JP5239887B2 - Hot rolled steel sheet manufacturing apparatus and manufacturing method - Google Patents

Hot rolled steel sheet manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP5239887B2
JP5239887B2 JP2009010130A JP2009010130A JP5239887B2 JP 5239887 B2 JP5239887 B2 JP 5239887B2 JP 2009010130 A JP2009010130 A JP 2009010130A JP 2009010130 A JP2009010130 A JP 2009010130A JP 5239887 B2 JP5239887 B2 JP 5239887B2
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
cooling
water
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009010130A
Other languages
Japanese (ja)
Other versions
JP2010167424A (en
Inventor
久好 橘
繁政 中川
達朗 本田
千尋 植松
康彦 武衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009010130A priority Critical patent/JP5239887B2/en
Publication of JP2010167424A publication Critical patent/JP2010167424A/en
Application granted granted Critical
Publication of JP5239887B2 publication Critical patent/JP5239887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

本発明は、熱延鋼板の製造装置及び製造方法に関し、具体的には熱間圧延機で熱間圧延された直後の高温の鋼板に冷却水を噴射して鋼板を水冷することにより熱延鋼板を製造する際に、この冷却を停止した時点の鋼板の温度を正確に制御することができる熱延鋼板の製造装置及び製造方法に関する。   TECHNICAL FIELD The present invention relates to an apparatus and a method for manufacturing a hot-rolled steel sheet. Specifically, the hot-rolled steel sheet is water-cooled by injecting cooling water onto a high-temperature steel sheet immediately after being hot-rolled by a hot rolling mill. When manufacturing this, it is related with the manufacturing apparatus and manufacturing method of a hot-rolled steel plate which can control accurately the temperature of the steel plate at the time of stopping this cooling.

仕上圧延機と、仕上げ圧延機の下流側に設置される搬送テーブル(ランアウトテーブル)とを備える熱間圧延設備では、仕上圧延機により仕上圧延された高温の鋼板を、この鋼板の表面に搬送テーブルに配置される水冷装置から冷却水を噴射することによって水冷してから、巻取装置により巻き取ってコイルにする。所望の機械特性を有する熱延鋼板を製造するためには、仕上圧延機により仕上圧延されてからコイルに巻き取られるまでの間の搬送テーブルにおける鋼板の温度降下履歴を高精度に制御し、析出する金属組織を積極的にコントロールすることが必要になる。   In a hot rolling facility equipped with a finish rolling mill and a transfer table (runout table) installed on the downstream side of the finish rolling mill, a high temperature steel plate finish-rolled by the finish rolling mill is transferred to the surface of the steel plate. Water cooling is performed by spraying cooling water from a water cooling device disposed in the coil, and then the coil is wound by a winding device to form a coil. In order to produce a hot-rolled steel sheet having the desired mechanical properties, the temperature drop history of the steel sheet on the transfer table from the finish rolling by the finish rolling mill to the winding of the coil is controlled with high precision, and precipitation is performed. It is necessary to actively control the metal structure.

図11は、仕上圧延を終了した鋼板の降下履歴と析出する金属組織との関係を示すグラフである。図1にグラフで示すように水冷を停止した直後の鋼板の温度(以下、「急冷停止温度」という)をa、b、cと変化させることにより析出する金属組織も変化するため、急冷停止温度を適切に制御することにより熱延鋼板の金属組織をコントロールすることができる。このように、優れた機械特性を有する熱延鋼板を製造するためには、急冷停止温度を所定の温度に正確に制御して、必要な金属組織が析出する温度で正確に急冷を停止する必要がある。このため、仕上圧延された鋼板の速度や圧延温度の変動に応じて急冷停止温度が正確に所定の温度となるように、水冷装置を適切に制御することが求められる。   FIG. 11 is a graph showing the relationship between the descent history of the steel sheet that has finished finish rolling and the metal structure that precipitates. As shown in the graph of FIG. 1, since the metal structure deposited by changing the temperature of the steel sheet immediately after stopping the water cooling (hereinafter referred to as “quenching stop temperature”) to a, b, and c also changes, the quench stop temperature The metallographic structure of the hot-rolled steel sheet can be controlled by appropriately controlling. Thus, in order to produce a hot-rolled steel sheet having excellent mechanical properties, it is necessary to accurately control the quenching stop temperature to a predetermined temperature and to stop quenching accurately at a temperature at which the necessary metal structure is deposited. There is. For this reason, it is required to appropriately control the water cooling device so that the rapid cooling stop temperature becomes a predetermined temperature accurately in accordance with the speed of the finish-rolled steel sheet and the fluctuation of the rolling temperature.

急冷停止温度の制御を含む、熱間仕上圧延後の鋼板の温度降下履歴を制御する発明が、これまでにもいくつか提案されている。
例えば、特許文献1には、仕上圧延後の鋼板に対して目標水冷時間及び目標空冷時間のいずれも確保することができるように水冷装置を制御することによって加速圧延による鋼板の速度の変化に影響されずに温度降下履歴を一定にするとともに巻取温度を所定の温度に制御する発明が開示されている。
Several inventions for controlling the temperature drop history of a steel sheet after hot finish rolling, including the control of the quenching stop temperature, have been proposed so far.
For example, Patent Document 1 affects the change in the speed of the steel sheet by accelerated rolling by controlling the water cooling device so that both the target water cooling time and the target air cooling time can be secured for the steel sheet after finish rolling. An invention is disclosed in which the temperature drop history is kept constant and the winding temperature is controlled to a predetermined temperature.

また、特許文献2には、多数の冷却ゾーン毎に配置した鋼板の温度検出手段と冷却水制御手段とを用い、各冷却ゾーン毎に必要な温度降下履歴を得るための目標値を与えることにより、冷却工程全体において所望の温度降下履歴を得るための発明が開示されている。   Further, Patent Document 2 uses a steel plate temperature detection means and cooling water control means arranged for each of a large number of cooling zones, and gives a target value for obtaining a necessary temperature drop history for each cooling zone. An invention for obtaining a desired temperature drop history in the entire cooling process is disclosed.

特開平6−238312号公報Japanese Patent Laid-Open No. 6-238312 特開平6−246331号公報JP-A-6-246331

しかし、特許文献1、2により開示されたいずれの発明に基づいても、鋼板の急冷停止温度を正確に制御することはできない。
すなわち、上述した図11にグラフで示すように所望の金属組織を析出させるには急冷停止温度を目標温度に制御する必要があるが、特許文献1により開示された発明は仕上圧延後の鋼板を急冷する際における水冷時間を制御するものであって急冷停止温度をその目標温度に制御するものではないため、特許文献1により開示された発明では急冷停止温度を正確に制御することはできない。
However, the rapid cooling stop temperature of the steel sheet cannot be accurately controlled based on any of the inventions disclosed in Patent Documents 1 and 2.
That is, as shown in the graph of FIG. 11 described above, it is necessary to control the quenching stop temperature to the target temperature in order to precipitate a desired metal structure. However, the invention disclosed in Patent Document 1 discloses a steel sheet after finish rolling. Since the water cooling time at the time of rapid cooling is controlled and the rapid cooling stop temperature is not controlled to the target temperature, the invention disclosed in Patent Document 1 cannot accurately control the rapid cooling stop temperature.

また、特許文献2により開示された発明では、多数配置された温度検出手段による検出値と目標値との差が小さくなるように水冷装置の冷却能力を調整する。しかし、この温度検出手段により検出される温度は、水冷時の鋼板の表面温度である。   Further, in the invention disclosed in Patent Document 2, the cooling capacity of the water cooling device is adjusted so that the difference between the detection value by the temperature detecting means arranged in large numbers and the target value becomes small. However, the temperature detected by this temperature detection means is the surface temperature of the steel sheet during water cooling.

図12は、水冷装置により鋼板に冷却水を噴射して鋼板を急冷する際の鋼板の表面温度と、鋼板の板厚方向平均温度とを計算により求めた結果を示すグラフである。
ここで,「板厚方向平均温度」について説明する。図12のグラフで示したように急冷時は鋼板表面から熱が奪われている状態のため表面温度が最も低い状態で,板厚方向に温度分布を持っている。そこで、板厚方向に複数点の温度計算ポイントを設定し、鋼板表面からの熱流束や鋼板内部の熱伝導等を考慮して各温度計算ポイントの温度を計算し、各ポイントの温度を平均したものを「板厚方向平均温度」と呼んでいる。
FIG. 12 is a graph showing the results of calculating the surface temperature of the steel sheet and the average temperature in the plate thickness direction when the steel sheet is rapidly cooled by spraying cooling water onto the steel sheet with a water cooling device.
Here, the “thickness direction average temperature” will be described. As shown in the graph of FIG. 12, at the time of rapid cooling, since the heat is taken away from the steel plate surface, the surface temperature is the lowest and has a temperature distribution in the plate thickness direction. Therefore, multiple temperature calculation points are set in the plate thickness direction, the temperature at each temperature calculation point is calculated in consideration of the heat flux from the steel plate surface, the heat conduction inside the steel plate, etc., and the temperature at each point is averaged. The thing is called the “thickness direction average temperature”.

鋼板を急冷した後,鋼板表面からの熱流出が無いと仮定すると,熱拡散により板厚方向の温度分布は小さくなり,最終的には「板厚方向平均温度」と同一となることから,「板厚方向平均温度」を制御目標値としている。   Assuming that there is no heat outflow from the steel sheet surface after quenching the steel sheet, the temperature distribution in the sheet thickness direction becomes smaller due to thermal diffusion and eventually becomes the same as the “average temperature in the sheet thickness direction”. The “thickness direction average temperature” is the control target value.

図12にグラフで示すように、水冷装置の冷却ゾーンで冷却水を噴射して鋼板を急冷し、その後に冷却水の噴射を停止する場合、鋼板の表面温度は冷却水の噴射時には板厚方向平均温度よりも大幅に低下するとともに、両者の差も安定しない。そして、冷却水の噴射を停止して空冷を開始した直後の表面温度は、その後のしばらくの間(図12のグラフにおける領域A)は、鋼板の内部の熱が表面側に移動する(本明細書ではこのような熱移動を「復熱」という)ために鋼板の表面温度が上昇しており過渡的な状態にあるものの、両者の差は急速に小さくなり、この過度的な状態を過ぎると、鋼板の表面温度は板厚方向平均温度と同様に安定して低下していく。   As shown in the graph of FIG. 12, when the cooling water is injected in the cooling zone of the water cooling device to rapidly cool the steel sheet and then the cooling water injection is stopped, the surface temperature of the steel sheet is in the thickness direction when the cooling water is injected. The temperature is significantly lower than the average temperature, and the difference between the two is not stable. Then, the surface temperature immediately after the cooling water injection is stopped and the air cooling is started is, for a while after that (region A in the graph of FIG. 12), the heat inside the steel plate moves to the surface side (this specification). In the book, such heat transfer is called “recuperation”), the surface temperature of the steel sheet is rising and in a transitional state, but the difference between the two rapidly decreases, and when this excessive state is passed The surface temperature of the steel sheet decreases stably in the same way as the average thickness direction temperature.

このように、急冷時の鋼板の表面温度と板厚方向平均温度には大きな差が生じるため、急冷停止時の鋼板の表面温度を直接測定してみても、鋼板の急冷停止温度を正確に測定したことにはならず、鋼板の急冷停止温度は板厚方向平均温度として求める必要がある。特許文献2により開示された発明は温度検出手段により検出された鋼板の表面温度に基づくものであるので、特許文献2により開示された発明でも急冷停止温度を正確に制御することはできない。   In this way, there is a large difference between the surface temperature of the steel sheet during rapid cooling and the average temperature in the thickness direction, so even if you directly measure the surface temperature of the steel sheet during rapid cooling stop, you can accurately measure the rapid cooling stop temperature of the steel sheet. However, it is necessary to obtain the quenching stop temperature of the steel sheet as the average thickness direction temperature. Since the invention disclosed by Patent Document 2 is based on the surface temperature of the steel sheet detected by the temperature detecting means, even the invention disclosed by Patent Document 2 cannot accurately control the rapid cooling stop temperature.

仮に、特許文献2により開示された発明において、水冷停止後の表面温度と板厚方向平均温度との差が小さくなるまで待って表面温度を測定する場合を検討する。例えば、板厚4.0mmで初期温度900℃の鋼板を、板厚方向の平均温度が700℃になるまで100℃/秒の冷却速度で急冷する場合の温度計算を行うと、急冷停止直後の表面温度は678℃であり、板厚方向平均温度よりも22℃低く、表面温度が安定して表面温度が上昇から降下に転じるまでには0.40秒間を要する。一般的な仕上圧延装置の仕上圧延速度(鋼板の搬送速度)である10m/秒の場合には4.0mもの距離が必要になる。   Temporarily, in the invention disclosed by patent document 2, the case where the surface temperature is measured after waiting until the difference between the surface temperature after stopping the water cooling and the average thickness direction temperature becomes small is examined. For example, when a steel sheet having a plate thickness of 4.0 mm and an initial temperature of 900 ° C. is rapidly cooled at a cooling rate of 100 ° C./second until the average temperature in the plate thickness direction becomes 700 ° C., The surface temperature is 678 ° C., which is 22 ° C. lower than the average thickness direction temperature, and it takes 0.40 seconds for the surface temperature to stabilize and the surface temperature to change from rising to falling. In the case of 10 m / sec, which is the finish rolling speed (steel plate transport speed) of a general finish rolling apparatus, a distance of 4.0 m is required.

