JP2015167976A - Winding temperature control method of hot rolled steel sheet - Google Patents

Winding temperature control method of hot rolled steel sheet Download PDF

Info

Publication number
JP2015167976A
JP2015167976A JP2014045010A JP2014045010A JP2015167976A JP 2015167976 A JP2015167976 A JP 2015167976A JP 2014045010 A JP2014045010 A JP 2014045010A JP 2014045010 A JP2014045010 A JP 2014045010A JP 2015167976 A JP2015167976 A JP 2015167976A
Authority
JP
Japan
Prior art keywords
heat transfer
steel sheet
transfer coefficient
rolled steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014045010A
Other languages
Japanese (ja)
Inventor
将人 中澤
Masato Nakazawa
将人 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014045010A priority Critical patent/JP2015167976A/en
Publication of JP2015167976A publication Critical patent/JP2015167976A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a winding temperature control method of a hot rolled steel sheet which can accurately control a winding temperature of the hot rolled steel sheet by properly correcting a heat transfer coefficient model part at a water cold heat transfer coefficient of the hot rolled steel sheet.SOLUTION: When controlling a hot rolled steel sheet which is rolled by hot rolling equipment to a prescribed winding temperature by cooling the hot rolled steel sheet by cooling water on a runout table, there is used, as a model formula of a heat transfer coefficient, a formula which is obtained by multiplying a heat transfer coefficient learning value to a heat transfer coefficient model part which is expressed as a function of a water temperature of the cooling water, a temperature of the hot rolled steel sheet, and the density of a water amount of the cooling water, and by adding a correction item which enlarges the heat transfer coefficient accompanied by an increase of a transfer speed when the transfer speed of the hot rolled steel sheet is not lower than a specified threshold.

Description

本発明は、熱間圧延機において圧延された熱延鋼板をランナウトテーブル上で冷却制御して巻取温度を制御する熱延鋼板の巻取温度制御方法に関する。熱延鋼板はそれぞれコイラーで巻き取る際の巻取温度目標が定められており、巻取温度制御装置は、熱延鋼板の巻取温度が目標の公差範囲内に入るように、ランナウトテーブルでの熱延鋼板の冷却パターンを決定する。そして、冷却装置が、巻取温度制御装置で決定された冷却パターン通りに熱延鋼板の冷却を行う制御を実施する。   The present invention relates to a method for controlling a coiling temperature of a hot-rolled steel sheet, in which a hot-rolled steel sheet rolled in a hot rolling mill is controlled to be cooled on a run-out table to control a coiling temperature. Each hot-rolled steel sheet has a coiling temperature target for coiling with a coiler, and the coiling temperature control device uses a runout table so that the coiling temperature of the hot-rolled steel sheet falls within the target tolerance range. Determine the cooling pattern of the hot-rolled steel sheet. And a cooling device implements control which cools a hot-rolled steel plate according to the cooling pattern determined by the coiling temperature control device.

巻取温度制御は、熱延鋼板を長手方向に定長単位で区切った制御単位(切板と呼ばれる)毎に、仕上圧延機(仕上げミル)出側の温度実績およびランナウトテーブル(ROT)上の予定通過速度をもとにして、ROT冷却中の熱延鋼板の伝熱計算を複数回行い、巻取温度目標を達成するための最適な冷却パターンを収束計算により決定するフィードフォワード(FF)制御と、巻取温度実績から冷却水量を修正するフィードバック(FB)制御とから成り立っている。   The coiling temperature control is performed on the runout table (ROT) and the temperature record on the exit side of the finishing mill (finishing mill) for each control unit (called a cutting plate) obtained by dividing the hot-rolled steel sheet in the longitudinal direction at constant length units. Feed forward (FF) control that performs heat transfer calculation of hot-rolled steel sheet during ROT cooling multiple times based on the planned passing speed, and determines the optimal cooling pattern to achieve the coiling temperature target by convergence calculation And feedback (FB) control for correcting the cooling water amount from the winding temperature result.

伝熱計算を行う際に用いる熱延鋼板の水冷熱伝達係数は、一般的に、水温や水量密度、鋼板表面温度等の関数としてモデル式を用いて算出される熱伝達係数モデル部に、同一鋼種の最近の冷却実績から実際の熱伝達係数を逆算して得られる学習項(熱伝達係数学習部)を乗じた値が採用される。   The water-cooled heat transfer coefficient of the hot-rolled steel sheet used for heat transfer calculation is generally the same as the heat transfer coefficient model part calculated using a model formula as a function of water temperature, water volume density, steel sheet surface temperature, etc. A value obtained by multiplying a learning term (heat transfer coefficient learning unit) obtained by back-calculating the actual heat transfer coefficient from the recent cooling record of the steel type is adopted.

熱伝達係数学習部については、特許文献1を始め、伝熱計算への反映のさせ方に関して様々な手法が考案されている。   Regarding the heat transfer coefficient learning unit, various methods have been devised regarding how to reflect the heat transfer calculation including Patent Document 1.

一方、水冷中における熱伝達係数モデル部については、特許文献2のように、水量密度、水温、鋼板温度の関数として表現されるモデルや、特許文献3のように、水量密度、材料表面温度、材料表面温度と水温との差、鋼板速度の関数として表現されるモデル、特許文献4や特許文献5のように、遷移沸騰領域における熱伝達の挙動の変化を考慮した関数を導入したモデル、特許文献6のように、板厚、FDT(仕上圧延出側温度)目標値、CT(巻取温度)目標値で熱伝達係数を補正するモデル、特許文献7のように、水量密度・板厚・材料温度・冷却水温度の関数として表されるモデルなど、様々な形のモデル式が提案されている。   On the other hand, for the heat transfer coefficient model part during water cooling, as in Patent Document 2, a model expressed as a function of water density, water temperature, and steel plate temperature, and as in Patent Document 3, water density, material surface temperature, A model that expresses the difference between the material surface temperature and the water temperature, a model expressed as a function of the steel plate speed, a model that introduces a function that takes into account changes in the behavior of heat transfer in the transition boiling region, such as Patent Document 4 and Patent Document 5, A model that corrects the heat transfer coefficient with the plate thickness, FDT (finishing rolling exit temperature) target value, and CT (winding temperature) target value, as in Reference 6, and water volume density, thickness, Various types of model formulas have been proposed, such as a model expressed as a function of material temperature and cooling water temperature.

