JP2007130667A - Method for manufacturing thick steel plate with high flatness - Google Patents
Method for manufacturing thick steel plate with high flatness Download PDFInfo
- Publication number
- JP2007130667A JP2007130667A JP2005326708A JP2005326708A JP2007130667A JP 2007130667 A JP2007130667 A JP 2007130667A JP 2005326708 A JP2005326708 A JP 2005326708A JP 2005326708 A JP2005326708 A JP 2005326708A JP 2007130667 A JP2007130667 A JP 2007130667A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- rolling
- thick steel
- plate
- δrc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Metal Rolling (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
この発明は,厚鋼板の圧延により得られる厚鋼板の形状,なかでも平坦度を有利に向上させるための厚鋼板の製造方法に関するものである。 The present invention relates to a method of manufacturing a thick steel plate for advantageously improving the shape of the thick steel plate obtained by rolling the thick steel plate, in particular, the flatness.
厚鋼板の圧延においては,圧延しようとする板の厚みが薄くなる後段のパスで平坦度の不良が発生し易く,該パスにおいては,形状調整パスと称して,後段の圧延機により平坦度不良が発生しないようにクラウン比率一定で,予め定めた圧下スケジュールにて圧延を行うが,実際の圧延では,圧延荷重,あるいはロールプロフィールの予測と実績とが誤差を生じるため,被圧延材の板クラウンが予測と異なってしまい,これに起因して平坦度不良が生じている。その対策として,ワークロールベンディングやペアクロス圧延等の形状制御手段を用いて,鋼板のプロフィルや圧延荷重の実績データに基づき,フィードバック制御やフィードフォワード制御によって平坦度不良を防止しようとする方法が提案されている(特許文献1)。 In the rolling of thick steel plates, flatness defects are likely to occur in the subsequent pass where the thickness of the plate to be rolled becomes thin. In this pass, the flatness failure is caused by a subsequent rolling mill called a shape adjustment pass. Rolling is performed at a predetermined reduction schedule with a constant crown ratio so that no rolling occurs, but in actual rolling, there is an error between the rolling load or roll profile prediction and actual results. Is different from the prediction, resulting in poor flatness. As a countermeasure, a method has been proposed in which shape control means such as work roll bending or pair-cross rolling is used to prevent poor flatness by feedback control or feedforward control based on the steel sheet profile and rolling load data. (Patent Document 1).
また,特許文献2には,圧延時の被圧延材の幅方向温度偏差に起因する熱収縮差異(冷却歪)を相殺するための,温度ならびに板クラウン測定装置,プロコン計算手法を用いた圧延方法が提案されている。
しかし,上記従来の方法では,以下のような問題が存在する。
特許文献1では,オンラインでの圧延中の幅方向の温度測定を行うために,パス間の極短い時間に温度の測定を行う必要があること,圧延直後ではロールによる冷却後,鋼板表面が十分復熱しておらず温度がばらつくこと,温度偏差は幅方向の極小さい領域に発生することから,測定温度の代表値と実際の温度分布とに差異が発生することが容易に想定できる。従ってオンラインにて実際の鋼板温度や板厚を測定し,それら実測値に基づいて鋼板に所望の歪を与えることは工業的に困難な面があった。
However, the conventional method has the following problems.
In Patent Document 1, in order to measure the temperature in the width direction during online rolling, it is necessary to measure the temperature in a very short time between passes. Since the temperature does not recuperate and the temperature varies and the temperature deviation occurs in a very small region in the width direction, it can be easily assumed that there is a difference between the representative value of the measured temperature and the actual temperature distribution. Therefore, it has been industrially difficult to measure the actual steel plate temperature and thickness on-line and to give a desired strain to the steel plate based on the actual measurement values.
また,特許文献2のような形状調整パス,特に最終パス近傍での大幅なクラウン比率の変更は,それまでの圧延形状履歴からの連続性の喪失から,当該パスにおける圧延形状を悪化させる場合があり,通板トラブルの原因につながる可能性があった。
In addition, a significant change in the crown ratio in the shape adjustment pass, particularly in the vicinity of the final pass, as in
さらに,圧延後に加速冷却制御を行う材料については,圧延時の実績によらず,予め決定された幅方向の温度制御パターンを行わざるを得ず,材料や予測モデル精度のばらつきによる圧延時の形状不良については対応できず,形状不良を助長する場合もあった。 In addition, for materials for which accelerated cooling control is performed after rolling, a temperature control pattern in the width direction determined in advance must be performed regardless of the results during rolling, and the shape during rolling due to variations in material and predicted model accuracy. In some cases, defects could not be dealt with, and shape defects were sometimes promoted.
