JP6569691B2 - Manufacturing method of unequal side unequal thickness angle steel - Google Patents

Manufacturing method of unequal side unequal thickness angle steel Download PDF

Info

Publication number
JP6569691B2
JP6569691B2 JP2017014945A JP2017014945A JP6569691B2 JP 6569691 B2 JP6569691 B2 JP 6569691B2 JP 2017014945 A JP2017014945 A JP 2017014945A JP 2017014945 A JP2017014945 A JP 2017014945A JP 6569691 B2 JP6569691 B2 JP 6569691B2
Authority
JP
Japan
Prior art keywords
rolled
unequal
shape
bending deformation
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017014945A
Other languages
Japanese (ja)
Other versions
JP2018122319A (en
Inventor
顕一 大須賀
顕一 大須賀
上岡 悟史
悟史 上岡
木村 幸雄
幸雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017014945A priority Critical patent/JP6569691B2/en
Publication of JP2018122319A publication Critical patent/JP2018122319A/en
Application granted granted Critical
Publication of JP6569691B2 publication Critical patent/JP6569691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、不等辺不等厚山形鋼の製造方法に関する。   The present invention relates to a method for producing unequal side unequal thick angle steel.

従来の不等辺不等厚山形鋼の製造過程での冷却中に発生する曲がりや反りの制御方法としては、短辺と長辺を別々に冷却することで熱収縮量を制御する方法が挙げられる(例えば、特許文献1参照)。また、不等辺不等厚山形鋼は、断面形状が非対称であって、圧延部位によって圧下率が異なり、延伸量に差が生じることから、冷却中以外の圧延中にも反りや曲がりが発生し搬送不良や品質不良が発生する。このような反りや曲がりについては、圧延機に付属するガイドにより拘束や矯正を加えることで制御する方法が挙げられる(例えば、特許文献2、3参照)。   As a method for controlling the bending and warping generated during cooling in the manufacturing process of conventional unequal side unequal thick angle steel, there is a method of controlling the amount of heat shrinkage by separately cooling the short side and the long side. (For example, refer to Patent Document 1). In addition, unequal side unequal thickness angle steel has an asymmetrical cross-sectional shape, and the rolling ratio varies depending on the rolling site, resulting in a difference in the amount of stretching, so warping and bending occur during rolling other than during cooling. A conveyance defect or quality defect occurs. Such warpage and bending can be controlled by adding restraint or correction with a guide attached to the rolling mill (for example, see Patent Documents 2 and 3).

上記の特許文献1では、仕上圧延前に短辺はAr温度以上、長辺はAr温度以下となるように冷却を制御し、仕上圧延後の冷却中に発生する変態膨張を利用することで両辺の熱収縮量差を抑えて曲がりを抑制できるとしている。しかし、製品の仕様によっては、このような温度域で圧延を終了できないものも存在するため、適用範囲は制限されてしまう。また、長手方向における温度不均一による形状不良についての対策は示されておらず、この形状不良を解消するために、オフラインでのプレス加工による矯正(以下、単にプレス矯正と記す)の負荷がかかっているという問題点があった。 In the above-mentioned Patent Document 1, cooling is controlled so that the short side is not less than Ar 3 temperature and the long side is not more than Ar 1 temperature before finish rolling, and the transformation expansion generated during cooling after finish rolling is used. It is said that bending can be suppressed by suppressing the difference in heat shrinkage between the two sides. However, depending on the specifications of the product, there are some that cannot be rolled in such a temperature range, so the applicable range is limited. In addition, no countermeasures against shape defects due to temperature non-uniformity in the longitudinal direction are shown, and in order to eliminate the shape defects, a load of correction by offline press processing (hereinafter simply referred to as press correction) is applied. There was a problem that.

一方、上記の特許文献2では、圧延中や矯正前後に形状測定を行い、圧延機出側拘束ガイドや矯正機の設定を最適化することで、曲がりや寸法精度の優れた形鋼を製造する方法が示されている。そして、圧延機出側拘束ガイドの調整は、長手端部の局所的な曲がりの抑制に有効とされ、全体曲がりについては、形状測定の結果を用いた矯正機設定の最適化によって抑制できるとしている。しかしながら、この文献に記載の技術では、ユニバーサル圧延によって製造されるH形鋼、I形鋼、溝形鋼のような断面形状の対称性が高いものを対象としており、断面形状が非対称な不等辺不等厚山形鋼は対象としていない。H形鋼、I形鋼、溝形鋼は、二台の矯正機で上下、左右方向に繰り返し曲げ戻し矯正を施すことが可能であるため、矯正機による形状制御をしやすいが、断面形状が非対称な不等辺不等厚山形鋼では、矯正機の設定の最適化のみで曲がり等を抑制することは難しい。   On the other hand, in the above-mentioned Patent Document 2, a shape steel having excellent bending and dimensional accuracy is manufactured by measuring the shape during rolling and before and after straightening and optimizing the setting of the rolling mill exit side restraint guide and straightening machine. The method is shown. And the adjustment of the rolling mill exit side restraint guide is effective in suppressing local bending of the longitudinal end, and the overall bending can be suppressed by optimizing the setting of the straightening machine using the result of shape measurement. . However, the technique described in this document is intended for high cross-sectional symmetry such as H-shaped steel, I-shaped steel, and groove-shaped steel manufactured by universal rolling, and the unequal sides with asymmetrical cross-sectional shapes. Unequal thick angle steel is not included. H-shaped steel, I-shaped steel, and grooved steel can be repeatedly bent back and forth with two straightening machines in the vertical and horizontal directions, making it easy to control the shape with the straightening machine. With an asymmetric unequal unequal thickness steel, it is difficult to suppress bending and the like only by optimizing the setting of the straightening machine.

また、上記の特許文献3でも、同様の手法で曲がりを制御する方法が示されており、断面形状が非対称な不等辺山形鋼や軌条などを対象としている。これらの形鋼製品は、圧延時の圧下率が幅方向で不均一であるために、被圧延材に反りや曲がりが生じて搬送不良を招く場合があることから、圧延条件やサイドガイドの設定の調整で圧延中の搬送性を向上できるとしている。この文献に記載の技術では、圧延変形予測モデルから曲がり量を求め、圧延条件やサイドガイドの位置の最適値を設定することで曲がりを制御できるとしている。この圧延変形予測モデルは、圧延条件に関する設定値や圧延ロール間隔や回転数、サイドガイドの位置などの測定値をもとに構成されている。この文献に記載の方法は、非対称な断面形状を持つ形鋼に適用でき、圧延中の搬送性を高めて、長手の形状の均一化を可能にする。   Also, in the above-mentioned Patent Document 3, a method of controlling the bending by the same technique is shown, and the object is an unequal angle iron or a rail having an asymmetric cross-sectional shape. These steel products have non-uniform rolling reduction ratios in the width direction, so the material to be rolled may be warped or bent, leading to poor conveyance. It is said that the transportability during rolling can be improved by adjusting this. In the technique described in this document, the bending amount can be controlled by obtaining the amount of bending from the rolling deformation prediction model and setting the optimum values of the rolling conditions and the position of the side guide. This rolling deformation prediction model is configured on the basis of measured values such as set values relating to rolling conditions, rolling roll intervals, rotation speeds, and side guide positions. The method described in this document can be applied to a section steel having an asymmetrical cross-sectional shape, and improves the transportability during rolling and enables the uniform longitudinal shape.

特開昭51−96722号公報JP-A 51-96722 特開平9−174159号公報JP-A-9-174159 特開2003−39107号公報JP 2003-39107 A

しかしながら、前述の特許文献3に記載の技術は、圧延途中の形状を調整して圧延時の搬送不良などのトラブルを回避することを目的としたものである。すなわち、特許文献3に記載の技術は、本発明とは異なり、最終的な製品形状を対象としたものではないため、不等辺不等厚山形鋼の製造において、オフラインでのプレス矯正の負荷を十分に軽減できているとは言えない。このため、効率的且つ高精度に所望の形状を有する不等辺不等厚山形鋼を製造する技術としてはさらなる改良が求められていた。   However, the technique described in Patent Document 3 described above is intended to avoid troubles such as poor conveyance during rolling by adjusting the shape during rolling. In other words, unlike the present invention, the technique described in Patent Document 3 is not intended for the final product shape. It cannot be said that it is sufficiently mitigated. For this reason, further improvement was calculated | required as a technique which manufactures an unequal side unequal thickness angle steel which has a desired shape efficiently and with high precision.

本発明は、効率的且つ高精度に、所望の形状を有する不等辺不等厚山形鋼を製造する技術を提供することを目的とする。   An object of this invention is to provide the technique which manufactures the non-equal-side unequal thickness angle steel which has a desired shape efficiently and with high precision.

