JP2021154367A - Controlled cooling method and controlled cooling device of steel plate - Google Patents

Controlled cooling method and controlled cooling device of steel plate Download PDF

Info

Publication number
JP2021154367A
JP2021154367A JP2020059267A JP2020059267A JP2021154367A JP 2021154367 A JP2021154367 A JP 2021154367A JP 2020059267 A JP2020059267 A JP 2020059267A JP 2020059267 A JP2020059267 A JP 2020059267A JP 2021154367 A JP2021154367 A JP 2021154367A
Authority
JP
Japan
Prior art keywords
temperature
steel plate
cooling device
cooling
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020059267A
Other languages
Japanese (ja)
Other versions
JP7196875B2 (en
Inventor
円仁 高見
Marohito Takami
円仁 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020059267A priority Critical patent/JP7196875B2/en
Publication of JP2021154367A publication Critical patent/JP2021154367A/en
Application granted granted Critical
Publication of JP7196875B2 publication Critical patent/JP7196875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

To provide a controlled cooling method and a controlled cooling device of a steel plate capable of cooling a temperature of the steel plate to a target temperature accurately without requiring much labor even when a set flow rate of cooling water used in a temperature estimation model and an actual flow rate do not correspond to each other.SOLUTION: A controlled cooling method of a steel plate includes a measurement step of measuring a temperature of the steel plate on the inlet side and the outlet side of a cooling device at every cut sheet as a virtual control unit of the steel plate produced continuously in a longitudinal direction of the steel plate, an estimation step of estimating the temperature of the steel plate on the outlet side of the cooling device at every cut sheet according to a temperature estimation model by using the measured temperature of the cut sheet on the inlet side of the cooling device and a flow rate set value of cooling water when the cut sheet passes through the cooling device, and a correction step of correcting the flow rate set value of cooling water in a temperature estimation model so that the measured temperature of the steel plate on the outlet side of the cooling device and the estimated temperature of the steel plate on the outlet side of the cooling device in the estimation step correspond to each other over all cut sheets.SELECTED DRAWING: Figure 2

Description

本発明は、鋼板の制御冷却方法及び制御冷却装置に関する。 The present invention relates to a controlled cooling method and a controlled cooling device for a steel sheet.

熱延鋼板や厚鋼板に代表される鋼板の冷却温度制御では、冷却開始前に水冷による鋼板の温度変化を温度予測モデルを用いて予測し、予測結果に基づいて冷却完了時に鋼板の温度が目標温度になるように冷却水バルブの使用パターン、冷却水量、及び鋼板搬送速度を算出した上で冷却を実施する。このため、水冷による鋼板の温度変化の予測精度が鋼板の温度制御の精度を左右する。冷却完了時の鋼板の温度が目標温度からかけ離れてしまうと、製品に必要な材料的特性が得られなくなるため、冷却完了時の鋼板の温度を高精度に制御することが求められている。また近年、生産効率を高めるために鋼板の長さは長くなる傾向にあり、鋼板の長手方向に亘って冷却完了時の温度を高精度に制御することが求められている。このような背景から、一般的な鋼板の冷却温度制御では、冷却中に鋼板の実績温度と予測温度との偏差である制御偏差を抑制するように冷却装置を操作するフィードバック制御が適用されている。しかしながら、実際には、冷却水をかけた後に鋼板の温度を測定するまでの時間遅れ、フィードバック制御の計算時間による時間遅れ、冷却水バルブの応答遅れ等があるため、フィードバック制御を鋼板の全長で実施することはできない。また一般に、フィードバック制御には、制御量の変動が急峻とならないように遅れ時間が設定されているため、制御偏差が大きいと制御偏差を十分に抑制するまでに多くの時間を要する。 In the cooling temperature control of steel sheets represented by hot-rolled steel sheets and thick steel sheets, the temperature change of the steel sheet due to water cooling is predicted using a temperature prediction model before the start of cooling, and the temperature of the steel sheet is targeted at the completion of cooling based on the prediction result. Cooling is performed after calculating the usage pattern of the cooling water valve, the amount of cooling water, and the steel plate transport speed so that the temperature is reached. Therefore, the accuracy of predicting the temperature change of the steel sheet due to water cooling affects the accuracy of the temperature control of the steel sheet. If the temperature of the steel sheet at the completion of cooling is far from the target temperature, the material properties required for the product cannot be obtained. Therefore, it is required to control the temperature of the steel sheet at the completion of cooling with high accuracy. Further, in recent years, the length of the steel sheet tends to be long in order to improve the production efficiency, and it is required to control the temperature at the completion of cooling with high accuracy in the longitudinal direction of the steel sheet. Against this background, in general steel sheet cooling temperature control, feedback control is applied in which the cooling device is operated so as to suppress the control deviation, which is the deviation between the actual temperature of the steel sheet and the predicted temperature during cooling. .. However, in reality, there is a time delay until the temperature of the steel sheet is measured after the cooling water is applied, a time delay due to the calculation time of the feedback control, a response delay of the cooling water valve, etc. It cannot be carried out. Further, in general, since the delay time is set in the feedback control so that the fluctuation of the control amount does not become steep, if the control deviation is large, it takes a long time to sufficiently suppress the control deviation.