本願発明は,上記の問題点を解決し,極力初期パススケジュールにて,幅方向温度偏差を考慮した狙い圧延形状を定めた上で形状を造り込むことにより,圧延〜冷却を経た厚板の最終平坦度を向上させることのできる厚鋼板の製造方法を提供することを目的とする。 The invention of the present application solves the above-mentioned problems, and in the initial pass schedule as much as possible, by defining the target rolling shape in consideration of the temperature deviation in the width direction, and building the shape, the final thickness of the thick plate after rolling to cooling It aims at providing the manufacturing method of the thick steel plate which can improve flatness.
上記の課題に対し,発明者らは,圧延後における被圧延材の幅方向温度分布から冷却後に生じる板内の残留応力を計算した結果,ほぼ鋼板の幅にのみ依存し,最終圧延で狙うべく圧延形状が変化することを見出した。この結果から,圧延前に厚鋼板の予定幅に応じてパススケジュールを修正し,狙い形状に向けてスムーズな圧延を実行することが可能となり,冷却後の製品の平坦度を顕著に向上できることを確認した。 In response to the above problem, the inventors calculated the residual stress in the plate after cooling from the temperature distribution in the width direction of the rolled material after rolling. As a result, the inventors depend on only the width of the steel plate and aim at the final rolling. It has been found that the rolling shape changes. From this result, it is possible to modify the pass schedule according to the planned width of the steel plate before rolling, and to perform smooth rolling toward the target shape, and to significantly improve the flatness of the product after cooling. confirmed.
すなわち,この発明は,平坦度の高い厚鋼板の製造方法であって,予め,製造する厚鋼板の予定幅毎に目標板クラウン比率変化量(ΔRc)を設定しておき,厚鋼板を製造する際に,厚鋼板の予定幅に応じて前記に従いΔRcを決定し,当該ΔRcを得ることのできる最終パスにおけるパススケジュール(圧下量)を設定し,当該パススケジュールに従って,圧延を実施することを特徴とする平坦度の高い厚鋼板の製造方法である。
ここで,
ΔRc:目標板クラウン比率変化量(=Rc2−Rc1)
Rc1:最終パス前の板クラウン比率(=(tc1−te1)/tc1)
Rc2:最終パス後の板クラウン比率(=(tc2−te2)/tc2)
tc1:最終パス前の板中央部板厚
te1:最終パス前の板エッヂ部板厚
tc2:最終パス後の板中央部板厚
te2:最終パス後の板エッヂ部板厚
That is, the present invention is a method of manufacturing a thick steel plate having high flatness, and sets a target plate crown ratio change amount (ΔRc) for each planned width of the thick steel plate to be manufactured, and manufactures the thick steel plate. In this case, ΔRc is determined according to the above in accordance with the planned width of the thick steel plate, a pass schedule (rolling amount) in the final pass that can obtain the ΔRc is set, and rolling is performed according to the pass schedule. It is a manufacturing method of a thick steel plate with high flatness.
here,
ΔRc: Target plate crown ratio change amount (= Rc2-Rc1)
Rc1: Plate crown ratio before final pass (= (tc1-te1) / tc1)
Rc2: Plate crown ratio after the final pass (= (tc2-te2) / tc2)
tc1: Plate thickness at the center of the plate before the final pass
te1: Board edge thickness before final pass
tc2: Plate thickness at the center of the plate after the final pass
te2: Board edge thickness after the final pass
被圧延材である厚鋼板の温度分布を考慮し,板幅毎に予め決定した目標クラウン比率変化量(ΔRc)に適応して当該厚鋼板の圧延を初期パスから実施することにより,複雑な計測演算機構なく,高能率で平坦度の優れた厚鋼板の製造を可能にする。 Taking into account the temperature distribution of the steel plate that is the material to be rolled, the measurement of complex steel is carried out by rolling the steel plate from the initial pass in accordance with the target crown ratio change (ΔRc) determined in advance for each plate width. Enables the production of thick steel plates with high efficiency and excellent flatness without a calculation mechanism.
