is divided into groups for each similar steel type, and each time the steel strip advances by a certain length in the head region of the steel strip. The deviation from the true value of the heat transfer coefficient used for the prediction based on the difference between the predicted value and the actual value of the winding temperature is determined by a sequential least squares method, and the steel strip that has been hot rolled immediately before in the same group is determined. If the time difference is within a certain forgetting time, the deviation is exponentially smoothed. Update calculated as the learned value, coiling temperature control device for a steel strip, characterized in that it comprises a learning calculation section between the steel strip to correct the heat transfer coefficient of the cooling control unit in the learning value.
JP9206882A 1997-05-23 1997-07-31 Controller for winding temperature of steel strip Withdrawn JPH1133616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9206882A JPH1133616A (en) 1997-05-23 1997-07-31 Controller for winding temperature of steel strip

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-133929 1997-05-23
JP13392997 1997-05-23
JP9206882A JPH1133616A (en) 1997-05-23 1997-07-31 Controller for winding temperature of steel strip

Publications (1)

Publication Number Publication Date
JPH1133616A true JPH1133616A (en) 1999-02-09

Family

ID=26468156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9206882A Withdrawn JPH1133616A (en) 1997-05-23 1997-07-31 Controller for winding temperature of steel strip

Country Status (1)

Country Link
JP (1) JPH1133616A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017723A (en) * 2008-07-08 2010-01-28 Kobe Steel Ltd Method of predicting temperature of nose part of rolled stock
WO2011048671A1 (en) * 2009-10-21 2011-04-28 東芝三菱電機産業システム株式会社 Control setting device and control setting method
JP2012081518A (en) * 2010-09-16 2012-04-26 Sumitomo Metal Ind Ltd Control method for cooling of thick steel plate, cooling controller, and method for production of thick steel plate
US10464146B2 (en) 2011-06-30 2019-11-05 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using the same
JP2021154367A (en) * 2020-03-30 2021-10-07 Jfeスチール株式会社 Controlled cooling method and controlled cooling device of steel plate
CN114178343A (en) * 2021-11-17 2022-03-15 首钢智新迁安电磁材料有限公司 Control method for coiling wrinkles of strip head of thin strip steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017723A (en) * 2008-07-08 2010-01-28 Kobe Steel Ltd Method of predicting temperature of nose part of rolled stock
WO2011048671A1 (en) * 2009-10-21 2011-04-28 東芝三菱電機産業システム株式会社 Control setting device and control setting method
CN102665948A (en) * 2009-10-21 2012-09-12 东芝三菱电机产业系统株式会社 Control setting device and control setting method
JP5380544B2 (en) * 2009-10-21 2014-01-08 東芝三菱電機産業システム株式会社 Control setting device and control setting method
KR101443991B1 (en) * 2009-10-21 2014-09-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Control setting device and control setting method
JP2012081518A (en) * 2010-09-16 2012-04-26 Sumitomo Metal Ind Ltd Control method for cooling of thick steel plate, cooling controller, and method for production of thick steel plate
US10464146B2 (en) 2011-06-30 2019-11-05 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using the same
JP2021154367A (en) * 2020-03-30 2021-10-07 Jfeスチール株式会社 Controlled cooling method and controlled cooling device of steel plate
CN114178343A (en) * 2021-11-17 2022-03-15 首钢智新迁安电磁材料有限公司 Control method for coiling wrinkles of strip head of thin strip steel
CN114178343B (en) * 2021-11-17 2024-04-12 首钢智新迁安电磁材料有限公司 Control method for winding folds of thin strip steel band head

Similar Documents

Publication Publication Date Title
JP3170375B2 (en) Temperature prediction method for hot rolled steel sheet
JP4598586B2 (en) Cooling control method, apparatus, and computer program
JPH07200005A (en) Learning control method
KR100643373B1 (en) Method of controlling longitudinal direction temperature of thick hot-rolled steel plate
JPH1133616A (en) Controller for winding temperature of steel strip
JP2009072807A (en) Method and device for controlling planar shape of rolled stock and method of manufacturing thick steel plate
JP7205517B2 (en) Rolled material cooling control method and cooling control device
JP2005297015A (en) Winding temperature controller
JP2007050413A (en) Method and apparatus for controlling steel sheet width
JP2786760B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
JP2001252709A (en) Method for temperature on outlet side of finishing mill for hot rolling
KR20030053621A (en) Hot strip cooling control mothode for chage target temperature
JP4796117B2 (en) Shape control method and shape control apparatus in rolling mill
TWI749347B (en) Rolling shape control apparatus
JP2000271626A (en) Method for controlling coiling temperature
JPH07185632A (en) Cooling controller for strip metallic material
JPH01162508A (en) Cooling control method for steel material
KR100757193B1 (en) cooling control method of high carbon hot-rolled strip taken phase transformation into account
JP3518504B2 (en) How to set cooling conditions for steel sheets
KR100432967B1 (en) Method for controlling thermal crown in hot rolling roll
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JPH11138205A (en) Method for predicting material temperature in multi-pass rolling
JP3584858B2 (en) Steel width control method
JP2003033808A (en) Hot rolling method and equipment
US12049677B1 (en) Cooling a rolled product upstream of a finishing train of a hot rolling mill

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005