このように、急冷停止後の空冷時における鋼板の表面温度が安定する時間を得るために冷却ゾーンの終端から温度検出手段までの距離を長く設定すると、急冷停止から表面温度の検出までに時間を要し、この間に鋼板の温度が低下するため、急冷停止温度を制御することはできない。また、これでは1つの冷却ゾーンの長さが長くなり、温度降下履歴を正確に制御することができない。   In this way, if the distance from the end of the cooling zone to the temperature detecting means is set long in order to obtain a time for the surface temperature of the steel plate to stabilize during air cooling after the rapid cooling stop, the time from the rapid cooling stop to the detection of the surface temperature is increased. In short, since the temperature of the steel sheet decreases during this period, the rapid cooling stop temperature cannot be controlled. This also increases the length of one cooling zone, and the temperature drop history cannot be accurately controlled.

このため、特許文献2により開示された発明において、仮に、急冷停止後の表面温度と板厚方向平均温度との差が小さくなるまで待って表面温度を測定したとしても、急冷停止温度を精度良く制御することができないとともに、冷却ゾーンの終端から温度検出位置までの区間で冷却水を噴射することができないので急冷時の冷却速度を高めることも難しい。さらに、この発明では、冷却ゾーン毎に個別の制御用コンピュータ、フィードフォワードコントローラ、フィードバックコントローラ、温度計さらには流量調整バルブを用いる必要があり、設備コストが嵩むという課題もある。   For this reason, in the invention disclosed in Patent Document 2, even if the surface temperature is measured while waiting for the difference between the surface temperature after the rapid cooling stop and the average temperature in the thickness direction to become small, the rapid cooling stop temperature is accurately determined. In addition to being unable to control, it is difficult to increase the cooling rate during rapid cooling because cooling water cannot be injected in the section from the end of the cooling zone to the temperature detection position. Furthermore, in the present invention, it is necessary to use a separate control computer, feed forward controller, feedback controller, thermometer, and flow rate adjusting valve for each cooling zone, and there is also a problem that equipment costs increase.

本発明は、従来の技術が有するこのような課題に鑑みてなされたものであり、急冷停止温度を高精度に制御することができる熱延鋼板の製造装置及び製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a hot-rolled steel sheet manufacturing apparatus and a manufacturing method capable of controlling the quenching stop temperature with high accuracy. To do.

本発明は、熱間圧延されて搬送される鋼板に冷却水を噴射して鋼板を水冷した後に冷却水の噴射を停止して引き続いて鋼板を空冷する際に、冷却される鋼板の温度が安定する、冷却水の噴射を停止した後の所定の時期における鋼板の表面温度の推定演算値及び測定値の差を求め、この差と、冷却水の噴射停止時における板厚方向平均温度の推定演算値とにより急冷停止時の板厚方向平均温度を推定演算すれば、急冷停止温度を高精度に推定でき、この推定演算値を用いて水冷装置による冷却水の噴射を制御すれば、急冷停止温度を高精度に制御することができるという技術思想に基づくものである。   The present invention stabilizes the temperature of the cooled steel sheet when the steel sheet is hot-rolled and sprayed with cooling water to cool the steel sheet and then the cooling water injection is stopped and the steel sheet is subsequently air-cooled. The difference between the estimated calculation value and the measured value of the surface temperature of the steel sheet at a predetermined time after stopping the cooling water injection is calculated, and this difference and the estimation calculation of the average temperature in the thickness direction when the cooling water injection stops If the average temperature in the thickness direction at the time of rapid cooling stop is estimated and calculated based on the value, the rapid cooling stop temperature can be estimated with high accuracy, and if the injection of cooling water by the water cooling device is controlled using this estimated calculated value, the rapid cooling stop temperature This is based on the technical idea that can be controlled with high accuracy.

ここで、“冷却される鋼板の温度が安定する”について説明する。冷却水の噴射中は鋼板の表面には冷却水が直接かかるため、鋼板表面温度が鋼板板厚方向の内部温度に比べて低い状態になっており、鋼板表面温度と鋼板板厚方向の内部温度との間に大きな温度差や小さな温度差といった様々な範囲の温度差が生じ、鋼板の温度がいわば過渡的な状態にあり、不安定な状態と言える。また、噴射される冷却水による外乱の影響を受けるため、鋼板表面温度の実測値についても安定しているとは言い難い。つまり、温度差が大きくなったり、小さくなったりしており、安定しない。これに対して、冷却水の噴射を停止した後の状態は、図12のグラフに示すように、表面計算温度が一旦上昇し、その後、下降に転じる温度曲線を描き、下降に転じ始めた以降は、装置上で空冷される際の温度降下傾向を示し、板厚方向平均計算温度の温度勾配とほぼ平行な状態を示す。そのため、水冷という外乱が停止された以降は、温度変化に影響を与えていた水冷の影響がなくなるため、冷却される鋼板の温度が安定する。本願発明は、この鋼板温度が安定する領域を用いて前記制御を行うものである。   Here, “the temperature of the cooled steel plate is stabilized” will be described. During cooling water injection, the surface of the steel plate is directly exposed to the cooling water, so the steel plate surface temperature is lower than the internal temperature in the steel plate thickness direction, and the steel plate surface temperature and the internal temperature in the steel plate thickness direction. A temperature difference in various ranges such as a large temperature difference and a small temperature difference occurs between the two and the temperature of the steel sheet is in a transient state, which can be said to be an unstable state. Moreover, since it receives the influence of the disturbance by the injected cooling water, it cannot be said that the measured value of the steel sheet surface temperature is stable. That is, the temperature difference increases or decreases, and is not stable. On the other hand, after the cooling water injection is stopped, as shown in the graph of FIG. 12, the surface calculated temperature rises once, and then draws a temperature curve that turns downward and begins to turn downward. Indicates a temperature drop tendency when air-cooled on the apparatus, and indicates a state substantially parallel to the temperature gradient of the plate thickness direction average calculated temperature. Therefore, after the disturbance of water cooling is stopped, the influence of water cooling that has affected the temperature change is eliminated, so that the temperature of the steel sheet to be cooled is stabilized. In the present invention, the control is performed using a region where the steel plate temperature is stable.

本発明は、熱間圧延機と、この熱間圧延機の出側に設置されるとともにこの熱間圧延機により圧延されて搬送される鋼板に冷却水を噴射して水冷する水冷装置と、この冷却水の噴射を停止して引き続いて鋼板を空冷することによってこの鋼板を所定の温度に制御するための冷却制御装置と、冷却水の噴射を停止した後の所定の時期における鋼板の表面温度を測定する表面温度測定手段とを備え、冷却制御装置が、表面温度測定手段による鋼板の表面温度の測定値と、鋼板の伝熱モデルを用いた所定の時期における鋼板の表面温度の推定演算値との偏差に基づいて、冷却水の噴射の停止時における鋼板の板厚方向平均温度を演算し、この板厚方向平均温度の演算値がその目標値となるように、水冷装置による冷却水の噴射を制御すること、及び、所定の時期は、鋼板の伝熱モデルを用いて推定する鋼板の表面温度の推定値が、冷却水の噴射を停止した後において上昇から下降に転じる時以降の時期であることを特徴とする熱延鋼板の製造装置である。 The present invention includes a hot rolling mill, a water cooling device that is installed on the outlet side of the hot rolling mill and that is cooled by spraying cooling water onto a steel sheet that is rolled and conveyed by the hot rolling mill. A cooling control device for controlling the steel sheet to a predetermined temperature by stopping cooling water injection and subsequently air-cooling the steel sheet, and a surface temperature of the steel sheet at a predetermined time after the cooling water injection is stopped. A surface temperature measuring means for measuring, the cooling control device is a measured value of the surface temperature of the steel sheet by the surface temperature measuring means, and an estimated calculation value of the surface temperature of the steel sheet at a predetermined time using a heat transfer model of the steel sheet, Based on the deviation of the cooling water, the average temperature in the plate thickness direction when the cooling water injection is stopped is calculated, and the cooling water injection by the water cooling device is made so that the calculated value of the average thickness direction temperature becomes the target value. controlling the, and The predetermined time, the estimated value of the surface temperature of the steel sheet is estimated using the heat transfer model of the steel sheet, characterized in that the injection of the cooling water from rising even after stopping it is time after time to turn the lowered heat It is a manufacturing apparatus of a rolled steel sheet.

別の観点からは、本発明は、熱間圧延されて搬送される鋼板に冷却水を噴射してこの鋼板を水冷した後、この冷却水の噴射を停止して引き続いて鋼板を空冷することによって鋼板を所定の温度に制御する工程を含む熱延鋼板の製造方法であって、冷却水の噴射を停止した後の所定の時期における鋼板の表面温度の測定値と、鋼板の伝熱モデルを用いた所定の時期における鋼板の表面温度の推定演算値との偏差に基づいて、冷却水の噴射の停止時における鋼板の板厚方向平均温度を演算し、この板厚方向平均温度の演算値がその目標値となるように、冷却水の噴射を制御すること、及び所定の時期は、鋼板の伝熱モデルを用いて推定する鋼板の表面温度の推定値が、冷却水の噴射を停止した後において上昇から下降に転じる時以降の時期であることを特徴とする熱延鋼板の製造方法である。 From another point of view, the present invention is such that after cooling water is sprayed onto the steel sheet that is hot-rolled and conveyed, the steel sheet is water-cooled, and then the cooling water injection is stopped to subsequently air-cool the steel sheet. A method of manufacturing a hot-rolled steel sheet including a step of controlling the steel sheet to a predetermined temperature, using a measured value of the surface temperature of the steel sheet at a predetermined time after stopping the cooling water injection and a heat transfer model of the steel sheet. Based on the deviation from the estimated calculation value of the surface temperature of the steel sheet at a predetermined time, the thickness direction average temperature of the steel sheet when the cooling water injection is stopped is calculated, and the calculated value of the thickness direction average temperature is Controlling the injection of cooling water so that it becomes the target value , and the predetermined time is after the estimated value of the surface temperature of the steel sheet estimated using the heat transfer model of the steel sheet has stopped the injection of cooling water It is the time after the time when it goes from rising to falling Is a hot rolled steel sheet manufacturing method characterized by and.

これらの本発明では、表面温度測定手段が、鋼板の搬送方向へ複数配置されるとともに、冷却制御装置が、複数の表面温度測定手段のうちで、鋼板の伝熱モデルを用いて推定する鋼板の表面温度の推定値が冷却水の噴射を停止した後において上昇から下降に転じる位置よりも、下流側の最も近い位置に配置される表面温度測定手段であることが望ましい。   In these present inventions, a plurality of surface temperature measuring means are arranged in the conveying direction of the steel sheet, and the cooling control device of the steel sheet estimated by using the heat transfer model of the steel sheet among the plurality of surface temperature measuring means. It is desirable that the surface temperature measuring means is disposed at a position closest to the downstream side rather than a position where the estimated value of the surface temperature turns from rising to falling after the cooling water injection is stopped.

さらに、これらの本発明では、表面温度測定手段が、鋼板と対向する位置に配置された放射温度計と、鋼板と放射温度計との間に光導波路としての水柱を形成するための水柱形成手段とを備え、この水柱を介して鋼板の表面からの放射光を放射温度計で検出することにより鋼板の表面温度を測定することが、望ましい。   Further, in these inventions, the surface temperature measuring means is a radiation thermometer arranged at a position facing the steel plate, and a water column forming means for forming a water column as an optical waveguide between the steel plate and the radiation thermometer. It is desirable to measure the surface temperature of the steel sheet by detecting radiation light from the surface of the steel sheet through this water column with a radiation thermometer.

本発明によれば、仕上圧延機出口温度の変動や鋼板速度の変化等によって時々刻々変化する鋼板の急冷停止位置における板厚方向平均温度を、急冷停止位置の下流に設置した表面温度測定手段の測定値に基づいて高精度で推定することができる。このため、このようにして推定した急冷停止温度の推定値と、急冷停止温度の目標値との差に応じて水冷装置のバルブの開閉状態を逐次修正することによって、急冷停止温度の推定値がその目標値に一致するように正確に制御することができる。   According to the present invention, the average temperature in the thickness direction at the quenching stop position of the steel sheet, which changes every moment due to the change in the finishing mill exit temperature, the change in the steel sheet speed, etc., is measured by the surface temperature measuring means installed downstream of the quenching stop position. It can be estimated with high accuracy based on the measured value. Therefore, the estimated value of the quenching stop temperature is obtained by sequentially correcting the open / close state of the valve of the water cooling device according to the difference between the estimated value of the quenching stop temperature estimated in this way and the target value of the quenching stop temperature. It can be accurately controlled to match the target value.