そこで、鋼板の実績温度と予測温度との偏差に基づいて温度予測モデルのパラメータを修正し、以降の温度予測計算に反映させることによって、フィードバック制御が適用されない区間の温度予測偏差を抑制することが行われている。特に、冷却開始前に測定した鋼板の温度、実績冷却水量、実績鋼板搬送速度等の実績データを用いて水冷による鋼板の温度変化を予測し、冷却完了後に測定した鋼板の実績温度との偏差を抑制するように温度予測モデルのパラメータを修正する技術はこれまでに幾つか提案されている。具体的には、特許文献1には、温度予測モデルにおける熱伝達係数の修正パラメータを圧延状態による非線形方程式で表現し、鋼板の実績温度と予測温度との偏差を抑制するように非線形方程式のパラメータを修正する技術が記載されている。また、特許文献2には、鋼板の実績温度に対する温度予測偏差を抑制するように総熱流束の修正係数を算出し、操業条件と修正係数を紐付けてデータベースに格納し、以後の操業時には近しい操業条件をデータベースで検索し、温度予測計算時はデータベースで検索した修正係数を反映させる技術が記載されている。また、特許文献3には、温度予測偏差を抑制するように鋼板の変態発熱量を算出し、鋼板が100%変態した際の変態発熱量と比較することにより鋼板の変態率を算出し、算出された変態率を使用して変態率方程式のパラメータを修正する技術が記載されている。 Therefore, by modifying the parameters of the temperature prediction model based on the deviation between the actual temperature of the steel plate and the predicted temperature and reflecting it in the subsequent temperature prediction calculation, it is possible to suppress the temperature prediction deviation in the section to which feedback control is not applied. It is done. In particular, the temperature change of the steel sheet due to water cooling is predicted using the actual data such as the temperature of the steel sheet measured before the start of cooling, the actual amount of cooling water, and the actual transfer speed of the steel sheet, and the deviation from the actual temperature of the steel sheet measured after the completion of cooling is calculated. Several techniques have been proposed to modify the parameters of the temperature prediction model to suppress them. Specifically, in Patent Document 1, the correction parameter of the heat transfer coefficient in the temperature prediction model is expressed by a nonlinear equation according to the rolling state, and the parameter of the nonlinear equation is suppressed so as to suppress the deviation between the actual temperature of the steel plate and the predicted temperature. The technique to correct is described. Further, in Patent Document 2, the correction coefficient of the total heat flux is calculated so as to suppress the temperature prediction deviation with respect to the actual temperature of the steel plate, and the operation conditions and the correction coefficient are linked and stored in the database. The technology that searches the operating conditions in the database and reflects the correction coefficient searched in the database when calculating the temperature prediction is described. Further, in Patent Document 3, the transformation calorific value of the steel sheet is calculated so as to suppress the temperature prediction deviation, and the transformation rate of the steel sheet is calculated and calculated by comparing with the transformation calorific value when the steel sheet is 100% transformed. A technique for modifying the parameters of the transformation rate equation using the transformed transformation rate is described.

特開2007−44715号公報JP-A-2007-44715 特開2011−200914号公報Japanese Unexamined Patent Publication No. 2011-200914 特開2013−766号公報Japanese Unexamined Patent Publication No. 2013-766

しかしながら、特許文献1−3に記載の技術は、温度予測偏差を抑制するように温度予測モデルのパラメータを修正しているが、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致しない場合の対策を開示、示唆していない。温度予測モデルにおいて用いた冷却水の設定流量と実績流量は、冷却水に含まれる不純物が配管内壁や冷却水バルブに固着することによる流量低下、送水ポンプの経年変化による流量低下、冷却水バルブの変形による流量変化等の要因によって常に一致するとは限らない。各冷却水バルブの冷却水流量が一様に変化するのであれば、特許文献1−3に記載の技術によって冷却水の流量の偏差を抑制できるが、上述した要因による実績流量の変化は冷却水バルブ間で一様とはならない。また、冷却水の設定流量と実績流量の不一致は上述したフィードバック制御により抑制可能ではあるが、上述した理由により鋼板の全長でフィードバック制御を実行することはできない。そこで、冷却開始前に流量計を用いて冷却水の設定流量と実績流量とが一致するように、温度予測モデルにおける冷却水の設定流量及び実績流量を調整することがよく行われているが、人的コストや時間的コストの面から頻繁に調整作業を行うことはできない。このため、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致していない場合であっても、多くの労力を要することなく鋼板の温度を精度よく目標温度に冷却可能な技術の提供が期待されていた。 However, in the technique described in Patent Document 1-3, the parameters of the temperature prediction model are modified so as to suppress the temperature prediction deviation, but the set flow rate of the cooling water used in the temperature prediction model and the actual flow rate match. It does not disclose or suggest measures to be taken if it does not. The set flow rate and actual flow rate of the cooling water used in the temperature prediction model are as follows: the flow rate decreases due to impurities contained in the cooling water sticking to the inner wall of the pipe and the cooling water valve, the flow rate decreases due to aging of the water supply pump, and the cooling water valve. It does not always match due to factors such as changes in flow rate due to deformation. If the cooling water flow rate of each cooling water valve changes uniformly, the deviation of the cooling water flow rate can be suppressed by the technique described in Patent Document 1-3, but the change in the actual flow rate due to the above-mentioned factors is the cooling water. Not uniform between valves. Further, although the discrepancy between the set flow rate of the cooling water and the actual flow rate can be suppressed by the feedback control described above, the feedback control cannot be executed over the entire length of the steel sheet for the reason described above. Therefore, it is common practice to adjust the set flow rate and the actual flow rate of the cooling water in the temperature prediction model so that the set flow rate of the cooling water and the actual flow rate match with each other using a flow meter before the start of cooling. Adjustment work cannot be performed frequently in terms of human cost and time cost. Therefore, even if the set flow rate of the cooling water used in the temperature prediction model and the actual flow rate do not match, the technology that can accurately cool the temperature of the steel sheet to the target temperature without much labor is required. It was expected to be provided.

本発明は、上記課題に鑑みてなされたものであって、その目的は、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致していない場合であっても、多くの労力を要することなく鋼板の温度を精度よく目標温度に冷却可能な鋼板の制御冷却方法及び制御冷却装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to put a lot of effort even when the set flow rate of the cooling water used in the temperature prediction model and the actual flow rate do not match. It is an object of the present invention to provide a controlled cooling method and a controlled cooling device for a steel sheet capable of accurately cooling the temperature of the steel sheet to a target temperature without needing to do so.

本発明に係る鋼板の制御冷却方法は、温度予測モデルを用いて冷却装置の出側における鋼板の温度を予測し、予測された鋼板の温度に基づいて冷却装置の出側における鋼板の温度が目標温度になるように冷却装置から噴射される冷却水の流量を制御する鋼板の制御冷却方法であって、前記冷却装置の入側及び出側における鋼板の温度を鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位である切板毎に測定する測定ステップと、前記測定ステップにおいて測定された冷却装置の入側における切板の温度、及び切板が冷却装置を通過した際の冷却水の流量設定値を用いて、前記温度予測モデルにより前記冷却装置の出側における鋼板の温度を切板毎に予測する予測ステップと、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度とが全切板に亘って一致するように前記温度予測モデルにおける冷却水の流量設定値を補正する補正ステップと、を含むことを特徴とする。 In the controlled cooling method of the steel plate according to the present invention, the temperature of the steel plate on the outlet side of the cooling device is predicted by using the temperature prediction model, and the temperature of the steel plate on the outlet side of the cooling device is targeted based on the predicted temperature of the steel plate. It is a control cooling method of a steel plate that controls the flow rate of cooling water injected from a cooling device so as to reach a temperature, and continuously generates the temperature of the steel plate on the inlet side and the exit side of the cooling device in the longitudinal direction of the steel plate. The measurement step measured for each cut plate, which is the control unit of the virtual steel plate, the temperature of the cut plate on the entrance side of the cooling device measured in the measurement step, and the cooling when the cut plate passes through the cooling device. A prediction step of predicting the temperature of the steel plate on the outlet side of the cooling device for each cutting plate by the temperature prediction model using the water flow rate set value, and a steel plate on the outlet side of the cooling device measured in the measurement step. The correction step of correcting the flow rate set value of the cooling water in the temperature prediction model so that the temperature of the above and the temperature of the steel plate on the outlet side of the cooling device predicted in the prediction step match over all the cutting plates. It is characterized by including.