[1]仕上圧延を含む複数段の圧延を実施することにより不等辺不等厚山形鋼を製造する製造方法であり、
被圧延材の温度分布、仕上圧延された前記被圧延材の形状、および前記被圧延材に対して仕上圧延後に実施される曲げ変形初期設定量に基づいて、前記不等辺不等厚山形鋼の室温における形状を予測する形状予測工程と、
前記形状予測工程で予測された室温における形状に基づいて、前記被圧延材の曲げ変形量を調整する曲げ変形量調整工程と、
前記曲げ変形量調整工程で調整された前記曲げ変形量に基づいて、前記被圧延材に対して仕上圧延後に曲げを付与する曲げ変形付与工程と、
前記曲げ変形付与後の前記被圧延材の形状を測定する形状測定工程と、
前記曲げ変形付与後に得られた前記被圧延材に矯正が必要と判断された場合に前記被圧延材に矯正を施す矯正工程と、
を含む不等辺不等厚山形鋼の製造方法。
[2]前記曲げ変形付与工程後に測定された前記被圧延材の形状に基づいて、前記被圧延材の次に製造される不等辺不等厚山形鋼の仕上圧延後に実施される曲げ変形量を調整する次材曲げ変形量調整工程、
をさらに含む前記[1]に記載の不等辺不等厚山形鋼の製造方法。
[3]前記被圧延材の温度分布が、前記仕上圧延前の前記被圧延材の温度分布である前記[1]または[2]に記載の不等辺不等厚山形鋼の製造方法。
[4]前記被圧延材の温度分布が、前記仕上圧延後且つ前記曲げ変形付与工程前の前記被圧延材の温度分布である前記[1]または[2]に記載の不等辺不等厚山形鋼の製造方法。
[5]前記形状予測工程で用いる前記被圧延材の温度分布は、前記被圧延材の短辺側および長辺側の双方の温度分布である前記[1]〜[4]のいずれかに記載の不等辺不等厚山形鋼の製造方法。
[6]前記仕上圧延前に前記被圧延材を冷却することで、前記被圧延材の温度分布を調整する冷却工程、
をさらに含む前記[1]〜[5]のいずれかに記載の不等辺不等厚山形鋼の製造方法。
[1] A manufacturing method for manufacturing unequal side unequal thick angle steel by carrying out multi-stage rolling including finish rolling,
Based on the temperature distribution of the material to be rolled, the shape of the material to be rolled that has been finish-rolled, and the initial amount of bending deformation performed after finish rolling on the material to be rolled, A shape prediction step for predicting a shape at room temperature;
Based on the shape at room temperature predicted in the shape prediction step, the bending deformation adjustment step of adjusting the bending deformation amount of the material to be rolled,
Based on the bending deformation amount adjusted in the bending deformation amount adjusting step, a bending deformation applying step for applying bending to the material to be rolled after finish rolling;
A shape measuring step for measuring the shape of the material to be rolled after the bending deformation is applied;
A correction step of correcting the material to be rolled when it is determined that correction is required for the material to be rolled obtained after applying the bending deformation;
A manufacturing method of unequal sides and unequal thickness irons.
[2] Based on the shape of the material to be rolled measured after the bending deformation applying step, the amount of bending deformation performed after finish rolling of the unequal side unequal thick angle steel manufactured next to the material to be rolled. Next material bending deformation adjustment process to adjust,
The method for producing an unequal side unequal thick angle steel according to the above [1].
[3] The method for producing an unequal side unequal thick angle steel according to [1] or [2], wherein the temperature distribution of the material to be rolled is a temperature distribution of the material to be rolled before the finish rolling.
[4] The unequal side unequal thickness mountain shape according to [1] or [2], wherein the temperature distribution of the material to be rolled is the temperature distribution of the material to be rolled after the finish rolling and before the bending deformation applying step. Steel manufacturing method.
[5] The temperature distribution of the material to be rolled used in the shape prediction step is the temperature distribution on both the short side and the long side of the material to be rolled, according to any one of [1] to [4]. Method for producing unequal sides and unequal thickness irons.
[6] A cooling step of adjusting the temperature distribution of the material to be rolled by cooling the material to be rolled before the finish rolling,
The method for producing an unequal side unequal thick angle steel according to any one of the above [1] to [5].

本発明によれば、効率的且つ高精度に、所望の形状を有する不等辺不等厚山形鋼を製造する技術が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the technique which manufactures the unequal-side unequal thickness angle steel which has a desired shape efficiently and with high precision is provided.

本発明が対象とする不等辺不等厚山形鋼の形状の一例を示す図である。It is a figure which shows an example of the shape of the unequal side unequal thick angle steel which this invention makes object. 炭素鋼の連続冷却過程において発生する変態点と伸び(長さ)の関係を模式的に示したグラフである。It is the graph which showed typically the relationship between the transformation point which generate | occur | produces in the continuous cooling process of carbon steel, and elongation (length). 矯正後において、形状が良好である不等辺不等厚山形鋼の例と、形状が不良である不等辺不等厚山形鋼の例とを示す図である。It is a figure which shows the example of the unequal side unequal thick angle steel with a favorable shape, and the example of the unequal side unequal thick angle steel with a poor shape after correction. 本発明の不等辺不等厚山形鋼の製造方法で用いる制御システムの構成の一例を示す。An example of the structure of the control system used with the manufacturing method of the unequal side unequal thickness angle steel of this invention is shown. 本発明の不等辺不等厚山形鋼の製造方法のフロー図である。It is a flowchart of the manufacturing method of the unequal side unequal thickness angle steel of this invention. 本発明の不等辺不等厚山形鋼の製造方法のフロー図である。It is a flowchart of the manufacturing method of the unequal side unequal thickness angle steel of this invention. 本発明の不等辺不等厚山形鋼の製造方法のフロー図である。It is a flowchart of the manufacturing method of the unequal side unequal thickness angle steel of this invention. 本発明の不等辺不等厚山形鋼の製造方法のフロー図である。It is a flowchart of the manufacturing method of the unequal side unequal thickness angle steel of this invention. 仕上圧延直後での温度測定と、放冷後の形状測定とから曲率を算出する方法を説明するための図である。It is a figure for demonstrating the method of calculating a curvature from the temperature measurement immediately after finish rolling, and the shape measurement after standing_to_cool. 仕上圧延直後で計測された温度を使って求まる短辺および長辺の常温までの収縮率の差と、放冷後の形状測定から得られた曲率との相関図である。It is a correlation diagram of the curvature obtained by the difference of the shrinkage to the normal temperature of the short side and long side which are calculated | required using the temperature measured immediately after finishing rolling, and the shape measurement after standing_to_cool. 本発明の不等辺不等厚山形鋼の製造方法で用いる曲げ付与装置の構成の一例である。It is an example of a structure of the bending provision apparatus used with the manufacturing method of the unequal side unequal thickness angle steel of this invention. 本発明における制御システムを実際の製造工程に適用した結果を示す。The result of applying the control system in the present invention to an actual manufacturing process is shown.

以下、本発明の不等辺不等厚山形鋼の製造方法について、図面を参照しながら説明する。   Hereinafter, the manufacturing method of the unequal side unequal thickness angle steel of this invention is demonstrated, referring drawings.

図1は、本発明が対象とする不等辺不等厚山形鋼の形状の一例を示す。より具体的には、図1では、不等辺不等厚山形鋼の圧延・搬送時の姿勢を斜視図およびXY平面断面図で示す。図1に示すように、不等辺不等厚山形鋼は、長さと厚さとが異なる二つの辺(以下、長辺と短辺と記す)からなる非対称な断面を有しており、圧延終了後に肉厚の厚い部分は薄い部分に比べて冷えにくいため、空冷を開始する温度が異なる。   FIG. 1 shows an example of the shape of an unequal side unequal thick angle steel targeted by the present invention. More specifically, in FIG. 1, the posture during rolling / conveying of unequal side unequal thick angle steel is shown in a perspective view and an XY plane cross-sectional view. As shown in FIG. 1, an unequal side unequal thick angle steel has an asymmetric cross section consisting of two sides with different lengths and thicknesses (hereinafter referred to as long sides and short sides), and after the end of rolling. Since the thick part is harder to cool than the thin part, the temperature at which air cooling starts is different.

図2は、炭素鋼の連続冷却過程において発生する変態点と伸び(長さ)の関係を模式的に示したグラフである。短辺と長辺とを有する不等辺不等厚山形鋼では、短辺と長辺との間で熱収縮量に差が生じ、冷却が終了した時点で反りや曲がりが発生する。特に、短辺と長辺との間での熱収縮量の差により、左右方向(図1中、X軸正負方向)の曲がりが発生しやすい。   FIG. 2 is a graph schematically showing the relationship between the transformation point generated in the continuous cooling process of carbon steel and the elongation (length). In an unequal side unequal thick angle steel having a short side and a long side, a difference occurs in the amount of heat shrinkage between the short side and the long side, and warping and bending occur when cooling is completed. In particular, due to the difference in heat shrinkage between the short side and the long side, bending in the left-right direction (X-axis positive / negative direction in FIG. 1) is likely to occur.

この曲がり等に対しては、冷却終了後に多段の矯正機(以下、ローラー矯正機とも記す)を用いて、繰り返し曲げ戻しを付与することで矯正を行うことが一般的である。しかし、ローラー矯正機では一方向にしか曲げを与えられず、また、剛性の高い左右方向には曲げを与えることが難しく、左右方向の形状不良が発生しているような場合に、ローラー矯正機のみで矯正することは困難である。さらに、長手方向で曲がり量に分布が存在する場合等でも、ローラー矯正機のみで矯正することは困難である。このように、不均一な反りや曲がりの矯正に対し、ローラー矯正機のみで不等辺不等厚山形鋼を矯正することは困難である。   For this bending or the like, correction is generally performed by repeatedly applying bending back using a multistage straightening machine (hereinafter also referred to as a roller straightening machine) after the cooling is completed. However, the roller straightening machine can only bend in one direction, and it is difficult to bend in the right and left direction with high rigidity. It is difficult to correct with just one. Furthermore, even when there is a distribution in the amount of bending in the longitudinal direction, it is difficult to correct with a roller straightener alone. As described above, it is difficult to correct the unequal side unequal thickness iron with only the roller straightening machine for the correction of uneven warping and bending.