なお、冷却水の噴射を停止した急冷停止の直後の空冷時には、鋼板の表面温度は板厚方向平均温度よりも大幅に低い状態であるので鋼板の内部から表面へ向けての復熱によって表面温度が上昇する。このため、本発明では、復熱完了位置よりも後方に設置される表面温度測定手段による測定値を用いて、急冷停止位置における鋼板の板厚方向平均温度を推定することが望ましい。   During air cooling immediately after the rapid cooling stop when cooling water injection is stopped, the surface temperature of the steel sheet is significantly lower than the average temperature in the thickness direction, so the surface temperature is reduced by reheating from the inside to the surface of the steel sheet. Rises. For this reason, in this invention, it is desirable to estimate the plate | board thickness direction average temperature of the steel plate in a rapid cooling stop position using the measured value by the surface temperature measuring means installed behind a recuperation completion position.

一方、急冷停止から表面温度測定までの経過時間が短いほうが、制御性能が向上する。そのため、表面温度測定手段を複数個設置しておき、復熱完了位置の後方でかつ最も近い位置の表面温度測定手段を用いて急冷停止時の鋼板の板厚方向平均温度を推定することが望ましい。   On the other hand, the shorter the elapsed time from the rapid cooling stop to the surface temperature measurement, the better the control performance. Therefore, it is desirable to install a plurality of surface temperature measuring means and to estimate the average temperature in the thickness direction of the steel sheet at the time of rapid cooling stop using the surface temperature measuring means located behind and closest to the recuperation completion position. .

本発明により、熱間圧延されて搬送される鋼板に冷却水を噴射して鋼板を水冷した後に冷却水の噴射を停止して引き続いて鋼板を空冷する際に、簡単な構成によって、冷却水の噴射を停止した急冷停止位置における鋼板の板厚方向平均温度を高精度で推定でき、この推定演算値を用いて水冷装置による冷却水の噴射を制御することによって、鋼板の急冷停止温度を高精度に制御することができる。   According to the present invention, when the cooling water is sprayed onto the steel sheet that is hot-rolled and conveyed to cool the steel sheet, the cooling water injection is stopped and the steel sheet is subsequently cooled by air. The plate thickness direction average temperature of the steel sheet at the rapid cooling stop position where the injection is stopped can be estimated with high accuracy, and by using this estimated calculation value, the cooling water injection by the water cooling device is controlled, and the rapid cooling stop temperature of the steel plate is highly accurate. Can be controlled.

図1は、本発明に係る熱延鋼板の製造装置の一例の構成を模式的に示す説明図である。FIG. 1 is an explanatory view schematically showing a configuration of an example of a hot-rolled steel sheet manufacturing apparatus according to the present invention. 図2は、急冷停止温度の推定値の誤差が生じていることを示すグラフである。FIG. 2 is a graph showing that an error in the estimated value of the rapid cooling stop temperature occurs. 図3は、本発明により急冷停止温度の推定値が目標値に制御されることを示すグラフである。FIG. 3 is a graph showing that the estimated value of the rapid cooling stop temperature is controlled to the target value according to the present invention. 図4は、復熱時間に及ぼす、板厚または冷却速度の影響を示すグラフである。FIG. 4 is a graph showing the influence of the plate thickness or the cooling rate on the recuperation time. 図5は、本発明により急冷停止温度推定値が目標に制御されたことを示すグラフである。FIG. 5 is a graph showing that the estimated quenching stop temperature is controlled by the present invention. 図6は、従来例によりで制御した場合の鋼板の長手方向温度を示すグラフである。FIG. 6 is a graph showing the temperature in the longitudinal direction of the steel plate when controlled according to the conventional example. 図7は、本発明の第1の例を実施した場合の鋼板の長手方向温度を示すグラフである。FIG. 7 is a graph showing the longitudinal temperature of the steel plate when the first example of the present invention is implemented. 図8は、実施例の熱延鋼板の製造装置の全体構成を示す説明図である。FIG. 8 is an explanatory diagram showing an overall configuration of a hot-rolled steel sheet manufacturing apparatus according to an example. 図9は、従来例により制御した場合の鋼板長手方向温度を示すグラフである。FIG. 9 is a graph showing the temperature in the longitudinal direction of the steel plate when controlled by a conventional example. 図10は本発明例を実施した際の鋼板長手方向温度を示すグラフである。FIG. 10 is a graph showing the temperature in the longitudinal direction of the steel sheet when the embodiment of the present invention is implemented. 図11は、仕上圧延を終了した鋼板の降下履歴と析出する金属組織との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the descent history of the steel sheet that has finished finish rolling and the metal structure that precipitates. 図12は、水冷装置により鋼板に冷却水を噴射して鋼板を急冷する際の鋼板の表面温度と、鋼板の板厚方向平均温度とを計算により求めた結果を示すグラフである。FIG. 12 is a graph showing the results of calculating the surface temperature of the steel sheet and the average temperature in the plate thickness direction when the steel sheet is rapidly cooled by spraying cooling water onto the steel sheet with a water cooling device.

以下、本発明を実施するための形態を、添付図面を参照しながら、詳細に説明する。
図1は、本発明に係る熱延鋼板の製造装置0の一例の構成を模式的に示す説明図である。図1において、符号1は熱間圧延を行われた鋼板を示し、符号2は仕上圧延機を示し、符号3は搬送テーブル(ランアウトテーブル)を示し、符号4は巻取装置を示し、符号5は鋼板1の上面に冷却水を噴射して急冷するための制御可能なn個の水冷ヘッダーと各水冷ヘッダーに供給する水量を調整するバルブとを備える水冷装置を示し、符号6は鋼板1の下面に冷却水を噴射して急冷するための制御可能なm個の水冷ヘッダーと各水冷ヘッダーに供給する水量を調整するバルブとを備える水冷装置を示し、符号7は水冷装置入側温度計を示し、符号8は中間温度計を示し、符号9は鋼板板厚測定装置を示し、符号10は鋼板速度測定装置を示し、符号11は急冷時鋼板温度予測装置を示し、符号12は急冷停止温度制御装置を示し、さらに、符号13は急冷停止温度推定装置を示す。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an explanatory view schematically showing a configuration of an example of a hot-rolled steel sheet manufacturing apparatus 0 according to the present invention. In FIG. 1, the code | symbol 1 shows the steel plate by which hot rolling was performed, the code | symbol 2 shows a finishing mill, the code | symbol 3 shows a conveyance table (runout table), the code | symbol 4 shows a winding device, the code | symbol 5 Indicates a water cooling device comprising n controllable water cooling headers for injecting cooling water onto the upper surface of the steel plate 1 and quenching, and a valve for adjusting the amount of water supplied to each water cooling header. A water cooling device having m controllable water cooling headers for injecting cooling water onto the bottom surface and quenching and a valve for adjusting the amount of water supplied to each water cooling header is shown. Reference numeral 7 denotes a water cooling device inlet side thermometer. 8 indicates an intermediate thermometer, 9 indicates a steel plate thickness measuring device, 10 indicates a steel plate speed measuring device, 11 indicates a quenching steel plate temperature prediction device, and 12 indicates a quenching stop temperature. Shows the control device, and further Reference numeral 13 denotes a quench stop temperature estimation device.

図1に示すように、この製造装置0は、熱間仕上圧延機2と、水冷装置5、6と、ランアウトテーブル3と、表面温度測定手段8と、急冷時鋼板温度予測装置11、急冷停止温度制御装置12及び急冷停止温度推定装置13からなる冷却制御装置14とを備えるので、これらの構成要素を順次説明する。   As shown in FIG. 1, the manufacturing apparatus 0 includes a hot finish rolling mill 2, water cooling apparatuses 5 and 6, a runout table 3, a surface temperature measuring means 8, a rapid cooling steel plate temperature prediction apparatus 11, and a rapid cooling stop. Since the cooling control device 14 including the temperature control device 12 and the rapid cooling stop temperature estimation device 13 is provided, these components will be sequentially described.

[熱間仕上圧延機2]
熱間仕上圧延機2は、鋼板1に熱間仕上圧延を行うものであり、この種の仕上圧延機として周知慣用のものであればよい。
[Hot finish rolling mill 2]
The hot finish rolling mill 2 performs hot finish rolling on the steel sheet 1 and may be any well-known and commonly used finish rolling mill of this type.

[水冷装置5、6及びランアウトテーブル3]
水冷装置5は、熱間仕上圧延機2の出側に鋼板1の上方であって鋼板1の搬送方向に向けて並設された、制御可能なn個の水冷ヘッダーと、各水冷ヘッダー毎に配置されて供給する水量を調整するバルブとを備える。後述する急冷停止温度制御装置12から出力されるバルブ操作指令により、熱間仕上圧延機2により圧延されて搬送される鋼板1の上面に冷却水を噴射して鋼板1を急速に冷却する。水冷装置5はこの種の水冷装置として周知慣用のものであればよい。
[Water cooling devices 5 and 6 and runout table 3]
The water-cooling device 5 has n controllable water-cooling headers arranged in parallel to the delivery direction of the steel plate 1 above the steel plate 1 on the exit side of the hot finish rolling mill 2, and for each water-cooling header. And a valve for adjusting the amount of water to be provided. In accordance with a valve operation command output from a rapid cooling stop temperature control device 12 to be described later, cooling water is sprayed onto the upper surface of the steel plate 1 that is rolled and conveyed by the hot finish rolling mill 2 to rapidly cool the steel plate 1. The water cooling device 5 may be any well-known and commonly used water cooling device of this type.

一方、水冷装置6は、熱間仕上圧延機2の出側に鋼板1の下方であって鋼板1の搬送方向に向けて並設された、制御可能なm個の水冷ヘッダーと、各水冷ヘッダー毎に配置されて供給する水量を調整するバルブとを備える。後述する急冷停止温度制御装置12から出力されるバルブ操作指令により、熱間仕上圧延機2により圧延されて搬送される鋼板1の下面に冷却水を噴射して鋼板1を急速に冷却する。水冷装置6もこの種の水冷装置として周知慣用のものであればよい。   On the other hand, the water-cooling device 6 includes m controllable water-cooling headers arranged in parallel to the delivery side of the steel plate 1 below the steel plate 1 on the exit side of the hot finish rolling mill 2, and each water-cooling header. And a valve for adjusting the amount of water to be disposed and supplied. In accordance with a valve operation command output from a rapid cooling stop temperature control device 12 to be described later, cooling water is sprayed onto the lower surface of the steel plate 1 that is rolled and conveyed by the hot finishing mill 2 to rapidly cool the steel plate 1. The water cooling device 6 may be any well-known and commonly used water cooling device of this type.

また、ランアウトテーブル3は、多数並設された搬送ロールを備え、熱間圧延を終了した鋼板1を搬送して巻取装置4へ送るものである。また、ランアウトテーブル3は、水冷装置5、6による冷却水の噴射を停止された鋼板1をその後も搬送するので、ランアウトテーブル3により搬送される鋼板1は、冷却水の噴射の停止後に引き続き空冷される。ランアウトテーブル3もこの種のランアウトテーブルとして周知慣用のものであればよい。   The run-out table 3 includes a plurality of conveyance rolls arranged in parallel, and conveys the steel plate 1 that has been hot-rolled to the winding device 4. Further, since the run-out table 3 continues to transport the steel plate 1 from which the cooling water injection by the water cooling devices 5 and 6 has been stopped, the steel plate 1 transported by the run-out table 3 continues to be air-cooled after the cooling water injection is stopped. Is done. The runout table 3 may be any well-known and commonly used type of runout table.

[表面温度測定手段8]
表面温度測定手段8は、水冷装置5、6による冷却水の噴射を停止した後の所定の時期における鋼板1の表面温度を測定するものであり、図1に示す製造装置0では、水冷装置5、6の長手方向の中程の所定の位置であって鋼板1の上方に配置された中間温度計8を用いた。
[Surface temperature measuring means 8]
The surface temperature measuring means 8 measures the surface temperature of the steel sheet 1 at a predetermined time after the cooling water jetting by the water cooling devices 5 and 6 is stopped. In the manufacturing apparatus 0 shown in FIG. 6, an intermediate thermometer 8 disposed at a predetermined position in the middle in the longitudinal direction and above the steel plate 1 was used.

図1に示す例は、鋼板1の搬送方向へ向けて2つの中間温度計8−1、8−2を並設する場合であるが、1つ設置されていてもよいし、あるいは鋼板1の搬送方向へ3つ以上並設されていてもよい。また、中間温度計8は鋼板1の下方に配置されていてもよい。   The example shown in FIG. 1 is a case where two intermediate thermometers 8-1 and 8-2 are arranged side by side in the conveying direction of the steel plate 1, but one may be installed or Three or more may be juxtaposed in the transport direction. Further, the intermediate thermometer 8 may be disposed below the steel plate 1.