これらのモデル式において、特許文献4の表面温度補正項のように、沸騰熱伝達における物理現象を表現している項もあるが、水温や水量密度の補正項などは、実験から合わせ込んだ値が採用されている。また、その他の補正項(速度・板厚・FDT目標・CT目標)も、実績に合わせ込む形で導入された物理的な意味を持たない補正項である。   In these model formulas, there is a term that expresses a physical phenomenon in boiling heat transfer, such as the surface temperature correction term in Patent Document 4, but the correction term for the water temperature and the water density is a value obtained from experiments. Is adopted. Further, other correction terms (speed, plate thickness, FDT target, CT target) are correction terms having no physical meaning that are introduced in accordance with actual results.

伝熱計算においては、熱伝達係数モデル部で予測する熱伝達係数の精度が悪くても、熱伝達係数学習部によってある程度精度を高めることが可能である。これは、操業条件および鋼種が類似する鋼板の冷却では、熱伝達係数が近い値を示すためであり、適切な熱伝達係数学習値を計算に反映すれば、モデル部の精度不良があったとしてもそれをカバーすることができる。このため、現状の巻き取り温度制御は、熱伝達係数学習部に頼った計算が行われているのが実情であり、熱伝達係数モデルの精度向上に関する提案は少ない。   In the heat transfer calculation, even if the accuracy of the heat transfer coefficient predicted by the heat transfer coefficient model unit is poor, the heat transfer coefficient learning unit can improve the accuracy to some extent. This is because the heat transfer coefficient shows a close value in the cooling of steel plates with similar operating conditions and steel types, and if the appropriate heat transfer coefficient learning value is reflected in the calculation, the model part has an inaccuracy. Can also cover it. For this reason, the current coiling temperature control is actually calculated by relying on the heat transfer coefficient learning unit, and there are few proposals for improving the accuracy of the heat transfer coefficient model.

特公平6−88060号公報Japanese Patent Publication No. 6-88060 特開平6−218414号公報JP-A-6-218414 特開平9−10822号公報Japanese Patent Laid-Open No. 9-10822 特開2000−317513号公報JP 2000-317513 A 特開2004−331992号公報JP 2004-331992 A 特開平9−267113号公報Japanese Patent Laid-Open No. 9-267113 特開2000−167615号公報JP 2000-167615 A

上述したように、熱延鋼板の伝熱計算を行う上で、熱延鋼板の水冷中の熱伝達係数は、物理現象に基づいた適切なモデルで表現できておらず、熱伝達係数モデル部には改善の余地があり、熱伝達係数学習部に頼った計算が行われているが、操業条件や鋼種が複雑化している場合、モデル誤差の影響が大きくなり、熱伝達係数学習部ではカバーできない誤差が生じる。   As described above, in performing heat transfer calculation of hot-rolled steel sheet, the heat transfer coefficient during water cooling of the hot-rolled steel sheet cannot be expressed by an appropriate model based on physical phenomena, There is room for improvement, and calculations relying on the heat transfer coefficient learning unit are performed. However, if the operating conditions and steel types are complicated, the influence of model errors increases and cannot be covered by the heat transfer coefficient learning unit. An error occurs.

これは、冷却実績から熱伝達係数を逆算して学習する処理は、結局は熱伝達係数モデル部のモデル式を使って逆算されており、熱伝達係数モデル部の誤差が学習値に影響を与えるためである。   This is because the process of learning by calculating the heat transfer coefficient from the cooling performance is eventually calculated back using the model formula of the heat transfer coefficient model part, and the error of the heat transfer coefficient model part affects the learning value. Because.

すなわち、先行技術では、熱延鋼板の速度に依存して熱伝達係数が変化する現象が適切にモデルに反映されていない。このため、同一の鋼種であっても鋼板速度が異なる場合や、同一鋼板内でも巻取中の加減速が大きい場合には、鋼板速度による温度予測精度が悪化する。   That is, in the prior art, the phenomenon that the heat transfer coefficient changes depending on the speed of the hot-rolled steel sheet is not properly reflected in the model. For this reason, even if it is the same steel type, when the steel plate speed is different, or when the acceleration / deceleration during winding is large even within the same steel plate, the temperature prediction accuracy by the steel plate speed deteriorates.

具体的には、上記特許文献3では、鋼板速度の増加に対して熱伝達係数を小さくする速度補正(v−0.08)が提案されているが、実際に、熱伝達係数モデル部に、鋼板速度を除く、水温、水量密度、鋼板表面温度の項を適用したモデルで熱伝達係数の学習値を実績から逆算し、その学習値と鋼板搬送速度の相関を調べると、速度が大きい場合に熱延鋼板がよく冷える(熱伝達係数が大きい)という現象が確認され、特許文献3の速度補正は実際に生じている現象と合致していない。 Specifically, in Patent Document 3 described above, speed correction (v −0.08 ) for reducing the heat transfer coefficient with respect to an increase in the steel sheet speed is proposed, but actually, in the heat transfer coefficient model part, When the model is applied with terms of water temperature, water density, and steel plate surface temperature, excluding the steel plate speed, the learning value of the heat transfer coefficient is calculated back from the actual results, and the correlation between the learned value and the steel plate conveyance speed is examined. The phenomenon that the hot-rolled steel sheet cools well (the heat transfer coefficient is large) has been confirmed, and the speed correction of Patent Document 3 does not match the phenomenon actually occurring.

本発明は、かかる事情に鑑みてなされたものであり、熱延鋼板の水冷熱伝達係数における熱伝達係数モデル部を適切に補正して、高精度で熱延鋼板の巻取温度を制御することができる熱延鋼板の巻取温度制御方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and appropriately corrects the heat transfer coefficient model part in the water-cooled heat transfer coefficient of the hot-rolled steel sheet to control the winding temperature of the hot-rolled steel sheet with high accuracy. It is an object of the present invention to provide a method for controlling the coiling temperature of a hot-rolled steel sheet.