図3は、矯正後において、形状が良好である不等辺不等厚山形鋼の例と、形状が不良である不等辺不等厚山形鋼の例とを示す図である。   FIG. 3 is a diagram illustrating an example of an unequal side unequal thick angle steel having a good shape and an example of an unequal side unequal thickness iron having a poor shape after correction.

ローラー矯正機による矯正後の不等辺不等厚山形鋼には、図3で示すような形状不良が残存することがある。このような矯正後に残る形状不良に対しては、オフラインでのプレス矯正がなされており、コストの増加や生産能率向上を阻害する要因のひとつとなっている。   A shape defect as shown in FIG. 3 may remain in the unequal side unequal thick angle steel after correction by a roller straightener. For such shape defects remaining after correction, offline press correction is performed, which is one of the factors that hinder the increase in cost and the improvement of production efficiency.

このような問題に対し、本発明者らは、不等辺不等厚山形鋼の製造において、仕上圧延時の温度分布と最終形状、すなわち室温にまで冷却された状態の形状との関係を考慮して本発明を完成させた。   For such problems, the present inventors considered the relationship between the temperature distribution during finish rolling and the final shape, i.e., the shape cooled to room temperature, in the production of unequal side unequal thick angle steel. The present invention has been completed.

本発明の不等辺不等厚山形鋼の製造方法は、仕上圧延を含む複数段の圧延を実施することにより不等辺不等厚山形鋼を製造する製造方法であり、被圧延材の温度分布、仕上圧延された被圧延材の形状、および被圧延材に対して仕上圧延後に実施される曲げ変形初期設定量に基づいて、不等辺不等厚山形鋼の室温における形状を予測する形状予測工程と、形状予測工程で予測された室温における形状に基づいて、被圧延材の曲げ変形量を調整する曲げ変形量調整工程と、曲げ変形量調整工程で調整された曲げ変形量に基づいて被圧延材に対して仕上圧延後に曲げを付与する曲げ変形付与工程と、を含む。   The method for producing an unequal side unequal thick angle steel of the present invention is a production method for producing an unequal side unequal thick angle steel by carrying out multiple stages of rolling including finish rolling, and the temperature distribution of the material to be rolled, A shape prediction step for predicting the shape of the unequal side unequal thick angle steel at room temperature based on the shape of the finish-rolled material and the initial amount of bending deformation performed after finish rolling on the material. The bending deformation amount adjusting step for adjusting the bending deformation amount of the material to be rolled based on the shape at room temperature predicted in the shape prediction step, and the material to be rolled based on the bending deformation amount adjusted in the bending deformation amount adjusting step A bending deformation imparting step of imparting a bend after finish rolling.

また、本発明では、曲げ変形付与工程後に測定された被圧延材の形状に基づいて、被圧延材の次に製造される不等辺不等厚山形鋼の仕上圧延後に実施される曲げ変形量を調整する次材曲げ変形量調整工程を含んでもよい。   Further, in the present invention, based on the shape of the material to be rolled measured after the bending deformation applying step, the amount of bending deformation performed after finish rolling of the unequal side unequal thick angle steel manufactured next to the material to be rolled is calculated. You may include the adjustment process of the amount of bending deformation of the next material to adjust.

また、本発明では、仕上圧延前に被圧延材を冷却することで、被圧延材の温度分布を調整する冷却工程を含んでもよい。   Moreover, in this invention, the cooling process of adjusting the temperature distribution of a to-be-rolled material may be included by cooling a to-be-rolled material before finish rolling.

また、本発明では、曲げ変形付与後に得られた被圧延材の形状に矯正を施す矯正工程を含んでいてもよい。   Moreover, in this invention, the correction process which corrects the shape of the to-be-rolled material obtained after bending deformation provision may be included.

被圧延材の温度分布は、仕上圧延前の被圧延材の温度分布であってもよいし、仕上圧延後且つ曲げ変形付与工程前の被圧延材の温度分布であってもよい。また、上記の形状予測工程で用いる被圧延材の温度分布は、被圧延材の短辺側および長辺側の双方の温度分布とすることが好ましい。   The temperature distribution of the material to be rolled may be the temperature distribution of the material to be rolled before finish rolling, or the temperature distribution of the material to be rolled after finish rolling and before the bending deformation applying step. Moreover, it is preferable that the temperature distribution of the to-be-rolled material used at said shape prediction process shall be the temperature distribution of both the short side and long side of a to-be-rolled material.

図4は、本発明の不等辺不等厚山形鋼の製造方法で用いる制御システムの構成の一例を示す。   FIG. 4 shows an example of the configuration of a control system used in the method for manufacturing an unequal side unequal thick angle steel of the present invention.

図4中、符号1は、被圧延材搬送ラインX上を搬送される被圧延材(図示せず)を仕上圧延する仕上圧延機を示し、符号2は、曲げ変形付与工程で、被圧延材に所定の曲げ変形量を付与する曲げ付与装置(例えば、サイドガイドを有するガイド装置)を示す。この曲げ付与装置2については、本発明では、調整された曲げ変形量を参照し、仕上圧延機1の出側に設置したサイドガイド(例えば、ローラー付きサイドガイド)の押し込み量を設定することで、矯正後の曲がりを抑制する。   In FIG. 4, reference numeral 1 denotes a finish rolling mill for finish-rolling a rolled material (not shown) conveyed on the rolled material conveyance line X, and reference numeral 2 denotes a bending deformation applying step. Shows a bending applying device (for example, a guide device having a side guide) for applying a predetermined bending deformation amount. About this bending | flexion provision apparatus 2, in this invention, with reference to the adjusted bending deformation amount, by setting the pushing amount of the side guide (for example, side guide with a roller) installed in the exit side of the finishing mill 1, , Curb after correction.

また、符号3は、仕上圧延機1の入側および出側の被圧延材の温度分布を測定する温度計を示し、符号4は、曲げ付与装置2による曲げ付与後、矯正機による矯正前に被圧延材の形状を測定する形状計を示す。また、符号5は、曲げ変形付与後の被圧延材に矯正を施す矯正機(例えば、ローラー矯正機)を示す。   Reference numeral 3 denotes a thermometer that measures the temperature distribution of the material to be rolled on the entry side and the exit side of the finish rolling mill 1, and reference numeral 4 denotes a bending after the bending by the bending applying device 2 and before correction by the straightening machine. The shape meter which measures the shape of a to-be-rolled material is shown. Moreover, the code | symbol 5 shows the straightening machine (for example, roller straightening machine) which corrects the to-be-rolled material after bending deformation provision.

また、符号6は、本発明の不等辺不等厚山形鋼の製造における各制御を実施するプロセスコンピューターを示す。特に、符号7は、上述した形状予測工程、曲げ変形量調整工程、次材曲げ変形量調整工程における各制御を主に実施する制御部を示す。プロセスコンピューター6では、仕上圧延機1の入側で測定された被圧延材の温度を取り込んで処理してもよい。また、上記の形状計4は、矯正機5の入側、出側のいずれに設置してもよく、形状測定の結果をプロセスコンピューター6に格納・統計処理をさせることで、フィードバック制御や学習制御を実施してもよい。   Moreover, the code | symbol 6 shows the process computer which implements each control in manufacture of the unequal side unequal thickness angle steel of this invention. In particular, reference numeral 7 denotes a control unit that mainly performs each control in the above-described shape prediction step, bending deformation amount adjustment step, and next material bending deformation amount adjustment step. In the process computer 6, the temperature of the material to be rolled measured on the entry side of the finishing mill 1 may be taken in and processed. The shape meter 4 may be installed on either the entry side or the exit side of the straightening machine 5, and the shape measurement result is stored and statistically processed in the process computer 6 to provide feedback control and learning control. May be implemented.

以下、図5(図5−1、図5−2、図5−3、図5−4)を参照しながら、上述した形状予測工程、曲げ変形量調整工程、曲げ変形付与工程、次材曲げ変形量調整工程、冷却工程、矯正工程について説明する。   Hereinafter, with reference to FIG. 5 (FIGS. 5-1, 5-2, 5-3, and 5-4), the above-described shape prediction step, bending deformation amount adjusting step, bending deformation applying step, and next material bending The deformation adjustment process, the cooling process, and the correction process will be described.

本発明に係る不等辺不等厚山形鋼の製造方法においては、最終圧延である仕上圧延を含む複数段の圧延が実施される。仕上圧延よりも前の圧延として、粗圧延や1以上の中間圧延を実施することができる。図5−1のStartの段階は、仕上圧延の直前の圧延が完了した段階とする(図5−2、図5−3、図5−4も同様である。)。   In the method for producing unequal side unequal thick angle steel according to the present invention, rolling in a plurality of stages including finish rolling as final rolling is performed. As rolling before finish rolling, rough rolling or one or more intermediate rollings can be performed. The Start stage in FIG. 5A is a stage in which the rolling immediately before the finish rolling is completed (the same applies to FIGS. 5-2, 5-3, and 5-4).

