JP2008188604A - Temperature control method in cooling of steel sheet - Google Patents

Temperature control method in cooling of steel sheet Download PDF

Info

Publication number
JP2008188604A
JP2008188604A JP2007023414A JP2007023414A JP2008188604A JP 2008188604 A JP2008188604 A JP 2008188604A JP 2007023414 A JP2007023414 A JP 2007023414A JP 2007023414 A JP2007023414 A JP 2007023414A JP 2008188604 A JP2008188604 A JP 2008188604A
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
steel plate
cooling
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007023414A
Other languages
Japanese (ja)
Inventor
Naosuke Yanagi
修介 柳
Toshiaki Okuno
利明 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007023414A priority Critical patent/JP2008188604A/en
Publication of JP2008188604A publication Critical patent/JP2008188604A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature control method by which the temperature of object to be controlled such as winding temperature is controlled highly precisely even when abnormal temperature parts are generated on the surface of a steel sheet caused by defective flatness of the steel sheet and the scale generating state of the surface of the steel sheet on the outlet side of a finishing mill. <P>SOLUTION: The portion of sound parts in the width direction where the abnormal temperature cased by scale and the defective flatness are not generated is determined and its average temperature Tp(Fair) by using the maximum value Tp(Max) of the temperature in the width direction of the steel sheet which is measured after cooling and the allowable error ΔTp of the temperature Tp of the steel sheet from this maximum temperature Tp(Max). The average temperature Tp(Fair) of these sound parts is used as the temperature of the steel sheet in the temperature control in a process where the steel sheet after finish rolling is cooled and wound. The measured temperature of the steel sheet is stabilized in this way, the generation of temperature hunting after detecting the abnormal temperature part during feedback control of the winding temperature T2 is prevented, for example, and stable winding temperature control is made possible. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、熱間圧延鋼板の仕上げ圧延後の制御冷却プロセスにおける温度制御方法に関する。   The present invention relates to a temperature control method in a controlled cooling process after finish rolling of a hot rolled steel sheet.

薄板鋼板の熱間圧延では、図4にレイアウトの1例を示すように、加熱炉1で1000〜1300℃程度の温度範囲に加熱されたスラブ2が、通常、1〜4機の圧延機3が配置された粗圧延機列3a、および数機程度の圧延機4が配置された仕上げ圧延機列4aによって所定の板厚まで圧延された後、水冷帯5(冷却ゾーン)が配置されたホットランテーブル6で所要の温度にまで水冷され、コイラー7でコイルに巻き取られる。仕上げ圧延終了時に900℃前後の温度となる鋼板8は、前記水冷帯5で、所望の材質を得るために設定された巻取り温度を実現するように冷却される。その際、仕上げ圧延機列4aの最終圧延機4fの出側に設置された温度計9およびコイラー7前に設置された温度計9aに加え、必要に応じて水冷帯5の途中に設置された中間温度計9bを用いて、目標とする巻取り温度を実現することができる水冷帯5の水冷バルブ(図示省略)のON/OFFパターンが決定される。   In the hot rolling of a thin steel plate, as shown in an example of the layout in FIG. 4, the slab 2 heated to a temperature range of about 1000 to 1300 ° C. in the heating furnace 1 is usually 1 to 4 rolling mills 3. Is rolled to a predetermined plate thickness by a rough rolling mill row 3a in which is disposed and a finishing rolling mill row 4a in which several rolling mills 4 are disposed, and then a hot run in which a water cooling zone 5 (cooling zone) is disposed. Water is cooled to a required temperature at the table 6, and the coil 7 is wound around a coil. The steel plate 8 having a temperature of about 900 ° C. at the end of finish rolling is cooled in the water cooling zone 5 so as to realize a winding temperature set to obtain a desired material. At that time, in addition to the thermometer 9 installed on the exit side of the final rolling mill 4f of the finishing rolling mill row 4a and the thermometer 9a installed in front of the coiler 7, it was installed in the middle of the water cooling zone 5 as necessary. The intermediate thermometer 9b is used to determine an ON / OFF pattern of a water cooling valve (not shown) in the water cooling zone 5 that can achieve a target winding temperature.

図5に、巻取り温度に対しての温度制御の流れを示すように、まず鋼板(圧延材)8の先端が仕上げ圧延機列4aの最終スタンド4fを通過する前に、この最終スタンド4fの出側の鋼板8の厚さ(板厚)、通板速度(仕上げ圧延速度)および鋼板温度T1のそれぞれの設定値と、コイラー7前の温度計9aの位置における目標の巻取り温度T2aに基づいて、水冷帯5での鋼板8の温度履歴を予測する温度モデルを用いて、水冷バルブをONとするバルブ位置およびOFFとするバルブ位置が温度計算によりそれぞれ決定される(S100〜S120)、セットアップ制御)。そして、決定したON/OFFとするそれぞれのバルブ位置に基づいて、巻取り温度T2を計算し(S130)、この巻取り温度T2の目標値T2aと計算値T2cとの差(abs(T2a-T2c))が許容範囲ΔT2aに収まるかどうかを判定する(S140)。許容範囲ΔT2aに収まらない場合、前記ON/OFFとするバルブ位置(バルブ数)を修正し(S150)、abs(T2a-T2c)が許容範囲ΔT2aに入るまで、前記バルブ位置の修正を繰り返す。このようにして、最適な水冷バルブのON/OFF位置が決定される(セットアップ制御)。   FIG. 5 shows the flow of temperature control with respect to the coiling temperature. First, before the front end of the steel plate (rolled material) 8 passes through the final stand 4f of the finishing mill row 4a, the final stand 4f Based on the respective set values of the thickness (sheet thickness), the sheet passing speed (finish rolling speed) and the steel sheet temperature T1 of the outgoing steel sheet 8, and the target winding temperature T2a at the position of the thermometer 9a before the coiler 7. Then, using the temperature model for predicting the temperature history of the steel plate 8 in the water cooling zone 5, the valve position for turning on the water cooling valve and the valve position for turning off the water cooling valve are respectively determined by temperature calculation (S100 to S120). control). Then, the coiling temperature T2 is calculated based on each determined valve position to be turned ON / OFF (S130), and the difference (abs (T2a-T2c) between the target value T2a and the calculated value T2c of the coiling temperature T2 is calculated. )) Falls within the allowable range ΔT2a (S140). If it does not fall within the allowable range ΔT2a, the valve position (number of valves) to be turned ON / OFF is corrected (S150), and the correction of the valve position is repeated until abs (T2a-T2c) enters the allowable range ΔT2a. In this way, the optimum ON / OFF position of the water cooling valve is determined (setup control).