本発明に係る鋼板の制御冷却方法は、上記発明において、前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、偏差と流量設定値との相関関係に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする。 In the control cooling method of the steel plate according to the present invention, in the above invention, the correction step is the temperature of the steel plate on the exit side of the cooling device measured in the measurement step and the output of the cooling device predicted in the prediction step. It is characterized by including a step of calculating the deviation from the temperature of the steel plate on the side for each cut plate and correcting the flow rate set value of the cooling water in the temperature prediction model based on the correlation between the deviation and the flow rate set value.

本発明に係る鋼板の制御冷却方法は、上記発明において、前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、全切板の偏差の合計値を合計偏差として算出し、算出された合計偏差に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする。 In the control cooling method of the steel plate according to the present invention, in the above invention, the correction step is the temperature of the steel plate on the exit side of the cooling device measured in the measurement step and the output of the cooling device predicted in the prediction step. The deviation from the temperature of the steel plate on the side is calculated for each cut plate, the total value of the deviations of all the cut plates is calculated as the total deviation, and the flow rate setting value of the cooling water in the temperature prediction model is calculated based on the calculated total deviation. It is characterized by including a step of correction.

本発明に係る鋼板の制御冷却方法は、上記発明において、前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、全切板の偏差の合計値を合計偏差として算出し、算出された合計偏差と直近に冷却された鋼板について算出された合計偏差との和を算出し、算出された和に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする。 In the control cooling method of the steel plate according to the present invention, in the above invention, the correction step is the temperature of the steel plate on the exit side of the cooling device measured in the measurement step and the output of the cooling device predicted in the prediction step. The deviation from the temperature of the steel plate on the side is calculated for each cut plate, the total value of the deviations of all the cut plates is calculated as the total deviation, and the calculated total deviation and the total deviation calculated for the most recently cooled steel plate It is characterized by including a step of calculating the sum of the above and correcting the flow rate set value of the cooling water in the temperature prediction model based on the calculated sum.

本発明に係る鋼板の制御冷却装置は、温度予測モデルを用いて冷却装置の出側における鋼板の温度を予測し、予測された鋼板の温度に基づいて冷却装置の出側における鋼板の温度が目標温度になるように冷却装置から噴射される冷却水の流量を制御する鋼板の制御冷却装置であって、前記冷却装置の入側及び出側における鋼板の温度を鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位である切板毎に測定する測定手段と、前記測定手段によって測定された冷却装置の入側における切板の温度、及び切板が冷却装置を通過した際の冷却水の流量設定値を用いて、前記温度予測モデルにより前記冷却装置の出側における鋼板の温度を切板毎に予測し、前記測定手段によって測定された前記冷却装置の出側における鋼板の温度と予測された前記冷却装置の出側における鋼板の温度とが全切板に亘って一致するように前記温度予測モデルにおける冷却水の流量設定値を補正する制御手段と、を備えることを特徴とする。 The steel plate control cooling device according to the present invention predicts the temperature of the steel plate on the exit side of the cooling device using a temperature prediction model, and targets the temperature of the steel plate on the exit side of the cooling device based on the predicted temperature of the steel plate. A steel plate control cooling device that controls the flow rate of cooling water injected from the cooling device so as to reach a temperature, and continuously generates the temperature of the steel plate on the inlet side and the exit side of the cooling device in the longitudinal direction of the steel plate. The measuring means that measures each cut plate, which is the control unit of the virtual steel plate, the temperature of the cut plate on the entrance side of the cooling device measured by the measuring means, and the cooling when the cut plate passes through the cooling device. Using the water flow rate set value, the temperature of the steel plate on the outlet side of the cooling device is predicted for each cut plate by the temperature prediction model, and the temperature of the steel plate on the outlet side of the cooling device measured by the measuring means is used. It is characterized by comprising a control means for correcting the flow rate set value of the cooling water in the temperature prediction model so that the predicted temperature of the steel plate on the outlet side of the cooling device matches over all the cut plates. ..

本発明に係る鋼板の制御冷却方法及び制御冷却装置によれば、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致していない場合であっても、多くの労力を要することなく鋼板の温度を精度よく目標温度に冷却することができる。 According to the controlled cooling method and the controlled cooling device for the steel sheet according to the present invention, even if the set flow rate of the cooling water used in the temperature prediction model and the actual flow rate do not match, a lot of labor is not required. The temperature of the steel sheet can be accurately cooled to the target temperature.

図1は、本発明の一実施形態である鋼板の制御冷却方法が適用される熱延鋼板の冷却ラインの構成を示す模式図である。FIG. 1 is a schematic view showing a configuration of a cooling line for a hot-rolled steel sheet to which a controlled cooling method for a steel sheet according to an embodiment of the present invention is applied. 図2は、本発明の一実施形態である制御冷却処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing the flow of the controlled cooling process according to the embodiment of the present invention. 図3は、実績温度、従来例、発明例1〜4を計算開始から切板番号500までの区間図示した図である。FIG. 3 is a diagram showing the actual temperature, the conventional example, and the invention examples 1 to 4 in the section from the calculation start to the cutting plate number 500. 図4は、実績温度、従来例、発明例1〜4を切板番号3000から切板番号3500までの区間図示した図である。FIG. 4 is a diagram showing the actual temperature, the conventional example, and the invention examples 1 to 4 in a section from the cutting plate number 3000 to the cutting plate number 3500. 図5は、実績温度、従来例、発明例1〜4を切板番号4500から切板番号5000までの区間図示した図である。FIG. 5 is a diagram showing the actual temperature, the conventional example, and the invention examples 1 to 4 in a section from the cutting plate number 4500 to the cutting plate number 5000.

以下、図面を参照して、本発明の一実施形態である鋼板の制御冷却方法について説明する。 Hereinafter, a controlled cooling method for a steel sheet according to an embodiment of the present invention will be described with reference to the drawings.

〔熱延鋼板の冷却ラインの構成〕
まず、図1を参照して、本発明の一実施形態である鋼板の制御冷却方法が適用される熱延鋼板の冷却ラインの構成について説明する。
[Composition of cooling line for hot-rolled steel sheet]
First, with reference to FIG. 1, the configuration of a cooling line for a hot-rolled steel sheet to which the controlled cooling method for a steel sheet according to the embodiment of the present invention is applied will be described.