この厚鋼板の製造方法において,前記圧延後,制御冷却を行う場合,前記圧延後の板クラウン量を測定し,当該測定したクラウン量に応じて鋼板の当該制御冷却の冷却方法を変更することにより,後工程の冷却制御での更なる残留応力制御と組み合わせても良い。 In the method of manufacturing a thick steel plate, when performing controlled cooling after the rolling, the amount of sheet crown after the rolling is measured, and the cooling method of the controlled cooling of the steel plate is changed according to the measured amount of crown. , It may be combined with further residual stress control in the cooling control of the post-process.
本発明の厚鋼板の製造方法は,圧延材である厚鋼板の幅端部の冷却による残留応力を考慮し,この残留応力が相殺される方向に圧延形状制御及び加速冷却制御を行うことで,冷却後に発生しうる平坦度不良を大幅に改善可能である。とりわけ高級品種で用いられる圧延〜加速冷却のプロセスにおいて極めて有効な発明であり,製品の品質向上に多大な効果が得られるだけでなく,冷間矯正等の精整工程の負荷も軽減し,需要家へ円滑に高品質の厚板製品を提供可能にするものである。 The method for producing a thick steel plate according to the present invention takes into account the residual stress due to cooling of the width end of the thick steel plate that is a rolled material, and performs rolling shape control and accelerated cooling control in a direction in which this residual stress is offset, It is possible to greatly improve the flatness defect that may occur after cooling. In particular, it is an extremely effective invention in the process of rolling to accelerated cooling used in high-grade varieties, which not only has a great effect on improving the quality of products, but also reduces the load of the refining process such as cold straightening, and demand It enables smooth provision of high-quality plank products to the home.
圧延形状の実績を,後工程の加速冷却装置へフィードフォワードし,加速冷却装置における幅冷却制御を施すことで圧延時に平坦度不良が発生した場合のリカバリーが容易に可能となる。即ち,クラウン比率変化量が想定よりも負側だった場合は,エッヂ部の温度を下げるためにエッヂマスクを退避させる方向に制御する。逆にΔRcが正側にずれていた場合は,エッヂマスクを出す側に制御しエッヂ部の温度を上げるように制御する。これら制御により厚鋼板の熱歪は減少方向に働く。 By feeding forward the results of the rolling shape to an accelerated cooling device in the subsequent process and performing width cooling control in the accelerated cooling device, it is possible to easily recover when a flatness defect occurs during rolling. That is, when the crown ratio change amount is more negative than expected, the edge mask is retracted in order to lower the temperature of the edge portion. Conversely, if ΔRc is shifted to the positive side, control is performed so that the edge mask is exposed and the temperature of the edge portion is increased. By these controls, the thermal strain of the thick steel plate works in a decreasing direction.
この発明では圧延材である厚鋼板の幅方向温度分布などを基に厚鋼板の冷却後の残留応力分布を予め推定し,この残留応力が相殺される形状に圧延を行うことから,オンラインでの測定時間ロス,測定ばらつきの影響を受けず,上述した冷却後の冷却歪みが低減し,平坦度を効果的に向上させることができる。 In this invention, the residual stress distribution after cooling the thick steel plate is estimated in advance based on the temperature distribution in the width direction of the thick steel plate, which is a rolled material, and rolling is performed in a shape that cancels this residual stress. Without being affected by measurement time loss and measurement variations, the cooling distortion after cooling described above can be reduced, and the flatness can be effectively improved.
以下に本発明を詳細に説明する。最終圧延パス終了後の厚鋼板の幅方向温度分布を調査した結果,板厚によらず幅方向中央部に比較して端部での温度降下が見られた。この厚鋼板が冷却後に付加される熱残留応力は次式(1)で表される。
σ=A(t,ΔT,W,ΔW) ・・・・(1)
ΔT=B(t,W,Tpass)
ΔW=C(t,W,Tpass)
ただし,
σ:残留応力
t:厚鋼板の板厚
ΔT:温度降下量
ΔW:温度降下幅(厚鋼板の中央部に対して温度が低いエッヂ部の区間(鋼板幅方向距離)である。)
W:圧延幅
Tpass:圧延時間
A,B,C:定数
The present invention is described in detail below. As a result of investigating the temperature distribution in the width direction of the thick steel plate after the end of the final rolling pass, a temperature drop at the end compared to the center in the width direction was seen regardless of the plate thickness. The thermal residual stress applied after cooling the thick steel plate is expressed by the following equation (1).