仕上圧延の直前の圧延が実施された被圧延材は、仕上圧延機1に搬送され、仕上圧延が施される(ステップS2)。仕上圧延の入側までに発生した被圧延材の曲がり等は、仕上圧延により、いったんはおおむね矯正される。   The material to be rolled that has been rolled immediately before finish rolling is conveyed to the finish rolling mill 1 and subjected to finish rolling (step S2). The bending or the like of the material to be rolled that has occurred up to the entry side of finish rolling is generally corrected once by finish rolling.

<形状予測工程>
本発明の不等辺不等厚山形鋼の製造方法における形状予測工程では、被圧延材の温度分布、仕上圧延された仕上圧延出側の被圧延材の形状、および被圧延材の曲げ変形初期設定量に基づいて、曲げ変形が付与された後の室温における不等辺不等厚山形鋼の形状を予測する(ステップS3)。
<Shape prediction process>
In the shape prediction step in the manufacturing method of the unequal side unequal thick angle steel of the present invention, the temperature distribution of the material to be rolled, the shape of the material to be rolled on the finish rolling finish side, and the initial bending deformation of the material to be rolled Based on the amount, the shape of the unequal side unequal thick angle steel at room temperature after the bending deformation is applied is predicted (step S3).

そして、仕上圧延(ステップS2)の後に、形状予測工程で、対象とする不等辺不等厚山形鋼の室温における形状を予測し(ステップS3)、この形状が所望の形状であるか否かを判定する(ステップS4)。上述したように、不等辺不等厚山形鋼の室温における形状は、被圧延材の温度分布、仕上圧延後の被圧延材の形状、および被圧延材の曲げ変形初期設定量に基づいて予測される。   Then, after finish rolling (step S2), in the shape prediction step, the shape of the target unequal side unequal thickness steel is predicted at room temperature (step S3), and whether or not this shape is a desired shape. Determine (step S4). As described above, the shape of the unequal side unequal thickness angle steel at room temperature is predicted based on the temperature distribution of the material to be rolled, the shape of the material to be rolled after finish rolling, and the initial set amount of bending deformation of the material to be rolled. The

被圧延材の温度分布は、温度計3によって測定されてよい。被圧延材の温度分布は、仕上圧延前の被圧延材の温度分布、たとえば、仕上圧延の直前の圧延終了後の被圧延材の温度分布であってもよいし、仕上圧延後且つ曲げ変形付与工程前の被圧延材の温度分布であってもよい。   The temperature distribution of the material to be rolled may be measured by the thermometer 3. The temperature distribution of the material to be rolled may be the temperature distribution of the material to be rolled before finish rolling, for example, the temperature distribution of the material to be rolled after the end of rolling immediately before finish rolling, or after bending and imparting bending deformation. It may be the temperature distribution of the material to be rolled before the process.

仕上圧延後の被圧延材の形状は、仕上圧延後の被圧延材の形状をレーザ等を用いて光学的に測定してもよいし、仕上圧延条件等から予め推定しておいてもよい。   The shape of the material to be rolled after finish rolling may be optically measured using a laser or the like after the finish rolling, or may be estimated in advance from finish rolling conditions or the like.

被圧延材の曲げ変形初期設定量は、先行して製造される被圧延材に対して調整された曲げ変形量に基づいて設定することができる。対象とする被圧延材が先行の被圧延材に対して同一鋼種および同一形状である場合には、先行の被圧延材に対して調整された曲げ変形量をそのまま被圧延材の曲げ変形初期設定量としてもよいし、対象とする被圧延材が先行の被圧延材に対して鋼種や形状が異なる場合には、先行の被圧延材に対して調整された曲げ変形量に基づいて被圧延材の曲げ変形初期設定量を適宜変更してもよい。また、被圧延材の曲げ変形初期設定量は、サイドガイドを有するガイド装置等の曲げ付与装置2の形状を考慮してもよい。   The initial set amount of bending deformation of the material to be rolled can be set based on the amount of bending deformation adjusted with respect to the material to be rolled manufactured in advance. When the target material to be rolled has the same steel type and shape as the preceding material to be rolled, the bending deformation adjusted for the previous material to be rolled is used as the initial bending deformation of the material to be rolled. If the target material to be rolled is different in steel type and shape from the preceding material to be rolled, the material to be rolled is based on the amount of bending deformation adjusted to the previous material to be rolled. The initial set amount of bending deformation may be changed as appropriate. Moreover, you may consider the shape of the bending provision apparatuses 2, such as a guide apparatus which has a side guide, for the bending deformation initial setting amount of a to-be-rolled material.

このような被圧延材の温度分布、仕上圧延後の被圧延材の形状、および被圧延材の曲げ変形初期設定量に基づく室温における形状予測の詳細については、熱変形予測モデルに基づいていることが好ましく、この熱変形予測モデルについては後述する。   The details of the shape prediction at room temperature based on the temperature distribution of the material to be rolled, the shape of the material to be rolled after finish rolling, and the initial set amount of bending deformation of the material to be rolled should be based on a thermal deformation prediction model. This thermal deformation prediction model will be described later.

<曲げ変形量調整工程>
曲げ変形量調整工程では、上記の形状予測工程で予測された形状に基づいて、被圧延材の曲げ変形量を調整する。
<Bending deformation adjustment process>
In the bending deformation amount adjustment step, the bending deformation amount of the material to be rolled is adjusted based on the shape predicted in the shape prediction step.

より具体的には、本工程では、まず、形状予測工程で予測された不等辺不等厚山形鋼の室温における形状が、所望の形状であるか否かを判定する(ステップS4)。所望の形状については、最終的に得られるべき不等辺不等厚山形鋼の形状、すなわち室温における形状に応じて、長手方向に真っ直ぐな形状、均一な曲率を有する形状等、適宜設定することができる。   More specifically, in this step, first, it is determined whether or not the shape of the unequal side unequal thick angle steel predicted in the shape prediction step is a desired shape (step S4). The desired shape can be appropriately set such as the shape of the unequal side unequal thick angle steel to be finally obtained, that is, the shape straight in the longitudinal direction, the shape having a uniform curvature, etc., depending on the shape at room temperature. it can.

そして、ステップS4で予測された形状が所望の形状である場合には、曲げ変形量は変更せず、この曲げ変形量に基づいて、次工程で被圧延材には曲げ変形が付与される(ステップS6)。一方、予測された形状が所望の形状でない場合には、曲げ変形量が変更される(ステップS5)。曲げ変形量の変更量は、データベース(制御部7内の記憶部)71を参照して変更することができる。データベース71には、被圧延材の温度分布と、仕上圧延後の被圧延材の形状と、被圧延材に付与された曲げ変形量と、予測される室温における形状との関係についての過去の実績値が格納されている。そして、この過去の実績値をもとにして、予測される室温における形状と、その予測される室温における形状を許容範囲内に収めるために必要な曲げ変形量との関係が求められている。よって、このデータベース71を参照することにより、予測される室温における形状と所望の形状と差異に応じて、曲げ変形量の変更量を適正な値に決定することができる。なお、変更された曲げ変形量はデータベース71に格納することができる。そして、変更された変形量に基づいて、次工程で被圧延材には、曲げ変形が付与される(ステップS6)。   When the shape predicted in step S4 is a desired shape, the bending deformation amount is not changed, and based on this bending deformation amount, bending deformation is imparted to the material to be rolled in the next process ( Step S6). On the other hand, if the predicted shape is not the desired shape, the bending deformation amount is changed (step S5). The change amount of the bending deformation amount can be changed with reference to the database (storage unit in the control unit 7) 71. The database 71 includes past results on the relationship between the temperature distribution of the material to be rolled, the shape of the material to be rolled after finish rolling, the amount of bending deformation imparted to the material to be rolled, and the shape at room temperature that is predicted. A value is stored. Based on the past actual values, a relationship between the predicted shape at room temperature and the amount of bending deformation necessary to keep the predicted shape at room temperature within an allowable range is required. Therefore, by referring to this database 71, the change amount of the bending deformation amount can be determined to an appropriate value according to the difference between the predicted shape at room temperature and the desired shape. The changed bending deformation amount can be stored in the database 71. Based on the changed amount of deformation, bending deformation is imparted to the material to be rolled in the next step (step S6).

<曲げ変形付与工程>
次に、曲げ変形付与工程では、上記の曲げ変形量調整工程で調整された曲げ変形量に基づいて、被圧延材に対して仕上圧延後に曲げを付与する(ステップS6)。より具体的には、本工程では、曲げ付与装置(例えば、サイドガイドを有するガイド装置)2により、押し込み量を調整することによって、被圧延材に所定の曲げ変形量を付与する。
<Bending deformation imparting process>
Next, in the bending deformation applying process, bending is applied to the material to be rolled after finish rolling based on the bending deformation adjusted in the bending deformation adjusting process (step S6). More specifically, in this step, a predetermined amount of bending deformation is imparted to the material to be rolled by adjusting the push-in amount with a bending imparting device (for example, a guide device having a side guide) 2.

このとき、この曲げ変形付与は、熱変形予測モデルに基づいていることが好ましく、このモデルにより計算された結果に応じた曲げを被圧延材に付与することが好ましい。   At this time, it is preferable that this bending deformation is applied based on a thermal deformation prediction model, and it is preferable to apply bending according to the result calculated by this model to the material to be rolled.