次に、鋼板8の先端が前記仕上げ圧延機列4aの最終スタンド4f出側の温度計9を通過した段階では、図6に示すように、温度計9の位置における鋼板温度の設定値T1aと実測値T1mとの差ΔT1を用いて、水冷バルブをON/OFFとするそれぞれのバルブ位置が再計算される(S200〜S230)、フィードフォワード制御)。そして、再計算により決定したON/OFFとする水冷バルブの位置に基づいて、巻取り温度T2を計算し(S240)、この巻取り温度T2の目標値T2aと計算値T2cとの差(abs(T2a-T2c))が許容範囲ΔT2aに収まるかどうかを判定する(S250)。許容範囲ΔT2aに収まらない場合、前記ON/OFFとする水冷バルブ位置(バルブ数)を修正し(S260)、abs(T2a-T2c)が許容範囲に入るまで、前記バルブ位置の修正を繰り返す。このようにして、最適な水冷バルブのON/OFF位置が修正される(フィ−ドフォワード制御)。   Next, at the stage where the tip of the steel plate 8 has passed through the thermometer 9 on the outlet side of the final stand 4f of the finishing rolling mill row 4a, as shown in FIG. 6, the set value T1a of the steel plate temperature at the position of the thermometer 9 Using the difference ΔT1 with the actual measurement value T1m, the respective valve positions at which the water cooling valves are turned ON / OFF are recalculated (S200 to S230), feedforward control). Then, based on the position of the water cooling valve to be turned ON / OFF determined by recalculation, the coiling temperature T2 is calculated (S240), and the difference between the target value T2a of the coiling temperature T2 and the calculated value T2c (abs ( It is determined whether or not T2a-T2c) is within the allowable range ΔT2a (S250). If it does not fall within the allowable range ΔT2a, the water cooling valve position (valve number) to be turned ON / OFF is corrected (S260), and the correction of the valve position is repeated until abs (T2a-T2c) falls within the allowable range. In this way, the optimum ON / OFF position of the water cooling valve is corrected (feed forward control).

さらに、図7に示すように、鋼板8がコイラー7前の温度計9aを通過した段階で、巻取り温度T2の目標値T2aと実測値T2mとの差(abs(T2a-T2m))が許容範囲ΔT2aに収まっていない場合には(S300〜S330)、許容範囲に収まるように、前記ON/OFFとする水冷バルブ位置を修正して(S340)、巻取り温度T2を計算し(S350)、目標巻取り温度T2aと、この計算巻取り温度T2cとの差(abs(T2a-T2c))が許容範囲ΔT2aに収まるかどうかを判定する(S360)。許容範囲に収まらない場合、前記ON/OFFとするバルブ位置(バルブ数)を再修正し(S340)、abs(T2a-T2c)が許容範囲に入るまで、前記バルブ位置の修正を繰り返す。このようにして、最適な水冷バルブの位置が修正される(フィ−ドバック制御)。   Further, as shown in FIG. 7, when the steel plate 8 passes through the thermometer 9a before the coiler 7, the difference (abs (T2a-T2m)) between the target value T2a of the coiling temperature T2 and the measured value T2m is allowable. If not within the range ΔT2a (S300 to S330), the water cooling valve position to be turned ON / OFF is corrected so as to be within the allowable range (S340), and the winding temperature T2 is calculated (S350). It is determined whether or not the difference (abs (T2a−T2c)) between the target winding temperature T2a and the calculated winding temperature T2c falls within the allowable range ΔT2a (S360). If not within the allowable range, the valve position (number of valves) to be turned ON / OFF is corrected again (S340), and the correction of the valve position is repeated until abs (T2a-T2c) falls within the allowable range. In this way, the optimal water cooling valve position is corrected (feedback control).

前記仕上げ圧延機列4aを通過した鋼板8の平坦度が良好で、かつ巻取り温度T2が比較的高く、沸騰形態が膜沸騰の温度領域(通常、T2>600℃)での冷却の場合には、図5〜図7に温度制御の流れを示した、一般的な温度制御方法によって、所望の精度(通常、目標巻取り温度T2a±20℃程度)で巻取り温度を制御することが可能である。しかし、鋼板8の平坦度がわるい場合には、冷却過程で、鋼板8上に局部的に水溜りが形成され、冷却が過度に進行して温度むらが形成されることがある。また、鋼板8の平坦度が良好な場合でも、巻取り温度T2が低く、沸騰形態が核沸騰の温度領域(通常、T2<500℃)で冷却が行なわれる場合、通常、膜沸騰から核沸騰への沸騰状態の遷移は鋼板面上で同時には起こらずに、この沸騰状態における遷移のタイミングがずれて、鋼板面内の温度分布が少なからず形成される。さらに、例えば、高Si鋼のように鋼板表面にスケールが成長しやすい鋼種では、鋼板表面でのスケールの生成状態の相違によって鋼板面内での熱伝達率が異なり、それによって膜沸騰から核沸騰への遷移温度も異なるため、鋼板面内に大きな温度分布が形成されやすい。このようなスケールの生成状態に起因した温度分布は、巻取り温度が低い核沸騰領域でより顕著に発生する。   When the flatness of the steel plate 8 that has passed through the finish rolling mill row 4a is good, the coiling temperature T2 is relatively high, and the boiling mode is cooling in the film boiling temperature region (usually T2> 600 ° C.). Can control the coiling temperature with the desired accuracy (usually the target coiling temperature T2a ± 20 ° C.) by a general temperature control method whose temperature control flow is shown in FIGS. It is. However, when the flatness of the steel plate 8 is poor, a pool of water may be locally formed on the steel plate 8 during the cooling process, and cooling may proceed excessively, resulting in uneven temperature. Further, even when the flatness of the steel plate 8 is good, when the coiling temperature T2 is low and the boiling mode is cooled in the temperature range of nucleate boiling (usually T2 <500 ° C.), usually from film boiling to nucleate boiling. The transition to the boiling state does not occur on the steel sheet surface at the same time, but the transition timing in the boiling state is shifted, and the temperature distribution in the steel sheet surface is not a little. Furthermore, for example, in steel types where scales are likely to grow on the steel sheet surface, such as high-Si steel, the heat transfer coefficient in the steel sheet surface varies depending on the difference in the scale formation state on the steel sheet surface, thereby causing film boiling to nucleate boiling. Since the transition temperature to is different, a large temperature distribution is likely to be formed in the steel plate surface. Such temperature distribution due to the scale generation state occurs more significantly in the nucleate boiling region where the coiling temperature is low.