σ = A (t, ΔT, W, ΔW) (1)
ΔT = B (t, W, Tpass)
ΔW = C (t, W, Tpass)
However,
σ: Residual stress t: Thick steel plate thickness ΔT: Temperature drop ΔW: Temperature drop width (This is the section of the edge portion (steel plate width direction distance) where the temperature is lower than the central portion of the thick steel plate.)
W: Rolling width Tpass: Rolling time A, B, C: Constant
冷却後に上記(1)式で示される残留応力を発生させないためには,冷却前の厚鋼板が冷却歪を打ち消すような形状,すなわち上記σを打ち消す方向の圧延による残留応力を付加すればよい。そこで圧延の最終パスにおいて,ペアクロス等の形状制御手段を用いて圧延最終形状が残留応力を打ち消す残留応力となりうる形状に制御する。 In order not to generate the residual stress expressed by the above equation (1) after cooling, it is only necessary to add a shape in which the thick steel plate before cooling cancels the cooling strain, that is, the residual stress due to rolling in the direction to cancel the above-mentioned σ. Therefore, in the final pass of rolling, shape control means such as a pair cross is used to control the final shape of the rolling so that it can become a residual stress that cancels the residual stress.
被圧延材である厚鋼板の幅方向温度分布は事前にモデル計算結果から決定して整理した結果,最終パスにおける目標クラウン比率変化量(ΔRc)の実績と残留応力に起因する波高さについては図1に示す通り相関が見られた。なお,「波高さ」は,厚鋼板を平坦(水平)な箇所に置いた際に,最高点と最低点の高さ方向の差(mm)で示される。
ここで,
ΔRc:目標板クラウン比率変化量(=Rc2−Rc1)
Rc1:最終パス前の板クラウン比率(=(tc1−te1)/tc1)
Rc2:最終パス後の板クラウン比率(=(tc2−te2)/tc2)
tc1:最終パス前の板中央部板厚
te1:最終パス前の板エッヂ部板厚
tc2:最終パス後の板中央部板厚
te2:最終パス後の板エッヂ部板厚
The temperature distribution in the width direction of the steel plate, which is the material to be rolled, is determined and arranged in advance from the model calculation results. The results of the target crown ratio change (ΔRc) in the final pass and the wave height due to residual stress are As shown in FIG. The “wave height” is indicated by the difference (mm) in the height direction between the highest point and the lowest point when a thick steel plate is placed in a flat (horizontal) location.
here,
ΔRc: Target plate crown ratio change amount (= Rc2-Rc1)
Rc1: Plate crown ratio before final pass (= (tc1-te1) / tc1)
Rc2: Plate crown ratio after the final pass (= (tc2-te2) / tc2)
tc1: Plate thickness at the center of the plate before the final pass
te1: Board edge thickness before final pass
tc2: Plate thickness at the center of the plate after the final pass
te2: Board edge thickness after the final pass
従ってクラウン比率一定圧延(クラウン比率の変化=0)とは異なり,最終パスにおいて意図的に適確なクラウン比率変化を付与することで波形状の改善が図れることの有効性を知見した。 Therefore, it was found that, unlike rolling with a constant crown ratio (change in crown ratio = 0), the wave shape can be improved by intentionally applying an appropriate crown ratio change in the final pass.