このように、曲げ変形量を適切に調整してから曲げ変形を付与しているため、後述の矯正工程における矯正処理の負荷を軽減することができる。そして、矯正工程後の形状不良も抑制されるため、オフラインでのプレス矯正の負荷も軽減され、効率的且つ高精度に不等辺不等厚山形鋼を製造することができる。   As described above, since the bending deformation is applied after the amount of bending deformation is appropriately adjusted, it is possible to reduce the load of correction processing in the correction process described later. And since the shape defect after a straightening process is also suppressed, the load of off-line press straightening is also reduced, and an unequal side uneven thickness steel can be manufactured efficiently and highly accurately.

<形状測定工程>
続いて、曲げ変形が付与された被圧延材の形状を形状計(図示せず)により測定する(ステップS7)。曲げ変形が付与された被圧延材の形状測定は、被圧延材の温度が室温近傍にまで冷えてから実施することが好ましい。よって、たとえば、不等辺不等厚山形鋼の製造ラインにおいて、圧延ラインから精整ラインまで冷却床を介する場合には、冷却床の出側やそのさらに下流に形状計を備えることが好ましい。
<Shape measurement process>
Subsequently, the shape of the material to be rolled to which bending deformation is applied is measured by a shape meter (not shown) (step S7). The shape measurement of the material to be rolled to which bending deformation is applied is preferably performed after the temperature of the material to be rolled has cooled to near room temperature. Therefore, for example, in the production line of unequal side unequal thickness steel, when a cooling bed is interposed from the rolling line to the finishing line, it is preferable to provide a shape meter on the exit side of the cooling bed or further downstream thereof.

<矯正工程>
本発明では、矯正工程で、曲げ変形付与後に得られた被圧延材に矯正が必要と判断された場合に、被圧延材を所望の形状にするように矯正を施す(ステップS10)。特に、ステップS7で、被圧延材の形状が所望の形状でないと判定された場合には、本工程で被圧延材を所望の形状にするように矯正しておくことが好ましい。本工程ではローラー矯正機等の矯正機(図示せず)を用いて、被圧延材に対して矯正を施すことができる。
<Correction process>
In the present invention, in the straightening process, when it is determined that the material to be rolled obtained after the bending deformation needs to be straightened, the material to be rolled is straightened so as to have a desired shape (step S10). In particular, when it is determined in step S7 that the shape of the material to be rolled is not a desired shape, it is preferable to correct the material to be rolled to a desired shape in this step. In this step, the material to be rolled can be corrected using a correction machine (not shown) such as a roller correction machine.

以上のようにして、本発明では、不等辺不等厚山形鋼を効率的且つ精度良く製造することができる。なお、上記の矯正工程後には、不等辺不等厚山形鋼の加工処理等を適宜施してもよい。   As described above, according to the present invention, the unequal side unequal thick angle steel can be efficiently and accurately manufactured. In addition, after the above straightening step, processing of the unequal side unequal thick angle steel may be performed as appropriate.

<次材曲げ変形量調整工程>
本発明では、上記曲げ変形付与工程後に測定された被圧延材の形状に基づいて、被圧延材の次に曲げが付与される被圧延材の曲げ変形量を調整する次材曲げ変形量調整工程を含んでいてもよい(図5−2参照)。
<Next material bending deformation adjustment process>
In the present invention, based on the shape of the rolled material measured after the bending deformation applying step, a next material bending deformation adjusting step for adjusting the bending deformation amount of the rolled material to which bending is applied next to the rolled material. (See FIG. 5-2).

より具体的には、まず、曲げ変形が付与された被圧延材の形状を形状計(図示せず)により測定する(ステップS7)。次に、形状計(図示せず)により実測された被圧延材の形状が所望の形状であるか否かを判定する(ステップS8)。   More specifically, first, the shape of the material to be rolled with bending deformation is measured by a shape meter (not shown) (step S7). Next, it is determined whether or not the shape of the material to be rolled measured by a shape meter (not shown) is a desired shape (step S8).

そして、実測された形状が所望の形状である場合には、次に製造される不等辺不等厚山形鋼に対しても、曲げ変形量は変更せず、この曲げ変形量を次に製造される不等辺不等厚山形鋼の曲げ変形初期設定量とする。一方、実測された形状が所望の形状でない場合には、あらかじめ求められた曲げ変形初期設定量と室温近傍の形状との関係に基づいて、所望の形状が得られるように曲げ変形量が所定量に変更され、変更された曲げ変形量を次に製造される不等辺不等厚山形鋼の曲げ変形初期設定量とする(ステップS9)。変更する曲げ変形量は、データベース(制御部7内の記憶部)71を参照して変更することができ、変更された曲げ変形量はデータベース71に格納することができる。   When the actually measured shape is a desired shape, the bending deformation amount is not changed for the next non-equal-sided unequal thickness steel, and this bending deformation amount is manufactured next. The initial set amount of bending deformation of the unequal side unequal thick angle steel. On the other hand, if the measured shape is not the desired shape, the bending deformation amount is a predetermined amount so that the desired shape can be obtained based on the relationship between the bending deformation initial setting amount obtained in advance and the shape near room temperature. The amount of bending deformation thus changed is set as the initial amount of bending deformation of the unequal side unequal thick angle steel to be manufactured next (step S9). The bending deformation amount to be changed can be changed with reference to the database (storage unit in the control unit 7) 71, and the changed bending deformation amount can be stored in the database 71.

このように、対象とする被圧延材の次材の曲げ変形量を調整することで、次材の不等辺不等厚山形鋼の製造をより効率的に行うことができる。   Thus, by adjusting the amount of bending deformation of the next material of the material to be rolled, it is possible to more efficiently manufacture the unequal side unequal thick angle steel of the next material.

<冷却工程>
本発明において、形状予測工程における不等辺不等厚山形鋼の形状予測(ステップS3)の前に、被圧延材には、仕上圧延が施されている(ステップS2)。図5−3に示すように、この仕上圧延前には冷却工程を設けてもよい(ステップS1)。
<Cooling process>
In the present invention, the material to be rolled is subjected to finish rolling (step S2) before the shape prediction of the unequal side unequal thick angle steel in the shape prediction step (step S3). As shown in FIG. 5-3, a cooling step may be provided before this finish rolling (step S1).

冷却工程では、仕上圧延機1の出側の被圧延材の温度分布を調整することを目的とし、冷却装置(図示せず)を用いて被圧延材を冷却することができる。冷却する際の冷却条件は、先行して圧延された被圧延材における製造条件データおよび室温で実測した形状データ、ならびにこれらのデータに対応する適切な冷却条件を記憶したデータベース(制御部7内の記憶部)等を参照して調整される。これにより、被圧延材があらかじめ設定された仕上圧延実施温度まで冷えるのに必要な時間が短縮されるため、圧延能率を向上させることができる。   In the cooling step, for the purpose of adjusting the temperature distribution of the material to be rolled on the exit side of the finish rolling mill 1, the material to be rolled can be cooled using a cooling device (not shown). The cooling conditions at the time of cooling are the manufacturing condition data for the material to be rolled in advance and the shape data measured at room temperature, and a database (in the control unit 7) storing appropriate cooling conditions corresponding to these data. It is adjusted with reference to the storage unit). Thereby, since the time required for the material to be rolled to cool to the preset finish rolling temperature is shortened, the rolling efficiency can be improved.

また、図5−4に示すように、この冷却工程を設けた場合においても、前述の次材曲げ変形量調整工程を設けることができる。これにより、次材の不等辺不等厚山形鋼の製造をより効率的に行うことができる。   Further, as shown in FIG. 5-4, even when this cooling step is provided, the above-mentioned next-material bending deformation amount adjusting step can be provided. Thereby, manufacture of the unequal side unequal thick angle steel of the next material can be performed more efficiently.

(熱変形予測モデル)
前述したように、本発明の不等辺不等厚山形鋼の製造方法における形状予測工程での形状予測は、熱変形予測モデルに基づいて実行されることが好ましい。本発明者らは、被圧延材の曲がりの発生原因である長辺および短辺の熱膨張差に関して、左右方向の曲がり量と熱膨張差とについて整理し、左右方向の曲がり量を定量化した。そして、仕上圧延前で、短辺および長辺の温度測定結果をもとに、曲げ付与装置(サイドガイド)2を用いて形状が修正されるように押し込み量の設定をすることで、左右方向の曲がりを極小化する手法を考案した。
(Thermal deformation prediction model)
As described above, it is preferable that the shape prediction in the shape prediction step in the method for manufacturing an unequal side unequal thick angle steel of the present invention is performed based on a thermal deformation prediction model. The present inventors have arranged the amount of bending in the left and right direction and the difference in thermal expansion with respect to the difference in thermal expansion between the long side and the short side that are the cause of the bending of the material to be rolled, and quantified the amount of bending in the left and right direction. . And before finishing rolling, based on the temperature measurement result of the short side and the long side, by setting the pushing amount so that the shape is corrected using the bending applying device (side guide) 2, the horizontal direction I devised a method to minimize the bending of.

以下に、熱変形予測モデルを用いて左右方向の曲がりを制御するガイド設定方法について詳細に説明する。   Below, the guide setting method which controls the bending of the left-right direction using a thermal deformation prediction model is demonstrated in detail.

図6は、仕上圧延直後での温度測定と、放冷後の形状測定とから曲率を算出する方法を説明するための図である。図7は、仕上圧延直後で計測された温度を使って求まる短辺および長辺の常温までの収縮率の差と、放冷後の形状測定から得られた曲率との相関図である。   FIG. 6 is a diagram for explaining a method of calculating the curvature from the temperature measurement immediately after finish rolling and the shape measurement after cooling. FIG. 7 is a correlation diagram between the difference between the shrinkage ratios of the short side and the long side to room temperature obtained using the temperature measured immediately after finish rolling and the curvature obtained from the shape measurement after standing to cool.