図1は、本発明の一実施形態である鋼板の制御冷却方法が適用される熱延鋼板の冷却ラインの構成を示す模式図である。図1に示すように、本発明の一実施形態である鋼板の制御冷却方法が適用される熱延鋼板の冷却ライン1(以下、冷却ライン1と略記)は、矢印で示す搬送方向に搬送される鋼板に冷却水を噴射することによって鋼板の温度を目標温度まで冷却するラインであり、冷却水バルブ2a〜2o、温度計3a,3b、計算機4、及び制御盤5を備えている。 FIG. 1 is a schematic view showing a configuration of a cooling line for a hot-rolled steel sheet to which a controlled cooling method for a steel sheet according to an embodiment of the present invention is applied. As shown in FIG. 1, the cooling line 1 (hereinafter, abbreviated as cooling line 1) of the hot-rolled steel sheet to which the controlled cooling method of the steel sheet according to the embodiment of the present invention is applied is transported in the transport direction indicated by the arrow. It is a line that cools the temperature of the steel sheet to the target temperature by injecting cooling water onto the steel sheet, and includes cooling water valves 2a to 2o, thermometers 3a and 3b, a computer 4, and a control panel 5.

冷却水バルブ2a〜2oは、鋼板の表面及び裏面に対向配置され、制御盤5からの制御信号に従って鋼板の表面及び裏面に向けて冷却水を噴射することにより鋼板を冷却する。 The cooling water valves 2a to 2o are arranged to face each other on the front surface and the back surface of the steel sheet, and cool the steel sheet by injecting cooling water toward the front surface and the back surface of the steel sheet according to a control signal from the control panel 5.

温度計3a,3bはそれぞれ、冷却ライン1の入側及び出側に配置され、冷却水バルブ2a〜2oの制御周期以下の周期で冷却ライン1の入側及び出側における鋼板の温度を測定する。温度計3a,3bはそれぞれ、測定した鋼板の温度を示す電気信号を計算機4に出力する。 The thermometers 3a and 3b are arranged on the inlet side and the outlet side of the cooling line 1, respectively, and measure the temperature of the steel plate on the inlet side and the outlet side of the cooling line 1 in a cycle equal to or less than the control cycle of the cooling water valves 2a to 2o, respectively. .. The thermometers 3a and 3b each output an electric signal indicating the measured temperature of the steel plate to the computer 4.

計算機4は、コンピュータ等の情報処理装置によって構成されている。計算機4は、後述する制御冷却処理を実行することにより鋼板の温度を目標温度まで冷却する。具体的には、計算機4は、温度計3a,3bによって測定された冷却ライン1の入側及び出側における鋼板の温度に基づいて、制御盤5を介して冷却水バルブ2a〜2oから噴射される冷却水の流量を制御することによって鋼板の温度を目標温度まで冷却する。 The computer 4 is composed of an information processing device such as a computer. The computer 4 cools the temperature of the steel sheet to the target temperature by executing the control cooling process described later. Specifically, the computer 4 is injected from the cooling water valves 2a to 2o via the control panel 5 based on the temperature of the steel plate on the inlet side and the outlet side of the cooling line 1 measured by the thermometers 3a and 3b. The temperature of the steel plate is cooled to the target temperature by controlling the flow rate of the cooling water.

このような構成を有する熱延鋼板の冷却ライン1では、計算機4が以下に示す制御冷却処理を実行することにより、温度予測モデルにおいて用いた冷却水の設定流量と実績流量とが一致していない場合であっても、多くの労力を要することなく鋼板の温度を精度よく目標温度に冷却する。以下、図2を参照して、本発明の一実施形態である制御冷却処理を実行する際の計算機4の動作について説明する。 In the cooling line 1 of the hot-rolled steel sheet having such a configuration, the set flow rate of the cooling water used in the temperature prediction model and the actual flow rate do not match because the computer 4 executes the control cooling process shown below. Even in this case, the temperature of the steel sheet is accurately cooled to the target temperature without requiring a lot of labor. Hereinafter, the operation of the computer 4 when executing the controlled cooling process according to the embodiment of the present invention will be described with reference to FIG.

なお、本明細書中において、温度予測モデルとは、冷却水、大気、ロール等と鋼板との間の熱交換を記述した数式モデルのことを意味する。温度予測モデルの入力変数には、鋼板の初期温度及び冷却水バルブ2a〜2oから噴射される冷却水の流量(流量設定値)が含まれ、温度予測モデルの出力変数は、冷却ライン1の出側における鋼板の温度である。 In the present specification, the temperature prediction model means a mathematical model that describes heat exchange between cooling water, air, rolls, etc. and a steel plate. The input variables of the temperature prediction model include the initial temperature of the steel plate and the flow rate (flow rate set value) of the cooling water injected from the cooling water valves 2a to 2o, and the output variable of the temperature prediction model is the output of the cooling line 1. The temperature of the steel plate on the side.

〔制御冷却処理〕
図2は、本発明の一実施形態である制御冷却処理の流れを示すフローチャートである。図2に示すフローチャートは、鋼板の切板(鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位)が温度計3aを通過したタイミングで開始となり、制御冷却処理はステップS1の処理に進む。
[Control cooling process]
FIG. 2 is a flowchart showing the flow of the controlled cooling process according to the embodiment of the present invention. The flowchart shown in FIG. 2 starts at the timing when the cut plate of the steel plate (the control unit of the virtual steel plate continuously generated in the longitudinal direction of the steel plate) passes through the thermometer 3a, and the control cooling process is the process of step S1. Proceed to.

ステップS1の処理では、計算機4が、温度計3a,3b及び周知のトラッキング技術を利用して冷却ライン1の入側及び出側における各切板iの温度を測定する。なお、iは各切板に割り当てられた固有の識別情報を示す。これにより、ステップS1の処理は完了し、制御冷却処理はステップS2の処理に進む。 In the process of step S1, the computer 4 measures the temperature of each cutting plate i on the inlet side and the outlet side of the cooling line 1 by using the thermometers 3a and 3b and a well-known tracking technique. Note that i indicates unique identification information assigned to each cutting plate. As a result, the process of step S1 is completed, and the control cooling process proceeds to the process of step S2.