従来の巻取り温度制御では、制御対象とする巻取り温度T2として、鋼板の幅方向の1箇所(通常は幅方向中央部)での測定値が用いられることが多く、このような1箇所の温度測定により、鋼板表面に前述のようなスケールの生成や平坦度不良に起因する温度分布がないときに、巻取り温度の実測値T2mが目標値T2aと異なることに対してフィードバック制御を適用すると、この巻取り温度の実測値T2mと目標値T2aとの差に基づいて水冷帯5の水冷バルブのON/OFF数の変更が行なわれる。このフィードバック制御の対象は、水冷バルブON/OFF数の変更が、水冷バルブと巻取り温度測定用温度計9aとの距離によって発生する時間差を経て巻取り温度T2に反映されるという時間遅れを含む制御系であるため、図8(b)および(c)に示すように、制御ゲインを大きくすると、冷却水流量がハンチングし、それに伴って巻取り温度T2にもハンチングが発生するが、図9(b)および(c)に示すように、適正な制御ゲインを選択することにより、巻取り温度の目標温度範囲(±20℃)に制御することが可能である。なお、図8(a)および図9(a)の通板速度が制御周期ごとに増加しているのは、仕上げ圧延機入側では圧延されるまでの待ち時間が長い圧延材(板材)尾端側ほど空冷による温度低下が大きくなり、この温度低下を補うために圧延材の先端から後端にかけて徐々に通板速度を上げ、圧延ロールへの抜熱量を減少させて仕上げ圧延温度を一定に保つように制御するためである。   In the conventional winding temperature control, as the winding temperature T2 to be controlled, a measured value at one location in the width direction of the steel sheet (usually the central portion in the width direction) is often used. When feedback measurement is applied to the fact that the measured value T2m of the coiling temperature is different from the target value T2a when the temperature measurement does not have a temperature distribution due to the generation of scales or poor flatness as described above on the steel sheet surface. The ON / OFF number of the water cooling valve in the water cooling zone 5 is changed based on the difference between the actual measurement value T2m of the winding temperature and the target value T2a. The target of this feedback control includes a time delay in which the change in the number of ON / OFF of the water cooling valve is reflected in the winding temperature T2 through a time difference generated by the distance between the water cooling valve and the coiling temperature measuring thermometer 9a. Since it is a control system, as shown in FIGS. 8B and 8C, when the control gain is increased, the cooling water flow rate hunts, and accordingly, hunting also occurs at the coiling temperature T2. As shown in (b) and (c), it is possible to control to a target temperature range (± 20 ° C.) of the coiling temperature by selecting an appropriate control gain. 8 (a) and 9 (a) increase for each control cycle because the rolling material (sheet material) tail has a long waiting time until rolling on the finishing rolling mill entrance side. The temperature drop due to air cooling increases toward the end side, and in order to compensate for this temperature drop, the plate feed speed is gradually increased from the front end to the rear end of the rolled material, and the amount of heat removed from the rolling roll is reduced to keep the finish rolling temperature constant. It is for controlling to keep.

しかし、前述のように、スケールが鋼板表面に生成していると、図10に模式的に示すように、スケール生成部の温度が他の部分よりも低くなり、板幅方向に局部的に低温部が形成される。また、平坦度がわるい場合には、表面凹部に水が溜まる水のりが発生するために、図10に示した場合と同様に、図11(a)、(b)に示すような、板幅方向に局部的な低温部が存在する温度分布が形成される。このようなスケール生成や平坦度不良による局部的な低温部、すなわち温度の異常部が含まれる場合(図10および図11(a)、(b))には、板幅方向中央部の板長手方向の温度推移は、図12(a)および(b)に示すようになる。このように、スケール生成や平坦度不良、および前記沸騰形態に起因する温度異常部が鋼板面内に形成されている場合、従来のように板幅方向の、例えば中央部などの1箇所の温度に基づいてフィードバック制御を行なうと、測定している温度が安定しないため、温度異常部が巻取り温度計9aを通過した後に、図12(a)および(b)に示したように、巻取り温度T2のハンチング現象を生じる。   However, as described above, when the scale is generated on the surface of the steel plate, as schematically shown in FIG. 10, the temperature of the scale generation portion is lower than the other portions and is locally low in the plate width direction. Part is formed. In addition, when the flatness is poor, water that accumulates in the recesses on the surface is generated, so that the plate width as shown in FIGS. 11A and 11B is similar to the case shown in FIG. A temperature distribution is formed in which local low temperature portions exist in the direction. When such a local low temperature part due to scale generation or poor flatness, that is, an abnormal temperature part is included (FIGS. 10 and 11 (a), (b)), the plate length in the central part in the plate width direction The temperature transition in the direction is as shown in FIGS. 12 (a) and 12 (b). Thus, when the temperature generation part due to scale generation, flatness failure, and the boiling form is formed in the steel plate surface, the temperature in one place in the plate width direction, for example, the central part as in the past When the feedback control is performed based on the above, since the temperature being measured is not stable, the winding of the temperature abnormality portion after passing the winding thermometer 9a as shown in FIGS. 12 (a) and 12 (b) A hunting phenomenon at temperature T2 occurs.