図6および図7に基づき、実際の製造工程における温度測定および形状測定の概要と、その結果得られた、放冷による短辺および長辺の熱収縮率差と冷却完了後の形状との関係を説明する。   Based on FIG. 6 and FIG. 7, the outline of temperature measurement and shape measurement in the actual manufacturing process, and the relationship between the heat shrinkage rate difference between the short side and the long side resulting from cooling and the shape after cooling is completed. Will be explained.

測定対象は左右方向の剛性が低く、曲がりが発生しやすい小断面の不等辺不等厚山形鋼(長辺幅A=200mm・長辺厚t=9mm、短辺幅B=90mm・短辺厚t=14mm)である(図1参照)。 The object to be measured is a small-section unequal unequal thickness angle steel with low rigidity in the left-right direction, which tends to bend (long side width A = 200 mm, long side thickness t 1 = 9 mm, short side width B = 90 mm, short side Thickness t 2 = 14 mm) (see FIG. 1).

熱収縮率差を求めるにあたって、仕上圧延機1の出側で圧延方向の全長(約100m)に対して、左右二方向からサーモグラフィで撮影した熱画像より温度を求めた。そして、各辺の代表温度として幅方向の温度分布から各辺幅中央付近の値を抽出し、各辺の長手方向の温度分布を求め、熱膨張曲線から放冷による熱収縮率の短辺および長辺での差を算出した。   In obtaining the heat shrinkage difference, the temperature was obtained from the thermal image taken by thermography from the left and right directions with respect to the total length (about 100 m) in the rolling direction on the exit side of the finishing mill 1. Then, a value near the center of each side width is extracted from the temperature distribution in the width direction as the representative temperature of each side, the temperature distribution in the longitudinal direction of each side is obtained, and the short side of the thermal contraction rate due to cooling is determined from the thermal expansion curve. The difference at the long side was calculated.

一方、形状測定の方法としては、ローラー矯正機5入側で、搬送中の被圧延材をビデオカメラで撮影した動画を画像処理することによって、左右方向の曲がり形状を求めた。そして、形状測定の結果から各製品の形状を二次関数状と仮定して以下の式(1)より平均的な曲率κを算出した。   On the other hand, as a method for measuring the shape, a curved shape in the left-right direction was obtained by performing image processing on a moving image obtained by photographing a material to be rolled with a video camera on the roller correction machine 5 entry side. And the average curvature (kappa) was computed from the following formula | equation (1) on the assumption that the shape of each product was a quadratic function form from the result of shape measurement.

なお、図6に示すように、dは反り量(mm)であり、Lは不等辺不等厚山形鋼の長さ(mm)である。   In addition, as shown in FIG. 6, d is a curvature amount (mm), L is the length (mm) of an unequal side unequal thick angle steel.

このとき、被圧延材は仕上圧延後に熱間鋸段され、10〜25m程度の長さとなっている。図7に示すように、製造条件に応じて仕上圧延直後の短辺温度と長辺温度の温度差が変化した場合(すなわち、収縮率差が変化した場合)に、冷却終了後の反りが大きく変化する(すなわち、曲率が大きく変化する)ことが分かる。また、製造条件の変化だけでなく、被圧延材の長手方向に温度ばらつきが生じた際にも同様に曲がり量のばらつきが発生し、形状が不均一となることも分かる。   At this time, the material to be rolled is hot-sawed after finish rolling and has a length of about 10 to 25 m. As shown in FIG. 7, when the temperature difference between the short side temperature and the long side temperature immediately after finish rolling changes according to the manufacturing conditions (that is, when the difference in shrinkage rate changes), warping after the end of cooling is large. It can be seen that it changes (that is, the curvature changes greatly). It can also be seen that not only the change in the manufacturing conditions but also the temperature variation in the longitudinal direction of the material to be rolled causes a variation in the amount of bending and the shape becomes non-uniform.

本発明によれば、仕上圧延出側の温度測定の結果を上記のような熱変形予測モデルに取り込んで変形量を予測し、仕上圧延機1出側に配置した曲げ付与装置2によって必要量の左右曲げを加えることで、形状不良の発生を防ぐことが可能になる。本発明では、仕上圧延出側での温度分布に基づいた変形予測から曲がりを制御する。そのため、被圧延材が冷却されて、熱収縮による形状変化が起こらなくなり、最終的な形状が判明する前に、曲がりを制御可能となる。また、変態温度の高低の影響を考慮する必要なく、曲がりを制御することができる。   According to the present invention, the result of temperature measurement on the finish rolling delivery side is taken into the above-described thermal deformation prediction model to predict the amount of deformation, and the required amount is provided by the bending device 2 arranged on the delivery side of the finishing mill 1. By applying left and right bending, it becomes possible to prevent the occurrence of shape defects. In the present invention, the bending is controlled from the deformation prediction based on the temperature distribution on the finish rolling delivery side. Therefore, the material to be rolled is cooled, and the shape change due to thermal contraction does not occur, and the bending can be controlled before the final shape is determined. Further, the bending can be controlled without having to consider the influence of the transformation temperature.

ここで、温度分布の測定は短辺と長辺のそれぞれに対して行うことが好ましい。また、温度分布の測定位置は、仕上圧延機1から曲げ付与装置2までの間とすることが考えられる。一方、曲げ付与装置2と仕上圧延機1とが近接していて仕上圧延機1出側に温度計3を設置する空間を確保しづらい場合も考えられる。また、温度測定の結果からフィードフォワードで曲げ変形量を制御する場合には、仕上圧延機1出側での温度測定では予測結果を制御量に反映させるための時間が十分に確保できないことも考えられる。これらの場合には、仕上圧延機1入側で温度測定を実施して出側での温度分布を予測し、その予測値を用いて熱変形予測を実施する方法でも構わない。   Here, it is preferable to measure the temperature distribution for each of the short side and the long side. Further, the temperature distribution measurement position may be between the finishing mill 1 and the bending device 2. On the other hand, it may be considered that the bending apparatus 2 and the finishing mill 1 are close to each other and it is difficult to secure a space for installing the thermometer 3 on the exit side of the finishing mill 1. In addition, when controlling the amount of bending deformation by feedforward from the temperature measurement result, it is considered that the time measurement for reflecting the prediction result in the control amount cannot be sufficiently secured in the temperature measurement on the delivery side of the finishing mill 1. It is done. In these cases, a method may be used in which temperature measurement is performed on the entry side of the finishing mill 1 to predict the temperature distribution on the exit side, and thermal deformation prediction is performed using the predicted value.

さらに、熱変形予測モデルは、上記のような実機での相関式の他に、オフラインでの有限要素法などを用いた数値解析や、実機での相関式と数値解析の結果とを組み合わせたモデルを用いてもよい。そして、矯正機5入側で形状制御を行った被圧延材の形状計測を継続することで、予測モデルに修正を加えて、制御の精度を向上させることも可能である。   Furthermore, in addition to the correlation equation in the actual machine as described above, the thermal deformation prediction model is a model that combines numerical analysis using an offline finite element method, etc., or a combination of the correlation equation in the actual machine and the result of the numerical analysis. May be used. And it is also possible to modify the prediction model and improve the accuracy of the control by continuing the shape measurement of the material to be rolled whose shape is controlled on the correction machine 5 entry side.

また、上述しているように、左右曲げの付与は、左右方向に押し込み量を制御できる機構を持った曲げ付与装置(サイドガイドやガイドローラー)2を用いることで可能となる。この曲げ付与装置2は、被圧延材の幅に合わせて左右から挟み込む構造を有することが好ましい。また、短辺側と長辺側のどちらの方向にも曲げを与えることが可能な構造を有することが好ましい。   Further, as described above, the right / left bending can be applied by using a bending applying device (side guide or guide roller) 2 having a mechanism capable of controlling the pushing amount in the left / right direction. The bending imparting device 2 preferably has a structure that is sandwiched from the left and right according to the width of the material to be rolled. In addition, it is preferable to have a structure that can bend in both directions of the short side and the long side.

ここで、図8を参照しながら、曲げ付与装置2の一例を説明する。図8は、本発明の不等辺不等厚山形鋼の製造方法で用いる曲げ付与装置の構成の一例である。図8に示すように、サイドガイドの出側に押し込み量可変の押し込みローラー21を追加した構造が好適である。また、曲げ付与装置2の左右押し込み量および仕上圧延機1から曲げ付与装置2までの距離は、熱変形予測モデルによって求まる曲率の程度によって決定される。例えば、曲げ付与装置2によって二次関数状の曲げが付与されたとして、被圧延材の左右方向変位量d(m)と仕上圧延機1から曲げ付与装置2までの距離(より詳細には、仕上圧延機1の圧延ロール11中心と、曲げ付与装置2の押し込みローラー21中心との距離)l(m)を用いると、曲率κ(m−1)は式(2)のように表される。 Here, an example of the bending apparatus 2 will be described with reference to FIG. FIG. 8 is an example of a configuration of a bending imparting device used in the method for producing an unequal side unequal thick angle steel of the present invention. As shown in FIG. 8, a structure in which a pressing roller 21 with a variable pressing amount is added to the exit side of the side guide is suitable. Further, the left and right pushing amount of the bending imparting device 2 and the distance from the finish rolling mill 1 to the bending imparting device 2 are determined by the degree of curvature determined by the thermal deformation prediction model. For example, assuming that a bend of a quadratic function is applied by the bending applying device 2, the lateral displacement d (m) of the material to be rolled and the distance from the finish rolling mill 1 to the bending applying device 2 (more specifically, When the distance (l) between the center of the rolling roll 11 of the finishing mill 1 and the center of the pressing roller 21 of the bending imparting device 2) l (m) is used, the curvature κ (m −1 ) is expressed as shown in Expression (2). .