ステップS2の処理では、計算機4が、各切板iが冷却水バルブ2a〜2oを通過した時点の各冷却水バルブkの流量設定値Q を取得する。なお、kは各冷却水バルブに割り当てられた固有の識別情報を示す。これにより、ステップS2の処理は完了し、制御冷却処理はステップS3の処理に進む。 In the process of step S2, the computer 4 obtains the flow setpoint Q i k of each cooling water valve k at which each Setsuban i passes through the cooling water valve 2A~2o. Note that k indicates unique identification information assigned to each cooling water valve. As a result, the process of step S2 is completed, and the control cooling process proceeds to the process of step S3.

ステップS3の処理では、計算機4が、温度予測モデルを利用して、ステップS1の処理において取得した冷却ライン1の入側における各切板iの温度とステップS2の処理において取得した各切板iが通過した時点の冷却水バルブkの流量設定値Q とから冷却ライン1の出側における各切板iの温度を予測する。なお、この処理では、冷却水による熱流束を冷却水の設定流量f(V)の関数で表すものとすると、冷却水バルブkから噴射される冷却水の流量を補正する流量補正係数Wを用いて、冷却水による熱流束をf(V,W)として各切板iの温度を予測する。初回の制御冷却処理では、流量補正係数Wは初期値に設定されている。これにより、ステップS3の処理は完了し、制御冷却処理はステップS4の処理に進む。 In the process of step S3, the computer 4 uses the temperature prediction model to obtain the temperature of each cutting plate i on the entry side of the cooling line 1 acquired in the processing of step S1 and each cutting plate i acquired in the processing of step S2. There predicts the temperature of each switching plate i in the outlet side of the cooling line 1 and a flow setpoint Q i k of the cooling water valve k at the time of passing. In this process, assuming that the heat flux due to the cooling water is represented by a function of the set flow rate f (V) of the cooling water, the flow rate correction coefficient W k that corrects the flow rate of the cooling water injected from the cooling water valve k is set. The temperature of each cutting plate i is predicted by using the heat flux due to the cooling water as f (V, W k). In the first controlled cooling process, the flow rate correction coefficient W k is set to the initial value. As a result, the process of step S3 is completed, and the control cooling process proceeds to the process of step S4.

ステップS4の処理では、計算機4が、各冷却水バルブkから噴射される冷却水の流量変動を冷却ライン1の出側における各切板iの温度予測計算に反映させるために、鋼板が冷却ライン1を通過した後、各冷却水バルブkの流量補正係数Wを補正する。具体的には、まず、計算機4は、ステップS1の処理において測定された冷却ライン1の出側における各切板iの温度とステップS3の処理において計算された冷却ライン1の出側における各切板iの温度との偏差ΔTを切板i毎に算出する。次に、計算機4は、算出された偏差ΔTと冷却水バルブkの流量設定値Q との相関関係を算出する。詳しくは、計算機4は、冷却水バルブkについて、流量設定値Q によって偏差ΔTを最小二乗法で線形回帰して以下に示す数式(1)を構築する。そして、計算機4は、式(1)の傾きAが所定値x以上である場合、流量補正係数Wを流量補正係数W’(=W−α)に補正し、式(1)の傾きAが所定値x未満である場合には、流量補正係数Wを流量補正係数W’(=W+α)に補正する。但し、αは所定の定数を示す。なお、流量設定値Q が変わらない冷却水バルブkについては、このステップS4の処理は実行しないものとする。これにより、ステップS4の処理は完了し、制御冷却処理はステップS5の処理に進む。 In the process of step S4, the steel plate is cooled in order for the computer 4 to reflect the fluctuation of the flow rate of the cooling water injected from each cooling water valve k in the temperature prediction calculation of each cutting plate i on the exit side of the cooling line 1. After passing through 1, the flow rate correction coefficient W k of each cooling water valve k is corrected. Specifically, first, the computer 4 first determines the temperature of each cutting plate i on the exit side of the cooling line 1 measured in the process of step S1 and each cut on the exit side of the cooling line 1 calculated in the process of step S3. The deviation ΔT i from the temperature of the plate i is calculated for each cutting plate i. Then, the computer 4 calculates the correlation between the calculated deviation [Delta] T i and the flow rate set value Q i k of the cooling water valve k. Specifically, the computer 4 linearly regresses the deviation ΔT i with the flow rate set value Q i k by the least squares method for the cooling water valve k, and constructs the mathematical formula (1) shown below. The computer 4, when the inclination A k of the formula (1) is equal to or greater than the predetermined value x, correcting the flow rate correction coefficient W k in the flow rate correction coefficient W k '(= W k -α ), formula (1) When the inclination Ak of is less than the predetermined value x, the flow rate correction coefficient W k is corrected to the flow rate correction coefficient W k '(= W k + α). However, α indicates a predetermined constant. Note that the cooling water valve k which flow setpoint Q i k is not changed, the processing of step S4 shall not be executed. As a result, the process of step S4 is completed, and the control cooling process proceeds to the process of step S5.

Figure 2021154367
Figure 2021154367

ステップS5の処理では、計算機4が、熱延鋼板に噴射される冷却水の全流量の短期的な変動を冷却ライン1の出側における各切板iの温度予測計算に反映させるために、冷却水を噴射している全冷却水バルブについて、流量補正係数Wを一律に補正する。具体的には、まず、計算機4は、ステップS4の処理において算出された偏差ΔTを用いて全切板の偏差ΔTの合計値を合計偏差ΣΔTとして算出する。次に、計算機4が、熱延鋼板の冷却中に冷却水を噴射した冷却水バルブについて、合計偏差ΣΔTが所定値y以上である場合、流量補正係数Wを流量補正係数W’(=W×(1+β))に補正し、合計偏差ΣΔTが所定値y未満である場合には、流量補正係数Wを流量補正係数W’(=W×(1−β))に補正する。但し、βは所定の定数を示す。これにより、ステップS5の処理は完了し、制御冷却処理はステップS6の処理に進む。 In the process of step S5, the computer 4 cools the hot-rolled steel plate so that the short-term fluctuation of the total flow rate of the cooling water is reflected in the temperature prediction calculation of each cutting plate i on the exit side of the cooling line 1. The flow rate correction coefficient Wk is uniformly corrected for all cooling water valves that inject water. Specifically, first, the computer 4 calculates the total value of the deviation ΔT i of all the cutting plates as the total deviation ΣΔT i by using the deviation ΔT i calculated in the process of step S4. Next, when the total deviation ΣΔT i is equal to or greater than a predetermined value y for the cooling water valve in which the computer 4 injects cooling water while cooling the hot-rolled steel plate , the flow rate correction coefficient W k is set to the flow rate correction coefficient W k '(. = W k × (1 + β)), and if the total deviation ΣΔT i is less than the predetermined value y, the flow rate correction coefficient W k is changed to the flow rate correction coefficient W k ′ (= W k × (1-β)). Correct to. However, β indicates a predetermined constant. As a result, the process of step S5 is completed, and the control cooling process proceeds to the process of step S6.