このような巻取り温度制御における問題点に対し、例えば、特許文献1では、仕上げ圧延機の出側における被圧延材先端部の形状(例えば、急峻度などの平坦度)を測定し、巻取り温度制御の後にフィ−ドフォワードする冷却制御方法が開示されている。この冷却制御方法は、仕上げ圧延機の最終スタンド(圧延機)の出側に設置した平坦度計で測定した被圧延材の先端部の形状(例えば急峻度)を、被圧延材と冷却水間の熱伝達率に反映し、冷却ゾーンの注水バンクパターンを決定して被圧延材の冷却を制御する方法である。そして、この冷却制御方法により、平坦度の乱れている被圧延材先端部の巻取り温度の予測精度を向上させて、巻取り温度を被圧延材の長手方向および幅方向に均一にして、特に、仕上げ圧延終了直後の被圧延材先端部の形状が平坦でない部分における過冷却による割れを抑制できることが記載されている。また、例えば、特許文献2では、熱間圧延鋼板の制御冷却後の鋼板幅方向での局部的な過冷却の発生位置を測定し、測定した過冷却発生位置に対応する部分の圧延ロールの表面粗さを、オンラインロール研削等の方法により調整して、この圧延ロールにより熱間圧延した鋼板を制御冷却することにより、鋼板幅方向の局部過冷を防止する熱間圧延鋼板の冷却方法が開示されている。
特開2005−270982号公報 特開2001−129608号公報
For example, in Patent Document 1, the shape (for example, flatness such as steepness) of the material to be rolled on the exit side of the finish rolling mill is measured and the winding is performed with respect to such a problem in winding temperature control. A cooling control method that feeds forward after temperature control is disclosed. In this cooling control method, the shape (for example, steepness) of the tip of the rolled material measured by a flatness meter installed on the exit side of the final stand (rolling mill) of the finish rolling mill is determined between the rolled material and the cooling water. This is a method for controlling the cooling of the material to be rolled by reflecting the heat transfer coefficient and determining the water injection bank pattern of the cooling zone. And by this cooling control method, it is possible to improve the prediction accuracy of the winding temperature of the rolled material tip portion where the flatness is disturbed, and to make the winding temperature uniform in the longitudinal direction and the width direction of the rolled material, In addition, it is described that cracks due to overcooling in a portion where the shape of the tip of the material to be rolled immediately after finish rolling is not flat can be suppressed. Further, for example, in Patent Document 2, the position of occurrence of local supercooling in the steel sheet width direction after controlled cooling of a hot-rolled steel sheet is measured, and the surface of the rolling roll corresponding to the measured supercooling occurrence position is measured. Disclosed is a method of cooling a hot-rolled steel sheet that prevents local overcooling in the width direction of the steel sheet by adjusting the roughness by a method such as online roll grinding and controlling and cooling the steel sheet hot-rolled by this rolling roll. Has been.
JP 2005-270982 A JP 2001-129608 A

しかし、特許文献1に開示された冷却制御方法では、例えば、鋼板の平坦度が乱れて水溜りが形成された部位で巻取り温度(T2)が測定された場合、制御精度を向上させるために、前記巻取り温度の測定値(T2m)を用いて注水バンク数(水冷バルブ数)の加減調整するフィードバック制御を行なうと、このフィードバック制御が不安定になり、目標の巻取り温度(T2a)が得られなくなる。また、特許文献2に開示された冷却方法では、一般に、薄板鋼板の熱間圧延では、スケールの生成等、温度むらに対する鋼板表面粗さの影響が顕著に現れる位置の巻取り温度計9aと仕上げ圧延機列4aの最終圧延機4f(図4参照)とは、100m以上離れている場合が多く、また、仕上げ圧延後の鋼板表面のスケールの付着についても、数メートル程度の島状の短いピッチで付着している場合が多いため、制御冷却後に測定した鋼板幅方向での局部的な過冷却の発生位置に対応する部分の圧延ロールの表面粗さをオンラインで調整するという方法によって、鋼板幅方向での局部的過冷却(冷却むら)を抑制することは難しい。   However, in the cooling control method disclosed in Patent Document 1, for example, when the coiling temperature (T2) is measured at a site where the flatness of the steel plate is disturbed and a puddle is formed, the control accuracy is improved. When the feedback control for adjusting the number of water injection banks (the number of water cooling valves) is performed using the measured value (T2m) of the winding temperature, this feedback control becomes unstable, and the target winding temperature (T2a) is It can no longer be obtained. Further, in the cooling method disclosed in Patent Document 2, in general, in hot rolling of a thin steel plate, a winding thermometer 9a and a finish at a position where the influence of the steel plate surface roughness on temperature unevenness such as generation of scale is noticeable. The final rolling mill 4f of the rolling mill row 4a (see FIG. 4) is often 100 m or more away, and the scale adhesion on the steel sheet surface after finish rolling is a short pitch of about several meters. In many cases, the steel sheet width is adjusted by online adjustment of the surface roughness of the rolling roll at the part corresponding to the position of occurrence of local supercooling in the steel sheet width direction measured after controlled cooling. It is difficult to suppress local supercooling (cooling unevenness) in the direction.

そこで、この発明の課題は、熱間圧延後の冷却過程で、仕上げ圧延機出側での鋼板表面のスケール生成状態や平坦度不良、および鋼板表面(伝熱面)での沸騰形態の急激な変化などにより、鋼板表面上に温度異常部が発生した場合でも、巻取り温度を高精度に制御できる温度制御方法を提供することである。   Then, the subject of this invention is the rapid process of the boiling form in the steel plate surface (heat-transfer surface) in the scale production | generation state and flatness defect of the steel plate surface in a finishing rolling mill delivery side in the cooling process after hot rolling. To provide a temperature control method capable of controlling the coiling temperature with high accuracy even when a temperature abnormal portion occurs on the surface of the steel sheet due to a change or the like.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