ただし、曲げ付与装置2の実際の押し込み量は、装置2の剛性や被圧延材のスプリングバックを考慮しなければならないので、変位量dによりも大きくなる。式(2)から、仕上圧延機1と曲げ付与装置2との距離lが小さい方が、少ない押し込み量で曲がりが変化するので、制御性が高くなることが分かる。さらに、被圧延材の先端および尾端の圧延ロール11と曲げ付与装置2との間の走行中は、曲がりを制御しづらくなることから、仕上圧延機1と曲げ付与装置2との距離はなるべく小さくすることが望ましい。また、ロール曲げ装置間の距離が大きい場合には、必要な押し込み量が非常に大きくなるため搬送の妨げとなる場合がある。これらを考慮すると曲げ付与装置2は最大でも仕上圧延機1から10m以内に設置することが好ましい。一方、設置距離lが非常に小さい場合は押し込みに必要な荷重が大きくなるため、仕上圧延機1から少なくとも1m以上距離を設けることが望ましい。   However, the actual pushing amount of the bending imparting device 2 must be taken into account by the displacement amount d because the rigidity of the device 2 and the spring back of the material to be rolled must be taken into consideration. From equation (2), it can be seen that the smaller the distance l between the finishing mill 1 and the bend imparting device 2, the more the controllability is improved because the bending changes with a smaller amount of pushing. Furthermore, since it becomes difficult to control bending during traveling between the rolling rolls 11 at the front end and tail end of the material to be rolled and the bending applying device 2, the distance between the finish rolling mill 1 and the bending applying device 2 is as much as possible. It is desirable to make it smaller. In addition, when the distance between the roll bending apparatuses is large, the necessary push amount becomes very large, which may hinder the conveyance. Considering these, it is preferable that the bending apparatus 2 is installed within 10 m from the finishing mill 1 at the maximum. On the other hand, when the installation distance l is very small, the load required for pushing increases, so it is desirable to provide a distance of at least 1 m from the finishing mill 1.

以上、本発明の不等辺不等厚山形鋼の製造方法について説明した。本発明によれば、効率的且つ高精度に所望の形状を有する不等辺不等厚山形鋼を製造する技術が提供される。より具体的には、本発明では、断面形状が非対称な不等辺不等厚山形鋼を製造する際、仕上圧延時の温度と最終形状との関係を考慮し、すなわち、被圧延材の圧延と冷却が完了した後に発生する左右方向の反りや曲がり量を熱変形予測モデルによって予測する。これにより、圧延ガイドの位置設定を高精度かつ効率的に行って、冷却中に発生する曲がりを制御し、ローラー矯正後の形状不良を抑制する効果が得られる。よって、オフラインでのプレス矯正が必要となることを抑制できる。その結果、ローラー矯正機のみでの矯正が可能となり、生産性の向上が実現できる。   In the above, the manufacturing method of the unequal side unequal thick angle steel of this invention was demonstrated. ADVANTAGE OF THE INVENTION According to this invention, the technique which manufactures the unequal-side unequal thickness steel which has a desired shape efficiently and highly accurately is provided. More specifically, in the present invention, when producing an unequal side unequal thick angle steel having an asymmetric cross-sectional shape, the relationship between the temperature during finish rolling and the final shape is considered, that is, the rolling of the material to be rolled. The amount of warping or bending in the left-right direction that occurs after cooling is completed is predicted by a thermal deformation prediction model. Thereby, the position setting of a rolling guide is performed with high precision and efficiency, the effect which controls the bending which generate | occur | produces during cooling, and suppresses the shape defect after roller correction is acquired. Therefore, it is possible to suppress the need for offline press correction. As a result, correction with only a roller straightener is possible, and productivity can be improved.

また、本発明によれば、変態点を下回るような冷却を必要とせずに不等辺不等厚山形鋼の最終長手形状を制御することが可能であるため、本発明の製造方法は製品毎の要求特性に関わらず適用することができる。また、本発明の製造方法では、長手方向の各位置における温度分布に対応して曲がりを制御することが可能であるため、長手方向において形状が不均一になることを抑制することもできる。   In addition, according to the present invention, it is possible to control the final longitudinal shape of the unequal side unequal thick angle steel without the need for cooling below the transformation point. It can be applied regardless of the required characteristics. Moreover, in the manufacturing method of this invention, since it is possible to control bending according to the temperature distribution in each position of a longitudinal direction, it can also suppress that a shape becomes non-uniform | heterogenous in a longitudinal direction.

(実施例1)
本発明の実施例として、図4、図8に示す仕上圧延機1により長辺幅A=200mm・長辺厚t=9mm、短辺幅B=90mm・短辺厚t=14mm、圧延長さ約100m、製品長(鋸断後の長さ)20mの不等辺不等厚山形鋼(図1も参照)の製造を行った。
Example 1
As an example of the present invention, the finishing mill 1 shown in FIGS. 4 and 8 is used to measure a long side width A = 200 mm, a long side thickness t 1 = 9 mm, a short side width B = 90 mm, a short side thickness t 2 = 14 mm, a pressure An unequal side unequal thick angle steel having an extension of about 100 m and a product length (length after sawing) of 20 m was produced (see also FIG. 1).

仕上圧延機1出側には、曲げ付与装置2として被圧延材を左右方向に押し込む機構を持ったローラー付きサイドガイドを配置した。このサイドガイドは両側から被圧延材を挟み込むようにして短辺側、長辺側のどちらにも曲げが与えられるようなものとした。また、仕上圧延機1の圧延ロール11の中心から押し込みローラー21中心の距離lは1mとした。また、圧延後、鋸断と冷却を実施し、室温になった時点でローラー矯正機5により矯正を行った後に、製品の左右曲がりが全長で25mm以下となれば出荷基準に合格となる。これを、式(1)を用いて曲率とすると許容曲率は5×10−7mm−1と求まり、この曲率よりも大きい場合は、オフラインでのプレス矯正が必要となる。なお、仕上圧延機1進入前の平均温度は、短辺側で約740℃、長辺側で約650℃であった。 On the exit side of the finishing mill 1, a side guide with a roller having a mechanism for pushing the material to be rolled in the left-right direction as a bending imparting device 2 was disposed. This side guide was designed to bend both the short side and the long side so that the material to be rolled was sandwiched from both sides. The distance l from the center of the rolling roll 11 of the finishing mill 1 to the center of the pressing roller 21 was 1 m. In addition, after rolling, sawing and cooling are performed, and when the temperature reaches room temperature, correction is performed by the roller straightening machine 5, and if the left and right bend of the product is 25 mm or less in total length, the shipping standard is passed. If this is the curvature using the formula (1), the allowable curvature is 5 × 10 −7 mm −1, and if it is larger than this curvature, offline press correction is required. The average temperature before entering the finishing mill 1 was about 740 ° C. on the short side and about 650 ° C. on the long side.

本実施例では、仕上圧延機1前後で短長辺を独立に計測する温度計3を設置することで、圧延前後の温度変化を予測して仕上圧延機1で圧延中の温度を決定した。さらに、あらかじめ求められた温度分布と室温における形状との関係から温度差によって発生する曲がりは最大で1.0×10−5mm−1と考え、ガイドによって付与する曲げの制御範囲も同程度として、上記の熱変形予測モデルによってその後の変形量を予測した結果、ガイド2のローラー21による押し込み量は短辺から長辺方向に最大で15mmとした。 In this example, the temperature during rolling was determined by the finishing mill 1 by predicting the temperature change before and after rolling by installing a thermometer 3 that independently measures the short and long sides before and after the finishing mill 1. Furthermore, the bending caused by the temperature difference is considered to be 1.0 × 10 −5 mm −1 at the maximum from the relationship between the temperature distribution obtained in advance and the shape at room temperature, and the control range of bending given by the guide is about the same. As a result of predicting the subsequent deformation amount by the above-described thermal deformation prediction model, the pushing amount of the guide 2 by the roller 21 was set to 15 mm at the maximum from the short side to the long side direction.

そして、本発明の製造方法のシステムを用いて圧延したところ、矯正機5出側での平均曲率は2.5×10−7mm−1になり、許容の曲がり量であったため、その後のプレス矯正は不要であった。一方、比較例としてガイド2のローラー21による押し込みを実施しなかったものについての矯正機1出側での平均曲率は9.5×10−6mm−1となり、許容限度以上の曲がり量であったため、その後プレス矯正が必要となった。 And when it rolled using the system of the manufacturing method of this invention, since the average curvature by the side of the straightening machine 5 became 2.5 * 10 <-7> mm <-1> , and it was an allowable bending amount, it was the subsequent press. No correction was necessary. On the other hand, as a comparative example, the average curvature on the exit side of the straightening machine 1 of the guide 2 that was not pushed by the roller 21 was 9.5 × 10 −6 mm −1 , which was a bending amount that was more than the allowable limit. Therefore, press correction was necessary after that.