ステップS6の処理では、計算機4が、ステップS4及びステップS5の処理における流量補正係数Wの補正処理が他の熱延鋼板における流量補正係数Wの補正処理と同傾向であるか否かを判定し、判定結果に基づいてステップS4及びステップS5の補正処理を抑制又は促進するように流量補正係数Wを補正する。具体的には、まず、計算機4は、ステップS5の処理において算出した合計偏差ΣΔTを直近で冷却した複数の熱延鋼板についてのΣΔTと合わせた合計偏差ΣΣΔTを算出する。次に、計算機4は、複数の熱延鋼板に対して冷却水を噴射した冷却水バルブについて、合計偏差ΣΣΔTが所定値z以上である場合、流量補正係数Wを流量補正係数W’(=W×(1+γ))に補正し、合計偏差ΣΣΔTが所定値z以上である場合、流量補正係数Wを流量補正係数W’(=W×(1−γ))に補正する。但し、γは所定の定数を示す。これにより、ステップS6の処理は完了し、制御冷却処理はステップS7の処理に進む。 In the process of step S6, the computer 4 determines whether or not the correction process of the flow rate correction coefficient W k in the processes of steps S4 and S5 has the same tendency as the correction process of the flow rate correction coefficient W k in the other hot-rolled steel plate. The determination is made, and the flow rate correction coefficient Wk is corrected so as to suppress or promote the correction processing in steps S4 and S5 based on the determination result. Specifically, first, the computer 4 calculates the total deviation ShigumashigumaderutaT i combined with ShigumaderutaT i for a plurality of hot-rolled steel sheet total deviation ShigumaderutaT i calculated cooled in recent in the process of step S5. Next, the computer 4 sets the flow rate correction coefficient W k to the flow rate correction coefficient W kwhen the total deviation ΣΣΔT i is equal to or greater than the predetermined value z for the cooling water valves in which the cooling water is injected onto the plurality of hot-rolled steel plates. Corrected to (= W k × (1 + γ)), and when the total deviation ΣΣΔT i is equal to or greater than the predetermined value z, the flow rate correction coefficient W k is changed to the flow rate correction coefficient W k '(= W k × (1-γ)). to correct. However, γ indicates a predetermined constant. As a result, the process of step S6 is completed, and the control cooling process proceeds to the process of step S7.

〔実施例〕
本実施例では、熱延鋼板の温度予測シミュレーションを行った。具体的には、本シミュレーションでは、接続された92個のコイルの先端部から連続的に生成した所定長さの5000切板(先端部から順に切板番号1〜5000)の冷却実績に対して、従来の温度予測計算(従来例)、図2に示すステップS4,S5,S6の処理をそれぞれ単独で実施した温度予測計算(発明例1〜3)、図2に示すステップS4〜S6の処理を全て実施した温度予測計算(発明例4)を行った。ステップS4〜S6の各計算における定数は、x=10℃、α=0.050、y=10℃、β=0.02、z=10℃、γ=0.0とした。また、流量補正係数の初期値は全て1とした。
〔Example〕
In this example, a temperature prediction simulation of a hot-rolled steel sheet was performed. Specifically, in this simulation, for the cooling results of 5000 cut plates of a predetermined length (cut plate numbers 1 to 5000 in order from the tip) generated continuously from the tips of the 92 connected coils. , Conventional temperature prediction calculation (conventional example), temperature prediction calculation in which the processes of steps S4, S5, and S6 shown in FIG. 2 are performed independently (Invention Examples 1 to 3), and the processes of steps S4 to S6 shown in FIG. The temperature prediction calculation (Invention Example 4) in which all of the above were carried out was performed. The constants in each calculation of steps S4 to S6 were x = 10 ° C., α = 0.050, y = 10 ° C., β = 0.02, z = 10 ° C., and γ = 0.0. The initial values of the flow rate correction coefficients were all set to 1.

図3は、実績温度(線L1)、従来例(線L2)、発明例1(線L3)、発明例2(線L4)、発明例3(線L5)、及び発明例4(線L6)を計算開始から切板番号500までの区間図示したものである。図3に示すように、流量補正係数の初期値を1としているため、はじめは従来例と発明例1〜4とが一致している。また、切板番号200までの区間では、実績温度と発明例1〜4の大小が交互に現れているため、流量補正係数の修正方向も交互となり、従来例と発明例1〜4はあまり変わらない。 FIG. 3 shows the actual temperature (line L1), the conventional example (line L2), the invention example 1 (line L3), the invention example 2 (line L4), the invention example 3 (line L5), and the invention example 4 (line L6). Is illustrated in the section from the start of calculation to the cutting plate number 500. As shown in FIG. 3, since the initial value of the flow rate correction coefficient is 1, the conventional example and the invention examples 1 to 4 initially match. Further, in the section up to the cutting plate number 200, since the actual temperature and the magnitude of Invention Examples 1 to 4 appear alternately, the correction direction of the flow rate correction coefficient also alternates, and the conventional example and Invention Examples 1 to 4 are not so different. No.

しかしながら、切板番号200〜480の区間では、発明例1〜4より実績温度の方が20℃程度高めになっている熱延鋼板が続くため、予測温度が高くなるようにステップS5の処理において流量補正係数をマイナス方向に連続して修正していることがこの区間における発明例2(線L4)からわかる。一方で、各冷却水バルブの設定流量の違いによる温度予測誤差の傾向があまりないため、ステップS4の処理による補正はあまり実施されていない(発明例1(線L3))。また、切板番号430付近では、直近の複数の熱延鋼板にわたって同じ符号の偏差が続くため、ステップS6の処理による補正が行われている(発明例3(L5))。 However, in the section of the cutting plate number 200 to 480, the hot-rolled steel plate whose actual temperature is about 20 ° C. higher than that of Invention Examples 1 to 4 continues, so that the predicted temperature is increased in the process of step S5. It can be seen from Invention Example 2 (line L4) in this section that the flow rate correction coefficient is continuously corrected in the negative direction. On the other hand, since there is not much tendency for the temperature prediction error due to the difference in the set flow rate of each cooling water valve, the correction by the process of step S4 is not performed so much (Invention Example 1 (line L3)). Further, in the vicinity of the cut plate number 430, since the deviation of the same code continues over the latest plurality of hot-rolled steel sheets, the correction by the process of step S6 is performed (Invention Example 3 (L5)).