即ち、請求項1に係る鋼板冷却における温度制御方法は、熱間圧延終了後の鋼板を冷却ゾーンで冷却して巻取る過程での鋼板冷却における温度制御方法であって、前記温度制御方法が、冷却後の鋼板板幅方向の温度分布Tp(Y)(Yは板幅方向座標)を測定するステップ1と、測定した鋼板板幅方向の温度の最大値Tp(Max)と前記冷却後の鋼板温度Tpの前記最大値Tp(Max)からの許容誤差ΔTpを用いて、スケール生成や平坦度不良による温度異常が発生していない健全部の板幅方向の部位を、
Tp(Max)>Tp(Y)>Tp(Max)-ΔTp -----------------------(1)
となる温度範囲の部位とするステップ2と、前記健全部の板幅方向の平均温度Tp(Fair)を
Tp(Fair)=ΣTp(Y)ΔY(Fair)/ΣΔY(Fair) --------------(2)
とするステップ3とを備え、前記健全部の板幅方向の平均温度Tp(Fair)を前記冷却温度制御における鋼板温度として用いることを特徴とする。
ここで、上記(2)式右辺のΣは健全部のみの和、ΔY(Fair)は各健全部の板幅、ΣΔY(Fair)は各健全部の板幅の総和を表す。
That is, the temperature control method in steel plate cooling according to claim 1 is a temperature control method in steel plate cooling in the process of cooling and winding the steel plate after hot rolling in a cooling zone, and the temperature control method is: Step 1 of measuring the temperature distribution Tp (Y) in the width direction of the steel plate after cooling (Y is a coordinate in the width direction of the plate), the maximum value Tp (Max) of the measured temperature in the width direction of the steel plate, and the steel plate after cooling Using the tolerance ΔTp from the maximum value Tp (Max) of the temperature Tp, a site in the plate width direction of the healthy part where no temperature abnormality has occurred due to scale generation or flatness failure,
Tp (Max)> Tp (Y)> Tp (Max) -ΔTp ----------------------- (1)
Step 2 where the temperature range is such that the average temperature Tp (Fair) in the plate width direction of the healthy portion is Tp (Fair) = ΣTp (Y) ΔY (Fair) / ΣΔY (Fair) ----- --------- (2)
Step 3 in which the average temperature Tp (Fair) in the plate width direction of the healthy part is used as the steel plate temperature in the cooling temperature control.
Here, Σ on the right side of the above equation (2) represents the sum of only the healthy portions, ΔY (Fair) represents the plate width of each healthy portion, and ΣΔY (Fair) represents the sum of the plate widths of each healthy portion.

上記のように温度異常のない健全部を定義して、板幅方向の健全部の平均温度Tp(Fair)を求めることにより、例えばフィ−ドバック制御などの温度制御時に、鋼板表面のスケール形成や平坦度不良による温度異常の影響を受けずに、測定している温度が安定した鋼板温度を求めることができる。   By defining a healthy part having no temperature abnormality as described above and obtaining an average temperature Tp (Fair) of the healthy part in the plate width direction, for example, scale formation on the steel sheet surface during temperature control such as feedback control The steel plate temperature at which the temperature being measured is stable can be obtained without being affected by temperature abnormalities due to poor flatness.

請求項2に係る熱延鋼板の冷却制御方法は、前記鋼板温度が巻取り温度であり、前記鋼板温度Tpの許容誤差ΔTpを、巻取り温度T2の目標許容温度範囲ΔT2aよりも小さく設定することを特徴とする。   In the cooling control method for a hot-rolled steel sheet according to claim 2, the steel sheet temperature is a coiling temperature, and an allowable error ΔTp of the steel sheet temperature Tp is set smaller than a target allowable temperature range ΔT2a of the coiling temperature T2. It is characterized by.

前記鋼板温度が巻取り温度の場合には、上記鋼板温度Tpの許容誤差ΔTpを巻取り温度T2の目標許容温度範囲ΔT2aよりも小さく設定することにより、鋼板表面のスケール形成や平坦度不良による温度異常部の検出後の温度ハンチング発生を防止して、安定した制御が可能となる。   When the steel sheet temperature is the coiling temperature, the temperature due to the scale formation or poor flatness of the steel sheet surface is set by setting the tolerance ΔTp of the steel sheet temperature Tp to be smaller than the target allowable temperature range ΔT2a of the coiling temperature T2. Temperature hunting after the detection of an abnormal part is prevented and stable control is possible.

この発明では、熱間圧延後の鋼板を冷却して巻取る過程で、鋼板表面のスケール生成や平坦度不良による温度異常部の影響を受けていない冷却後の板幅方向健全部の平均温度を鋼板温度として用いるようにしたので、温度制御時に測定している鋼板温度が安定する。とくに、この鋼板温度が巻取り温度の場合には、鋼板温度Tpの許容温度ΔTpを、巻取り温度T2の目標許容温度範囲ΔT2aよりも小さく設定して前記健全部の平均温度Tp(Fair)を算出することにより、前記温度異常部検出後の温度ハンチングの発生を防止して、安定した制御が可能となり、所望の材質を得るための制御冷却プロセスを実現することができる。   In this invention, in the process of cooling and winding the steel sheet after hot rolling, the average temperature of the plate width direction healthy part after cooling that is not affected by the temperature abnormal part due to scale generation or flatness failure of the steel sheet surface is obtained. Since it used as steel plate temperature, the steel plate temperature measured at the time of temperature control is stabilized. In particular, when the steel sheet temperature is the coiling temperature, the allowable temperature ΔTp of the steel sheet temperature Tp is set to be smaller than the target allowable temperature range ΔT2a of the coiling temperature T2, and the average temperature Tp (Fair) of the healthy part is set. By calculating, it is possible to prevent the occurrence of temperature hunting after the detection of the temperature abnormal portion, to enable stable control, and to realize a controlled cooling process for obtaining a desired material.

以下に、この発明の実施形態を添付の図1から図4に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying FIGS.

図1は、この発明の実施形態の温度制御方法の一例である、巻取り温度のフィ−ドバック制御を行なう場合についての温度制御の流れを示したものである。まず、鋼板8の目標巻取り温度T2aを設定し、巻取り温度分布T2(Y)の板幅方向の最大値T2(Max)からの許容誤差ΔT2を設定する(S10)。次に、仕上げ圧延機列4aを通過した鋼板8の板厚、通板速度(仕上げ圧延速度)および鋼板温度(仕上げ圧延温度)T1を、仕上げ圧延機列4aの最終圧延機4fの出側に設置した板厚計10および温度計9によりそれぞれ測定し、さらに、コイラー7の手前に設置した温度計9aにより、鋼板の板幅方向の巻取り温度分布T2(Y)(Yは板幅方向座標)を測定し(S20、S30、ステップ1)、これらの実績値を計算機の記憶部(図示省略)にそれぞれ取り込む。前記通板速度は、仕上げ圧延機列4aの最終圧延機4fのロール回転数に基づいて算出された値が前記計算機に実績値として取り込まれる。   FIG. 1 shows a flow of temperature control in the case of performing feedback control of the winding temperature, which is an example of the temperature control method of the embodiment of the present invention. First, the target winding temperature T2a of the steel plate 8 is set, and an allowable error ΔT2 from the maximum value T2 (Max) in the plate width direction of the winding temperature distribution T2 (Y) is set (S10). Next, the sheet thickness, the sheet passing speed (finish rolling speed), and the steel sheet temperature (finish rolling temperature) T1 of the steel plate 8 that has passed through the finish rolling mill row 4a are set to the exit side of the final rolling mill 4f in the finish rolling mill row 4a. Measured by the installed thickness gauge 10 and the thermometer 9, respectively, and further by a thermometer 9a installed in front of the coiler 7, the winding temperature distribution T2 (Y) in the sheet width direction of the steel sheet (Y is a coordinate in the sheet width direction) ) Are measured (S20, S30, step 1), and these actual values are taken into the storage unit (not shown) of the computer. As for the sheet feeding speed, a value calculated based on the number of roll rotations of the final rolling mill 4f of the finish rolling mill row 4a is taken into the calculator as an actual value.