(実施例2)
次に、実施例2として、図4、図8の仕上圧延機を使い、複数の被圧延材について本発明の効果を確認した例について説明する。鋼片は、長辺幅A=200mm・長辺厚t=9mm、短辺幅B=90mm・短辺厚t=14mm、圧延長さ約100mであり、仕上げ入り側の温度計3は結果として、短辺側で660〜680℃、長辺側で740〜760℃の範囲となった。
(Example 2)
Next, as Example 2, an example in which the effect of the present invention is confirmed for a plurality of materials to be rolled using the finish rolling mills of FIGS. 4 and 8 will be described. The steel piece has a long side width A = 200 mm, a long side thickness t 1 = 9 mm, a short side width B = 90 mm, a short side thickness t 2 = 14 mm, and a rolling length of about 100 m. As a result, it became the range of 660-680 degreeC in the short side, and 740-760 degreeC in the long side.

図9に、圧延した際に本発明の製造方法のシステムを適用しなかった場合(丸)と適用した場合(四角)の測定結果を示す。横軸は仕上圧延後の短辺および長辺の温度分布から求まる収縮率差で、縦軸は矯正機5入側での曲率である。このように本発明に示した方法を用いることで製造温度条件に関わらず、冷却終了後の形状を適切に制御できオフラインでのプレス矯正が必要となることを抑制できる。   FIG. 9 shows measurement results when the system of the manufacturing method of the present invention is not applied (round) and when applied (square) when rolling. The horizontal axis is the shrinkage difference obtained from the temperature distribution of the short side and the long side after finish rolling, and the vertical axis is the curvature at the entry side of the straightening machine 5. As described above, by using the method shown in the present invention, it is possible to appropriately control the shape after completion of cooling regardless of the production temperature condition, and to suppress the need for offline press correction.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 仕上圧延機
2 ガイド装置(曲げ付与装置)
3 温度計
4 形状計
5 ローラー矯正機
6 プロセスコンピューター
7 制御装置
71 記憶部
1 Finishing mill 2 Guide device (bending device)
3 Thermometer 4 Shape Meter 5 Roller Straightening Machine 6 Process Computer 7 Controller 71 Storage Unit

Claims (6)

仕上圧延を含む複数段の圧延を実施することにより不等辺不等厚山形鋼を製造する製造方法であり、
被圧延材の温度分布、仕上圧延された前記被圧延材の形状、および前記被圧延材に対して仕上圧延後に実施される曲げ変形初期設定量に基づいて、前記不等辺不等厚山形鋼の室温における形状を予測する形状予測工程と、
前記形状予測工程で予測された室温における形状に基づいて、前記被圧延材の曲げ変形量を調整する曲げ変形量調整工程と、
前記曲げ変形量調整工程で調整された前記曲げ変形量に基づいて、前記被圧延材に対して仕上圧延後に曲げを付与する曲げ変形付与工程と、
前記曲げ変形付与後の前記被圧延材の形状を測定する形状測定工程と、
前記曲げ変形付与後に得られた前記被圧延材に矯正が必要と判断された場合に前記被圧延材に矯正を施す矯正工程と、
を含む不等辺不等厚山形鋼の製造方法。
It is a manufacturing method for manufacturing unequal side unequal thick angle steel by carrying out multi-stage rolling including finish rolling,
Based on the temperature distribution of the material to be rolled, the shape of the material to be rolled that has been finish-rolled, and the initial amount of bending deformation performed after finish rolling on the material to be rolled, A shape prediction step for predicting a shape at room temperature;
Based on the shape at room temperature predicted in the shape prediction step, the bending deformation adjustment step of adjusting the bending deformation amount of the material to be rolled,
Based on the bending deformation amount adjusted in the bending deformation amount adjusting step, a bending deformation applying step for applying bending to the material to be rolled after finish rolling;
A shape measuring step for measuring the shape of the material to be rolled after the bending deformation is applied;
A correction step of correcting the material to be rolled when it is determined that correction is required for the material to be rolled obtained after applying the bending deformation;
A manufacturing method of unequal sides and unequal thickness irons.
前記曲げ変形付与工程後に測定された前記被圧延材の形状に基づいて、前記被圧延材の次に製造される不等辺不等厚山形鋼の仕上圧延後に実施される曲げ変形量を調整する次材曲げ変形量調整工程、
をさらに含む請求項1に記載の不等辺不等厚山形鋼の製造方法。
Next, based on the shape of the material to be rolled measured after the bending deformation imparting step, the amount of bending deformation to be performed after finish rolling of the unequal side unequal thick angle steel manufactured next to the material to be rolled is adjusted. Material bending deformation adjustment process,
The manufacturing method of the unequal side unequal thickness angle steel of Claim 1 which further contains these.
前記被圧延材の温度分布が、前記仕上圧延前の前記被圧延材の温度分布である請求項1または2に記載の不等辺不等厚山形鋼の製造方法。   The method for producing unequal side unequal thick angle steel according to claim 1 or 2, wherein the temperature distribution of the material to be rolled is a temperature distribution of the material to be rolled before the finish rolling. 前記被圧延材の温度分布が、前記仕上圧延後且つ前記曲げ変形付与工程前の前記被圧延材の温度分布である請求項1または2に記載の不等辺不等厚山形鋼の製造方法。   The method for producing an unequal side unequal thick angle steel according to claim 1 or 2, wherein the temperature distribution of the material to be rolled is the temperature distribution of the material to be rolled after the finish rolling and before the bending deformation applying step. 前記形状予測工程で用いる前記被圧延材の温度分布は、前記被圧延材の短辺側および長辺側の双方の温度分布である請求項1〜4のいずれかに記載の不等辺不等厚山形鋼の製造方法。   The unequal side unequal thickness according to any one of claims 1 to 4, wherein the temperature distribution of the material to be rolled used in the shape prediction step is a temperature distribution on both the short side and the long side of the material to be rolled. A manufacturing method of angle steel. 前記仕上圧延前に前記被圧延材を冷却することで、前記被圧延材の温度分布を調整する冷却工程、
をさらに含む請求項1〜5のいずれかに記載の不等辺不等厚山形鋼の製造方法。
Cooling step of adjusting the temperature distribution of the material to be rolled by cooling the material to be rolled before the finish rolling,
The manufacturing method of an unequal side unequal thickness angle steel according to any one of claims 1 to 5.
JP2017014945A 2017-01-31 2017-01-31 Manufacturing method of unequal side unequal thickness angle steel Active JP6569691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014945A JP6569691B2 (en) 2017-01-31 2017-01-31 Manufacturing method of unequal side unequal thickness angle steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014945A JP6569691B2 (en) 2017-01-31 2017-01-31 Manufacturing method of unequal side unequal thickness angle steel

Publications (2)

Publication Number Publication Date
JP2018122319A JP2018122319A (en) 2018-08-09
JP6569691B2 true JP6569691B2 (en) 2019-09-04

Family

ID=63110773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014945A Active JP6569691B2 (en) 2017-01-31 2017-01-31 Manufacturing method of unequal side unequal thickness angle steel

Country Status (1)

Country Link
JP (1) JP6569691B2 (en)

Also Published As

Publication number Publication date
JP2018122319A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP4606437B2 (en) Apparatus and method for crown control of hot rolling mill
JP5647917B2 (en) Control apparatus and control method
JP2016078057A (en) Slab camber suppression method, camber suppression device, and slab guiding device
JP4289480B2 (en) Straightening method to obtain steel plate with good shape with little variation in residual stress
CN110366456B (en) Method and apparatus for cooling steel sheet, and method for manufacturing steel sheet
JP6569691B2 (en) Manufacturing method of unequal side unequal thickness angle steel
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JP6809488B2 (en) Hot-rolled rough rolling method, hot-rolled rough rolling equipment, hot-rolled steel sheet manufacturing method, and hot-rolled steel sheet manufacturing equipment
JP5310964B1 (en) Steel plate manufacturing method
JP6477618B2 (en) Method for rolling shape steel and rolling mill
JP4102267B2 (en) Sheet width control method in cold tandem rolling
JP4669376B2 (en) Manufacturing method of thick steel plate with high flatness
JP2019038035A (en) Hat-shaped steel sheet pile, manufacturing method of hat-shaped steel sheet pile, and manufacturing facility therefor
JP6172110B2 (en) Hot rolled steel sheet rolling method
JP6551282B2 (en) Hot finish rolling method
JP7052352B2 (en) Bending straightening method of shaped steel and manufacturing method of shaped steel
JP6743835B2 (en) Method for rolling shaped steel and method for adjusting leveling amount in rolling shaped steel
JP6394625B2 (en) Width reduction device and side guide position control method of width reduction device
JP6680284B2 (en) Rolling mill leveling setting method, rolling mill leveling setting device, and steel plate manufacturing method
JP3211709B2 (en) Manufacturing method of section steel
JP6601451B2 (en) Rolling mill control method, rolling mill control apparatus, and hot rolled steel sheet manufacturing method
JP6520864B2 (en) Method and apparatus for controlling plate thickness of rolling mill
JP4525037B2 (en) Roller straightening method for steel sheet
JP3211710B2 (en) Manufacturing method of section steel
JP2003205306A (en) Method for manufacturing steel plate

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6569691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150