被圧延材である厚鋼板の鋼板幅別に最終パスにおけるΔRcと波高さとの関係を整理したのが図2である。図2からもわかるように鋼板幅によりΔRcと波高さの発生形態との関係には大きな差異がある。鋼板幅が4000mmの場合,波高さの低い領域が狭く,2000mmではその領域が広い。即ち,鋼板幅の広いものの方が最終パスにおけるパススケジュールの予測精度が厳しいことを示しており,逆に鋼板幅が狭い方は多少予測精度が悪くても波高さが低く済むことが示されている。また,ΔRcの狙い値は鋼板幅4000mmでは,−0.025(×10−2)であるが,鋼板幅2000mmでは,−0.06(×10−2)近辺である。このように目標とするΔRcは,鋼板幅によって変化する。 FIG. 2 shows the relationship between ΔRc and the wave height in the final pass according to the steel plate width of the thick steel plate that is the material to be rolled. As can be seen from FIG. 2, there is a large difference in the relationship between ΔRc and the wave height generation mode depending on the steel plate width. When the steel plate width is 4000mm, the region with low wave height is narrow, and at 2000mm, the region is wide. In other words, the wider steel plate width indicates that the prediction accuracy of the pass schedule in the final pass is stricter. Conversely, the narrower steel plate width indicates that the wave height is lower even if the prediction accuracy is somewhat worse. Yes. Further, the target value of ΔRc is the steel plate width 4000 mm, is a -0.025 (× 10 -2), the steel plate width 2000 mm, is around -0.06 (× 10 -2). Thus, the target ΔRc varies depending on the steel plate width.
次に圧延後に行われる制御冷却について説明する。
高強度ならびに高靭性が要求される素材では圧延後,オンラインで加速冷却を行う。最近の加速冷却装置には,幅方向水量制御装置(例えばエッジマスク機構)が設置されており,幅方向に冷却中に温度偏差を付与し,残留応力を付与することが可能である(図3)。図3中の1は圧延材である厚鋼板,2はエッジマスク,3は水スプレーヘッダーである。
Next, control cooling performed after rolling will be described.
For materials that require high strength and high toughness, accelerated cooling is performed online after rolling. A recent acceleration cooling device is provided with a width direction water amount control device (for example, an edge mask mechanism), which can apply a temperature deviation during cooling in the width direction and apply a residual stress (FIG. 3). ). In FIG. 3, 1 is a thick steel plate as a rolled material, 2 is an edge mask, and 3 is a water spray header.
圧延後の厚鋼板における実際に測定された温度偏差,および実績のクラウン比率変化を考慮し,更に残留応力σを低減する方向にエッジマスクを制御することでこのような高級素材においても圧延から冷却を通じて残留応力の小さい,平坦度の優れた厚鋼板の製造を可能とする。 Considering the actually measured temperature deviation in the steel plate after rolling and the actual change in crown ratio, and controlling the edge mask in a direction to reduce the residual stress σ, even such high-grade materials can be cooled from rolling. Through this, it is possible to manufacture thick steel plates with low residual stress and excellent flatness.
図4は,本願発明の実施例に従う圧延を行うためのプロセスの説明図である。図4では,形状制御手段にペアクロス装置を適用し,加速冷却装置にエッジマスクを備えた装置を用いている。 FIG. 4 is an explanatory diagram of a process for performing rolling according to an embodiment of the present invention. In FIG. 4, a pair cross device is applied to the shape control means, and a device provided with an edge mask is used as the acceleration cooling device.
図4中,11は被圧延材である厚鋼板,12はワークロール,13はエッジマスク,14は温度計である。圧延開始前に,厚鋼板11の鋼板幅に応じて目標クラウン比率変化量(ΔRc)をプロセスコンピューター15にて求め,それに従った圧下パススケジュールを同プロセスコンピューター15にて設定する。当該スケジュールに応じたワークロール12のクロス角をパスの都度設定し,スケジュールに極力沿った圧延を実施する。圧延後に加速冷却を実施する材料(厚鋼板11)については,圧延後のクラウン実績及び温度実績から,エッジマスク13の必要制御量をプロセスコンピュータ16にて決定し,エッジマスク13による必要マスク量をセットした。
In FIG. 4, 11 is a thick steel plate as a material to be rolled, 12 is a work roll, 13 is an edge mask, and 14 is a thermometer. Before starting rolling, a target crown ratio change amount (ΔRc) is obtained by the
図5は,本願発明の実施例を適用した場合と従来のクラウン比率一定での圧延方法を適用した場合における,波高さの分布について比較したものである。本願発明の実施例によれば従来と比較して大幅に波高さが低減化されている。その結果,図6に示すように本願発明の実施例による厚鋼板は,従来材に比較し,冷間矯正工程を付与することなく製造が可能なことが分かる。 FIG. 5 compares the wave height distribution when the embodiment of the present invention is applied and when the conventional rolling method with a constant crown ratio is applied. According to the embodiment of the present invention, the wave height is greatly reduced as compared with the prior art. As a result, as shown in FIG. 6, it can be seen that the thick steel plate according to the embodiment of the present invention can be manufactured without applying the cold straightening process as compared with the conventional material.