中間温度計8としては、鋼板1の表面温度を測定することが可能なものであれば如何なる温度計であってもよく、特定の型式のものに限定する必要はない。本実施の形態では、噴射される冷却水に起因した測定誤差を低減するために、いわゆる水柱温度計を用いた。水柱温度計とは、特許第3818501号公報等により周知であるように、鋼板1と対向する位置に配置された放射温度計と、鋼板1とこの放射温度計との間に光導波路としての水柱を形成するための水柱形成手段とを備える温度計であって、この水柱を介して鋼板1の表面からの放射光を放射温度計で検出することにより、鋼板1の表面温度を高い精度で測定することができるものである。   The intermediate thermometer 8 may be any thermometer as long as it can measure the surface temperature of the steel sheet 1, and need not be limited to a specific type. In the present embodiment, a so-called water column thermometer is used in order to reduce a measurement error caused by the injected cooling water. The water column thermometer is a radiation thermometer arranged at a position facing the steel plate 1 and a water column as an optical waveguide between the steel plate 1 and the radiation thermometer, as is well known from Japanese Patent No. 3818501. A thermometer comprising a water column forming means for forming the surface of the steel sheet 1, and the surface temperature of the steel sheet 1 is measured with high accuracy by detecting radiation light from the surface of the steel sheet 1 through the water column with a radiation thermometer. Is something that can be done.

中間温度計8による鋼板1の表面温度の測定値は、後述する急冷停止温度推定装置13に入力される。
[冷却制御装置14]
冷却制御装置14は、急冷時鋼板温度予測装置11、急冷停止温度制御装置12及び急冷停止温度推定装置13により構成される。
The measured value of the surface temperature of the steel plate 1 by the intermediate thermometer 8 is input to a rapid cooling stop temperature estimation device 13 described later.
[Cooling control device 14]
The cooling control device 14 includes a rapid cooling steel plate temperature prediction device 11, a rapid cooling stop temperature control device 12, and a rapid cooling stop temperature estimation device 13.

急冷時鋼板温度予測装置11は、水冷装置入側温度計7から入力される水冷装置入側における鋼板1の表面温度の測定値、鋼板板厚測定装置9から入力される鋼板1の板厚の測定値、及び鋼板速度測定装置10から入力される鋼板1の搬送速度の測定値に基づいて、鋼板1の伝熱モデルを用いた急冷時の鋼板1の表面温度の推定演算による予測を行う。急冷時鋼板温度予測装置11による演算内容の詳細は後述する。   The steel plate temperature prediction device 11 at the time of rapid cooling is a measurement value of the surface temperature of the steel plate 1 on the water cooling device inlet side input from the water cooling device inlet side thermometer 7, and the plate thickness of the steel plate 1 input from the steel plate thickness measuring device 9. Based on the measured value and the measured value of the conveying speed of the steel plate 1 input from the steel plate speed measuring device 10, prediction is performed by estimating the surface temperature of the steel plate 1 during rapid cooling using the heat transfer model of the steel plate 1. Details of calculation contents by the rapid cooling steel plate temperature prediction device 11 will be described later.

急冷停止温度推定装置13は、表面温度測定手段8による鋼板1の表面温度の測定値と、鋼板1の伝熱モデルを用いた、表面温度測定手段8による測定時と同じタイミングにおける鋼板1の表面温度の推定演算値との偏差に基づいて、水冷装置5、6による冷却水の噴射の停止時における鋼板1の板厚方向平均温度を演算する。急冷停止温度推定装置13による演算内容の詳細は後述する。   The rapid cooling stop temperature estimation device 13 uses the measured value of the surface temperature of the steel sheet 1 by the surface temperature measuring means 8 and the heat transfer model of the steel sheet 1 and the surface of the steel sheet 1 at the same timing as the measurement by the surface temperature measuring means 8. Based on the deviation from the estimated calculation value of the temperature, an average temperature in the plate thickness direction of the steel plate 1 when the cooling of the cooling water by the water cooling devices 5 and 6 is stopped is calculated. Details of the calculation contents by the rapid cooling stop temperature estimation device 13 will be described later.

さらに、急冷停止温度制御装置12は、急冷停止温度推定装置13から入力された、冷却水の噴射の停止時における鋼板1の板厚方向平均温度の演算値がその目標値となるように、水冷装置5、6のバルブの開閉状態を逐次修正する指令を出力して水冷装置5、6による冷却水の噴射を制御することによって、急冷停止温度の推定値がその目標値に一致するように正確に制御する。   Further, the rapid cooling stop temperature control device 12 performs the water cooling so that the calculated value of the plate thickness direction average temperature of the steel plate 1 input from the rapid cooling stop temperature estimation device 13 when the cooling water injection stops is the target value. By outputting a command to sequentially correct the open / closed state of the valves of the devices 5 and 6 and controlling the injection of the cooling water by the water cooling devices 5 and 6, the estimated value of the rapid cooling stop temperature is accurately matched with the target value. To control.

このようにして、冷却制御装置14は、水冷装置5、6による冷却水の噴射を停止して引き続いて、ランアウトテーブル3を搬送される鋼板1を冷却しながら、急冷停止時における鋼板1の板厚方向平均温度の演算値がその目標値となるように水冷装置5、6による冷却水の噴射を制御する。   In this way, the cooling control device 14 stops the jetting of the cooling water by the water cooling devices 5 and 6 and subsequently cools the steel plate 1 conveyed on the runout table 3 while cooling the plate of the steel plate 1 at the time of rapid cooling stop. The cooling water injection by the water cooling devices 5 and 6 is controlled so that the calculated value of the thickness direction average temperature becomes the target value.

図1に示す製造装置0は、以上のように構成される。
次に、この製造装置0を用いた熱延鋼板を製造する方法の第1の例を説明する。この第1の例は、冷却水を噴射されて急冷される鋼板1の冷却速度を所定の速度に制御するとともに、急冷停止温度を目標値に制御するものである。
The manufacturing apparatus 0 shown in FIG. 1 is configured as described above.
Next, the 1st example of the method of manufacturing a hot rolled sheet steel using this manufacturing apparatus 0 is demonstrated. In this first example, the cooling rate of the steel sheet 1 that is rapidly cooled by being injected with cooling water is controlled to a predetermined rate, and the rapid cooling stop temperature is controlled to a target value.

熱間仕上圧延機2により仕上圧延された鋼板1が水冷装置入側温度計7を通過する際に、水冷装置入側温度計7により鋼板1の表面温度が測定されるとともに、鋼板板厚測定装置9により鋼板1の板厚が測定される。   When the steel plate 1 finish-rolled by the hot finish rolling mill 2 passes through the water-cooling device inlet side thermometer 7, the surface temperature of the steel plate 1 is measured by the water cooling device inlet-side thermometer 7, and the steel plate thickness is measured. The thickness of the steel plate 1 is measured by the device 9.

急冷時鋼板温度予測装置11は、測定されたこの表面温度及び板厚と、水冷装置5、6を通過する速度と、温度予測計算に必要な鋼板1の比熱、密度、水温及び気温のデータとを用いて水冷装置5、6内を通過する際の鋼板1の伝熱モデルを用いた温度予測計算を行って、急冷時の鋼板1の表面温度の推定演算及び予測を行う。   The steel plate temperature prediction device 11 at the time of rapid cooling is the measured surface temperature and plate thickness, the speed of passing through the water cooling devices 5 and 6, and the specific heat, density, water temperature and temperature data of the steel plate 1 necessary for the temperature prediction calculation, Is used to perform temperature prediction calculation using a heat transfer model of the steel sheet 1 when passing through the water-cooling devices 5 and 6, and estimate and predict the surface temperature of the steel sheet 1 during rapid cooling.

なお、水冷装置入側温度計7が設置されていない場合には、熱間仕上圧延機2の出口温度の予測値により代替してもよい。また、鋼板板厚測定装置9が設置されていない場合には熱間仕上圧延機2の出口板厚の予測値により代替してもよい。   In addition, when the water-cooling apparatus entrance side thermometer 7 is not installed, you may substitute with the predicted value of the exit temperature of the hot finishing rolling mill 2. FIG. Moreover, when the steel plate thickness measuring apparatus 9 is not installed, you may substitute with the predicted value of the outlet plate thickness of the hot finishing mill 2.

また、この温度予測計算を行うためには、水冷装置5、6の1つの水冷ヘッダー当りの冷却水量を設定する必要があり、次の手順で実施する。先ず、全ての水冷装置5、6の水冷ヘッダーの水量がその装置の最大水量であると仮定して、熱間仕上圧延機2の出口から水冷装置5、6を通過するまでの鋼板の温度予測計算を行う。そして、急冷開始から目標急冷停止温度に達するまでの鋼板1の冷却速度を算出し、二分法等の収束計算手段を用いて算出した冷却速度が所定の冷却速度と一致する冷却水量を求め、これを設定冷却水量とする。   Moreover, in order to perform this temperature prediction calculation, it is necessary to set the amount of cooling water per one water cooling header of the water cooling devices 5 and 6, and the following procedure is performed. First, assuming that the amount of water in the water-cooling headers of all the water-cooling devices 5 and 6 is the maximum water amount of the device, the temperature prediction of the steel sheet from the outlet of the hot finish rolling mill 2 until it passes through the water-cooling devices 5 and 6 Perform the calculation. Then, the cooling rate of the steel sheet 1 from the start of rapid cooling until reaching the target quenching stop temperature is calculated, and the amount of cooling water whose cooling rate calculated using a convergence calculation means such as a bisection method matches a predetermined cooling rate is obtained. Is the set cooling water amount.

なお、水量調整バルブを備えていない水冷装置5、6の場合には、水冷装置5、6の最大水量(単純にバルブ開時の流出水量)を設定冷却水量とする。
急冷時鋼板温度予測装置11は、次に、全ての水冷装置5、6の水冷ヘッダー水量が、上記の方法で求めた設定水量であるとして、熱間仕上圧延機2の出口から水冷装置5、6内を通過するまでの温度予測計算を行い、その計算結果を急冷停止温度制御装置12に送信する。
In the case of the water cooling devices 5 and 6 that are not provided with a water amount adjusting valve, the maximum water amount of the water cooling devices 5 and 6 (simply the amount of outflow water when the valve is opened) is set as the set cooling water amount.
Next, the steel plate temperature prediction device 11 at the time of quenching is assumed that the water cooling header water amount of all the water cooling devices 5 and 6 is the set water amount obtained by the above method, from the outlet of the hot finish rolling mill 2 to the water cooling device 5, The temperature prediction calculation until passing through 6 is performed, and the calculation result is transmitted to the rapid cooling stop temperature control device 12.

なお、送信する温度予測計算結果は、各水冷ヘッダー位置の板厚方向平均温度と表面温度、及び板厚方向温度分布である。
急冷停止温度制御装置12は、計算された板厚方向平均温度が目標急冷停止温度に達する位置(急冷停止位置)を求め、熱間仕上圧延機2に最も近い水冷ヘッダーからこの急冷停止位置までの間に配置される水冷ヘッダーに対して、求めた設定水量が流出するようなバルブ操作指令を水冷装置5、6に送信する。
In addition, the temperature prediction calculation result to be transmitted is the plate thickness direction average temperature and the surface temperature and the plate thickness direction temperature distribution at each water cooling header position.
The quenching stop temperature control device 12 obtains a position (quenching stop position) at which the calculated plate thickness direction average temperature reaches the target quenching stop temperature (quenching stop position), and from the water cooling header closest to the hot finish rolling mill 2 to this quenching stop position. A valve operation command is sent to the water cooling devices 5 and 6 so that the determined set amount of water flows out to the water cooling header disposed between them.

図2は、急冷停止温度の推定値の誤差が生じていることを示すグラフである。
以上のようにして水冷装置5、6を操作すると、図2にグラフで示すように急冷時鋼板温度予測装置11が予測した板厚方向平均計算温度が目標急冷停止温度に制御されることとなる。しかし、この板厚方向平均計算温度は水冷装置5、6の冷却能力の見積もり誤差により生じた温度予測誤差を含んでいるため、実際の板厚方向平均温度は必ずしも目標とする温度に制御されるわけではない。さらに、熱間仕上圧延機2により仕上圧延された鋼板1の表面温度に予測値を用いる場合には板厚方向平均計算温度にその予測誤差が加算され、同様に鋼板1の板厚に予測値を用いる場合にはその予測誤差も加算される。
FIG. 2 is a graph showing that an error in the estimated value of the rapid cooling stop temperature occurs.
When the water cooling devices 5 and 6 are operated as described above, the plate thickness direction average calculated temperature predicted by the rapid cooling steel plate temperature prediction device 11 is controlled to the target rapid cooling stop temperature as shown in the graph of FIG. . However, since the plate thickness direction average calculation temperature includes a temperature prediction error caused by the estimation error of the cooling capacity of the water cooling devices 5 and 6, the actual plate thickness direction average temperature is always controlled to the target temperature. Do not mean. Further, when the predicted value is used for the surface temperature of the steel sheet 1 finish-rolled by the hot finish rolling mill 2, the predicted error is added to the plate thickness direction average calculated temperature, and the predicted value is similarly added to the plate thickness of the steel sheet 1. When is used, the prediction error is also added.