本発明者は、上記課題を解決するために検討した結果、熱伝達係数が変化する要因として重要なのが熱延鋼板の速度であり、熱延鋼板の搬送速度を適切に熱伝達係数に反映させることにより高精度で熱延鋼板の巻取温度を制御できることを見出した。   As a result of studying to solve the above problems, the present inventor is an important factor for changing the heat transfer coefficient is the speed of the hot-rolled steel sheet, and appropriately reflects the conveyance speed of the hot-rolled steel sheet in the heat transfer coefficient. It was found that the coiling temperature of the hot-rolled steel sheet can be controlled with high accuracy.

従来、熱伝達係数学習部は、鋼種、板厚、FDT目標、CT目標によってグループ分けされており、同一グループであっても、実績から逆算した熱伝達係数は板厚によって大きく変化するという結果が得られていたが、熱伝達係数は、鋼板表面での熱移動のしやすさを表現したものであり、本来であれば板厚によって変化しない。板厚によって変化する操業条件で代表的なものは搬送速度であり、一般的な操業パターンとして、板厚が厚い鋼板は搬送速度が遅く、板厚が薄い鋼板は搬送速度が速い。このことから、熱伝達係数が変動する要因は、板厚ではなく熱延鋼板の搬送速度であるとの考えに至った。   Conventionally, the heat transfer coefficient learning unit is grouped according to steel type, sheet thickness, FDT target, and CT target, and the heat transfer coefficient calculated backward from the actual results greatly varies depending on the sheet thickness even in the same group. Although obtained, the heat transfer coefficient expresses the ease of heat transfer on the surface of the steel sheet, and originally does not change with the plate thickness. A typical operation condition that varies depending on the plate thickness is a conveyance speed. As a general operation pattern, a steel plate with a large plate thickness has a low conveyance speed, and a steel plate with a small plate thickness has a high conveyance speed. This led to the idea that the factor that fluctuates the heat transfer coefficient is not the sheet thickness but the conveyance speed of the hot-rolled steel sheet.

そして、物理現象を詳細に考察し、熱延鋼板の搬送速度と熱伝達係数の関係を的確に把握してこれらをモデル式に正しく反映することにより、本発明に至った。   Then, the physical phenomenon was considered in detail, the relationship between the conveyance speed of the hot-rolled steel sheet and the heat transfer coefficient was accurately grasped, and these were correctly reflected in the model formula, thereby reaching the present invention.

本発明は、以上のような知見に基づいて完成されたものであり、以下の(1)〜(3)を提供する。   The present invention has been completed based on the above findings and provides the following (1) to (3).

(1)熱間圧延設備において圧延された熱間圧延材をランナウトテーブル上で冷却水により冷却して所定の巻取温度に制御する熱延鋼板の巻取温度制御方法であって、
熱伝達係数のモデル式として、冷却水の水温、熱延鋼板温度、および冷却水の水量密度の関数として表される熱伝達係数モデル部に、熱伝達係数学習値を乗じ、さらに熱延鋼板の搬送速度が特定のしきい値以上のときに、搬送速度の増加にともなって熱伝達係数を大きくする補正項を加味したものを用いて、熱延鋼板の巻取温度を制御することを特徴とする、熱延鋼板の巻取温度制御方法。
(2)前記熱伝達係数のモデル式として、以下の式を用いることを特徴とする(1)に記載の熱延鋼板の巻取温度制御方法。
α=KKW・f(T)・f(W)・f(T)・K
V<Vthのとき:K=1
V≧Vthのとき:K=1+f(V)
ただし、α:熱伝達係数[W/m・K]、KKW:熱伝達係数学習値[−]、T:冷却水の水温[K]、T:鋼板温度[K]、W:冷却水の水量密度[m/m・min]、V:熱延鋼板の搬送速度[m/s]、Vth:熱延鋼板の搬送速度しきい値[m/s]、f(V):搬送速度増加により増加する搬送速度の関数である。
(3)前記f(V)は、以下の式で表されることを特徴とする(2)に記載の熱延鋼板の巻取温度制御方法。
(V)=a×(V−Vth)
ただし、a,bは正の整数である。
(1) A hot rolled steel sheet winding temperature control method for controlling a hot rolled material rolled in a hot rolling facility to a predetermined winding temperature by cooling with a cooling water on a run-out table,
As a model formula for the heat transfer coefficient, the heat transfer coefficient model part expressed as a function of the cooling water temperature, the hot rolled steel sheet temperature, and the cooling water volume density is multiplied by the heat transfer coefficient learning value. It is characterized by controlling the coiling temperature of a hot-rolled steel sheet using a correction term that increases the heat transfer coefficient with an increase in the conveyance speed when the conveyance speed is equal to or higher than a specific threshold value. A method for controlling the coiling temperature of a hot-rolled steel sheet.
(2) The method for controlling the coiling temperature of a hot-rolled steel sheet according to (1), wherein the following formula is used as a model formula of the heat transfer coefficient.
α = KKW · f 1 (T W ) · f 2 (W) · f 3 (T S ) · K V
When V <Vth: K V = 1
When V ≧ Vth: K V = 1 + f 4 (V)
Where α: heat transfer coefficient [W / m 2 · K], KKW: heat transfer coefficient learning value [−], T W : coolant temperature [K], T S : steel plate temperature [K], W: cooling Water density of water [m 3 / m 2 · min], V: Conveying speed of hot-rolled steel sheet [m / s], Vth: Conveying speed threshold value of hot-rolled steel sheet [m / s], f 4 (V) : A function of the conveyance speed that increases as the conveyance speed increases.
(3) The winding temperature control method for a hot-rolled steel sheet according to (2), wherein the f 4 (V) is expressed by the following formula.
f 4 (V) = a × (V−Vth) b
However, a and b are positive integers.