図4は、実績温度(線L1)、従来例(線L2)、発明例1(線L3)、発明例2(線L4)、発明例3(線L5)、及び発明例4(線L6)を切板番号3000から切板番号3500までの区間図示したものである。図4に示すように、ステップS4〜S6の各処理による補正が進んでおり、発明例1〜3は従来例より精度が良いことがわかる。また、図5は、実績温度(線L1)、従来例(線L2)、発明例1(線L3)、発明例2(線L4)、発明例3(線L5)、及び発明例4(線L6)を切板番号4500から切板番号5000までの区間図示したものである。ステップS5及びステップS6の処理による補正が有効に働き、発明例2,3が実績温度に追従している一方、バルブの流量変化が小さく、ステップS4の処理による補正が行われていないため、発明例1は実績温度の変化に追従できていない。以上の結果をまとめると以下に示す表1のようになり、発明例1〜3でも従来例より精度向上しているが、発明例4が最も精度が良いことがわかる。以上の結果より、本発明の実施による温度予測精度向上の効果が確認された。 FIG. 4 shows the actual temperature (line L1), the conventional example (line L2), the invention example 1 (line L3), the invention example 2 (line L4), the invention example 3 (line L5), and the invention example 4 (line L6). Is illustrated in the section from the cutting plate number 3000 to the cutting plate number 3500. As shown in FIG. 4, the correction by each process of steps S4 to S6 is progressing, and it can be seen that Invention Examples 1 to 3 are more accurate than the conventional examples. Further, FIG. 5 shows the actual temperature (line L1), the conventional example (line L2), the invention example 1 (line L3), the invention example 2 (line L4), the invention example 3 (line L5), and the invention example 4 (line L5). L6) is shown in the section from the cutting plate number 4500 to the cutting plate number 5000. The correction by the processing of steps S5 and S6 works effectively, and while Invention Examples 2 and 3 follow the actual temperature, the change in the flow rate of the valve is small and the correction by the processing of step S4 is not performed. Example 1 cannot follow the change in the actual temperature. The above results are summarized in Table 1 below, and it can be seen that Invention Examples 1 to 3 also have improved accuracy as compared with the conventional examples, but Invention Example 4 has the highest accuracy. From the above results, the effect of improving the temperature prediction accuracy by implementing the present invention was confirmed.

Figure 2021154367
Figure 2021154367

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 Although the embodiment to which the invention made by the present inventors has been applied has been described above, the present invention is not limited by the description and the drawings which form a part of the disclosure of the present invention according to the present embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 熱延鋼板の冷却ライン
2a〜2o 冷却水バルブ
3a,3b 温度計
4 計算機
5 制御盤
1 Cooling line of hot-rolled steel sheet 2a to 2o Cooling water valve 3a, 3b Thermometer 4 Computer 5 Control panel

Claims (5)

温度予測モデルを用いて冷却装置の出側における鋼板の温度を予測し、予測された鋼板の温度に基づいて冷却装置の出側における鋼板の温度が目標温度になるように冷却装置から噴射される冷却水の流量を制御する鋼板の制御冷却方法であって、
前記冷却装置の入側及び出側における鋼板の温度を鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位である切板毎に測定する測定ステップと、
前記測定ステップにおいて測定された冷却装置の入側における切板の温度、及び切板が冷却装置を通過した際の冷却水の流量設定値を用いて、前記温度予測モデルにより前記冷却装置の出側における鋼板の温度を切板毎に予測する予測ステップと、
前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度とが全切板に亘って一致するように前記温度予測モデルにおける冷却水の流量設定値を補正する補正ステップと、
を含むことを特徴とする鋼板の制御冷却方法。
The temperature of the steel plate on the outlet side of the cooling device is predicted using the temperature prediction model, and the temperature of the steel plate on the outlet side of the cooling device is injected from the cooling device so as to reach the target temperature based on the predicted temperature of the steel plate. A controlled cooling method for steel sheets that controls the flow rate of cooling water.
A measurement step of measuring the temperature of the steel plate on the entrance side and the exit side of the cooling device for each cut plate, which is a control unit of a virtual steel plate continuously generated in the longitudinal direction of the steel plate.
Using the temperature of the cutting plate on the entrance side of the cooling device measured in the measurement step and the flow rate setting value of the cooling water when the cutting plate passes through the cooling device, the exit side of the cooling device according to the temperature prediction model. Prediction step for predicting the temperature of the steel plate for each cutting plate in
The temperature is predicted so that the temperature of the steel plate on the outlet side of the cooling device measured in the measurement step and the temperature of the steel plate on the outlet side of the cooling device predicted in the prediction step coincide with each other over the entire cutting plate. A correction step that corrects the cooling water flow setting value in the model, and
A controlled cooling method for a steel sheet, which comprises.
前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、偏差と流量設定値との相関関係に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする請求項1に記載の鋼板の制御冷却方法。 In the correction step, the deviation between the temperature of the steel plate on the outlet side of the cooling device measured in the measurement step and the temperature of the steel plate on the outlet side of the cooling device predicted in the prediction step is calculated for each cut plate. The controlled cooling method for a steel sheet according to claim 1, further comprising a step of correcting the flow rate set value of the cooling water in the temperature prediction model based on the correlation between the deviation and the flow rate set value. 前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、全切板の偏差の合計値を合計偏差として算出し、算出された合計偏差に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする請求項1又は2に記載の鋼板の制御冷却方法。 In the correction step, the deviation between the temperature of the steel plate on the outlet side of the cooling device measured in the measurement step and the temperature of the steel plate on the outlet side of the cooling device predicted in the prediction step is calculated for each cut plate. 1 or 2, wherein the total value of the deviations of all the cutting plates is calculated as the total deviation, and the step of correcting the flow rate set value of the cooling water in the temperature prediction model based on the calculated total deviation is included. A controlled cooling method for a steel plate according to. 前記補正ステップは、前記測定ステップにおいて測定された前記冷却装置の出側における鋼板の温度と前記予測ステップにおいて予測された前記冷却装置の出側における鋼板の温度との偏差を切板毎に算出し、全切板の偏差の合計値を合計偏差として算出し、算出された合計偏差と直近に冷却された鋼板について算出された合計偏差との和を算出し、算出された和に基づいて温度予測モデルにおける冷却水の流量設定値を補正するステップを含むことを特徴とする請求項1〜3のうち、いずれか1項に記載の鋼板の制御冷却方法。 In the correction step, the deviation between the temperature of the steel plate on the outlet side of the cooling device measured in the measurement step and the temperature of the steel plate on the outlet side of the cooling device predicted in the prediction step is calculated for each cut plate. , The total value of the deviations of all the cutting plates is calculated as the total deviation, the sum of the calculated total deviation and the total deviation calculated for the most recently cooled steel plate is calculated, and the temperature is predicted based on the calculated sum. The controlled cooling method for a steel plate according to any one of claims 1 to 3, further comprising a step of correcting a cooling water flow rate set value in the model. 温度予測モデルを用いて冷却装置の出側における鋼板の温度を予測し、予測された鋼板の温度に基づいて冷却装置の出側における鋼板の温度が目標温度になるように冷却装置から噴射される冷却水の流量を制御する鋼板の制御冷却装置であって、
前記冷却装置の入側及び出側における鋼板の温度を切板毎に測定する測定手段と、
前記測定手段によって測定された冷却装置の入側における切板の温度、及び切板が冷却装置を通過した際の冷却水の流量設定値を用いて、前記温度予測モデルにより前記冷却装置の出側における鋼板の温度を鋼板の長手方向に連続的に生成した仮想的な鋼板の制御単位である切板毎に予測し、前記測定手段によって測定された前記冷却装置の出側における鋼板の温度と予測された前記冷却装置の出側における鋼板の温度とが全切板に亘って一致するように前記温度予測モデルにおける冷却水の流量設定値を補正する制御手段と、
を備えることを特徴とする鋼板の制御冷却装置。
The temperature of the steel plate on the outlet side of the cooling device is predicted using the temperature prediction model, and the temperature of the steel plate on the outlet side of the cooling device is injected from the cooling device so as to reach the target temperature based on the predicted temperature of the steel plate. A steel plate control cooling device that controls the flow rate of cooling water.
A measuring means for measuring the temperature of the steel plate on the entrance side and the exit side of the cooling device for each cut plate,
Using the temperature of the cutting plate on the entrance side of the cooling device measured by the measuring means and the flow rate setting value of the cooling water when the cutting plate passes through the cooling device, the exit side of the cooling device according to the temperature prediction model. The temperature of the steel plate in the above is predicted for each cut plate, which is a virtual steel plate control unit continuously generated in the longitudinal direction of the steel plate, and is predicted as the temperature of the steel plate on the outlet side of the cooling device measured by the measuring means. A control means for correcting the flow rate set value of the cooling water in the temperature prediction model so that the temperature of the steel plate on the outlet side of the cooling device matches the entire cut plate.
A controlled cooling device for a steel plate, which comprises.
JP2020059267A 2020-03-30 2020-03-30 Controlled cooling method and controlled cooling device for steel plate Active JP7196875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020059267A JP7196875B2 (en) 2020-03-30 2020-03-30 Controlled cooling method and controlled cooling device for steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020059267A JP7196875B2 (en) 2020-03-30 2020-03-30 Controlled cooling method and controlled cooling device for steel plate