次に、前記板幅方向の巻取り温度分布T2(Y)の実績値T2m(Y)および巻取り温度T2の許容誤差ΔT2とから、前記の(1)式を用いて、スケール生成や平坦度不良による温度異常が発生していない健全部の板幅方向の部位を抽出する(S40、ステップ2)。そして、前記の(2)式を用いて、健全部の板幅方向の平均温度T2(Fair)を算出する(S50、ステップ3)。次に、目標巻取り温度T2aと、前記健全部の平均温度T2(Fair)との差が、目標巻取り温度T2aの許容温度範囲ΔT2a内に収まっているかどうかを判定し(S60)、許容温度範囲ΔT2a内に収まっていない場合には、セットアップ制御(図5参照)によって設定された水冷帯5の水冷バルブのON/OFF数を修正する制御を行なう(S70)。そして、板厚、通板速度および鋼板温度(T1)の実績値(T1=T1m)(S20)および修正した注水バンクの水冷バルブのON/OFF数(S70)に基づいて、鋼板温度モデル(水冷帯5での鋼板8の温度履歴を予測する温度モデル)を用いて、巻取り温度T2を再度計算する(S80)。この巻取り温度T2の計算値T2cと目標巻取り温度T2aとの差(abs(T2a−T2c))が許容温度範囲ΔT2aに収まっているかどうかを再度判定する(S90)。許容温度範囲ΔT2a内に収まっていない場合には、水冷帯5の水冷バルブのON/OFF数を再修正し、S70〜S90を繰り返す。許容温度範囲ΔT2a内に収まった場合には、当該制御タイミングでのフィードバック制御を終了する。   Next, based on the actual value T2m (Y) of the winding temperature distribution T2 (Y) in the sheet width direction and the allowable error ΔT2 of the winding temperature T2, the above formula (1) is used to generate scale and flatness. A part in the plate width direction of the healthy part in which the temperature abnormality due to the defect does not occur is extracted (S40, step 2). And the average temperature T2 (Fair) of the board | plate width direction of a healthy part is calculated using said (2) Formula (S50, step 3). Next, it is determined whether the difference between the target winding temperature T2a and the average temperature T2 (Fair) of the healthy part is within the allowable temperature range ΔT2a of the target winding temperature T2a (S60). If not within the range ΔT2a, control is performed to correct the ON / OFF number of the water cooling valve of the water cooling zone 5 set by the setup control (see FIG. 5) (S70). Then, based on the actual value (T1 = T1m) (S20) of the plate thickness, plate passing speed and steel plate temperature (T1) and the ON / OFF number (S70) of the water cooling valve of the corrected water injection bank, the steel plate temperature model (water cooling Using the temperature model that predicts the temperature history of the steel plate 8 in the band 5, the winding temperature T2 is calculated again (S80). It is determined again whether the difference (abs (T2a−T2c)) between the calculated value T2c of the winding temperature T2 and the target winding temperature T2a is within the allowable temperature range ΔT2a (S90). If not within the allowable temperature range ΔT2a, the number of ON / OFF of the water cooling valve in the water cooling zone 5 is corrected again, and S70 to S90 are repeated. When it falls within the allowable temperature range ΔT2a, the feedback control at the control timing is terminated.

前記巻取り温度T2の板幅方向の最大値T2(Max)からの許容誤差(許容温度誤差)ΔT2は、目標巻取り温度T2aの許容温度範囲ΔT2aよりも小さく設定する必要がある。一例として、目標巻取り温度T2aの許容温度範囲ΔT2aが±20℃、すなわち40℃のときに、板幅方向の温度の最大値T2(Max)からの許容誤差ΔT2を前記許容温度範囲ΔT2aの2倍の80℃に設定した場合に、図1に示したフィ−ドバック制御を巻取り温度制御に適用した結果を図2(a)および(b)に示す。スケール生成(図10)や平坦度不良(図11(a)、(b))によって発生した温度の異常部を検出してフィードバック制御する場合、従来の、板幅方向の中央部など1箇所の温度に基づいてフィードバック制御した場合(図12(a)および(b)参照)よりも目標温度範囲ΔT2a内に早く到達して制御精度は向上しているが、前記温度異常部を検出した後に、軽度の温度ハンチングが認められる。なお、横軸の制御周期は、1〜10Hz程度である。   The allowable error (allowable temperature error) ΔT2 from the maximum value T2 (Max) in the sheet width direction of the winding temperature T2 needs to be set smaller than the allowable temperature range ΔT2a of the target winding temperature T2a. As an example, when the allowable temperature range ΔT2a of the target winding temperature T2a is ± 20 ° C., that is, 40 ° C., the allowable error ΔT2 from the maximum value T2 (Max) of the temperature in the plate width direction is set to 2 of the allowable temperature range ΔT2a. FIGS. 2A and 2B show the results of applying the feedback control shown in FIG. 1 to the winding temperature control when the temperature is set to double the 80 ° C. FIG. When detecting an abnormal part of the temperature generated by scale generation (FIG. 10) or poor flatness (FIGS. 11 (a) and 11 (b)) and performing feedback control, the conventional central part in the plate width direction, etc. Control accuracy is improved by reaching the target temperature range ΔT2a earlier than when feedback control is performed based on temperature (see FIGS. 12A and 12B), but after detecting the temperature abnormal portion, Mild temperature hunting is observed. The control cycle on the horizontal axis is about 1 to 10 Hz.