本発明によれば、熱伝達係数のモデル式として、熱延鋼板の搬送速度が特定のしきい値以上のときに、搬送速度の増加にともなって熱伝達係数を大きくする補正項を加味したものを用いたので、熱延鋼板の搬送速度に応じた熱伝達係数の変化を適切に反映することができる。このため、熱延鋼板巻取り中の加減速による温度予測精度のばらつきの改善、および、同一鋼種で搬送速度が異なる鋼板の温度予測精度の向上を実現することができ、熱延鋼板の巻取温度を高精度で制御することが可能となる。   According to the present invention, as a model expression of the heat transfer coefficient, when a conveyance speed of the hot-rolled steel sheet is equal to or higher than a specific threshold, a correction term for increasing the heat transfer coefficient with an increase in the conveyance speed is added. Therefore, the change of the heat transfer coefficient according to the conveyance speed of the hot rolled steel sheet can be appropriately reflected. For this reason, it is possible to improve the variation in temperature prediction accuracy due to acceleration / deceleration during winding of a hot-rolled steel sheet, and to improve the temperature prediction accuracy of steel sheets with the same steel type and different conveyance speeds. The temperature can be controlled with high accuracy.

本発明の熱延鋼板の巻取温度制御方法を実施するための圧延冷却設備の一例を示す概略図である。It is the schematic which shows an example of the rolling cooling equipment for enforcing the winding temperature control method of the hot-rolled steel plate of this invention. 特許文献3、数式5の速度補正項の鋼板搬送速度による変化を示す図である。It is a figure which shows the change by the steel plate conveyance speed of the speed correction term of patent document 3, Formula 5. 実操業における鋼板搬送速度と熱伝達係数学習値との相関を示す図である。It is a figure which shows the correlation with the steel plate conveyance speed in an actual operation, and a heat-transfer coefficient learning value. 沸騰熱伝達のみを考慮した従来の熱伝達モデル(a)と、対流熱伝達の影響をも考慮した本発明の熱伝達モデル(b)とを示す図である。It is a figure which shows the conventional heat transfer model (a) which considered only the boiling heat transfer, and the heat transfer model (b) of this invention which also considered the influence of the convective heat transfer. 図3の鋼板搬送速度と熱伝達係数学習値との相関について詳細に検討した結果を示す図である。It is a figure which shows the result of having examined in detail about the correlation with the steel plate conveyance speed of FIG. 3, and a heat transfer coefficient learning value.

以下、添付図面を参照して本発明について具体的に説明する。
図1は、本発明の熱延鋼板の巻取温度制御方法を実施するための圧延冷却設備の一例を示す概略図である。この圧延冷却設備1は、仕上圧延機21(最終スタンドのみを図示する)の下流側に設けられたランナウトテーブル22に設けられている。仕上圧延機21で圧延された熱延鋼板Sは、ランナウトテーブル22上を走行して巻取機(ダウンコイラー)23に巻取られる。
Hereinafter, the present invention will be specifically described with reference to the accompanying drawings.
FIG. 1 is a schematic view showing an example of a rolling cooling facility for carrying out the method for controlling the coiling temperature of a hot-rolled steel sheet according to the present invention. The rolling cooling equipment 1 is provided on a runout table 22 provided on the downstream side of a finishing mill 21 (only the final stand is shown). The hot-rolled steel sheet S rolled by the finish rolling mill 21 travels on the run-out table 22 and is wound on a winder (down coiler) 23.

圧延冷却設備1は、上下に配置され冷却水を熱延鋼板Sに注水する冷却部2を有している。冷却部2には冷却水供給手段(図示せず)から冷却水が供給される。これらの冷却部2はそれぞれ複数の冷却バンク3に分割されている。そして、このような冷却部2の各バンク3への注水量を調節することにより熱延鋼板Sに対する冷却量が制御される。   The rolling cooling facility 1 has a cooling unit 2 that is arranged above and below and injects cooling water into the hot-rolled steel sheet S. Cooling water is supplied to the cooling unit 2 from a cooling water supply means (not shown). Each of these cooling units 2 is divided into a plurality of cooling banks 3. And the cooling amount with respect to the hot-rolled steel sheet S is controlled by adjusting the amount of water injected to each bank 3 of such a cooling unit 2.

また、圧延冷却設備1は、仕上圧延機21を出て冷却設備1に送り込まれる熱延鋼板Sの温度を測定する冷却設備入側温度計4と、仕上圧延後の熱延鋼板Sの板厚を測定する板厚計5と、冷却設備への熱延鋼板Sの供給速度である仕上圧延機21の熱延鋼板Sの搬出速度を測定する鋼板速度検出器6と、巻取り時の熱延鋼板Sの温度を測定する出側温度計7と、冷却設備からの熱延鋼板Sの搬出速度である巻取機23の熱延鋼板の巻取速度を測定する巻取速度検出器8とを有している。また、圧延冷却設備1は、熱延鋼板Sを所望の巻取温度に冷却制御するために冷却部2への注水パターンを算出する冷却制御部9と、冷却制御部9による注水パターンの算出のために熱伝達係数の学習値を演算して冷却制御部9に出力する学習値演算部10と、冷却制御部9から出力された注水量に基づいて冷却部2に注水指令を出力するバンク開閉入出力部11とを有する。   The rolling cooling equipment 1 includes a cooling equipment entrance thermometer 4 that measures the temperature of the hot-rolled steel sheet S that leaves the finishing mill 21 and is sent to the cooling equipment 1, and the thickness of the hot-rolled steel sheet S after finish rolling. A thickness gauge 5 for measuring the thickness, a steel plate speed detector 6 for measuring the unwinding speed of the hot-rolled steel sheet S of the finish rolling mill 21, which is the supply speed of the hot-rolled steel sheet S to the cooling facility, and hot rolling at the time of winding A delivery-side thermometer 7 that measures the temperature of the steel sheet S, and a winding speed detector 8 that measures the winding speed of the hot-rolled steel sheet of the winder 23, which is the carry-out speed of the hot-rolled steel sheet S from the cooling facility. Have. Further, the rolling cooling facility 1 includes a cooling control unit 9 that calculates a water injection pattern to the cooling unit 2 in order to control the hot rolled steel sheet S to a desired winding temperature, and a calculation of the water injection pattern by the cooling control unit 9. Therefore, the learning value calculation unit 10 that calculates the learning value of the heat transfer coefficient and outputs it to the cooling control unit 9 and the bank opening and closing that outputs the water injection command to the cooling unit 2 based on the water injection amount output from the cooling control unit 9 And an input / output unit 11.