そこで、本発明では、急冷停止位置よりも下流側に設置された中間温度計8による鋼板1の表面温度の測定値を用いて、急冷停止温度を高精度に制御する。
図2にグラフで示すように、急冷時鋼板温度予測装置11は、急冷停止位置から中間温度計8による測定位置まで、空冷部の温度予測計算を行うことにより、中間温度計8による測定位置における表面温度の計算値を求める。そして、急冷停止温度推定装置13は、急冷時鋼板温度予測装置11が演算した表面温度の計算値と、中間温度計8による鋼板1の表面温度の測定値との差を算出し、算出したこの差を、急冷時鋼板温度予測装置11が演算した急冷停止位置における板厚方向平均計算温度に加算することによって、急冷停止温度推定値を算出する。
Therefore, in the present invention, the rapid cooling stop temperature is controlled with high accuracy by using the measured value of the surface temperature of the steel sheet 1 by the intermediate thermometer 8 installed downstream of the rapid cooling stop position.
As shown in the graph in FIG. 2, the rapid cooling steel plate temperature prediction device 11 performs the temperature prediction calculation of the air cooling section from the rapid cooling stop position to the measurement position by the intermediate thermometer 8, thereby Calculate the calculated surface temperature. Then, the quenching stop temperature estimating device 13 calculates the difference between the calculated value of the surface temperature calculated by the steel plate temperature predicting device 11 at the time of quenching and the measured value of the surface temperature of the steel plate 1 by the intermediate thermometer 8. By adding the difference to the plate thickness direction average calculated temperature at the quenching stop position calculated by the quenching steel plate temperature prediction device 11, the quenching stop temperature estimated value is calculated.

急冷停止温度推定装置13により求められる急冷停止温度推定値は、急冷停止位置から中間温度計8による測定位置までの空冷部の温度予測計算誤差を含むものの、この空冷部は急冷される水冷部に比較すると、冷却能力が小さいため温度降下量そのものが少なく、かつ水冷に特有の沸騰状態が変化して冷却能力が急変するような予測が困難な現象も生じないので、水冷装置5、6の入側温度測定値から水冷部を経て算出される予測値よりも、極めて正確で誤差が小さい。   The estimated value of the quenching stop temperature obtained by the quenching stop temperature estimating device 13 includes a temperature prediction calculation error of the air cooling part from the quenching stop position to the measurement position by the intermediate thermometer 8, but this air cooling part is a water cooling part to be rapidly cooled. In comparison, since the cooling capacity is small, the temperature drop amount is small, and the phenomenon that the cooling ability is suddenly changed due to the change in the boiling state peculiar to water cooling does not occur. It is much more accurate and less error-prone than the predicted value calculated from the measured side temperature through the water cooling section.

図3は、本発明により急冷停止温度の推定値が目標値に制御されることを示すグラフである。
本発明では、この誤差が小さい急冷停止温度推定値を用いて、図3にグラフで示すように、この急冷停止温度推定値が目標急冷停止温度に一致するように、水冷装置5、6をフィードバック制御し、これにより、急冷停止直後の板厚方向平均温度を高精度に制御することができる。
FIG. 3 is a graph showing that the estimated value of the rapid cooling stop temperature is controlled to the target value according to the present invention.
In the present invention, using the estimated quenching stop temperature with a small error, the water cooling devices 5 and 6 are fed back so that the estimated quenching stop temperature matches the target quenching stop temperature as shown in the graph of FIG. Thus, the sheet thickness direction average temperature immediately after the rapid cooling stop can be controlled with high accuracy.

なお、図3に示す例では、急冷時の鋼板1の冷却速度が一定の値であることから、急冷停止温度推定値を目標急冷停止温度に一致させるためには、急冷停止位置を修正しなければならない。修正すべき急冷停止位置は、急冷停止温度推定値と目標急冷停止温度の差と冷却速度とから容易に算出され、修正前の急冷停止位置から修正後の急冷停止位置までの水冷ヘッダーに対して設定水量バルブの操作指令を行う(バルブ開なら閉に、バルブ閉なら開に)。   In the example shown in FIG. 3, since the cooling rate of the steel sheet 1 at the time of rapid cooling is a constant value, in order to make the estimated rapid cooling stop temperature coincide with the target rapid cooling stop temperature, the rapid cooling stop position must be corrected. I must. The rapid cooling stop position to be corrected is easily calculated from the difference between the estimated rapid cooling stop temperature, the target rapid cooling stop temperature, and the cooling rate, and is used for the water cooling header from the rapid cooling stop position before correction to the corrected rapid cooling stop position. Command the set water volume valve (close if the valve is open, open if the valve is closed).

さらに、これまでに説明した一連の計算及び設定を0.4秒間〜2.0秒間の周期で周期的に行うことにより鋼板1の長手方向の制御も可能であり、加速圧延によって鋼板1の搬送速度が連続的に変化する場合でも急冷停止温度を目標値に制御することができる。   Furthermore, the longitudinal direction of the steel plate 1 can be controlled by periodically performing the series of calculations and settings described so far in a cycle of 0.4 seconds to 2.0 seconds, and the steel plate 1 can be conveyed by accelerated rolling. Even when the speed continuously changes, the rapid cooling stop temperature can be controlled to the target value.

なお、本発明において急冷停止温度を高精度に制御するためには、中間温度計8の測定位置を適切に設定することが有効である。
すなわち、急冷停止位置における鋼板1の表面温度は、板厚方向平均温度よりも低く、急冷停止位置の直後では鋼板1の内部では復熱を生じて熱が表面に移動して表面温度が急速に上昇している過渡的な状態となっているため、そのような状態の中間温度計測定値を急冷停止温度の推定値の算出に用いないことが望ましい。具体的には、中間温度計8の測定位置は、鋼板1の表面温度の急速な変化が終了し、表面温度と板厚方向平均温度との差が小さい、表面温度が上昇から下降に転じる位置よりも後方であること、換言すると、鋼板1の伝熱モデルを用いて推定する鋼板1の表面温度の推定値が、冷却水の噴射を停止した後において上昇から下降に転じる時(鋼板の伝熱モデルを用いて推定する前記鋼板の表面温度の推定曲線の微分値が0となる時)以降の所定の時期に、中間温度計8による鋼板の表面温度の測定を行うことが望ましい。
In the present invention, in order to control the quenching stop temperature with high accuracy, it is effective to appropriately set the measurement position of the intermediate thermometer 8.
That is, the surface temperature of the steel sheet 1 at the quenching stop position is lower than the average temperature in the plate thickness direction. Immediately after the quenching stop position, reheating occurs inside the steel sheet 1 and the heat moves to the surface so that the surface temperature rapidly increases. Since it is in a rising transient state, it is desirable not to use the measured value of the intermediate thermometer in such a state for calculating the estimated value of the rapid cooling stop temperature. Specifically, the measurement position of the intermediate thermometer 8 is a position where the rapid change of the surface temperature of the steel plate 1 is finished, the difference between the surface temperature and the plate thickness direction average temperature is small, and the surface temperature turns from rising to falling. In other words, in other words, when the estimated value of the surface temperature of the steel plate 1 estimated using the heat transfer model of the steel plate 1 changes from rising to falling after stopping the injection of the cooling water (the transfer of the steel plate). It is desirable to measure the surface temperature of the steel sheet with the intermediate thermometer 8 at a predetermined time after the differential value of the estimated curve of the surface temperature of the steel sheet estimated using a thermal model becomes zero.

図4は、急冷停止直後から表面温度が上昇から下降に転じる時間(以下「復熱時間」という)に及ぼす、板厚または冷却速度の影響を示すグラフである。
復熱時間は、温度計算によって求めることが可能であり、図4にグラフで示すように板厚および冷却速度によって整理することができる。
FIG. 4 is a graph showing the influence of the plate thickness or cooling rate on the time (hereinafter referred to as “recovery time”) when the surface temperature changes from rising to falling immediately after the rapid cooling stop.
The recuperation time can be obtained by temperature calculation, and can be arranged by the plate thickness and the cooling rate as shown in the graph of FIG.

このため、中間温度計8の設置位置は、急冷停止位置、鋼板速度、板厚さらには冷却速度に応じた最適な位置がある。中間温度計8を1つだけ設置する場合には、色々な操業条件の中で最も設置位置が熱間仕上圧延機2から離れた位置に設置すればよい。   For this reason, the installation position of the intermediate thermometer 8 has an optimum position according to the rapid cooling stop position, the steel plate speed, the plate thickness, and the cooling rate. When only one intermediate thermometer 8 is installed, it may be installed at a position farthest from the hot finish rolling mill 2 among the various operating conditions.

一方、本発明は、中間温度計8による測定値から急冷停止温度を推定するものであることから、急冷停止位置から中間温度計8の設置位置までの距離が長くなればなるほど、無駄時間が長くなるためにフィードバック制御の制御性能が低下するとともに、空冷部の温度予測計算の誤差が拡大し、制御精度の低下につながることから、中間温度計8の設置位置は急冷停止位置に可能な範囲で近づけることが望ましい。   On the other hand, since the present invention estimates the rapid cooling stop temperature from the measured value of the intermediate thermometer 8, the longer the distance from the rapid cooling stop position to the installation position of the intermediate thermometer 8, the longer the dead time. As a result, the control performance of the feedback control deteriorates, and the error in the temperature prediction calculation of the air cooling section increases, leading to a decrease in control accuracy. Therefore, the installation position of the intermediate thermometer 8 is within the possible range of the rapid cooling stop position. It is desirable to approach.

このため、中間温度計8を鋼板1の搬送方向に複数個並設し、急冷停止位置から必要な復熱時間を経た後であって最も近い位置に存在する中間温度計8の測定値を制御に用いることにより、制御精度の低下を抑制することができる。また、加速圧延によって鋼板1の搬送速度が連続的に変化し、これに伴って急冷停止位置も連続的に変化する場合には、制御に用いる中間温度計8を、急冷停止位置から必要な復熱時間を経た後の最も近い中間温度計8に連続的に切り替えることにより制御精度の低下を抑制することができる。   For this reason, a plurality of intermediate thermometers 8 are arranged side by side in the conveying direction of the steel sheet 1, and the measured value of the intermediate thermometer 8 present at the closest position after the required recuperation time from the rapid cooling stop position is controlled. By using it, it is possible to suppress a decrease in control accuracy. In addition, when the conveyance speed of the steel sheet 1 is continuously changed by accelerated rolling and the rapid cooling stop position is also continuously changed accordingly, the intermediate thermometer 8 used for the control is restored from the rapid cooling stop position. By continuously switching to the nearest intermediate thermometer 8 after passing the heat time, it is possible to suppress a decrease in control accuracy.

次に、図1に示す製造装置0を用いて熱延鋼板を製造する方法の第2の例を説明する。この第2の例は、急冷停止位置を一定に保ちつつ、急冷時の冷却速度を変化させて急冷停止温度を目標値に制御するものである。   Next, the 2nd example of the method of manufacturing a hot-rolled steel plate using the manufacturing apparatus 0 shown in FIG. 1 is demonstrated. In this second example, the rapid cooling stop temperature is controlled to the target value by changing the cooling rate during rapid cooling while keeping the rapid cooling stop position constant.

熱間仕上圧延機2により仕上圧延された鋼板1が水冷装置入側温度計7を通過する際に、水冷装置入側温度計7により鋼板1の表面温度が測定されるとともに、鋼板板厚測定装置9により鋼板1の板厚が測定される。   When the steel plate 1 finish-rolled by the hot finish rolling mill 2 passes through the water-cooling device inlet side thermometer 7, the surface temperature of the steel plate 1 is measured by the water cooling device inlet-side thermometer 7, and the steel plate thickness is measured. The thickness of the steel plate 1 is measured by the device 9.

急冷時鋼板温度予測装置11は、測定されたこの表面温度及び板厚と、水冷装置5、6を通過する速度と、温度予測計算に必要な鋼板1の比熱、密度、水温及び気温のデータとを用いて水冷装置5、6内を通過する際の鋼板1の伝熱モデルを用いた温度予測計算を行って、急冷時の鋼板1の表面温度の推定演算及び予測を行う。この時、急冷停止位置は予め設定されており、この急冷停止位置までの温度予測計算を行う。   The steel plate temperature prediction device 11 at the time of rapid cooling is the measured surface temperature and plate thickness, the speed of passing through the water cooling devices 5 and 6, and the specific heat, density, water temperature and temperature data of the steel plate 1 necessary for the temperature prediction calculation, Is used to perform temperature prediction calculation using a heat transfer model of the steel sheet 1 when passing through the water-cooling devices 5 and 6, and estimate and predict the surface temperature of the steel sheet 1 during rapid cooling. At this time, the rapid cooling stop position is set in advance, and a temperature prediction calculation up to the rapid cooling stop position is performed.