これに対し、前記許容誤差ΔT2を巻取り温度の許容温度範囲ΔT2aよりも小さいΔT2=30℃に設定して、図1に示したフィ−ドバック制御を、実施形態の巻取り温度制御に適用した結果を図3(a)および(b)に示す。図3(a)および(b)から、スケール生成、平坦度不良のいずれの場合も温度異常部を検出した後、巻取り温度の実測値T2(Fair)は速やかに許容温度範囲ΔT2a(±20℃)内に収束し、巻取り温度T2の計算値T2cと実測値T2(Fair)はよく一致し、図1に示したフィ−ドバック制御により、水冷バルブが適正にON/OFF制御されており、本発明の有効性が確認された。   On the other hand, the allowable error ΔT2 is set to ΔT2 = 30 ° C. smaller than the allowable temperature range ΔT2a of the winding temperature, and the feedback control shown in FIG. 1 is applied to the winding temperature control of the embodiment. The results are shown in FIGS. 3 (a) and (b). 3 (a) and 3 (b), after detecting the temperature abnormal portion in both cases of scale generation and poor flatness, the measured value T2 (Fair) of the coiling temperature is quickly determined to be within the allowable temperature range ΔT2a (± 20 The calculated value T2c of the coiling temperature T2 and the measured value T2 (Fair) are in good agreement, and the water cooling valve is appropriately ON / OFF controlled by the feedback control shown in FIG. The effectiveness of the present invention was confirmed.

なお、前記の(1)式および(2)式を用いて算出した健全部の板幅方向の平均温度Tp(Fair)は、巻取り温度に限定して適用されるものではなく、例えば、水冷帯5の中間温度計9bの位置における鋼板温度に適用することが可能である。また、この平均温度Tp(Fair)は、熱延鋼板のみならず、厚鋼板の制御冷却過程における鋼板温度に適用することも可能である。   The average temperature Tp (Fair) in the plate width direction of the healthy part calculated using the above equations (1) and (2) is not limited to the coiling temperature. It is possible to apply to the steel plate temperature at the position of the intermediate thermometer 9b of the band 5. Further, this average temperature Tp (Fair) can be applied not only to the hot-rolled steel sheet but also to the steel sheet temperature in the controlled cooling process of the thick steel sheet.

実施形態の温度制御の流れを示す説明図である。It is explanatory drawing which shows the flow of the temperature control of embodiment. (a)温度異常部(スケール生成部)が含まれる場合の巻取り温度制御時の鋼板の温度推移を示す説明図である(許容誤差ΔT2=80℃の場合)。(b)温度異常部(平坦度不良部)が含まれる場合の巻取り温度制御時の鋼板の温度推移を示す説明図である(許容誤差ΔT2=80℃の場合)。(A) It is explanatory drawing which shows the temperature transition of the steel plate at the time of coiling temperature control in case an abnormal temperature part (scale production | generation part) is included (when allowable error (DELTA) T2 = 80 degreeC). (B) It is explanatory drawing which shows the temperature transition of the steel plate at the time of coiling temperature control in case an abnormal temperature part (flatness defect part) is included (when allowable error (DELTA) T2 = 80 degreeC). (a)温度異常部(スケール生成部)が含まれる場合の巻取り温度制御時の鋼板の温度推移を示す説明図である(許容誤差ΔT2=30℃の場合)。(b)温度異常部(平坦度不良部)が含まれる場合の巻取り温度制御時の鋼板の温度推移を示す説明図である(許容誤差ΔT2=30℃の場合)。(A) It is explanatory drawing which shows the temperature transition of the steel plate at the time of coiling temperature control in case an abnormal temperature part (scale production | generation part) is included (when allowable error (DELTA) T2 = 30 degreeC). (B) It is explanatory drawing which shows the temperature transition of the steel plate at the time of coiling temperature control in case an abnormal temperature part (flatness defect part) is included (in the case of allowable error (DELTA) T2 = 30 degreeC). 熱延ミルの仕上げ圧延機以降の冷却および巻取り設備を模式的に示す説明図である。It is explanatory drawing which shows typically the cooling and winding equipment after the finishing rolling mill of a hot rolling mill. 一般的な巻取り温度のセットアップ制御方法を示す説明図である。It is explanatory drawing which shows the setup control method of a general winding temperature. 一般的な巻取り温度のフィードフォワード制御方法を示す説明図である。It is explanatory drawing which shows the feedforward control method of a general coiling temperature. 一般的な巻取り温度のフィードバック制御方法を示す説明図である。It is explanatory drawing which shows the general feedback control method of coiling temperature. フィードバック制御を行なった巻取り温度(T2)の推移の一例を模式的に示す説明図である(制御ゲインが大きい場合)。It is explanatory drawing which shows typically an example of transition of coiling temperature (T2) which performed feedback control (when control gain is large). フィードバック制御を行なった巻取り温度(T2)の推移の一例を模式的に示す説明図である(適正ゲインの場合)。It is explanatory drawing which shows typically an example of transition of winding temperature (T2) which performed feedback control (in the case of an appropriate gain). スケールの生成により低温部が発生した鋼板の板幅方向の温度分布を模式的に示す説明図である。It is explanatory drawing which shows typically the temperature distribution of the board width direction of the steel plate which the low temperature part generate | occur | produced by the production | generation of the scale. (a)、(b)平坦度不良により水溜まりが発生した場合の鋼板の板幅方向の温度分布を模式的に示す説明図である。(A), (b) It is explanatory drawing which shows typically the temperature distribution of the sheet width direction of the steel plate when a water pool generate | occur | produces by the flatness defect. 温度異常部が含まれる場合の従来技術の巻取り温度制御時の鋼板の温度推移を模式的に示す説明図である。It is explanatory drawing which shows typically the temperature transition of the steel plate at the time of coiling temperature control of a prior art in case an abnormal temperature part is included.