次に、圧延冷却設備1による冷却制御動作について説明する。
冷却制御部9は、熱延鋼板Sを全長にわたって所望の巻取温度に冷却するために冷却部2の各バンク3への注水パターンを算出し、これによって熱延鋼板Sの巻取温度を制御する。このときの制御は、熱延鋼板Sを長手方向に定長単位である切板毎に、仕上圧延機21出側の冷却設備入側温度計4で得られる温度実績をもとに冷却パターンを決定するフィードフォワード(FF)制御と、出側温度計7で得られる巻取温度実績をもとに冷却量を修正するフィードバック(FB)制御とから成り立っている。例えば、FF制御では、冷却設備入側温度計4で得られる温度実績と熱延鋼板の熱伝達係数を用いて求められる予測温度降下量、さらには、板厚計5により求められる熱延鋼板Sの板厚、および鋼板速度検出器6および巻取速度検出器8で測定された搬送速度に基づいて注水パターンを算出する。
Next, the cooling control operation by the rolling cooling facility 1 will be described.
The cooling control unit 9 calculates a water injection pattern to each bank 3 of the cooling unit 2 in order to cool the hot rolled steel sheet S to a desired winding temperature over the entire length, thereby controlling the winding temperature of the hot rolled steel sheet S. To do. At this time, the control is performed by setting the cooling pattern on the basis of the temperature results obtained by the cooling equipment inlet side thermometer 4 on the exit side of the finish rolling mill 21 for each cut plate which is a constant length unit in the longitudinal direction of the hot rolled steel sheet S. The feed forward (FF) control to be determined and the feedback (FB) control to correct the cooling amount based on the actual winding temperature obtained by the outlet thermometer 7 are included. For example, in the FF control, the temperature drop obtained by using the actual temperature obtained by the cooling facility entry-side thermometer 4 and the heat transfer coefficient of the hot-rolled steel sheet, and further, the hot-rolled steel sheet S obtained by the thickness gauge 5 The water injection pattern is calculated on the basis of the plate thickness and the conveyance speed measured by the steel plate speed detector 6 and the winding speed detector 8.

このとき、冷却制御部9のFF制御およびFB制御において温度計算を行う際に用いる熱延鋼板の熱伝達係数は、モデル式によって決定される熱伝達係数に、鋼種や板厚、目標温度等によって区分けされた圧延材グループ毎に持つ学習値を乗じた値が採用される。この熱伝達係数の学習値は、熱伝達係数学習値演算部10で演算されて冷却制御部9の注水パターン算出に反映される。熱伝達係数学習値演算部10では、前回、同一圧延グループを圧延した際の実績に基づいて演算され更新された学習値が用いられる。   At this time, the heat transfer coefficient of the hot-rolled steel sheet used when the temperature calculation is performed in the FF control and the FB control of the cooling control unit 9 depends on the steel type, the plate thickness, the target temperature, etc. A value obtained by multiplying the learning value of each group of rolled material groups is adopted. The learning value of the heat transfer coefficient is calculated by the heat transfer coefficient learning value calculation unit 10 and reflected in the water injection pattern calculation of the cooling control unit 9. In the heat transfer coefficient learning value calculation unit 10, the learning value calculated and updated based on the results when the same rolling group was rolled last time is used.

このようにして各バンク3の注水量が算出され、算出されたバンク3の注水量がバンク開閉入出力部11に出力されてバンク開閉入出力部11から各バンク3に注水指令が出力されて冷却制御が行われる。   In this way, the water injection amount of each bank 3 is calculated, the calculated water injection amount of the bank 3 is output to the bank opening / closing input / output unit 11, and the water injection command is output from the bank opening / closing input / output unit 11 to each bank 3. Cooling control is performed.

本発明では、このような冷却制御において、上述したように、ランナウトテーブル上で水冷中の熱延鋼板の熱伝達係数が、熱延鋼板の搬送速度によって変化することを前提とする。熱延鋼板の搬送速度の影響については、先行技術(特許文献3)でも考慮しているものの、実際の物理現象をモデル式に正しく反映できていない。すなわち、特許文献3では、鋼板上面の熱伝達率hWtおよび下面の熱伝達率hWbは以下の式で表される。
(上面)
Wt=1.163×100.425(θ−θ−1−0.08{1−0.02(θ−40)}z
(下面)
Wb=7.020×100.771(θ−θ−1{1−0.02(θ−40)}z
W:水量密度[m/m・min]、θ:材料表面温度[℃]、θ:水温[℃]、v:鋼板速度[m/min]、z:補正係数
In the present invention, in such cooling control, as described above, it is assumed that the heat transfer coefficient of the hot-rolled steel sheet being water-cooled on the run-out table changes depending on the conveying speed of the hot-rolled steel sheet. Although the influence of the conveyance speed of the hot-rolled steel sheet is considered in the prior art (Patent Document 3), the actual physical phenomenon cannot be correctly reflected in the model formula. That is, in Patent Document 3, the heat transfer coefficient h Wt on the upper surface of the steel sheet and the heat transfer coefficient h Wb on the lower surface are represented by the following equations.
(Top)
h Wt = 1.163 × 10 6 W 0.425S −θ W ) −1 v −0.08 {1−0.02 (θ S −40)} z
(Bottom)
h Wb = 7.020 × 10 5 W 0.771S −θ W ) −1 {1-0.02 (θ S −40)} z
W: Water density [m 3 / m 2 · min], θ S : Material surface temperature [° C.], θ W : Water temperature [° C.], v: Steel plate speed [m / min], z: Correction coefficient

したがって、特許文献3の速度補正項(v−0.08)は、図2に示すようになり、速度が増加するに従って熱伝達係数が小さくなるように補正している。 Therefore, the speed correction term (v −0.08 ) of Patent Document 3 is as shown in FIG. 2, and is corrected so that the heat transfer coefficient decreases as the speed increases.