なお、水冷装置入側温度計7が設置されていない場合には、熱間仕上圧延機2の出口温度の予測値により代替してもよい。また、鋼板板厚測定装置9が設置されていない場合には熱間仕上圧延機2の出口板厚の予測値により代替してもよい。   In addition, when the water-cooling apparatus entrance side thermometer 7 is not installed, you may substitute with the predicted value of the exit temperature of the hot finishing rolling mill 2. FIG. Moreover, when the steel plate thickness measuring apparatus 9 is not installed, you may substitute with the predicted value of the outlet plate thickness of the hot finishing mill 2.

また、この温度予測計算を行うためには、水冷装置5、6の1つの水冷ヘッダー当りの冷却水量を設定する必要があり、次の手順で実施する。先ず、全ての水冷装置5、6の水冷ヘッダーの水量がその装置の最大水量であると仮定して、熱間仕上圧延機2の出口から水冷装置5、6を通過するまでの鋼板の温度予測計算を行う。そして、急冷停止位置の板厚方向平均温度計算値を算出し、二分法等の収束計算手段を用いて板厚方向平均温度計算値が目標急冷停止温度と一致するような冷却水量を求め、これを設定冷却水量とする。   Moreover, in order to perform this temperature prediction calculation, it is necessary to set the amount of cooling water per one water cooling header of the water cooling devices 5 and 6, and the following procedure is performed. First, assuming that the amount of water in the water-cooling headers of all the water-cooling devices 5 and 6 is the maximum water amount of the device, the temperature prediction of the steel sheet from the outlet of the hot finish rolling mill 2 until it passes through the water-cooling devices 5 and 6 Perform the calculation. Then, the thickness direction average temperature calculation value at the rapid cooling stop position is calculated, and a cooling water amount is calculated by using a convergence calculation means such as a bisection method so that the thickness direction average temperature calculation value matches the target quenching stop temperature. Is the set cooling water amount.

次に、急冷時鋼板温度予測装置11は、急冷停止位置までの水冷装置5、6の水冷ヘッダー水量が、上記の方法で求めた設定水量であるとして、熱間仕上圧延機2の出口から急冷停止位置までの間の温度予測計算を行い、その計算結果を急冷停止温度制御装置12に送信する。なお、送信する温度予測計算結果は、急冷停止位置における板厚方向の平均温度と表面温度、及び板厚方向の温度分布である。   Next, the steel plate temperature prediction device 11 at the time of quenching quenches from the outlet of the hot finish rolling mill 2 on the assumption that the water cooling header water amount of the water cooling devices 5 and 6 up to the rapid cooling stop position is the set water amount obtained by the above method. A temperature prediction calculation up to the stop position is performed, and the calculation result is transmitted to the rapid cooling stop temperature control device 12. The temperature prediction calculation result to be transmitted is the average temperature and surface temperature in the plate thickness direction and the temperature distribution in the plate thickness direction at the rapid cooling stop position.

急冷停止温度制御装置12は、熱間仕上圧延機2に最も近い水冷ヘッダーから急冷停止位置までの水冷ヘッダーに対して、求めた設定水量が流出するようなバルブ操作指令を水冷装置5、6に送信する。   The rapid cooling stop temperature control device 12 sends a valve operation command to the water cooling devices 5 and 6 so that the determined set amount of water flows out to the water cooling header from the water cooling header closest to the hot finish rolling mill 2 to the rapid cooling stop position. Send.

以上の方法により水冷装置5、6を操作すると、図2にグラフで示すように、急冷時鋼板温度予測装置11が予測した板厚方向平均計算温度が目標急冷停止温度に制御される。しかし、この板厚方向平均計算温度は、水冷装置5、6の冷却能力の見積もり誤差により生じた温度予測誤差を含んでいるため、実際の温度は必ずしも目標とする温度に制御されるわけではない。さらに、熱間仕上圧延機2により仕上圧延された鋼板1の表面温度に予測値を用いる場合には板厚方向平均計算温度にその予測誤差が加算され、同様に鋼板1の板厚に予測値を用いる場合にはその予測誤差も加算される。   When the water cooling devices 5 and 6 are operated by the above method, as shown in the graph of FIG. 2, the plate thickness direction average calculated temperature predicted by the rapid cooling steel plate temperature prediction device 11 is controlled to the target rapid cooling stop temperature. However, since the plate thickness direction average calculation temperature includes a temperature prediction error caused by an estimation error of the cooling capacity of the water cooling devices 5 and 6, the actual temperature is not necessarily controlled to the target temperature. . Further, when the predicted value is used for the surface temperature of the steel sheet 1 finish-rolled by the hot finish rolling mill 2, the predicted error is added to the plate thickness direction average calculated temperature, and the predicted value is similarly added to the plate thickness of the steel sheet 1. When is used, the prediction error is also added.

そこで、本発明では、急冷停止位置よりも後方に設置された中間温度計8の測定値を用い、急冷停止温度を高精度に制御する。
図2にグラフで示すように、急冷時鋼板温度予測装置11は、急冷停止位置から中間温度計8の測定位置まで、空冷部の温度予測計算を実施し、温度計測定値と表面温度計算値との誤差を算出する。そして、急冷停止位置の板厚方向平均計算温度にこの誤差分を加え、急冷停止温度推定値を算出する。
Therefore, in the present invention, the rapid cooling stop temperature is controlled with high accuracy by using the measured value of the intermediate thermometer 8 installed behind the rapid cooling stop position.
As shown in the graph of FIG. 2, the steel plate temperature prediction device 11 at the time of quenching performs temperature prediction calculation of the air cooling part from the quenching stop position to the measurement position of the intermediate thermometer 8, and the thermometer measurement value and the surface temperature calculation value are calculated. The error is calculated. Then, this error is added to the plate thickness direction average calculated temperature at the rapid cooling stop position to calculate the rapid cooling stop temperature estimated value.

この急冷停止温度推定値は、急冷停止位置から中間温度計8による測定位置までの空冷部の温度予測計算誤差を含むものの、空冷部は水冷部に比較すると冷却能力が小さいため温度降下量そのものが少なく、かつ水冷に特有の沸騰状態が変化して冷却能力が急変するような予測が困難な現象もないため、水冷装置入側温度計7による測定値から水冷部を経て算出した値よりも、正確で誤差が小さい。   Although the estimated value of the rapid cooling stop includes an error in predicting the temperature of the air cooling section from the rapid cooling stop position to the measurement position by the intermediate thermometer 8, the cooling capacity of the air cooling section is smaller than that of the water cooling section. Since there is no phenomenon that is difficult to predict and the cooling capacity is suddenly changed due to a change in the boiling state peculiar to water cooling, than the value calculated through the water cooling section from the measured value by the water cooling device inlet side thermometer 7, Accurate and small error.

図5は、本発明により急冷停止温度推定値が目標に制御されたことを示すグラフである。
この誤差が小さい急冷停止温度推定値を用い、図5にグラフで示すように、この急冷停止温度推定値が目標急冷停止温度に一致するように水冷装置5、6をフィードバック制御すれば、急冷停止直後の板厚方向平均温度を高精度に制御することができる。
FIG. 5 is a graph showing that the estimated quenching stop temperature is controlled by the present invention.
If the estimated quenching stop temperature value with a small error is used and the water cooling devices 5 and 6 are feedback-controlled so that the estimated quenching stop temperature value matches the target quenching stop temperature as shown in the graph of FIG. The sheet thickness direction average temperature immediately after can be controlled with high accuracy.

なお、この第2の例では、急冷停止位置が予め決められていることから、急冷停止温度推定値を目標急冷停止温度に一致させるためには、水冷装置5、6の設定水量を修正しなければならない。急冷停止温度推定値が目標急冷停止温度に一致するように、二分法等の収束計算手段を用いて修正すべき設定水量を算出し、修正した設定水量で急冷できるように、水冷ヘッダーに対して設定水量バルブの操作指令を行う。   In this second example, since the rapid cooling stop position is determined in advance, in order to make the estimated rapid cooling stop temperature coincide with the target rapid cooling stop temperature, the set water amount of the water cooling devices 5 and 6 must be corrected. I must. Calculate the set amount of water to be corrected using a convergence calculation means such as a bisection method so that the estimated quenching stop temperature matches the target quenching stop temperature. Command to set water volume valve.

さらに、これまでに説明した一連の計算及び設定を、0.4秒間〜2.0秒間の周期で周期的に行うことにより、鋼板1の長手方向の制御も可能であり、加速圧延によって鋼板1の搬送速度が連続的に変化するような場合でも急冷停止温度を目標値に制御することができる。   Furthermore, by performing the series of calculations and settings described so far periodically at a period of 0.4 second to 2.0 seconds, the longitudinal direction of the steel plate 1 can be controlled, and the steel plate 1 can be controlled by accelerated rolling. Even in the case where the transfer speed continuously changes, the quenching stop temperature can be controlled to the target value.

この実施形態2においても、実施形態1と同様に、中間温度計8の測定位置を適切に設定する必要があるが、急冷停止位置が予め決められた位置であることから、急冷停止位置の変化を考慮する必要が無いため、中間温度計8の最適な設置範囲は実施形態1よりも狭い範囲となる。   In the second embodiment, as in the first embodiment, it is necessary to appropriately set the measurement position of the intermediate thermometer 8. However, since the rapid cooling stop position is a predetermined position, the change in the rapid cooling stop position is performed. Therefore, the optimum installation range of the intermediate thermometer 8 is narrower than that of the first embodiment.

以上説明したように、本発明によれば、熱間圧延されて搬送される鋼板1に冷却水を噴射して鋼板1を水冷した後に冷却水の噴射を停止して引き続いて鋼板を空冷する際に、簡単な構成によって、冷却水の噴射を停止した急冷停止位置における鋼板の板厚方向平均温度を高精度で推定でき、この推定演算値を用いて水冷装置による冷却水の噴射を制御することによって、鋼板の急冷停止温度を高精度に制御することができる。   As described above, according to the present invention, when cooling water is sprayed on the steel sheet 1 that is hot-rolled and conveyed to cool the steel sheet 1, the cooling water injection is stopped and the steel sheet is subsequently air-cooled. Furthermore, with a simple configuration, it is possible to accurately estimate the sheet thickness direction average temperature of the steel sheet at the rapid cooling stop position where the cooling water injection is stopped, and to control the cooling water injection by the water cooling device using this estimated calculation value. Thus, the rapid cooling stop temperature of the steel sheet can be controlled with high accuracy.

さらに、本発明を、実施例を参照しながら、より具体的に説明する。
図1に示す熱延鋼板の製造装置0を用いて、下記に列記の条件で熱延鋼板を製造した。本実施例では、熱間仕上圧延機2の出口に水量調整機能のないオン/オフバルブを有する、複数の水冷ヘッダーから構成される水冷装置5、6を設置し、水冷装置5、6の入口から24m後方に第1の中間温度計8−1を、30m後方に第2の中間温度計8−2を設置した。
鋼板1の鋼種 440MPa級高強度熱延鋼板
鋼板1の板厚 約3.7mm(測定値)
水冷装置入側温度 約860℃(測定値)
目標急冷停止温度 800℃
鋼板1の速度 640mpm→920mpm(加速圧延実施)
水冷ヘッダーバルブ形式 オン/オフバルブ(設定水量調整機能なし)
水冷装置5の長さ(上面) 36.0m
水冷装置6の長さ(下面) 36.0m
水冷装置5のバルブ数(上面) 48個
水冷装置6のバルブ数(下面) 30個
水冷装置5の水量密度(上面) 1.1m/mhr(バルブオン時)
水冷装置6の水量密度(下面) 0.8m/mhr(バルブオン時)
中間温度計8−1の位置 水冷装置5、6の入口から後方に24.0m位置
中間温度計8−2の位置 水冷装置5、6の入口から後方に30.0m位置
図6は、従来例によりで制御した場合の鋼板1の長手方向温度を示すグラフであり、図7は、上述した本発明の第1の例を実施した場合の鋼板1の長手方向温度を示すグラフである。
Furthermore, the present invention will be described more specifically with reference to examples.
A hot-rolled steel sheet was manufactured under the conditions listed below using the hot-rolled steel sheet manufacturing apparatus 0 shown in FIG. In this embodiment, water cooling devices 5 and 6 having a plurality of water cooling headers having an on / off valve without a water amount adjusting function are installed at the outlet of the hot finish rolling mill 2, and the water cooling devices 5 and 6 are connected to the outlets of the water cooling devices 5 and 6. The first intermediate thermometer 8-1 was installed 24m behind, and the second intermediate thermometer 8-2 was installed 30m behind.
Steel type of steel plate 1 440 MPa class high-strength hot-rolled steel plate 1 Thickness of about 3.7 mm (measured value)
Water cooling device inlet side temperature about 860 ℃ (measured value)
Target quench stop temperature 800 ℃
Speed of steel plate 1 640 mpm → 920 mpm (accelerated rolling)
Water-cooled header valve type On / off valve (no set water volume adjustment function)
Length of water cooling device 5 (upper surface) 36.0m
Length of water cooling device 6 (bottom surface) 36.0m
Number of valves of the water cooling device 5 (upper surface) 48 Number of valves of the water cooling device 6 (lower surface) 30 Water density of the water cooling device 5 (upper surface) 1.1 m 3 / m 2 hr (when the valve is on)
Water density of water cooling device 6 (bottom surface) 0.8 m 3 / m 2 hr (when valve is on)
Position of the intermediate thermometer 8-1 Position 24.0m backward from the inlet of the water cooling devices 5 and 6 Position of the intermediate thermometer 8-2 Position 30.0m backward from the inlet of the water cooling devices 5 and 6 FIG. FIG. 7 is a graph showing the longitudinal temperature of the steel plate 1 when the above-described first example of the present invention is implemented.