符号の説明Explanation of symbols

1:加熱炉 2:スラブ 3:粗圧延機
3a:粗圧延機列 4、4f:仕上げ圧延機 4a:仕上げ圧延機列
5:水冷帯 6:ホットランテーブル 7:コイラー
8:鋼板 9、9a、9b:温度計 10:板厚計
1: Heating furnace 2: Slab 3: Rough rolling mill 3a: Rough rolling mill row 4, 4f: Finish rolling mill 4a: Finish rolling mill row 5: Water cooling zone 6: Hot run table 7: Coiler 8: Steel plates 9, 9a, 9b : Thermometer 10: Thickness gauge

Claims (2)

熱間圧延終了後の鋼板を冷却ゾーンで冷却して巻取る過程での鋼板冷却における温度制御方法であって、前記温度制御方法が、冷却後の鋼板板幅方向の温度分布Tp(Y)(Yは板幅方向座標)を測定するステップ1と、測定した鋼板板幅方向の温度の最大値Tp(Max)と前記冷却後の鋼板温度Tpの前記最大値Tp(Max)からの許容誤差ΔTpを用いて、スケール生成や平坦度不良による温度異常が発生していない健全部の板幅方向の部位を、
Tp(Max)>Tp(Y)>Tp(Max)-ΔTp -----------------------(1)
となる温度範囲の部位とするステップ2と、前記健全部の板幅方向の平均温度Tp(Fair)を
Tp(Fair)=ΣTp(Y)ΔY(Fair)/ΣΔY(Fair) --------------(2)
とするステップ3とを備え、前記健全部の板幅方向の平均温度Tp(Fair)を前記温度制御における鋼板温度として用いることを特徴とする鋼板冷却における温度制御方法。
ここで、上記(2)式右辺のΣは健全部のみの和、ΔY(Fair)は各健全部の板幅、ΣΔY(Fair)は各健全部の板幅の総和を表す。
A temperature control method in steel plate cooling in the process of cooling and winding the steel plate after hot rolling in a cooling zone, wherein the temperature control method is a temperature distribution Tp (Y) in the steel plate width direction after cooling ( Y is a plate width direction coordinate), and a tolerance ΔTp from the measured maximum value Tp (Max) of the temperature in the steel plate width direction and the maximum value Tp (Max) of the steel plate temperature Tp after cooling. Using, the site in the plate width direction of the healthy part where temperature abnormality due to scale generation and flatness failure has not occurred,
Tp (Max)> Tp (Y)> Tp (Max) -ΔTp ----------------------- (1)
Step 2 where the temperature range is such that the average temperature Tp (Fair) in the plate width direction of the healthy portion is Tp (Fair) = ΣTp (Y) ΔY (Fair) / ΣΔY (Fair) ----- --------- (2)
The temperature control method in the steel plate cooling comprising the step 3 in which the average temperature Tp (Fair) in the plate width direction of the healthy part is used as the steel plate temperature in the temperature control.
Here, Σ on the right side of the above equation (2) represents the sum of only the healthy portions, ΔY (Fair) represents the plate width of each healthy portion, and ΣΔY (Fair) represents the sum of the plate widths of each healthy portion.
前記鋼板温度が巻取り温度であり、前記鋼板温度Tpの許容誤差ΔTpを、巻取り温度T2の許容温度範囲ΔT2aよりも小さく設定することを特徴とする請求項1に記載の鋼板冷却における温度制御方法。   2. The temperature control in steel plate cooling according to claim 1, wherein the steel plate temperature is a coiling temperature, and an allowable error ΔTp of the steel plate temperature Tp is set to be smaller than an allowable temperature range ΔT2a of the coiling temperature T2. Method.
JP2007023414A 2007-02-01 2007-02-01 Temperature control method in cooling of steel sheet Pending JP2008188604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023414A JP2008188604A (en) 2007-02-01 2007-02-01 Temperature control method in cooling of steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023414A JP2008188604A (en) 2007-02-01 2007-02-01 Temperature control method in cooling of steel sheet

Publications (1)

Publication Number Publication Date
JP2008188604A true JP2008188604A (en) 2008-08-21

Family

ID=39749210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023414A Pending JP2008188604A (en) 2007-02-01 2007-02-01 Temperature control method in cooling of steel sheet

Country Status (1)

Country Link
JP (1) JP2008188604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149208B1 (en) 2009-07-24 2012-05-25 현대제철 주식회사 Device of preventing supercooling of the surface of the continuous casting slab
CN107107137A (en) * 2015-02-02 2017-08-29 东芝三菱电机产业系统株式会社 The snake control device of rolling line
JP2021020247A (en) * 2019-07-30 2021-02-18 株式会社神戸製鋼所 Processing device for temperature data of steel plate and processing method of temperature data of steel plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149208B1 (en) 2009-07-24 2012-05-25 현대제철 주식회사 Device of preventing supercooling of the surface of the continuous casting slab
CN107107137A (en) * 2015-02-02 2017-08-29 东芝三菱电机产业系统株式会社 The snake control device of rolling line
CN107107137B (en) * 2015-02-02 2018-12-18 东芝三菱电机产业系统株式会社 The snake control device of rolling line
JP2021020247A (en) * 2019-07-30 2021-02-18 株式会社神戸製鋼所 Processing device for temperature data of steel plate and processing method of temperature data of steel plate
JP7179426B2 (en) 2019-07-30 2022-11-29 株式会社神戸製鋼所 Steel plate temperature data processing device and steel plate temperature data processing method

Similar Documents

Publication Publication Date Title
JP5647917B2 (en) Control apparatus and control method
JP5217516B2 (en) Cooling control method in hot rolling and manufacturing method of hot rolled metal strip
JP6558060B2 (en) Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
KR100643373B1 (en) Method of controlling longitudinal direction temperature of thick hot-rolled steel plate
JP2008188604A (en) Temperature control method in cooling of steel sheet
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP2005270982A (en) Method for controlling cooling of material to be rolled in hot rolling
JP2006281258A (en) Device for automatically adjusting nonlinear model of coefficient of heat transfer in water cooling
JP2007069250A (en) Method for cooling hot-rolled steel sheet
TWI749347B (en) Rolling shape control apparatus
EP2933031B1 (en) Method for producing steel sheet
JP7017439B2 (en) Thick steel plate cooling method
CN115119503A (en) Control device of hot rolling production line
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JP2003293030A (en) Method for cooling steel plate
JP2010214432A (en) Apparatus for measuring surface temperature of thick steel plate and method of judging material of the same
JP2017001085A (en) Cooling control method for thick steel plate, cooling controller, manufacturing method, and manufacturing apparatus
JP2007130667A (en) Method for manufacturing thick steel plate with high flatness
JP3783396B2 (en) Cooling method for high temperature steel sheet
JP2006122987A (en) Cooling control apparatus and method for metallic sheet
KR100961355B1 (en) method and apparatus for calculating standing time of air cooling to support Controlled Rolling of TMCP
JP2003025008A (en) Control method for cooling metallic material to be rolled in hot rolling
JP3661668B2 (en) Metal plate manufacturing method and temperature control device
JP2861871B2 (en) Control method of winding temperature of hot rolled steel sheet