これに対し、実操業において、鋼板速度を除く、水温、水量密度、鋼板表面温度の関数とした熱伝達係数モデルを用いて熱伝達係数の学習値を実績から逆算し、その学習値と鋼板搬送速度の相関を求めると、図3に示すように、鋼板速度増加により熱伝達係数が大きくなる。つまり、特許文献3のモデルで計算している熱伝達係数は実際の熱伝達係数とは逆の結果であり、特許文献3のモデルで計算される熱伝達係数よりも実際の熱伝達係数のほうが大きい。   In contrast, in actual operation, the learning value of the heat transfer coefficient is calculated back from the actual results using a heat transfer coefficient model as a function of the water temperature, water density, and steel sheet surface temperature, excluding the steel plate speed, and the learned value and the steel plate transport When the correlation of speed is obtained, as shown in FIG. 3, the heat transfer coefficient is increased by increasing the steel sheet speed. In other words, the heat transfer coefficient calculated by the model of Patent Document 3 is a result opposite to the actual heat transfer coefficient, and the actual heat transfer coefficient is more than the heat transfer coefficient calculated by the model of Patent Document 3. large.

そこで、実際の物理現象に基づいて、熱延鋼板水冷中の熱伝達係数がどのように変化するかを考察した。   Then, based on an actual physical phenomenon, it examined how the heat transfer coefficient in hot-rolled steel sheet water cooling changed.

熱延鋼板の水冷における熱伝達は、熱延鋼板が100℃(水の沸点)以上であるため、沸騰熱伝達である。一方、100℃未満の鋼板の熱伝達は、対流熱伝達と呼ばれ、流体(冷却水)が停止している状態(すなわち鋼板が停止している状態)を自然対流、流体(冷却水)が動いている状態(すなわち鋼板が動いている状態)を強制対流という。   The heat transfer in water cooling of the hot-rolled steel sheet is boiling heat transfer because the hot-rolled steel sheet has a temperature of 100 ° C. (boiling point of water) or higher. On the other hand, the heat transfer of a steel plate of less than 100 ° C. is called convection heat transfer, and the state in which the fluid (cooling water) is stopped (that is, the state in which the steel plate is stopped) is natural convection, and the fluid (cooling water) is The moving state (that is, the state where the steel plate is moving) is called forced convection.

沸騰熱伝達には、鋼板表面温度によって、核沸騰熱伝達、遷移沸騰熱伝達、膜沸騰熱伝達という3つの形態があり、上記特許文献4には、それぞれの形態での熱流束の違いに着目した熱伝達モデルが提案されている。しかし、沸騰熱伝達は、図4(a)に示すように、流体(冷却水)が静止している状態を前提としており、熱延鋼板の搬送によって生じる対流の影響は反映されていない。すなわち、従来の沸騰熱伝達を考慮した熱伝達係数のモデル式としては、一般的に、冷却水の水温、熱延鋼板温度、冷却水の水量密度の関数として表される熱伝達係数モデル部に熱伝達係数学習値を乗じたものが用いられる。具体的には、熱伝達係数α′[W/m・K]のモデル式として、以下の(1)式で表されるモデル式が用いられる。
α′=KKW・f(T)・f(W)・f(T) ・・・(1)
ただし、KKW:熱伝達係数学習値[−]、T:冷却水の水温[K]、T:鋼板温度[K]、W:冷却水の水量密度[m/m・min]
There are three forms of boiling heat transfer, nucleate boiling heat transfer, transition boiling heat transfer, and film boiling heat transfer, depending on the surface temperature of the steel sheet. Patent Document 4 focuses on the difference in heat flux in each form. A heat transfer model has been proposed. However, boiling heat transfer is based on the premise that the fluid (cooling water) is stationary as shown in FIG. 4A, and the influence of convection caused by the conveyance of the hot-rolled steel sheet is not reflected. That is, as a conventional heat transfer coefficient model considering boiling heat transfer, generally, a heat transfer coefficient model part expressed as a function of cooling water temperature, hot-rolled steel sheet temperature, and cooling water volume density is used. A product obtained by multiplying the heat transfer coefficient learning value is used. Specifically, a model formula represented by the following formula (1) is used as a model formula of the heat transfer coefficient α ′ [W / m 2 · K].
α ′ = KKW · f 1 (T W ) · f 1 (W) · f 3 (T S ) (1)
However, KKW: Heat transfer coefficient learning value [−], T W : Cooling water temperature [K], T S : Steel plate temperature [K], W: Cooling water quantity density [m 3 / m 2 · min]

そこで、本発明では、図4(b)に示すように、沸騰熱伝達を前提としつつ、熱延鋼板の搬送による対流熱伝達の影響を加味し、熱延鋼板搬送速度の増加にともなって熱伝達係数が大きくなる実際の現象を表現できるモデル式を構築する。   Therefore, in the present invention, as shown in FIG. 4 (b), while assuming the heat transfer to the boiling point, the effect of convective heat transfer due to the conveyance of the hot-rolled steel sheet is taken into account, and the heat is increased as the hot-rolled steel sheet conveyance speed increases. Build a model that can represent the actual phenomenon where the transfer coefficient increases.

このようなモデル式を構築するに当たり、図3に示す実績から逆算した学習値と鋼板搬送速度との相関についてより詳細に検討すると、図5に示すように、搬送速度が低い領域では、搬送速度に対して熱伝達係数がほぼ一定であり、搬送速度があるしきい値(搬送速度しきい値Vth)以上の領域では、搬送速度に対して熱伝達係数が増加する傾向にあることがわかる。   In constructing such a model formula, the correlation between the learning value calculated backward from the results shown in FIG. 3 and the steel plate conveyance speed will be examined in more detail. As shown in FIG. 5, in the region where the conveyance speed is low, the conveyance speed is low. In contrast, it can be seen that the heat transfer coefficient tends to increase with respect to the transport speed in a region where the heat transfer coefficient is substantially constant and the transport speed is equal to or greater than a certain threshold value (transport speed threshold Vth).

すなわち、搬送速度しきい値Vthは、熱伝達係数の速度依存性が変化する境界を示しており、搬送速度しきい値Vthより低い搬送速度では、熱延鋼板の上を冷却水が滑らかに流動するために搬送速度増加による熱伝達係数の変化が小さいのに対し、搬送速度しきい値Vth以上では、冷却水が乱流状態となるため、搬送速度増加により熱伝達係数の変化(増加)が大きく現れるのである。   That is, the conveyance speed threshold Vth indicates a boundary where the speed dependency of the heat transfer coefficient changes, and the cooling water smoothly flows over the hot-rolled steel sheet at a conveyance speed lower than the conveyance speed threshold Vth. For this reason, the change in the heat transfer coefficient due to the increase in the transfer speed is small, whereas the cooling water becomes a turbulent state at the transfer speed threshold value Vth or higher, so that the change (increase) in the heat transfer coefficient is caused by the increase in the transfer speed. It appears greatly.