Publications (2)

Publication Number Publication Date
JP2021154367A true JP2021154367A (en) 2021-10-07
JP7196875B2 JP7196875B2 (en) 2022-12-27

Family

ID=77916531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020059267A Active JP7196875B2 (en) 2020-03-30 2020-03-30 Controlled cooling method and controlled cooling device for steel plate

Country Status (1)

Country Link
JP (1) JP7196875B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218414A (en) * 1993-01-25 1994-08-09 Nisshin Steel Co Ltd Cooling control method for hot rolled steel sheet
JPH1133616A (en) * 1997-05-23 1999-02-09 Nippon Steel Corp Controller for winding temperature of steel strip
JP2001300633A (en) * 2000-04-24 2001-10-30 Nisshin Steel Co Ltd Low temperature coiling method of high strength hot rolled steel strip
JP2009148809A (en) * 2007-12-21 2009-07-09 Hitachi Ltd Device and method for controlling winding temperature
JP2011212685A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Method for controlling winding temperature of metal strip in hot rolling line
JP2013123734A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method and device for controlling hot finishing temperature
WO2015118606A1 (en) * 2014-02-04 2015-08-13 東芝三菱電機産業システム株式会社 Temperature control unit of hot-rolling machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218414A (en) * 1993-01-25 1994-08-09 Nisshin Steel Co Ltd Cooling control method for hot rolled steel sheet
JPH1133616A (en) * 1997-05-23 1999-02-09 Nippon Steel Corp Controller for winding temperature of steel strip
JP2001300633A (en) * 2000-04-24 2001-10-30 Nisshin Steel Co Ltd Low temperature coiling method of high strength hot rolled steel strip
JP2009148809A (en) * 2007-12-21 2009-07-09 Hitachi Ltd Device and method for controlling winding temperature
JP2011212685A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Method for controlling winding temperature of metal strip in hot rolling line
JP2013123734A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method and device for controlling hot finishing temperature
WO2015118606A1 (en) * 2014-02-04 2015-08-13 東芝三菱電機産業システム株式会社 Temperature control unit of hot-rolling machine

Also Published As

Publication number Publication date
JP7196875B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
KR100977373B1 (en) Cooling control method, cooling control device, device for calculating quantity of cooling water and computer-readable recording medium storing computer program
US20130030561A1 (en) Rolled material cooling control apparatus, rolled material cooling control method, and rolled material cooling control program
JP4221002B2 (en) Cooling control method, cooling control device, and cooling water amount calculation device
JPWO2006040823A1 (en) Material control method and apparatus for rolling, forging or straightening line
WO2010058457A1 (en) Controller
JP4598586B2 (en) Cooling control method, apparatus, and computer program
JPH07200005A (en) Learning control method
JP7135962B2 (en) Steel plate finishing delivery side temperature control method, steel plate finishing delivery side temperature control device, and steel plate manufacturing method
JP2009072807A (en) Method and device for controlling planar shape of rolled stock and method of manufacturing thick steel plate
JP2021154367A (en) Controlled cooling method and controlled cooling device of steel plate
US20220371066A1 (en) Method for controlling a cooling device in a rolling train
JP2004034122A (en) Winding temperature controller
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
CN112437702B (en) Temperature control device of hot rolling production line
WO2020162004A1 (en) Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JPH06246320A (en) Method for controlling cooling of hot-rolled steel material
JP2015167976A (en) Winding temperature control method of hot rolled steel sheet
TWI749347B (en) Rolling shape control apparatus
JP2005279655A (en) Steel extraction temperature prediction method for continuous heating furnace
JP6627609B2 (en) Cooling control method and cooling device
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP2003293030A (en) Method for cooling steel plate
JPH09216011A (en) Method for controlling cooling of hot rolled steel sheet
JP2744415B2 (en) Hot rolled steel coiling temperature control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150