以上この発明を,形状制御手段としてペアクロス装置を用いた例を示したが,この発明ではペアクロス装置に限定するものではなく,例えばロールベンディング装置,ロールシフト装置等,他の制御手段を用いても良い。また加速冷却装置における幅方向水量制御機構についても,エッジマスク以外の装置で水量クラウン機構を用いても良いことは言うまでもない。 Although the present invention has been described with reference to an example in which a pair cross device is used as the shape control means, the present invention is not limited to the pair cross device, and other control means such as a roll bending device and a roll shift device may be used. good. Further, it goes without saying that the water amount crown mechanism may be used in a device other than the edge mask for the width direction water amount control mechanism in the acceleration cooling device.
本発明は,厚鋼板の圧延に適用できる。 The present invention can be applied to the rolling of thick steel plates.
1 厚鋼板
2 エッジマスク
3 水スプレーヘッダー
11 被圧延材(厚鋼板)
12 ワークロール
13 エッヂマスク
14 温度計
15,16 プロセスコンピューター
1
12
Claims (2)
予め,製造する厚鋼板の予定幅毎に目標板クラウン比率変化量(ΔRc)を設定しておき,
厚鋼板を製造する際に,厚鋼板の予定幅に応じて前記に従いΔRcを決定し,
当該ΔRcを得ることのできるパススケジュールを設定し,当該パススケジュールに従って,圧延を実施することを特徴とする平坦度の高い厚鋼板の製造方法。
ここで,
ΔRc:目標板クラウン比率変化量(=Rc2−Rc1)
Rc1:最終パス前の板クラウン比率(=(tc1−te1)/tc1)
Rc2:最終パス後の板クラウン比率(=(tc2−te2)/tc2)
tc1:最終パス前の板中央部板厚
te1:最終パス前の板エッヂ部板厚
tc2:最終パス後の板中央部板厚
te2:最終パス後の板エッヂ部板厚 A method for producing a thick flat steel plate,
The target plate crown ratio change amount (ΔRc) is set in advance for each planned width of the steel plate to be manufactured,
When manufacturing the steel plate, ΔRc is determined according to the above according to the planned width of the steel plate,
A method of manufacturing a thick steel plate having high flatness, wherein a pass schedule capable of obtaining the ΔRc is set and rolling is performed according to the pass schedule.
here,
ΔRc: Target plate crown ratio change amount (= Rc2-Rc1)
Rc1: Plate crown ratio before final pass (= (tc1-te1) / tc1)
Rc2: Plate crown ratio after the final pass (= (tc2-te2) / tc2)
tc1: Plate thickness at the center of the plate before the final pass
te1: Board edge thickness before final pass
tc2: Plate thickness at the center of the plate after the final pass
te2: Board edge thickness after the final pass
前記圧延後,制御冷却を行う場合,前記圧延後の板クラウン量を測定し,当該測定したクラウン量に応じて鋼板の当該制御冷却の冷却方法を変更することを特徴とする平坦度の高い厚鋼板の製造方法。 In the manufacturing method of the thick steel plate of Claim 1,
When performing controlled cooling after the rolling, the sheet crown amount after the rolling is measured, and the cooling method of the controlled cooling of the steel sheet is changed according to the measured crown amount. A method of manufacturing a steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005326708A JP4669376B2 (en) | 2005-11-10 | 2005-11-10 | Manufacturing method of thick steel plate with high flatness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005326708A JP4669376B2 (en) | 2005-11-10 | 2005-11-10 | Manufacturing method of thick steel plate with high flatness |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007130667A true JP2007130667A (en) | 2007-05-31 |
JP4669376B2 JP4669376B2 (en) | 2011-04-13 |
Family
ID=38152742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005326708A Expired - Fee Related JP4669376B2 (en) | 2005-11-10 | 2005-11-10 | Manufacturing method of thick steel plate with high flatness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4669376B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010214438A (en) * | 2009-03-18 | 2010-09-30 | Jfe Steel Corp | Material-quality assurance equipment for thick steel plate |
JP2010214376A (en) * | 2009-03-13 | 2010-09-30 | Jfe Steel Corp | Temperature assurance system for thick steel plate, and method for manufacturing thick steel plate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63101014A (en) * | 1986-10-16 | 1988-05-06 | Nkk Corp | Rolling method for thick plate |