したがって、本発明では、熱伝達係数のモデル式として、冷却水の水温、鋼板温度、冷却水の水量密度の関数として表される熱伝達係数モデル部に熱伝達係数学習値を乗じた従来のモデル式に、上記のような傾向を反映した熱伝達係数速度補正項を加味したものを用いる。   Therefore, in the present invention, as a model expression of the heat transfer coefficient, a conventional model obtained by multiplying the heat transfer coefficient learning part by the heat transfer coefficient model part expressed as a function of the coolant temperature, the steel plate temperature, and the coolant water density. A formula in which a heat transfer coefficient speed correction term reflecting the above tendency is added is used.

具体的には、熱伝達係数αのモデル式として、上記(1)式に熱伝達係数速度補正項Kを加味した以下の(2)式で表されるモデル式が用いられる。
α=KKW・f(T)・f(W)・f(T)・K ・・・(2)
Specifically, as a model expression of the heat transfer coefficient alpha, (1) the model expression represented by the heat transfer coefficient velocity correction term K V below in consideration of the equation (2) into equation is used.
α = KKW · f 1 (T W ) · f 2 (W) · f 3 (T S ) · K V (2)

ここで、搬送速度をV[m/s]、搬送速度しきい値をVth[m/s]とすると、
V<Vthのとき:K=1
V≧Vthのとき:K=1+f(V)となる。
ただし、f(V)は、搬送速度増加により増加する関数であり、例えば、
(V)=a×(V−Vth)(ただし、a,bは正の整数)である。a,bは、鋼種等に応じて適宜の値が設定される。
Here, when the transport speed is V [m / s] and the transport speed threshold is Vth [m / s],
When V <Vth: K V = 1
When V ≧ Vth: K V = 1 + f 4 (V)
However, f 4 (V) is a function that increases as the conveyance speed increases.
f 4 (V) = a × (V−Vth) b (where a and b are positive integers). Appropriate values are set for a and b depending on the steel type and the like.

このように、本発明では、熱延鋼板の搬送速度に応じた熱伝達係数の変化を適切に反映することができるので、熱延鋼板巻取り中の加減速による温度予測精度のばらつきの改善、および、同一鋼種で搬送速度が異なる鋼板の温度予測精度の向上を実現することができ、熱延鋼板の巻取温度を高精度で制御することが可能となる。   Thus, in the present invention, it is possible to appropriately reflect the change in the heat transfer coefficient according to the conveyance speed of the hot-rolled steel sheet, thus improving the variation in temperature prediction accuracy due to acceleration / deceleration during hot-rolled steel sheet winding, And the improvement of the temperature prediction precision of the steel plate from which the conveyance speed differs by the same steel type can be implement | achieved, and it becomes possible to control the coiling temperature of a hot-rolled steel plate with high precision.

次に、実際に本発明の効果を把握した結果について説明する。
熱伝達係数モデル部に適用する熱伝達係数として鋼板搬送速度を考慮しない上記(1)式を用いた従来例の場合、CT不良による材料試験外れ(材料試験で得られる特性値の目標外れ(歩留・格落ち))率が0.2%であった。これに対し、熱伝達係数として本発明に基づいて鋼板搬送速度を反映した上記(2)式を用いた実施例の場合、CT不良による材料試験外れ率が0.17%であった。すなわち、本発明により高精度で巻取温度を制御できることにより、従来よりもCT不良率を低減することができた。
Next, the result of actually grasping the effect of the present invention will be described.
In the case of the conventional example using the above formula (1) that does not consider the steel plate conveyance speed as the heat transfer coefficient applied to the heat transfer coefficient model part, the material test is not good due to CT failure (the characteristic value obtained in the material test is not the target (step The ratio was 0.2%. On the other hand, in the case of the example using the above formula (2) reflecting the steel plate conveyance speed based on the present invention as the heat transfer coefficient, the material test failure rate due to CT failure was 0.17%. That is, since the coiling temperature can be controlled with high accuracy according to the present invention, the CT defect rate can be reduced as compared with the prior art.

1 圧延冷却設備
2 冷却部
3 冷却バンク
4 冷却設備入側温度計
5 板厚計
6 鋼板速度検出器
7 出側温度計
8 巻取速度検出器
9 冷却制御部
10 熱伝達係数学習値演算部
11 バンク開閉入出力部
21 仕上圧延機
22 ランナウトテーブル
23 巻取機
S 熱延鋼板
DESCRIPTION OF SYMBOLS 1 Rolling cooling equipment 2 Cooling part 3 Cooling bank 4 Cooling equipment inlet side thermometer 5 Sheet thickness meter 6 Steel plate speed detector 7 Outlet side thermometer 8 Winding speed detector 9 Cooling control part 10 Heat transfer coefficient learning value calculating part 11 Bank open / close input / output unit 21 Finishing mill 22 Runout table 23 Winder S Hot rolled steel sheet

Claims (3)

熱間圧延設備において圧延された熱間圧延材をランナウトテーブル上で冷却水により冷却して所定の巻取温度に制御する熱延鋼板の巻取温度制御方法であって、
熱伝達係数のモデル式として、冷却水の水温、熱延鋼板温度、および冷却水の水量密度の関数として表される熱伝達係数モデル部に、熱伝達係数学習値を乗じ、さらに熱延鋼板の搬送速度が特定のしきい値以上のときに、搬送速度の増加にともなって熱伝達係数を大きくする補正項を加味したものを用いて、熱延鋼板の巻取温度を制御することを特徴とする、熱延鋼板の巻取温度制御方法。
A hot rolling steel sheet rolling temperature control method for cooling a hot rolled material rolled in a hot rolling facility with a cooling water on a run-out table to control to a predetermined winding temperature,
As a model formula for the heat transfer coefficient, the heat transfer coefficient model part expressed as a function of the cooling water temperature, the hot rolled steel sheet temperature, and the cooling water volume density is multiplied by the heat transfer coefficient learning value. It is characterized by controlling the coiling temperature of a hot-rolled steel sheet using a correction term that increases the heat transfer coefficient with an increase in the conveyance speed when the conveyance speed is equal to or higher than a specific threshold value. A method for controlling the coiling temperature of a hot-rolled steel sheet.
前記熱伝達係数のモデル式として、以下の式を用いることを特徴とする請求項1に記載の熱延鋼板の巻取温度制御方法。
α=KKW・f(T)・f(W)・f(T)・K
V<Vthのとき:K=1
V≧Vthのとき:K=1+f(V)
ただし、α:熱伝達係数[W/m・K]、KKW:熱伝達係数学習値[−]、T:冷却水の水温[K]、T:鋼板温度[K]、W:冷却水の水量密度[m/m・min]、V:熱延鋼板の搬送速度[m/s]、Vth:熱延鋼板の搬送速度しきい値[m/s]、f(V):搬送速度増加により増加する搬送速度の関数である。
The winding temperature control method for a hot-rolled steel sheet according to claim 1, wherein the following formula is used as a model formula of the heat transfer coefficient.
α = KKW · f 1 (T W ) · f 2 (W) · f 3 (T S ) · K V
When V <Vth: K V = 1
When V ≧ Vth: K V = 1 + f 4 (V)
Where α: heat transfer coefficient [W / m 2 · K], KKW: heat transfer coefficient learning value [−], T W : coolant temperature [K], T S : steel plate temperature [K], W: cooling Water density of water [m 3 / m 2 · min], V: Conveying speed of hot-rolled steel sheet [m / s], Vth: Conveying speed threshold value of hot-rolled steel sheet [m / s], f 4 (V) : A function of the conveyance speed that increases as the conveyance speed increases.
前記f(V)は、以下の式で表されることを特徴とする請求項2に記載の熱延鋼板の巻取温度制御方法。
(V)=a×(V−Vth)
ただし、a,bは正の整数である。
Wherein f 4 (V) is the winding temperature control method of the hot-rolled steel sheet according to claim 2, characterized by being represented by the following formula.
f 4 (V) = a × (V−Vth) b
However, a and b are positive integers.
JP2014045010A 2014-03-07 2014-03-07 Winding temperature control method of hot rolled steel sheet Pending JP2015167976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045010A JP2015167976A (en) 2014-03-07 2014-03-07 Winding temperature control method of hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045010A JP2015167976A (en) 2014-03-07 2014-03-07 Winding temperature control method of hot rolled steel sheet

Publications (1)

Publication Number Publication Date
JP2015167976A true JP2015167976A (en) 2015-09-28

Family

ID=54201230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045010A Pending JP2015167976A (en) 2014-03-07 2014-03-07 Winding temperature control method of hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP2015167976A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241370A (en) * 2019-06-06 2019-09-17 扬州市顺腾不锈钢照明器材有限公司 A kind of cooling device of steel plate
CN112381787A (en) * 2020-11-12 2021-02-19 福州大学 Steel plate surface defect classification method based on transfer learning
CN114682632A (en) * 2020-12-29 2022-07-01 唐山学院 Design method of controlled cooling process of hot-rolled dual-phase steel for automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261423A (en) * 1992-03-13 1993-10-12 Sumitomo Metal Ind Ltd Method for quick-cooling hot rolled steel plate
JPH06218414A (en) * 1993-01-25 1994-08-09 Nisshin Steel Co Ltd Cooling control method for hot rolled steel sheet
JPH09267113A (en) * 1996-03-29 1997-10-14 Nisshin Steel Co Ltd Method for controlling cooling hot rolled steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261423A (en) * 1992-03-13 1993-10-12 Sumitomo Metal Ind Ltd Method for quick-cooling hot rolled steel plate
JPH06218414A (en) * 1993-01-25 1994-08-09 Nisshin Steel Co Ltd Cooling control method for hot rolled steel sheet
JPH09267113A (en) * 1996-03-29 1997-10-14 Nisshin Steel Co Ltd Method for controlling cooling hot rolled steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241370A (en) * 2019-06-06 2019-09-17 扬州市顺腾不锈钢照明器材有限公司 A kind of cooling device of steel plate
CN112381787A (en) * 2020-11-12 2021-02-19 福州大学 Steel plate surface defect classification method based on transfer learning
CN114682632A (en) * 2020-12-29 2022-07-01 唐山学院 Design method of controlled cooling process of hot-rolled dual-phase steel for automobile

Similar Documents

Publication Publication Date Title
JP6435234B2 (en) Hot roll finishing mill outlet temperature control device and control method thereof
JP5647917B2 (en) Control apparatus and control method
KR101614640B1 (en) Temperature control device
JP5679914B2 (en) Steel temperature prediction method
JP5581964B2 (en) Thickness control method in reverse rolling mill
JP5565200B2 (en) Finishing temperature control device in hot rolling
JP2015167976A (en) Winding temperature control method of hot rolled steel sheet
JP6558060B2 (en) Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
JP4208505B2 (en) Winding temperature controller
JP4890433B2 (en) Rolled material temperature prediction method, rolled material cooling device control method, and continuous rolling equipment
JP5948967B2 (en) Temperature prediction method, cooling control method and cooling control device for metal plate in hot rolling
JP4701794B2 (en) Automatic adjustment device for nonlinear water-cooled heat transfer coefficient model
JP5691222B2 (en) Winding temperature control method for metal strip in hot rolling line
JP5928377B2 (en) Cooling control method for hot rolled material
KR20030053621A (en) Hot strip cooling control mothode for chage target temperature
JP6645036B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP2012011448A (en) Cooling control method of rolled material, and continuous rolling mill to which the cooling control method is applied
JPH01162508A (en) Cooling control method for steel material
JP2009233716A (en) Method of cooling rolled stock
JP5239887B2 (en) Hot rolled steel sheet manufacturing apparatus and manufacturing method
KR102045651B1 (en) Estimating apparatus for heat flux coefficient of run-out table based artificial intelligence
JP6645037B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP5691221B2 (en) Winding temperature control method for metal strip in hot rolling line
JP2007283346A (en) Method for controlling cooling of rolled stock and rolling equipment
KR101281317B1 (en) Cooling control method and system for high carbon hot rolled steel sheet having low deviation in mechanical properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170104