図6、7に示す急冷停止温度制御結果のグラフでは、上段に、上から順に、鋼板長手方向の水冷装置入側(仕上出口)温度測定値、急冷停止位置の板厚方向平均計算温度、急冷停止温度推定値、中間温度計8−1の測定値、中間温度計8−2の測定値を示し、中段に鋼板1の速度を示し、下段に急冷位置を示す。なお、急冷停止位置が15m未満の場合は中間温度計8−1の測定値を基に急冷停止温度推定値を算出し、15mを越えたところで中間温度計8−2に切り替える。   In the graph of the quenching stop temperature control results shown in FIGS. 6 and 7, in the upper row, the water cooling device inlet side (finishing outlet) temperature measurement value in the longitudinal direction of the steel sheet, the thickness direction average calculated temperature at the quenching stop position, and quenching in the order from the top. The estimated stop temperature, the measured value of the intermediate thermometer 8-1 and the measured value of the intermediate thermometer 8-2 are shown, the speed of the steel plate 1 is shown in the middle, and the quenching position is shown in the lower. When the rapid cooling stop position is less than 15 m, the rapid cooling stop temperature estimated value is calculated based on the measured value of the intermediate thermometer 8-1, and when it exceeds 15 m, the intermediate thermometer 8-2 is switched to.

図6に示す従来例では、中間温度計8−1、8−2の測定値を用いずに急冷停止位置の板厚方向平均計算温度が目標の800℃になるように水冷装置5、6の制御を行った結果である。   In the conventional example shown in FIG. 6, without using the measured values of the intermediate thermometers 8-1 and 8-2, the water cooling devices 5 and 6 are adjusted so that the average calculated temperature in the thickness direction at the rapid cooling stop position becomes the target 800 ° C. This is the result of control.

水冷装置5、6の水冷ヘッダーバルブには設定水量調整機能がなく、冷却能力が不足すると急冷停止位置を後方に移動させ、全体の冷却水量を増やす必要がある。この実施例では加速圧延を行っているため、鋼板1の速度は最高速度の920mpmまで上昇してゆくが、急冷停止位置の板厚方向平均温度を目標温度に制御するため、速度上昇に対応して急冷停止位置を後方に移動させている。   The water cooling header valves of the water cooling devices 5 and 6 do not have a set water amount adjustment function, and if the cooling capacity is insufficient, it is necessary to move the rapid cooling stop position backward to increase the total amount of cooling water. In this embodiment, since the accelerated rolling is performed, the speed of the steel sheet 1 is increased to the maximum speed of 920 mpm, but the average temperature in the thickness direction at the quenching stop position is controlled to the target temperature, so that it corresponds to the speed increase. The rapid cooling stop position is moved backward.

図6にグラフで示すように、従来例では、中間温度計8の測定値を用いて算出した急冷停止温度推定値は、目標の800℃よりも約20℃低く、この制御方法では十分な精度が得られない。   As shown in the graph of FIG. 6, in the conventional example, the estimated quenching stop temperature calculated using the measured value of the intermediate thermometer 8 is about 20 ° C. lower than the target 800 ° C., and this control method has sufficient accuracy. Cannot be obtained.

これに対し、図7にグラフで示すように、本発明例では、中間温度計8−1、8−2による鋼板1の表面温度の測定値を用い、急冷停止位置の急冷停止温度推定値が目標の800℃になるように水冷装置5、6を制御したので、鋼板1の先端部分は急冷停止温度推定値が目標を下回っているものの、急冷停止温度推定値と目標温度との誤差を縮小するようにするフィードバック制御機能が働き、急冷停止温度推定値が目標温度に正確に制御されることがわかる。   On the other hand, as shown in the graph of FIG. 7, in the present invention example, the measured value of the surface temperature of the steel sheet 1 by the intermediate thermometers 8-1 and 8-2 is used, and the estimated quenching stop temperature at the quenching stop position is Since the water cooling devices 5 and 6 were controlled to reach the target 800 ° C., the estimated value of the quenching stop temperature was lower than the target at the tip of the steel plate 1, but the error between the estimated quenching temperature and the target temperature was reduced. It can be seen that the feedback control function is performed so that the estimated quenching stop temperature is accurately controlled to the target temperature.

次に、実施例2を説明する。
図8は、実施例2の熱延鋼板の製造装置0−1の全体構成を示す説明図である。以降の説明では、図1に示す熱延鋼板の製造装置0と相違する部分を説明し、同一である部分には同一の符号を付して重複する説明を省略する。
Next, Example 2 will be described.
FIG. 8 is an explanatory diagram illustrating the overall configuration of the hot rolled steel sheet manufacturing apparatus 0-1 according to the second embodiment. In the following description, portions different from the hot rolled steel sheet manufacturing apparatus 0 shown in FIG. 1 will be described, and the same portions will be denoted by the same reference numerals, and redundant description will be omitted.

図8に示す製造装置8−1が、図1に示す製造装置と相違するのは、熱間仕上圧延機2の出口に水量密度の調整が可能な水冷装置5、6を配置し、水冷装置5、6の出口から1m後方に中間温度計8−1を設置するとともに、3m後方に中間温度計8−2を設置した点である。   The manufacturing apparatus 8-1 shown in FIG. 8 is different from the manufacturing apparatus shown in FIG. 1 in that water cooling devices 5 and 6 capable of adjusting the water density are arranged at the outlet of the hot finish rolling mill 2, and the water cooling device The intermediate thermometer 8-1 is installed 1m behind the 5 and 6 outlets, and the intermediate thermometer 8-2 is installed 3m behind.

この中間温度計8−1は、特許文献2に記載された技術の一部を再現するためのものである。この技術は、仕上圧延から巻取までの間の鋼板長手方向の冷却速度をきめ細かく制御することを目的としており、これを実現するため、ランアウトテーブル上に多数の水冷装置と、それぞれの出側に温度検出装置を設け、温度検出装置毎に目標温度を設定しておき、それぞれの温度検出値が目標に一致するように多数の水冷装置をフィードバック制御している。このように、多数の水冷装置と温度検出装置が必要なことから、水冷装置から温度検出装置まで距離は必然的に短くなり、必要な復熱時間を確保することが困難である。   This intermediate thermometer 8-1 is for reproducing a part of the technique described in Patent Document 2. This technology aims to finely control the cooling rate in the longitudinal direction of the steel plate from finish rolling to winding, and in order to achieve this, a number of water-cooling devices on the run-out table and each outlet side are provided. A temperature detection device is provided, a target temperature is set for each temperature detection device, and a number of water cooling devices are feedback-controlled so that each temperature detection value matches the target. As described above, since a large number of water cooling devices and temperature detection devices are required, the distance from the water cooling device to the temperature detection device is inevitably shortened, and it is difficult to ensure the necessary recuperation time.

ここで、従来技術の一部を再現するため、1つの水冷装置と温度検出装置に着目し、中間温度計8−1を水冷装置5,6に近接配置し、中間温度計8−1の測定値を直接用いてフィードバック制御を実施する。   Here, in order to reproduce a part of the prior art, paying attention to one water cooling device and a temperature detection device, the intermediate thermometer 8-1 is disposed close to the water cooling devices 5 and 6, and the measurement of the intermediate thermometer 8-1 is performed. Feedback control is performed using the value directly.

図8の製造装置を用い、下記条件にて熱延鋼板を製造した。なお、この条件での復熱完了時間は計算上0.3秒であり、距離にすると2.4mであるので、中間温度計8−1による鋼板1の表面温度の測定は、復熱途中で行われる。
鋼板1の鋼種 440MPa級高強度熱延鋼板
鋼板1の板厚 約3.0mm(測定値)
水冷装置5、6の入側温度 約860℃(測定値)
目標急冷停止速度 60℃/秒
目標急冷停止温度 740℃
鋼板1の速度 480mpm(加速圧延なし)
水冷装置5、6の長さ 16.0m
水冷ヘッダーバルブ形式 設定水量調整機能あり
水冷装置5、6の水量密度(上面) 0.0〜1.1m/mhr(バルブ開度0〜10
0%)
水冷装置5、6の水量密度(下面) 0.0〜0.8m/mhr(バルブ開度0〜10
0%)
中間温度計8−1の位置 水冷装置5、6の出口から後方に1.0m位置
中間温度計8−2の位置 水冷装置5、6の出口から後方に3.0m位置
図9は、従来例により制御した場合の鋼板長手方向温度を示すグラフであり、図10は本発明例を実施した際の鋼板長手方向温度を示すグラフである。
A hot-rolled steel sheet was manufactured under the following conditions using the manufacturing apparatus of FIG. In addition, since the recuperation completion time on this condition is 0.3 second in calculation, and it is 2.4 m in terms of distance, the measurement of the surface temperature of the steel sheet 1 by the intermediate thermometer 8-1 is in the middle of recuperation. Done.
Steel type of steel plate 1 440 MPa class high-strength hot-rolled steel plate 1 Thickness of about 3.0 mm (measured value)
Entry temperature of water cooling devices 5 and 6 Approx. 860 ° C (measured value)
Target quench stop speed 60 ℃ / sec Target quench stop temperature 740 ℃
Speed of steel plate 1 480 mpm (no accelerated rolling)
Length of water cooling device 5, 6 16.0m
Water-cooled header valve type Water volume density (upper surface) of the water-cooling devices 5 and 6 with a set water amount adjusting function 0.0 to 1.1 m 3 / m 2 hr (valve opening 0 to 10
0%)
Water density of water cooling devices 5 and 6 (lower surface) 0.0 to 0.8 m 3 / m 2 hr (valve opening 0 to 10
0%)
Position of the intermediate thermometer 8-1 1.0m position behind the outlets of the water cooling devices 5 and 6 Position of the intermediate thermometer 8-2 3.0m position behind the outlets of the water cooling devices 5 and 6 FIG. 10 is a graph showing the temperature in the longitudinal direction of the steel plate when the embodiment of the present invention is carried out.

図9、10に示す急冷停止温度制御結果のグラフは、上段に、上から順に、鋼板長手方向の中間温度計8−2による鋼板1の表面温度の測定値を基に算出した急冷停止温度推定値、中間温度計8−1による鋼板1の表面温度の測定値、中間温度計8−2による鋼板1の表面温度の測定値を示し、下段に、水冷装置5、6の水量密度(上下面同水量密度)を示す。なお、加速圧延は実施しておらず鋼板速度は一定で、急冷停止位置の変化もない。   The graph of the quenching stop temperature control result shown in FIGS. 9 and 10 shows the quenching stop temperature estimation calculated based on the measured value of the surface temperature of the steel sheet 1 by the intermediate thermometer 8-2 in the longitudinal direction of the steel sheet in order from the top. The measured value of the surface temperature of the steel sheet 1 with the intermediate thermometer 8-1 and the measured value of the surface temperature of the steel sheet 1 with the intermediate thermometer 8-2 are shown. Same water density). Note that accelerated rolling is not performed, the steel plate speed is constant, and there is no change in the rapid cooling stop position.

図9は、特開平6−246331号公報に記載された発明に基づくものであり、1つの冷却ゾーンを模して急冷制御実験を行ったものである。中間温度計8−1の測定値を目標急冷停止温度である740℃に制御したものであるが、中間温度計8−1の設置位置は復熱時間を経たものではなく、鋼板表面温度が上昇中であるので、中間温度計8−21の測定値は復熱時間を経た中間温度計8−2の測定値よりも低い。   FIG. 9 is based on the invention described in Japanese Patent Application Laid-Open No. 6-246331, and is a result of a rapid cooling control experiment simulating one cooling zone. The measured value of the intermediate thermometer 8-1 is controlled to the target quenching stop temperature of 740 ° C., but the installation position of the intermediate thermometer 8-1 has not passed the recuperation time, and the steel plate surface temperature has increased. Therefore, the measured value of the intermediate thermometer 8-21 is lower than the measured value of the intermediate thermometer 8-2 after the recuperation time.

中間温度計8−2の測定値を基に推定した急冷停止温度推定値は目標よりも約10℃高い温度になり、この制御方法では急冷停止温度の制御精度は、不芳であった。
これに対し、図10は、中間温度計2による鋼板1の表面温度の測定値を用い、急冷停止位置の急冷停止温度推定値が目標の740℃になるように水冷装置5、6の制御を行った制御結果である。
The estimated quenching stop temperature estimated based on the measured value of the intermediate thermometer 8-2 is about 10 ° C. higher than the target, and the control accuracy of the quenching stop temperature is poor in this control method.
On the other hand, FIG. 10 uses the measured value of the surface temperature of the steel sheet 1 by the intermediate thermometer 2 to control the water cooling devices 5 and 6 so that the estimated quenching stop temperature at the quenching stop position becomes the target 740 ° C. It is the control result performed.

鋼板1の先端部分は急冷停止温度推定値が目標を上回っているものの、急冷停止温度推定値と目標温度との誤差を縮小するようにするフィードバック制御機能が働き、急冷停止温度推定値が目標温度に正確に制御されることがわかる。   Although the estimated value of the quenching stop temperature exceeds the target at the tip of the steel plate 1, a feedback control function that reduces the error between the estimated value of the quenching stop temperature and the target temperature works, and the estimated value of the quenching stop temperature becomes the target temperature. It can be seen that it is accurately controlled.

0、0−1 熱延鋼板の製造装置
1 鋼板
2 熱間仕上圧延機
3 搬送テーブル(ランアウトテーブル)
4 巻取装置
5、6 水冷装置
7 水冷装置入側温度計
8、8−1、8−2 表面温度測定手段(中間温度計)
9 鋼板板厚測定装置
10 鋼板速度測定装置
11 急冷時鋼板温度予測装置
12 急冷停止温度制御装置
13 急冷停止温度推定装置
14 冷却制御装置
0, 0-1 Hot rolled steel plate manufacturing equipment 1 Steel plate 2 Hot finish rolling mill 3 Transport table (runout table)
4 Winding device 5, 6 Water cooling device 7 Water cooling device inlet side thermometer 8, 8-1, 8-2 Surface temperature measuring means (intermediate thermometer)
9 Steel plate thickness measurement device 10 Steel plate speed measurement device 11 Rapid cooling steel plate temperature prediction device 12 Rapid cooling stop temperature control device 13 Rapid cooling stop temperature estimation device 14 Cooling control device

Claims (5)

熱間圧延機と、該熱間圧延機の出側に設置されるとともに該熱間圧延機により圧延されて搬送される鋼板に冷却水を噴射して水冷する水冷装置と、該冷却水の噴射を停止して引き続いて前記鋼板を空冷することによって該鋼板を所定の温度に制御するための冷却制御装置と、前記冷却水の噴射を停止した後の所定の時期における前記鋼板の表面温度を測定する表面温度測定手段とを備え、
前記冷却制御装置は、前記表面温度測定手段による前記鋼板の表面温度の測定値と、前記鋼板の伝熱モデルを用いた前記所定の時期における前記鋼板の表面温度の推定演算値との差に基づいて、前記冷却水の噴射の停止時における前記鋼板の板厚方向平均温度を演算し、該板厚方向平均温度の演算値がその目標値となるように、前記水冷装置による前記冷却水の噴射を制御すること、及び
前記所定の時期は、前記鋼板の伝熱モデルを用いて推定する前記鋼板の表面温度の推定値が、前記冷却水の噴射を停止した後において上昇から下降に転じる時以降の時期であること
を特徴とする熱延鋼板の製造装置。
A hot rolling mill, a water cooling device that is installed on the outlet side of the hot rolling mill and that is cooled by spraying cooling water onto a steel sheet that is rolled and conveyed by the hot rolling mill, and injection of the cooling water A cooling control device for controlling the steel plate to a predetermined temperature by air-cooling the steel plate and measuring the surface temperature of the steel plate at a predetermined time after stopping the cooling water injection And a surface temperature measuring means for
The cooling control device is based on a difference between a measured value of the surface temperature of the steel sheet by the surface temperature measuring means and an estimated value of the surface temperature of the steel sheet at the predetermined time using a heat transfer model of the steel sheet. Calculating the average thickness direction temperature of the steel sheet when the cooling water injection is stopped, and injecting the cooling water by the water cooling device so that the calculated value of the average thickness direction temperature becomes the target value. Controlling , and
The predetermined time is a time after the estimated value of the surface temperature of the steel sheet estimated using the heat transfer model of the steel sheet turns from rising to falling after stopping the injection of the cooling water. An apparatus for producing a hot-rolled steel sheet characterized by the following.
前記表面温度測定手段は、前記鋼板の搬送方向へ複数配置されるとともに、前記冷却制御装置は、複数の該表面温度測定手段のうちで、前記鋼板の伝熱モデルを用いて推定する前記鋼板の表面温度の推定値が前記冷却水の噴射を停止した後において上昇から下降に転じる位置よりも、下流側の最も近い位置に配置される表面温度測定手段である請求項1に記載された熱延鋼板の製造装置。 A plurality of the surface temperature measuring means are arranged in the conveying direction of the steel sheet, and the cooling control device is configured to estimate the steel sheet using a heat transfer model of the steel sheet among the plurality of surface temperature measuring means. 2. The hot rolling according to claim 1, wherein the surface temperature measuring means is disposed at a position closest to the downstream side of the position where the estimated value of the surface temperature changes from rising to falling after the cooling water injection is stopped. Steel plate manufacturing equipment. 前記表面温度測定手段は、前記鋼板と対向する位置に配置された放射温度計と、前記鋼板と該放射温度計との間に光導波路としての水柱を形成するための水柱形成手段とを備え、該水柱を介して前記鋼板の表面からの放射光を前記放射温度計で検出することにより前記鋼板の表面温度を測定する請求項1又は請求項2に記載された熱延鋼板の製造装置。 The surface temperature measuring means includes a radiation thermometer disposed at a position facing the steel plate, and a water column forming means for forming a water column as an optical waveguide between the steel plate and the radiation thermometer, The apparatus for producing a hot-rolled steel sheet according to claim 1 or 2 , wherein the surface temperature of the steel sheet is measured by detecting radiation light from the surface of the steel sheet through the water column with the radiation thermometer. 熱間圧延されて搬送される鋼板に冷却水を噴射して該鋼板を水冷した後、該冷却水の噴射を停止して引き続いて前記鋼板を空冷することによって該鋼板を所定の温度に制御する工程を含む熱延鋼板の製造方法であって、
前記冷却水の噴射を停止した後の所定の時期における前記鋼板の表面温度の測定値と、前記鋼板の伝熱モデルを用いた前記所定の時期における前記鋼板の表面温度の推定演算値との差に基づいて、前記冷却水の噴射の停止時における前記鋼板の板厚方向平均温度を演算し、該板厚方向平均温度の演算値がその目標値となるように、前記冷却水の噴射を制御すること、及び
前記所定の時期は、前記鋼板の伝熱モデルを用いて推定する前記鋼板の表面温度の推定値が、前記冷却水の噴射を停止した後において上昇から下降に転じる時以降の時期であること
を特徴とする熱延鋼板の製造方法。
After the cooling water is sprayed onto the steel sheet that is hot-rolled and conveyed, the steel sheet is water-cooled, and then the cooling water injection is stopped and the steel sheet is subsequently air-cooled to control the steel sheet to a predetermined temperature. A method for producing a hot-rolled steel sheet including a process,
The difference between the measured value of the surface temperature of the steel plate at a predetermined time after stopping the injection of the cooling water and the estimated calculation value of the surface temperature of the steel plate at the predetermined time using the heat transfer model of the steel plate The cooling water injection is controlled so that the average thickness direction temperature of the steel sheet when the cooling water injection is stopped is calculated and the calculated value of the average thickness direction temperature becomes the target value. It is, and
The predetermined time is a time after the estimated value of the surface temperature of the steel sheet estimated using the heat transfer model of the steel sheet turns from rising to falling after stopping the injection of the cooling water. A method for producing a hot-rolled steel sheet characterized by the following.
前記鋼板の表面温度は、前記鋼板と対向する位置に配置された放射温度計と、前記鋼板と該放射温度計との間に光導波路としての水柱を形成するための水柱形成手段を備え、該水柱を介して前記鋼板の表面からの放射光を放射温度計で検出することにより鋼板の表面温度を測定する装置を用いて、測定する請求項に記載された熱延鋼板の製造方法。 The surface temperature of the steel plate includes a radiation thermometer disposed at a position facing the steel plate, and a water column forming means for forming a water column as an optical waveguide between the steel plate and the radiation thermometer, The method for manufacturing a hot-rolled steel sheet according to claim 4 , wherein the measurement is performed using an apparatus for measuring the surface temperature of the steel sheet by detecting radiation light from the surface of the steel sheet with a radiation thermometer through a water column.
JP2009010130A 2009-01-20 2009-01-20 Hot rolled steel sheet manufacturing apparatus and manufacturing method Active JP5239887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010130A JP5239887B2 (en) 2009-01-20 2009-01-20 Hot rolled steel sheet manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010130A JP5239887B2 (en) 2009-01-20 2009-01-20 Hot rolled steel sheet manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2010167424A JP2010167424A (en) 2010-08-05
JP5239887B2 true JP5239887B2 (en) 2013-07-17

Family

ID=42700052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010130A Active JP5239887B2 (en) 2009-01-20 2009-01-20 Hot rolled steel sheet manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5239887B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223808B1 (en) * 2010-12-28 2013-01-17 주식회사 포스코 Method for setting up cooling water flux in cooling process of hot rolling steel plate
JP5544345B2 (en) * 2011-09-27 2014-07-09 株式会社日立製作所 Temperature estimation device, temperature estimation method, rolling mill control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244529A (en) * 1985-08-22 1987-02-26 Kobe Steel Ltd Method for estimating forced water cooling stopping temperature of material to be cooled
JPS62263816A (en) * 1986-05-12 1987-11-16 Kobe Steel Ltd Water amount determining method for high temperature steel plank cooling
JPH04354827A (en) * 1991-05-31 1992-12-09 Kawasaki Steel Corp Method for estimating temperature distribution in plate thickness direction in stopping cooling
JP2001259723A (en) * 2000-03-16 2001-09-25 Kawasaki Steel Corp Method for controlling cooling of rolled stock
JP2001300628A (en) * 2000-04-21 2001-10-30 Nippon Steel Corp Method for cooling joined steel sheet
JP3903898B2 (en) * 2002-10-10 2007-04-11 住友金属工業株式会社 Metal plate manufacturing method and temperature control device

Also Published As

Publication number Publication date
JP2010167424A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP4735784B1 (en) Hot rolled steel sheet manufacturing apparatus and hot rolled steel sheet manufacturing method
US6225609B1 (en) Coiling temperature control method and system
KR101211273B1 (en) Method for cooling hot-rolled steel plate
JP4735785B1 (en) Hot rolled steel sheet manufacturing method and hot rolled steel sheet manufacturing apparatus
KR101376565B1 (en) Method and apparatus for controlling the temperature of strip in the rapid cooling section of continuous annealing line
JP5217516B2 (en) Cooling control method in hot rolling and manufacturing method of hot rolled metal strip
JP4221002B2 (en) Cooling control method, cooling control device, and cooling water amount calculation device
KR20120139754A (en) Method for cooling sheet metal by means of a cooling section, cooling section and control device for a cooling section
EP1634657A1 (en) Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
JP5565200B2 (en) Finishing temperature control device in hot rolling
JP2006281300A (en) Cooling control method, device, and computer program
JP5239887B2 (en) Hot rolled steel sheet manufacturing apparatus and manufacturing method
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP5948967B2 (en) Temperature prediction method, cooling control method and cooling control device for metal plate in hot rolling
JP2006055884A (en) Method for manufacturing hot-rolled steel sheet and apparatus for controlling rolling
JP2003039109A (en) Device for controlling coil winding temperature
KR101403240B1 (en) Apparatus and method of controlling coiling temperature of hot rolled steel plate using in-plate learning
JP6645036B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
KR100711387B1 (en) Method for controlling longitudinal direction temperature of hot-rolled steel plate
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JP2988330B2 (en) Control method of winding temperature of hot rolled steel sheet
JP5742763B2 (en) Hot rolled steel sheet manufacturing method and hot rolled steel sheet manufacturing apparatus
JP5544589B2 (en) Cooling control method for hot-rolled steel sheet
JP6645037B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP3661668B2 (en) Metal plate manufacturing method and temperature control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5239887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350