JPH0615321A (en) * | 1992-06-30 | 1994-01-25 | Kawasaki Steel Corp | Shape control method in thick plate rolling |
JPH0966308A (en) * | 1995-09-01 | 1997-03-11 | Kobe Steel Ltd | Thick plate rolling method |
JP2003326304A (en) * | 2002-05-14 | 2003-11-18 | Kobe Steel Ltd | Method for deciding condition setting of rolling pass in reversing rolling mill |
-
2005
- 2005-11-10 JP JP2005326708A patent/JP4669376B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63101014A (en) * | 1986-10-16 | 1988-05-06 | Nkk Corp | Rolling method for thick plate |
JPH0615321A (en) * | 1992-06-30 | 1994-01-25 | Kawasaki Steel Corp | Shape control method in thick plate rolling |
JPH0966308A (en) * | 1995-09-01 | 1997-03-11 | Kobe Steel Ltd | Thick plate rolling method |
JP2003326304A (en) * | 2002-05-14 | 2003-11-18 | Kobe Steel Ltd | Method for deciding condition setting of rolling pass in reversing rolling mill |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010214376A (en) * | 2009-03-13 | 2010-09-30 | Jfe Steel Corp | Temperature assurance system for thick steel plate, and method for manufacturing thick steel plate |
JP2010214438A (en) * | 2009-03-18 | 2010-09-30 | Jfe Steel Corp | Material-quality assurance equipment for thick steel plate |
Also Published As
Publication number | Publication date |
---|---|
JP4669376B2 (en) | 2011-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021536063A (en) | Methods and electronic devices for monitoring the manufacture of metal products, related computer programs and equipment | |
JP2002153909A (en) | Method and device for measuring and/or controlling flatness and flatness control system | |
JP2007144484A (en) | Multi roll mill and method for controlling multi roll mill | |
JP2016078057A (en) | Slab camber suppression method, camber suppression device, and slab guiding device | |
US20230118015A1 (en) | Method Of Controlling Flatness Of Strip Of Rolled Material, Control System And Production Line | |
JP4669376B2 (en) | Manufacturing method of thick steel plate with high flatness | |
WO2024105996A1 (en) | Method for predicting width of rough rolled material, method for controlling width of rough rolled material, method for producing hot-rolled steel sheet, and method for generating width prediction model for rough rolled material | |
JP4986463B2 (en) | Shape control method in cold rolling | |
JP2005153011A (en) | Method for predicting metallic sheet shape and method for manufacturing metallic sheet | |
JP2010149156A (en) | Method for predictive calculation of roll crown of work roll | |
JP5262763B2 (en) | Method for controlling tip warpage of rolled material | |
JP6569691B2 (en) | Manufacturing method of unequal side unequal thickness angle steel | |
JP2012081493A (en) | Metal plate thickness control method and metal plate manufacturing method | |
JP2013046927A (en) | Method for cooling hot rolled steel sheet | |
JP6658457B2 (en) | Thick steel plate manufacturing method and rolling pass schedule setting method | |
JP2008188604A (en) | Temperature control method in cooling of steel sheet | |
EP2933031B1 (en) | Method for producing steel sheet | |
JP2003311326A (en) | Steel plate manufacturing method | |
JP2006239727A (en) | Method for rolling hot-rolled steel sheet | |
JP4102267B2 (en) | Sheet width control method in cold tandem rolling | |
JPH06218422A (en) | Method for cooling h shaped steel | |
JP2003205306A (en) | Method for manufacturing steel plate | |
JP6743835B2 (en) | Method for rolling shaped steel and method for adjusting leveling amount in rolling shaped steel | |
JP2005319492A (en) | Method for controlling shape in cold rolling | |
JP6551282B2 (en) | Hot finish rolling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4669376 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |