JP7177646B2 - 減衰係数調整式誘導加熱システムおよび同システムを含むアイソレータ組立体 - Google Patents

減衰係数調整式誘導加熱システムおよび同システムを含むアイソレータ組立体 Download PDF

Info

Publication number
JP7177646B2
JP7177646B2 JP2018181313A JP2018181313A JP7177646B2 JP 7177646 B2 JP7177646 B2 JP 7177646B2 JP 2018181313 A JP2018181313 A JP 2018181313A JP 2018181313 A JP2018181313 A JP 2018181313A JP 7177646 B2 JP7177646 B2 JP 7177646B2
Authority
JP
Japan
Prior art keywords
isolator
induction heating
hydraulic damper
damper
damping fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018181313A
Other languages
English (en)
Other versions
JP2019100538A (ja
Inventor
ティム・ダニエル・バーバー
ティモシー・ヒンドル
ケン・ヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2019100538A publication Critical patent/JP2019100538A/ja
Application granted granted Critical
Publication of JP7177646B2 publication Critical patent/JP7177646B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/52Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics in case of change of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/005Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper
    • F16F13/007Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper the damper being a fluid damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/42Cooling arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)
  • General Induction Heating (AREA)
  • Sealing Devices (AREA)
  • Diaphragms And Bellows (AREA)

Description

[0001]本開示は全体的にアイソレータに関し、より詳細には、液圧ダンパを含むアイソレータと併用される減衰係数調整式誘導加熱システム、およびアイソレータと組み合わされた誘導加熱システムを含むアイソレータ組立体に関する。
[0002]2つの物体または構造体間で外乱力の伝達を最小限にするために、様々な用途において防振システムが利用される。例えば人工衛星および他の宇宙船には、制御モーメントジャイロスコープまたはリアクションホイールアレイなどの姿勢調節装置から発せられる高周波振動力、または「ジッター」が、宇宙船に搭載された他の振動に敏感な構成要素へ伝達するのを低減させるために、一般的に防振システムが装備されている。そのような防振システムの性能は、防振システム内のアイソレータの数、アイソレータの配置の仕方、およびそれぞれの個々のアイソレータの振動アテニュエーション特性を含むいくつかの要因によって決定される。直列に結合された同調ばねと液圧ダンパに平行な一次ばねとして機械的に挙動する3パラメータアイソレータを採用した防振システムは、粘弾性アイソレータなどの他の受動的なアイソレータを採用した防振システムに比べて、全体的に優れた高周波振動のアテニュエーションを提供する。3パラメータアイソレータの例は、ニュージャージー州モリスタウン所在のHoneywell社によって開発および市販されているD-STRUT(登録商標)アイソレータである。そのようなアイソレータは、多点装着配置内で利用される受動的な、無摩擦またはほぼ無摩擦の、単一自由度(DOF)の、軸方向減衰装置として、有用に実装される。
[0003]既存の受動的な3パラメータアイソレータは、回路または他の電子機器に直接依存することなく、高性能な振動アテニュエーションを提供することが可能であるが、特定の点においてはなお制限されている。アイソレータの動作中、減衰流体の温度および粘度の変動に起因して、液圧ダンパの減衰係数、または「C」値の増減が生じ得る。大半の用途では、減衰流体の温度および粘度のそのような変動は比較的小さく、したがってC値の変動にはわずかな影響しか与えない。しかし特殊な用途では、アイソレータの動作中に減衰流体の温度および粘度の有意な変動が生じ、望ましくないC値の変動または変化がもたらされる恐れがある。これは、例えば宇宙空間を運ばれる高高度での用途の文脈において生じることがあるような、例えば広い周囲温度範囲、または大気遮蔽が脆弱な状態での太陽暴露量の変化によって特徴付けられる環境内にアイソレータが配備された場合に該当し得る。はっきり言えば、C値の変動は、特にアイソレータが比較的狭い振動帯域にわたって、または大型システムの臨界モードにわたって最適な振動アテニュエーションをもたらすように同調されたときに、アイソレータの性能を損なう恐れがある。
[0004]したがって、液圧ダンパ内蔵アイソレータの性能を、C値の変動を低減することによって向上させることができるシステムに対する需要が、引き続き存在している。理想的には、そのようなC調整式システムの実施形態は、無摩擦またはほぼ無摩擦の設計を有する受動的な単一DOFの3パラメータアイソレータと併用されるのに好適である。また、少なくともいくつかの実施形態では、そのようなC調整式システムにモジュール式設計が付与され、元のアイソレータの製造後に、選択されたアイソレータを任意の所望の接合点に設置するおよびその接合点から取り外すのを容易にすることができれば、それも望ましい。最後に、1つまたは複数の液圧ダンパ内蔵アイソレータと組み合わされたそのようなC調整式システムを含むアイソレータ組立体を提供することが望ましい。本発明の実施形態の他の望ましい特徴および特性は、添付図面および前述した背景技術と合わせて、後述する発明を実施するための形態、および添付の特許請求の範囲から明らかになろう。
米国特許第5,332,070号 米国特許第7,182,188B2号
[0005]減衰係数調整式誘導加熱システムを含むアイソレータ組立体が提供される。様々な実施形態では、アイソレータ組立体は、減衰係数調整式または「C調整式」誘導加熱システムと、選択された減衰流体で満たすことができる液圧ダンパを含む3パラメータアイソレータなどの少なくとも1つのアイソレータとを含んでいる。そのC調整式誘導加熱システムは、順に、誘導加熱装置と、コントローラと、減衰流体の温度を示すデータ、すなわち液圧ダンパ内の減衰流体の温度、を監視するためのセンサとを含んでいる。誘導加熱装置は、非接触の関係で、ダンパの外周または周縁などの液圧ダンパの周囲周りに位置付けられる。アイソレータの動作中、コントローラはセンサからデータを受け取り、それに応答して、減衰流体に接触している金属ベローズなどの1つまたは複数のダンパ構成要素の加熱を誘導するために、選択的に変動磁場を生成するように誘導加熱装置を制御する。
[0006]さらなる実施形態では、アイソレータ組立体は、減衰流体で満たすことができる液圧ダンパを含むアイソレータを含んでいる。その液圧ダンパは、順に、(i)ダンパが減衰流体で満たされたときにその減衰流体が入る第1および第2の液圧チャンバ、(ii)第1および第2の液圧チャンバの周囲の境界をそれぞれ画している第1および第2の金属ベローズ、ならびに(iii)第1と第2の液圧チャンバがそこを通って流体結合されるアニュラスなどの制限されたオリフィスを含んでいる。誘導加熱シュラウドは、誘導加熱シュラウドと液圧ダンパの間に周縁クリアランスが形成されるように、非接触の関係で液圧ダンパの外側周縁周りに位置付けられている。通電されると、誘導加熱シュラウドは、減衰流体に接触している金属ベローズなどの1つまたは複数のダンパ構成要素の誘導加熱を引き起こすような態様で、(例えば変動磁場の形態の)誘導入力エネルギーを、周縁クリアランスを通して液圧ダンパに導く。
[0007]C調整式誘導加熱システムの実施形態がさらに提供される。C調整式誘導加熱システムは、減衰流体で満たすことができる液圧ダンパを含む3パラメータアイソレータなどのアイソレータと併用される。様々な実施形態では、C調整式誘導加熱システムは、C調整式誘導加熱システムがアイソレータに設置されたときに、非接触の関係で液圧ダンパの周囲周りに位置付けられる誘導加熱装置を含んでいる。センサは、減衰流体の温度を示すデータを監視するように構成されており、コントローラは、誘導加熱装置およびセンサに動作可能に結合されている。C調整式誘導加熱システムの動作中、コントローラはセンサからデータを受け取り、それに応答して、減衰流体に接触している金属ベローズなどの1つまたは複数のダンパ構成要素の加熱を誘導するために、選択的に変動磁場を生成するように誘導加熱装置を制御する。
[0008]上記の概要は、非限定的な例として提供されているにすぎない。本開示の実施形態の様々な追加的な例、態様、および他の特徴は、以下でより詳細に記述される。
[0009]本発明の少なくとも1つの例が、次の図面と合わせて以下に記述され、図面において同じ数字は同じ要素を指す。
[0010]従来技術の教示により示される、2つの物体または構造体(ここでは防振対象物とプラットフォーム)の間に結合された受動的な3パラメータアイソレータの概略図である。 [0011]2パラメータアイソレータおよび非減衰装置の伝達プロファイルと比較した、図1に示されている3パラメータアイソレータの伝達プロファイルを示す周波数(水平軸)対ゲイン(垂直軸)の伝達プロットである。 [0012]本開示の例示的な実施形態により示される、通電されたときに1つまたは複数のダンパ構成要素を誘導加熱する、3パラメータアイソレータおよびC調整式誘導加熱システムを含むアイソレータ組立体の断面図である。 本開示の例示的な実施形態により示される、通電されたときに1つまたは複数のダンパ構成要素を誘導加熱する、3パラメータアイソレータおよびC調整式誘導加熱システムを含むアイソレータ組立体の側面図である。
[0013]説明を簡単にわかりやすくするために、よく知られている特徴および技術の記述および詳細事項は、以下の発明を実施するための形態において記述される本発明の例示的および非限定的な実施形態を不必要に曖昧にするのを回避するために省略されてもよい。添付図面に出現する特徴または要素は、別段の記載がないかぎり、必ずしも原寸に比例して描かれているわけではないことが、さらに理解されるべきである。例えば、本発明の実施形態の理解を向上させるために、図中の特定の要素または領域の寸法は、他の要素または領域より誇張されてもよい。
[0014]以下の発明を実施するための形態は、単に例示的な性質のものであり、本発明、または本発明の用途および使用法を制限することは意図されていない。さらに、前述した背景技術または以下の発明を実施するための形態に提示されるいかなる理論によっても拘束されることは意図されていない。
[0015]以下では、減衰係数調整式または「C調整式」誘導加熱システムと組み合わされた、液圧ダンパ内蔵アイソレータを含むアイソレータ組立体について記述する。所与のアイソレータ組立体は、1つまたは複数の液圧ダンパ内蔵アイソレータと、アイソレータ組立体に含まれた1つまたは複数の液圧ダンパの減衰係数をその動作中に調整するもしくは他の態様でその安定化を促すダンパ係数調整式誘導加熱システムとを含むことができる。C調整式誘導加熱システムの実施形態は、受動的な、単一自由度(DOF)の、軸方向に減衰する、無摩擦またはほぼ無摩擦の動作を提供することができる3パラメータアイソレータと併用するのに特に好適である。この理由から、C調整式誘導加熱システムの実施形態は、主にこのタイプの受動的な3パラメータアイソレータと合わせて議論される(そして、アイソレータ組立体の実施形態は、このタイプの受動的な3パラメータアイソレータを含むものとして主に記述される)。これにも関わらず、以下に記述されるC調整式誘導加熱システムの実施形態は、すべての事例において受動的な3パラメータアイソレータとともに使用されることに制限されるわけではなく、むしろ液圧ダンパを含んでいる、選択的な減衰流体の加熱から恩恵を得る様々な他のタイプのアイソレータと併用することができる。
[0016]以下に記述されるアイソレータ組立体は、実施形態において一体型のユニットとして製造することができる。この場合、C調整式誘導加熱システムは、アイソレータを少なくとも実質的な部分において分解しなければ誘導加熱システムの取外しができないような態様で、少なくとも1つの液圧ダンパ内蔵アイソレータに一体化されてもよい。あるいは、C調整式誘導加熱システムの実施形態に、より一層モジュール的な設計が付与されてもよく、それにより元のアイソレータ製造の後で、任意の所望の接合点に誘導加熱システムを設置することが容易になる。この後者の手法は、有用なことに、C調整式誘導加熱システムをオプションの特徴部、または強化されたソリューションとして提供することを可能にし、そのC調整式誘導加熱システムは、顧客の希望および特定の任務要件に対応するうえで柔軟性を向上させることが望まれるときに、選択されたアイソレータに後付けすることができる。さらにそのようなモジュール式設計が付与されると、C調整式誘導加熱システムの実施形態は、改善されたC値調整により所望の性能向上を提供すること以外に全体的なアイソレータの性能に影響を与えることなく、選択されたアイソレータに後付けすることができる。例えば、無摩擦またはほぼ無摩擦の設計を有する3パラメータアイソレータの文脈においては、C調整式誘導加熱システムの実施形態は、アイソレータの動きに摩擦を導入しないような態様で非接触の関係で液圧ダンパ周りに位置付け可能である少なくとも1つの誘導加熱装置を含むことができる。誘導加熱システムは事実上、アイソレータ動作に対して透過性であってもよい。さらなる恩恵として、誘導加熱システムの非接触設計によって、動的な境界面に広がる可撓性ワイヤ連結または他の物理的な連結の必要性をなくすことができる。
[0017]C調整式誘導加熱システムの実施形態は、好ましくは誘導加熱装置と液圧ダンパの動的構成要素とが物理的に接触することなく、減衰流体の選択的な加熱を可能にするために、誘導加熱手法を利用する。誘導加熱システムの誘導加熱装置は、1つまたは複数の電磁コイルを含むことができ、電磁コイルは、強磁性合金などの誘導加熱を受けやすい材料から構成されたダンパ構成要素と電磁的に通信するように位置付けられる。そのようなダンパ構成要素は、例えばダンパの液圧チャンバ周囲の境界を画す金属ベローズ、金属ベローズに封止取付けされた金属ベローズキャップまたはカップ、および/または金属ベローズに封止取引けされたダンパピストンを含むことができる。適切に通電されると、電磁コイルは、これらのダンパ構成要素、ひいてはそれに接触している減衰流体の誘導加熱を引き起こす変動磁場を生成する。誘導加熱装置が液圧ダンパの外周周りに位置付けられている実施形態では、誘導加熱装置は、そのような電磁誘導の入力エネルギーを、ダンパを取り囲んでいるまたはその周りに延在している主ばね、およびおそらくは同調ばねを通して導くことができる。所望される場合には、主ばねおよび/または同調ばねは、誘導により加熱されるダンパの構成要素よりも誘導加熱を受けにくい傾向にある材料から作製されてもよい。C調整式誘導加熱システムを含むアイソレータ組立体の例示的な実施形態は、図3~図5と合わせて以下に記述される。しかし最初に、図1および図2と合わせて、3パラメータアイソレータの包括的な記述が提供される。
[0018]図1は、従来技術の教示により示される受動的な3パラメータアイソレータ10の概略図である。この例では、3パラメータアイソレータ10は、防振対象物「IO」とプラットフォーム「P」との間に機械的に結合されている。一実施形態では、プラットフォームPは人工衛星または他の宇宙船であり、防振対象物IOは、宇宙船によって運ばれている光学ベンチまたは他の振動に敏感なペイロードである。別の実施形態では、プラットフォームPは航空機であり、防振対象物IOは、航空機胴体に到達する前にアテニュエートすることが望ましい振動を発生させる、補助動力ユニットなどのガスタービンエンジンである。さらなる実施形態では、プラットフォームPは他のタイプの車両または構造体であり、防振対象物IOは、様々な他の形態を仮定することができる。モデル化されているように、3パラメータアイソレータ10は、以下の機械的要素または構成要素を含んでいる。すなわち、(i)防振対象物IOとプラットフォームPの間に機械的に結合された第1のばね構成要素K、(ii)第1のばね構成要素Kに平行に、防振対象物IOとプラットフォームPの間に機械的に結合された第2のばね構成要素K、および(iii)第1のばね構成要素Kに平行に、かつ第2のばね構成要素Kに直列に、防振対象物IOとプラットフォームPの間に機械的に結合されたダンパCである。3パラメータアイソレータ10の伝達性は、以下の式によって表される。
Figure 0007177646000001
ここでT(ω)は伝達性、Xoutput(ω)は、防振対象物IOの出力運動、およびXinput(ω)は、プラットフォームPによって3パラメータアイソレータ10に付与される入力運動である。
[0019]図2は、2パラメータアイソレータ(曲線14)、および非減衰装置(曲線16)と比較したときの3パラメータアイソレータ10(曲線12)の減衰特性を示す伝達性プロットである。図2に示されているように、ピーク18において、非減衰装置(曲線16)は、示されている例では10ヘルツよりもやや低い閾値周波数において比較的高いピークゲインをもたらしている。比較すると、2パラメータ装置(曲線14)は、閾値周波数において著しく低いピークゲインをもたらしているが、閾値周波数を越えた後、周波数が増大するにつれて、ゲインが望ましくない態様で徐々に低減している(「ロールオフ」と呼ばれる)。ここで、2パラメータ装置(曲線14)のロールオフは、1ディケイド当たり約-20デシベル(「dB/decade」)である。最後に、3パラメータ装置(曲線12)は、2パラメータ装置(曲線14)により実現されたゲインと実質的に等しい低ピークゲインをもたらし、さらに、約-40dB/decadeの比較的急なロールオフをもたらしている。したがって3パラメータ装置(曲線12)は、図2において曲線12と14で境界を画されたエリア20によって定量化されるように、高周波数において著しく低い伝達性を提供する。非限定的な例として、1994年1月26日に発行された「THREE PARAMETER VISCOUS DAMPER AND ISOLATOR」という名称の米国特許第5,332,070号、および2007年2月27日に発行された「ISOLATOR USING EXTERNALLY PRESSURIZED SEALING BELLOWS」という名称の米国特許第7,182,188B2号において、3パラメータアイソレータのさらなる議論を見つけることができる。
[0020]したがって、図1に概略的に示されているアイソレータ10などの受動的な3パラメータアイソレータは、非減衰装置および2パラメータ装置と比較して、的を絞った振動周波数範囲にわたって優れた減衰特性(例えば、全体的な低伝達性)を提供するように同調させることができる。さらに、粘弾性ダンパとは対照的に、受動的な3パラメータアイソレータの剛性および減衰特性は、単独ベースで同調可能である。その結果、多点システムに6つ以上のアイソレータが配置されている場合、それぞれの3パラメータアイソレータを、それぞれの自由度において、最適な剛性および減衰をもたらすように特別に同調させて、プラットフォーム(例えば図1に概略的に示されているプラットフォームP)とそれに支持される防振対象物(例えば図1にさらに示されている防振対象物IO)との間で振動伝達を最小にすることができる。少なくともこの理由から、3パラメータアイソレータは、大型システムの1つまたは複数の臨界モードを包含する比較的的を絞った振動帯域にわたって高性能な防振が必要とされる用途で、利用されることが多い。しかし特定の例では、言及した液圧ダンパのC値の変動によって、全体的なアイソレータの性能が損なわれる恐れがある。したがってそのような事例では、そのような3パラメータアイソレータの実施形態は、C値の変動を低減することによってアイソレータの性能を向上させるために、以下に記述されるタイプのC調整式誘導加熱システムと有用に組み合わされる。C調整式誘導加熱システムに組み合わされた少なくとも1つの受動的な3パラメータアイソレータを含む例示的なアイソレータ組立体が、図3~図4と合わせてここで記述される。
[0021]図3~図4は、本開示の例示的な実施形態により示されるアイソレータ組立体30、32のそれぞれ断面図および側面図である。アイソレータ組立体30、32は、少なくとも液圧ダンパ内蔵アイソレータ30と、C調整式誘導加熱システム32とを含む。図解を明確にするために、単一のアイソレータ30のみが示されているが、アイソレータ組立体30、32は、図3において符号28によって示されるように、任意の実用的な数の追加的なアイソレータを含むことができる。組立体30、32内に含まれるとき、そのような追加的なアイソレータは、アイソレータ30と同様、または実質的に同一であってもよい。その結果、以下の記述は追加的なアイソレータに等しく適用可能である。他の実装形態では、アイソレータ組立体30、32は、C調整式誘導加熱システム32と組み合わされた単一の液圧ダンパ内蔵アイソレータ30のみを含んでいてもよい。示される例では、アイソレータ30は受動的な3パラメータアイソレータであり、その例は、図1に概略的に描かれた3パラメータアイソレータ10の1つのあり得る物理的実現を表している。したがって、以下の記述の過程で、アイソレータ30は、より完全には「3パラメータアイソレータ30」とも呼ばれる。
[0022]図3に最も明確に示されるように、3パラメータアイソレータ30は、1次または「主」ばね34と、2次または「同調」ばね36と、液圧ダンパ38とを含んでいる。同調ばね36と液圧ダンパ38は、アイソレータ30の作業軸44に沿って離間した対向するアイソレータ端部分40、42間で直列に機械的に結合されている。主ばね34は、対向するアイソレータ端部分40、42間でさらに機械的に結合されているが、液圧ダンパ38および同調ばね36に平行である。この構造設計の結果、3パラメータアイソレータ30を通して2つの平行な振動伝達経路、すなわち第1の「K」振動伝達経路および第2の「K-C」振動伝達経路、が提供される。図3の上部から下部に移動すると、K振動伝達経路は、アイソレータ端部分40から主ばね34を通ってアイソレータ端部分42まで、同調ばね36およびダンパ38を経由しないで延在する。それに比べてK-C振動伝達経路は、アイソレータ端部分40から、同調ばね36を通り、液圧ダンパ38を通り、アイソレータ端部分42まで、主ばね34を経由しないで延在する。
[0023]3パラメータアイソレータ30のパラメータは、概して以下のように定義することができる。Kパラメータは、全体として主ばね34の軸方向剛性によって主に決定されると考えられる3パラメータアイソレータ30の軸方向剛性である。すなわち、アイソレータ30の作業軸44に沿って得られるばね34の剛性である。アイソレータ30のKパラメータは、ダンパベローズの容積剛性に直列な同調ばね36の軸方向剛性によって主に決定される。最後に、CパラメータまたはC値は、液圧ダンパ38の減衰係数である。液圧ダンパ38のC値は、制限されたオリフィス、またはダンパ38の液圧チャンバがそこを通って流体結合されるオリフィスの寸法などのダンパ38の構造的特性、ダンパ38を満たしている減衰流体の特性、および所与の時点での減衰流体の温度、を含む複数の要因によって決定される。
[0024]3パラメータアイソレータ30は、様々な異なる構造形態を仮定することができ、図3~図4に示される例は、1つの適切な可能性を表しているにすぎない。これが理解された状態で、アイソレータ30の構造的特徴のより詳細な説明が、ここで提供される。3パラメータアイソレータ30は、任意の数およびタイプの別々の構成要素または部品から組み立てることができるアイソレータ筐体または外側ハウジング組立体48を含んでいる。特に示される例では、外側ハウジング組立体48は、それぞれアイソレータ端部分40、42を画成している2つの外側ハウジング片50、52から組み立てられる。第1の装着境界面60が、アイソレータ端部分40の外側ハウジング片50に設けられ、第2の装着境界面62が、アイソレータ端部分42の外側ハウジング片52に設けられている。3パラメータアイソレータ30、およびより全体的にはアイソレータ組立体30、32がより大きな防振システムに組み込まれる場合には、例えば装着境界面62に係合する装着ブラケットを利用して、アイソレータ端部分42をプラットフォームに装着することができる。それに比べて、アイソレータ30のアイソレータ端部分40は、ペイロードに直接または間接的に取り付けることができる。例えば装着境界面60が、ペイロードを支持するベンチまたはパレットにボルト締めされてもよく、または他の態様で取り付けられてもよい。あるいは、アイソレータ端部分40がプラットフォームに装着され、第1のアイソレータ端部分42がペイロードに固定されるように、3パラメータアイソレータ30の配向を反対にしてもよい。いずれの場合でも、アイソレータ端部分40、42は、アイソレータ30の対向した機械的入力部/出力部としての役割を果たす。
[0025]特に図3~図4の上側部分に示されているハウジング片50について言えば、外側ハウジング片50はフランジ付き端部分を含んでおり、そこから作業軸44に沿って細長ステム64が延在している。装着の位置合わせ不良を調和し、かつ/またはアイソレータ30に追加的な運動の自由を与えるたわみ構造部66を画成するために、一連の開口部が細長ステム64に形成されている。それに比べて外側ハウジング片52は、作業軸44に沿って延在する全体的に管状または円筒状の本体68を含んでいる。本体68の端部分は、何らかの態様でハウジング片50に当接し、それに固着結合されている。例えば、第1のボルトまたは他の締め具(図示せず)のリングが、締め具開口部70内に挿入されて、管状本体68の開いた端部がハウジング片52のフランジ付き端部に当接するように、外側ハウジング片50、52を固着取付けすることができる。同様に、内側ハウジング片56が、第2のボルトのリング72を利用して、ハウジング片50のフランジ部分に固着接合されてもよい。そのように接合されると、外側ハウジング片50、52は、合わさってまたは組み合わされて、ハウジング組立体48内に内部チャンバまたは内側空洞54を画成する。液圧ダンパ38は内側空洞54内に収容され、ダンパ38に機械的に結合された管状の内側ハウジング片56も同じく内側空洞54内に収容される。例えば、ダンパ38に含まれたダンパピストン58は、ボルト89を利用してハウジング片56に固着結合されてもよい。
[0026]特定の実施形態では、主ばね34および/または同調ばね36は、対向するアイソレータ端部分40、42間に配設されたワイヤフォームばねなどの別々の構造要素として実現されてもよい。他の実施形態では、一方または両方のばね34、36は、ガスばねとして実装されてもよい。さらなる可能性として、一方または両方のばね34、36は、機械加工されたばねの形態、例えばハウジング片50、52の選択された部分から材料を除去することによって作られる弾性のある圧縮性の構造体、を仮定してもよい。この後者の点について、図3に最も明確に示されているように、主ばね34は、外側ハウジング片52の管状本体68の輪状区分または側壁に形成されてもよい。一実装形態では、主ばね34は、レーザーカッティングまたは放電加工(EDM)ワイヤ除去などにより材料を除去して圧縮性の弾性構造体を得ることによって、外側ハウジング片52の管状本体68に形成される機械加工されたばねである。同様に、同調ばね36は、作業軸44に沿って圧縮性のある弾性構造体を形成するように材料が除去された後の内側ハウジング片56の輪状側壁の区分の形態を仮定してもよい。したがって同調ばね36は、液圧ダンパ38をさらに取り囲み、示されている例では、それ自体が外側ハウジング片52によって取り囲まれている。
[0027]ここでダンパ38のより詳細な議論に目を向けると、液圧ダンパ38は、様々な異なる構造形態を仮定することができる。しかし概略的に述べると、液圧ダンパ38は、典型的にはアニュラスなどの少なくとも1つの制限されたオリフィスを含み、作業軸44に沿ってダンパピストン58がストロークするときに、そのオリフィスを通って減衰流体が流れて、所望の減衰効果が得られる。様々な実装形態では、液圧ダンパ38は、一定容積のダンパ、すなわち、ダンパピストン58の対向する側部に位置付けられた液圧チャンバの累積容積が、作業軸44に沿ってピストンがストロークするときに一定のままであるダンパ、であってもよい。他の実施形態はこれに該当しなくてもよい。液圧ダンパ38には、無摩擦またはほぼ無摩擦の設計、すなわち摺動Oリングまたは他の動的な封止がなく、代わりに以下で記述されるタイプの金属ベローズなどの無摩擦またはほぼ無摩擦の封止要素を含んでいる設計、が付与されることが有用であるが、これは必須ではない。
[0028]ダンパピストン58に加えて、液圧ダンパ38は、第1の液圧チャンバ74と、第2の液圧チャンバ76と、アニュラス78とを含んでおり、そのアニュラス78を通して液圧チャンバ74、76が流体結合される。第1の金属ベローズ80が、液圧チャンバ74の周囲の境界を画し、またはそれを取り囲んでおり、第2の金属ベローズ82が、液圧チャンバ76の周囲の境界を画し、またはそれを取り囲んでいる。金属ベローズ80、82は、液圧チャンバ74、76のそれぞれの外周の境界を画しているので、金属ベローズ80、82は、正確には「内部から加圧された」と呼ばれる。他の実施形態では、金属ベローズ80、82は、液圧チャンバの内周の境界を画していてもよく、したがって外部から加圧されてもよい。そのような実施形態では、C調整式誘導加熱システム32は、金属ベローズ80、82内に入れ子式に入れられたまたはその中に延在している1つまたは複数の加熱要素を含むことができる。または誘導加熱システム32の加熱要素は、ベローズの外周の周りに位置付けられてもよい。金属ベローズ80、82は、実質的に等しい長さ、壁厚、ならびに半径および軸方向剛性を有することが多いが、必ずしもそうでなくてもよい。金属ベローズ80、82は、例えば選択された合金から作製される縁部溶接された金属ベローズとして実現することができる。液圧ダンパ38の1つまたは複数の構成要素を誘導加熱することが望ましい実装形態では、金属ベローズ80、82は、磁性系ステンレス鋼などの強磁性材料、または変動磁場に入れられたときに誘導加熱を受けやすい他の材料から生産されることが有利である。
[0029]金属ベローズ80の第1の端部分は、第1のカップ片または「ベローズカップ」84に溶接されている、または他の態様で封止接合されている。金属ベローズ80の反対側の端部分は、ダンパピストン58の第1の面に溶接されている、または他の態様で封止接合されている。同様に、金属ベローズ82の第1の端部分は、ダンパピストン58の反対側の面に接合され、金属ベローズ82の反対側の端部は、第2のベローズカップ86に接合されている。ベローズカップ84、86は、コネクティングロッド88によって固く接合されており、コネクティングロッド88は、ダンパピストン58に設けられた中央開口部を通り作業軸44に沿って延在している。コネクティングロッド88およびダンパピストン58は、アニュラス78のそれぞれ内周および外周の境界を画している。コネクティングロッド88は、ベローズカップ86と一体に形成されてもよく、そのベローズカップ86から軸44に沿ってベローズカップ84まで延在し、ベローズカップ84とロッド88の間に例えばねじ取付けによって固着結合が形成されていてもよい。そのような配置によって、液圧ダンパ38に浮遊端部分と固定端部分が付与され、それらは全体的にそれぞれベローズカップ84とベローズカップ86に対応している。液圧ダンパ38の固定端部分(図3に示される配向においてダンパ38の下端部分)は、ベローズ80、82が作業軸44に沿って拡張および収縮するときに、アイソレータ端部分42、および以下に記述される誘導加熱装置110に対してこの端部分が不動である(動かない)という意味で、「固着」されている。反対に、液圧ダンパ38の浮遊端部分(図3のダンパ38の下端部分)は、ベローズ80、82が軸44に沿って拡張および収縮するときに、アイソレータ端部分42、および以下に記述される誘導加熱装置110に対して動く。
[0030]液圧チャンバ74は、金属ベローズ80、ベローズカップ84、コネクティングロッド88、およびダンパピストン58の第1の面によって主に画成される。それに比べて、液圧チャンバ76は、金属ベローズ82、ベローズカップ86、コネクティングロッド88、およびダンパピストン58の第2の反対側の面によって主に画成される。3パラメータアイソレータ30の使用中、ダンパピストン58が作業軸44に沿ってストロークするときに、減衰流体は液圧チャンバ74、76間で交換され、それぞれのチャンバ容積は変化する。減衰流体が液圧チャンバ74、76間を流れるとき、減衰流体はアニュラス78を通るように押し通されて、所望の減衰効果がもたらされる。液圧ダンパ38は、示されている例では一定容積のダンパである。したがって、液圧チャンバ74、76の累積容積は、ダンパピストン58が作業軸44に沿ってストロークするときに実質的に一定のままである。このような動作を可能にするために、液圧チャンバ74、76は、流体密封性のチャンバまたは区画として生産され、3パラメータアイソレータ30を使用する前に減衰流体(点描によって表されている)で満たされる。3パラメータアイソレータ30は、最初、減衰流体のない状態で生産および流通されてもよく、その場合減衰流体は、アイソレータを使用する前に充填ポート90を通して液圧チャンバ74、76に導入されてもよい。
[0031]3パラメータアイソレータ30は、熱補償器または「TC」92をさらに含んでもよく、熱補償器92は、熱により誘導された減衰流体の容積の変化を調和するのを補助し、かつ/または液圧ダンパ38内に含まれる流体を加圧するのを補助する。示されている例では、TC92は、TCチャンバ94と、TCピストン96と、TCベローズ98と、TCベローズカップ100と、TC予圧ばね102とを含んでいる。TC予圧ばね102は、TCピストン96内に設けられた第1のばね座部104と、外側ハウジング片52の閉じた端部分内に設けられた第2のばね座部106との間で圧縮される。TC予圧ばね102は、TCチャンバ94の容積が少なくなる位置に向かってTCピストン96の摺動運動を行わせる。TCチャンバ94は、コネクティングロッド88に設けられたチャネル108を通して主液圧チャンバ74、76に流体結合されている。したがって、TCチャンバ94と主液圧チャンバ74、76との間で減衰流体の交換が可能になり、それに合わせて減衰流体の容積が変化する。特に減衰流体の容積が増加するにつれて、減衰流体は、液圧チャンバ74、76からチャネル108を通ってTCチャンバ94へ流れることができる。減衰流体の容積拡張によって、アイソレータ端部分42(図3の配向において下方)に向けてピストン96を押しやり、TCベローズ98およびTC予圧ばね102を圧縮させ、TCチャンバ94の容量を増大させるのに充分な力が、TCピストン96の有効面積に加えられる。それとは反対に、減衰流体の容積および圧力が減少すると、TC予圧ばね102の拡張力およびTCベローズ98に固有の弾性によって、ピストン96がアイソレータ端部分40(示されている配向では上方)に向かって動かされ、それによりTCチャンバ94の容積容量が減少し、減衰流体が液圧チャンバ74、76に向かって流れるように押しやられる。
[0032]上述された態様では、TC92は、熱により誘導された減衰流体容積の増減を調和させるための変動容積容量を提供している。しかしTC92を含めることによって、熱により誘導された減衰流体の粘度の変化、およびそれに対応したダンパC値の増減が調和されることはほとんどない。したがって、液圧ダンパ38、およびより全体的には3パラメータアイソレータ30が、C値の無視できない変動に敏感な実施形態では、アイソレータ組立体30、32に、さらにC調整式誘導加熱システム32が装備されることが有用である。さらに、C調整式誘導加熱システム32が含まれていることによって、アイソレータ組立体30、32の実施形態は、誘導加熱システム32が提供されていない、C値の望ましくない変動に弱い用途で使用されるのに、特に好適なものになり得る。そのような環境の例は、宇宙空間および高高度の空気中で運ばれる環境を含んでおり、その環境では、比較的広い周囲温度範囲、大気遮蔽がほとんどまたは全くない状態で太陽暴露レベルが変動すること、および他の環境的要因に起因して、減衰流体の温度および粘度の著しい変化が生じ得る。全体的にC調整式誘導加熱システム32は、そのような外的要因が存在するなかで、ダンパ38の減衰流体の粘度およびCA値が不必要に高くならないように、制御された態様で減衰流体を温めるための液圧ダンパ38の誘導加熱を選択的に引き起こすのに適した任意の形態を仮定することができる。非限定的な例として、C調整式誘導加熱システム32を物理的に実装することができる1つの可能な態様が、ここで記述される。
[0033]引き続き図3~図4を参照すると、C調整式誘導加熱システム32は、少なくとも1つの誘導加熱装置110と、少なくとも1つのセンサ112と、コントローラ114と、電源116と、メモリ118と、入力/出力(I/O)インターフェイス120とを含んでいる。誘導加熱システム32の構成要素間の様々な信号および電力接続が、線122、124、126、128によって表されている。特に通信線122は、センサ112からコントローラ114の入力部へのデータ送信接続を表している。これは、センサ112からコントローラ114へデータを送信することができる無線周波数および光学データ接続を含むワイヤードまたはワイヤレスデータ接続とすることができる。コントローラ114は、ワイヤードまたはケーブル接続などの接続124によって電源116に、および接続126によって誘導加熱装置110に、さらに動作可能に結合されている。最後に、両方向矢印128および雲の記号130によって示されているように、コントローラ114は、追加的なアイソレータに含まれる追加的なセンサおよび/または誘導加熱装置110と通信することができる。例えば、アイソレータ組立体30、32が1つまたは複数の追加的な図示されていないアイソレータを含む実施形態では、コントローラ114は、その図示されていないアイソレータに含まれた(実質的にセンサ112と同一であってもよい)センサからさらにデータを受け取ることができ、かつ/またはそのようなアイソレータの(実質的に誘導加熱装置110と同一であってもよい)誘導加熱装置に選択的に通電することができる。この点について、2つ以上のアイソレータを含む場合にアイソレータ組立体30、32内のすべてのまたは一部のアイソレータに含まれる複数の誘導加熱装置を、共通のコントローラ114を使用して制御することによって、コスト、複雑さ、および部品数の低減を実現することができる。
[0034]図3~図4に概略的に描かれているように、コントローラ114は、任意の適切な数の個々のマイクロプロセッサ、記憶装置、インターフェイスカード、および他の標準的な構成要素を包含することができ、またはそれらに関連付けられてもよい。また、コントローラ114は、本明細書において記述される様々な処理機能を実行するように設計された任意の数のファームウエアおよびソフトウエアプログラム、もしくは命令を含んでもよく、またはそれらと協働してもよい。メモリ118は、コンピュータ読取り可能コードまたは命令、および誘導加熱システム32の動作をサポートするために利用される他のデータを記憶するのに適した任意の数およびタイプの記憶媒体を包含することができる。実施形態では、メモリ118は、例えばフラッシュメモリなどの固体の不揮発性記憶媒体を含むことができ、またはそれらから構成されてもよい。様々な実施形態では、メモリ118は、少なくとも1つの所定の温度閾値を記憶しており、その閾値より上で、液圧ダンパ38に含まれた減衰流体の温度を維持することが望ましい。メモリ118は別個のブロックとして図示されているが、例えばシステムインパッケージ、システムオンチップ、または別のタイプの超小型電子技術パッケージもしくはモジュールとしての実施形態では、コントローラ114に一体化することができる。
[0035]I/Oインターフェイス120によって、物理的データ接続かワイヤレスデータ接続かに関わらず、コントローラ114とのデータ通信が可能になる。特定の実装形態では、例えばセンサ112によって捕捉されたデータを、予測または診断のために遠隔のエンティティにワイヤレスでレポートできるように、かつ/またはメモリ118内に記憶された温度閾値を修正することができるように、I/Oインターフェイス120はワイヤレス通信機能を有してもよい。電源116は、コントローラ114、誘導加熱装置110、およびC調整式誘導加熱システム32の他の構成要素の動作をサポートするのに適した任意の形態を仮定することができる。多くの事例において、電源116は、バッテリバンクなどの再充電可能な化学作用を有する1つまたは複数のバッテリを含んでいる。アイソレータ組立体30、32が人工衛星内に配備されるとき、電源116に含まれる任意のそのようなバッテリは、必要に応じて太陽光充電により再充電されてもよい。また電源116は、代替的な実施形態において、環境発電機構、および/または1つもしくは複数のスーパーキャパシタなどの他のエネルギー貯蔵装置を含むことができる。
[0036]C調整式誘導加熱システム32の動作中、センサ112は、液圧ダンパ38内の減衰流体の温度を示すデータを、コントローラ114に供給する。センサ112は、減衰流体の温度を示すパラメータを監視するのに適した任意の装置とすることができる。特定の実施形態では、センサ112は、減衰流体の温度または粘度を直接測定する温度センサまたは流れセンサとすることができるが、ただし一般的にはその場合、設計が複雑になり、追加的な封止要件が生じる。他の実施形態では、センサ112は、減衰流体の温度を示す異なる特性を測定することができる。例えば特定の実施形態では、微小電気機械システム(MEMS)加速度計などの2つ以上のセンサを利用して、アイソレータ30による振動アテニュエーションを監視することができる。この場合コントローラ114は、KおよびKが既知の数量であることから、Cを算出し、Cを減衰流体の温度に変換する。これらの可能性があるにも関わらず、センサ112は、減衰流体と接触して液圧ダンパ38の構成要素の温度を監視するように構成された温度センサの形態を仮定することが多い。例えば、一実装形態では、センサ112は、液圧ダンパ38の固着端部分に装着された、ベローズ82またはベローズカップ86の温度を測定するように構成されたサーミスタなどの温度センサの形態を仮定する。有利なことに、そのように装着することによって、ダンパピストン58が作業軸44に沿ってストロークする間にベローズ80、82が拡張および収縮するときに、センサ112はアイソレータ端部分42に対して静止または固着されたままであることが可能になる。さらなる実施形態では、センサ112は、アイソレータ30から遠隔に位置付けられた周囲温度センサの形態などの他の形態を仮定することができる。
[0037]最後に加熱装置110に目を向けると、誘導加熱装置110は、1つまたは複数のダンパ構成要素、およびそれに接触している減衰流体の加熱を誘導するような態様で、液圧ダンパ38に誘導入力エネルギーを加えるようにコントローラ114によって適切に制御される任意の機構または装置として実現することができる。誘導加熱装置110は、液圧ダンパ38の周囲(内側または外側)周りに、したがってベローズ80、82のそれぞれの周囲周りに、好ましくは作業軸44に沿って液圧ダンパ38を実質的に均等にまたは均一に加熱するような態様で、位置付けられてもよい。内部から加圧されている場合に誘導加熱装置110をベローズ80、82の内周周りに位置付ける設計が、実行可能であり、考えられる。あるいは、誘導加熱装置110は、液圧ダンパ38の外部周りに位置付けられてもよい。例えば、誘導加熱装置110は、図3~図4に示されているように、実質的に輪状または管状の形状要因を有していてもよく、その中に3パラメータアイソレータ30が挿入されてもよい。アイソレータ30は、誘導加熱装置110の中に挿入されたときそれにより取り囲まれるので、誘導加熱装置110は、以下で「誘導加熱シュラウド」または「誘導加熱スリーブ」と呼ばれてもよい。
[0038]誘導加熱シュラウド110は、作業軸44に沿って対向している開いた端部分134と閉じた端部分136とを有する全体的に管状のシュラウド本体132を含んでいる。内側空洞138は、シュラウド本体132によって提供され、本体132の輪状側壁によって取り囲まれており、開いた端部分134からアクセス可能である。上記に示されているように、内側空洞138は、中に3パラメータアイソレータ30を受けるように寸法設定および形状設定されている。例えば、内側空洞138は、全体的に図3~図4に示されるように、3パラメータアイソレータ30の最大直径を超える直径を有する全体的に円筒形の形状を有していてもよい。シュラウド本体132の輪状側壁は、アイソレータ30が誘導加熱シュラウド110に挿入され、またはその中に受けられたときに、アイソレータ30から離間されて、誘導加熱シュラウド110とアイソレータ48の中間部分との間、したがってシュラウド110と液圧ダンパ38の間に周方向のギャップまたはクリアランスが生成される。管状のシュラウド本体132は、閉じた端部分136においてベース壁で終端しており、その閉じた端部分136は、アイソレータ端部分42において外側アイソレータハウジング48に、例えば機械的締め具またはねじ切りされた境界面(図示せず)を利用して固着結合される。そのような構造的構成によって、所望されるときに後付けの取付けによって、3パラメータアイソレータ30上に誘導加熱シュラウド110を設置することが容易になる。その反対に、誘導加熱シュラウド110は、アイソレータ30を分解することなくそれから容易に取り外すことができる。さらに、センサ112は、ダンパ38上の選択された位置に装着することができ、誘導加熱システム32の他の構成要素は、アイソレータ30の外部に、またはそれに隣接して設置される。このように、C調整式誘導加熱システム32はモジュール式に実装され、それにより誘導加熱システム32(特に、誘導加熱装置110)を、「アドオン」のオプションまたは強化されたソリューションとして、3パラメータアイソレータ30にまたはそれに隣接して設置することができる。
[0039]引き続き図3~図4を参照すると、誘導加熱シュラウド110は、アイソレータ30を通して提供されるKおよびK-C振動伝達経路の両方の外側に位置付けられる。したがって、アイソレータ組立体30、32は、(i)アイソレータ端部分42から主ばね34を通って第2のアイソレータ端部分40まで、同調ばね36、液圧ダンパ38、および誘導加熱装置110を経由しないで延在する第1の振動伝達経路(上述したK経路)、および(ii)第1のアイソレータ端部分42から液圧ダンパ38を通り、同調ばね36を通り、第2のアイソレータ端部分40まで、主ばね34および誘導加熱シュラウド110を経由しないで延在する第2の振動伝達経路(上述したK-C経路)を含むものとして記述されてもよい。このように、熱シュラウド110の非接触設計によって、摩擦損失の導入が回避され、その結果、液圧ダンパ38の無摩擦またはほぼ無摩擦の性質を維持することができる。さらに、誘導加熱シュラウド110は、アイソレータ端部分42に固着結合され、それにより、端部分42に対して静止したままであるアイソレータ30の他の構成要素との固着した空間関係が維持される。それと同様に、センサ112および加熱システム32の他の構成要素は、ベローズ80、82が拡張および収縮し、作業軸44に沿ってダンパピストン58がストロークするときに、アイソレータ端部分42および液圧ダンパ38の固着された端部分に対して固着されたまたは静止した関係を維持する。こうして、動的な境界面にわたる可撓性のワイヤ連結または他の物理的な連結の必要性がなくなり、加熱システム32の簡易性および信頼性が向上される。
[0040]少なくとも1つの電磁コイル140が、シュラウド本体132に埋め込まれ、またはその内部に取り付けられている。コントローラ114によって作動されると、電磁コイル140は、変動磁場の形態の誘導入力エネルギーを生成し、その変動磁場に液圧ダンパ38が入れられる。液圧ダンパ38は、1つまたは複数のダンパ構成要素を含むように作製され、そのダンパ構成要素は、ダンパ38内の減衰流体に接触し、誘導加熱を受けやすいまたはそれを受ける傾向にある材料から構成される。したがってコントローラ114は、温度ベースのフィードバックループなどの適切な論理を利用して、コントローラ114によって適切であるとみなされたときに、そのようなダンパ構成要素の加熱を開始するように誘導加熱シュラウド110を制御する。1つの例示的な手法では、コントローラ114は、(センサ112によって供給されるデータから得られる)減衰流体の温度を、メモリ118に記憶された所定の温度閾値よりも上で維持するように誘導加熱シュラウド110を作動させてもよい。次いで減衰流体の温度が所定の温度閾値を超えると、コントローラ114は、誘導加熱シュラウド110の作動を止めてもよく、またはおそらくエネルギー入力を低減させてもよい。他の実施形態では、コントローラ114は、時間ベースの加熱スケジュールなどの他の論理を利用して、誘導加熱装置110をいつ作動させるかを決定してもよい。
[0041]上記に示されるように、コントローラ114は、液圧ダンパ38内の、減衰流体に接触している1つまたは複数の(例えば強磁性の)構成要素の誘導加熱を引き起こす変動磁場を生成するように、誘導加熱装置110を選択的に作動させる。特に金属ベローズ80、82は、磁性系のステンレス鋼または他の強磁性材料などの、誘導加熱を受けやすい合金から作製されてもよい。そのような実施形態では、誘導加熱装置110および電磁コイル140は、作業軸44に沿った減衰流体内の温度勾配の発生を回避するまたは少なくとも最小にするために、実質的に等しい速さで金属ベローズ80、82の誘導加熱を同時に引き起こしてもよい。それに加えてまたはその代わりに、ベローズカップ84、86および/またはピストン58は、かなりの誘導加熱応答性を有する強磁性合金または他の材料から構成されてもよく、したがって、誘導加熱装置110によって生成された変動磁場に入れられたときに、同じく誘導加熱を受けてもよい。この場合、液圧ダンパ38内に含まれる減衰流体は、ダンパ38の誘導加熱された1つまたは複数のダンパ構成要素との接触または熱転移によって温められる。それに比べて、ハウジング片50、52、56と、したがって主ばね34および同調ばね36は、装置110により生成される変動磁場が存在する中で、誘導加熱を受けないまたは受けにくい材料から構成されてもよい。例えば、ばね34、36は、非磁性チタン合金などの非強磁性材料から構成されてもよい。誘導加熱装置の本体132も、誘導加熱を受けにくいもしくは受けない、そしておそらくアイソレータ30にある程度の断熱性を与えるセラミックまたは他の材料から構成されてもよい。このように、コントローラ114によって適切とみなされたときに、主ばね34、同調ばね36、およびダンパ構成要素ではない他の構成要素を無視できる程度に同時に加熱しながら、的を絞った減衰流体の加熱が誘導されて、材料負荷、ばね定数の変化、または普通ならアイソレータ30内で生じ得る他の望ましくない効果を回避することができる。
[0042]このように上記では、アイソレータに含まれた液圧アイソレータのC値の変動を低減させる、アイソレータおよびC調整式加熱システムを含むアイソレータ組立体の少なくとも1つの例示的な実施形態が提供された。そうすることで、C調整式加熱システムの実施形態では、液圧ダンパのC値をより広い温度範囲にわたってより正確に制御して、アイソレータの性能を改善することができるようになる。C調整式加熱システムの実施形態は、非接触の関係で液圧ダンパに位置付けられた少なくとも1つの誘導加熱装置を含むことができる。加熱装置は、アイソレータの分解を必要とせずに選択されたアイソレータへの取付けおよび取外しができるように適合されたモジュールとして生産され、それによりC調整式加熱システムに後付けのまたは強化されたソリューションを付与することが可能になることが有利であるが、これは必須ではない。さらに、誘導加熱装置の実施形態は、有用なことに、アイソレータの作業軸に沿ったいかなる温度勾配も最小限にするために、液圧ダンパの実質的に均等または均一な加熱を提供するように適合される。したがって、ダンパの第1および第2の液圧チャンバの周囲の境界をそれぞれ画している第1および第2の金属ベローズを液圧ダンパが含んでいる実装形態では、誘導加熱装置は、第1および第2の金属ベローズを実質的に等しい速さで同時に加熱するように適合されてもよい。
[0043]図3~図4と合わせて議論される例では、C調整式誘導加熱システムは、既存のアイソレータ設計への影響があるとしても最小限の影響で、誘導加熱装置の一体化を可能にするような態様で、液圧ダンパの外周周りに位置付けられる誘導加熱装置または「誘導加熱シュラウド」を含んでいる。さらなる実施形態では、C調整式誘導加熱システムは、液圧ダンパの内周周りに位置付けられる少なくとも1つの誘導加熱装置を含んでもよい。これにより入れ子式の設計が作られ、その設計はダンパの金属ベローズが外部から加圧されるときに有用であり得る。さらに、C調整式誘導加熱システムが複数の誘導加熱装置を含む実施形態では、そのような手法の組合せを利用することができる。または、誘導加熱システムの所与の実装形態に含まれた1つもしくは複数の誘導加熱装置は、アイソレータ、特に液圧ダンパに対して異なる位置付けを有してもよい。最後に、前に示したように、C調整式加熱システムの実施形態は、有利なことに、上述した望ましい振動アテニュエーション特性、例えば比較的低いピーク伝達性、および高周波振動の優れたアテニュエーションを提供する3パラメータアイソレータとともに利用される。これにも関わらず、C調整式加熱システムの代替的な実施形態は、単一DOFの、軸方向に減衰する、ダンパに平行な主ばねを含むが、主ばねに平行でダンパと直列の同調ばねのない2パラメータアイソレータなど、他のタイプのアイソレータと併用されることも可能である。
[0044]上記の発明を実施するための形態において、少なくとも1つの例示的な実施形態が提示されたが、膨大な数の変形形態が存在することが理解されるべきである。1つまたは複数の例示的な実施形態は単なる例であり、いかなるやり方でも本発明の範囲、適用可能性、または構成を制限することは意図されていないことも、理解されるべきである。むしろ上記の発明を実施するための形態は、本発明の例示的な実施形態を実現するための都合のよいロードマップを当業者に提供するものである。添付の特許請求の範囲に記載された本発明の範囲から逸脱することなく、例示的な実施形態に記述された要素の機能および配置に、様々な変更を加えてもよいことが、理解される。
10 アイソレータ
30 アイソレータ組立体
32 誘導加熱システム
34 主ばね
36 同調ばね
38 液圧ダンパ
40 アイソレータ端部分
42 アイソレータ端部分
44 作業軸
48 外側ハウジング組立体
50、52、56 ハウジング片
54 内側空洞
58 ピストン
60 装着境界面
62 装着境界面
64 細長ステム
66 たわみ構造部
68 管状本体
70 締め具開口部
72 第2のボルトのリング
74、76 液圧チャンバ
78 アニュラス
80、82 金属ベローズ
84、86 ベローズカップ
88 コネクティングロッド
89 ボルト
90 充填ポート
92 熱補償器(TC)
94 TCチャンバ
96 TCピストン
98 TCベローズ
100 TCベローズカップ
102 TC予圧ばね
104 第1のばね座部
106 第2のばね座部
108 チャネル
110 誘導加熱装置
112 センサ
114 コントローラ
116 電源
118 メモリ
120 I/Oインターフェイス
132 シュラウド本体
134 開いた端部分
136 閉じた端部分
138 内側空洞
140 電磁コイル

Claims (2)

  1. 減衰流体で満たされた液圧ダンパ(38)を有するアイソレータ(10)と、
    減衰係数調整式誘導加熱システム(32)であって、
    減衰流体の温度を示すデータを監視するように構成されたセンサ(112)、
    非接触の関係で前記液圧ダンパ(38)の周囲周りに位置付けられた誘導加熱装置(110)、ならびに
    前記誘導加熱装置(110)および前記センサ(112)に動作可能に結合されたコントローラ(114)であって、前記センサ(112)から前記データを受け取り、それに応答して、前記液圧ダンパ(38)に含まれた前記減衰流体を加熱するために前記液圧ダンパ(38)に誘導入力エネルギーを選択的に加えるように前記誘導加熱装置(110)を制御するように構成されたコントローラ(114)、
    を備える減衰係数調整式誘導加熱システム(32)と
    液圧ダンパ(38)が、誘導加熱を受けやすい第1の材料から構成された金属ベローズ(80、82)であって、前記液圧ダンパ(38)が前記減衰流体で満たされたときに、前記減衰流体に接触する金属ベローズ(80、82)とを備え、
    前記誘導加熱装置(110)が、通電されたときに変動磁場を生成するように構成され、前記変動磁場に前記液圧ダンパ(38)が入れられて、前記金属ベローズ(80、82)が誘導加熱され、さらに前記金属ベローズ(80、82)に接触している前記減衰流体が加熱される、
    アイソレータ組立体(30)。
  2. 前記アイソレータ(10)が、
    前記アイソレータ(10)の作業軸(44)に沿って離間している第1および第2のアイソレータ端部分(40、42)と、
    前記第1と第2のアイソレータ端部分(40、42)間に、前記液圧ダンパ(38)に平行に機械的に結合された主ばね(34)と、
    前記第1と第2のアイソレータ端部分(40、42)間に、前記主ばね(34)に平行に、かつ前記液圧ダンパ(38)に直列に機械的に結合された同調ばね(36)と、
    前記第1のアイソレータ端部分(40)から、前記主ばね(34)を通り、前記第2のアイソレータ端部分(42)まで、前記同調ばね(36)、前記液圧ダンパ(38)、および前記誘導加熱装置(110)を経由しないで延在している第1の振動伝達経路と、
    前記第1のアイソレータ端部分(40)から、前記液圧ダンパ(38)を通り、前記同調ばね(36)を通り、前記第2のアイソレータ端部分(42)まで、前記主ばね(34)、および前記誘導加熱装置(110)を経由しないで延在している第2の振動伝達経路と
    をさらに備える、請求項1に記載のアイソレータ組立体(30)。
JP2018181313A 2017-11-30 2018-09-27 減衰係数調整式誘導加熱システムおよび同システムを含むアイソレータ組立体 Active JP7177646B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/826,989 2017-11-30
US15/826,989 US10451139B2 (en) 2017-11-30 2017-11-30 Damping coefficient-regulating inductive heating systems and isolator assemblies including the same

Publications (2)

Publication Number Publication Date
JP2019100538A JP2019100538A (ja) 2019-06-24
JP7177646B2 true JP7177646B2 (ja) 2022-11-24

Family

ID=64564587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181313A Active JP7177646B2 (ja) 2017-11-30 2018-09-27 減衰係数調整式誘導加熱システムおよび同システムを含むアイソレータ組立体

Country Status (3)

Country Link
US (1) US10451139B2 (ja)
EP (1) EP3492771B1 (ja)
JP (1) JP7177646B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019476B2 (ja) * 2018-03-26 2022-02-15 日立Astemo株式会社 ダンパ装置
US11254441B2 (en) * 2018-11-29 2022-02-22 Hamilton Sundstrand Corporation Aircraft controller including multiple core processor with wireless transmission prognostic/diagnostic data capability
RU201772U1 (ru) * 2020-06-05 2021-01-12 Денис Викторович Шабалин Гидравлический амортизатор мобильных машин с индукционным устройством обогрева
US11365779B2 (en) * 2020-10-22 2022-06-21 Tsinghua University Magnetic liquid damping shock absorber
CN113639004B (zh) * 2021-08-24 2022-05-27 上海大学 一种挤压模式巨电流变液阻尼器
CN113742931B (zh) * 2021-09-13 2024-01-26 中国电子信息产业集团有限公司第六研究所 一种区块链边缘安全检测方法、系统、电子设备
CN115419674A (zh) * 2022-09-07 2022-12-02 吉林大学 一种波纹管水平减振平台

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026142A (ja) 2015-07-23 2017-02-02 ハネウェル・インターナショナル・インコーポレーテッド 主ばね直線案内システムを含む絶縁装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067841A (en) * 1959-12-14 1962-12-11 Menasco Mfg Company Apparatus utilizing liquid substances over large temperature range
US3178913A (en) * 1963-03-15 1965-04-20 Donald M Olson Washing machine
GB1079723A (en) * 1963-04-04 1967-08-16 British Aircraft Corp Ltd Improvements in shock absorbers
US4057212A (en) 1975-08-15 1977-11-08 Barry Wright Corporation Fluidic vibration isolator
SE442696B (sv) * 1981-09-24 1986-01-20 Asea Ab Anordning for vermning av gas- eller vetskeformiga media
US4561614A (en) 1982-12-07 1985-12-31 Rca Corporation Deployable folded multi-element satellite subsystems
JPS61108543U (ja) 1984-12-20 1986-07-09
US4842106A (en) 1987-10-08 1989-06-27 Hughes Aircraft Company Rate controllable damping mechanism
US5332070A (en) 1993-04-21 1994-07-26 Honeywell Inc. Three parameter viscous damper and isolator
JPH08215107A (ja) * 1995-02-09 1996-08-27 Toto Ltd 便座便蓋の緩閉止装置
JPH08264272A (ja) * 1995-03-27 1996-10-11 Seta Giken:Kk 電磁誘導加熱装置
US6170621B1 (en) 1997-10-08 2001-01-09 Honda Giken Kogyo Kabushiki Kaisha Vehicular damper with vehicle height adjusting function
JP2000055108A (ja) 1998-08-03 2000-02-22 Honda Motor Co Ltd 車高調整機能付きダンパ
JP2000055106A (ja) 1998-08-03 2000-02-22 Honda Motor Co Ltd 車高調整機能付きダンパ
US6250615B1 (en) 1999-03-31 2001-06-26 Freudenberg-Nok General Partnership Vibration isolator with a tension restraint
US6715591B2 (en) 2002-01-08 2004-04-06 Honeywell International Inc. Spacecraft isolator launch restraint
US6920966B2 (en) 2003-03-24 2005-07-26 Honeywell International Inc. Remotely releasable support strut
US7174734B2 (en) 2004-11-30 2007-02-13 Robertshaw Controls Company Refrigerator damper with PTC heater actuation
US7182188B2 (en) 2005-02-16 2007-02-27 Honeywell International, Inc. Isolator using externally pressurized sealing bellows
DE102008058358A1 (de) * 2008-11-20 2010-05-27 Fludicon Gmbh Vorrichtung für elektro- oder magnetorheologische Systeme
DE102010051663A1 (de) 2010-11-17 2012-05-24 Liebherr-Hydraulikbagger Gmbh Arbeitsgerät
US8899389B2 (en) 2011-05-19 2014-12-02 Honeywell International Inc. Thermally-conductive vibration isolators and spacecraft isolation systems employing the same
US9475594B2 (en) 2012-09-25 2016-10-25 Honeywell International Inc. Launch lock assemblies with reduced preload and spacecraft isolation systems including the same
US9051986B2 (en) 2013-03-15 2015-06-09 Bell Helicopter Textron Inc. Hybrid fluid elastomeric damper
US9353820B2 (en) 2013-04-11 2016-05-31 Bell Helicopter Textron Inc. Elastomeric damper with heater
US9682602B2 (en) 2015-01-26 2017-06-20 Showa Corporation Control apparatus for damping force varying damper and damping force varying damper system
CN104832774B (zh) 2015-04-22 2017-03-22 北京金风科创风电设备有限公司 风力发电机的轴承保护用加热装置及轴承系统
NO341224B1 (en) 2016-04-22 2017-09-18 Curbeater As A heating device for hydraulic fluid damper
KR101791646B1 (ko) * 2016-08-19 2017-10-30 (주)카츠코리아 히팅 수단이 구비된 쇽 업소버

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026142A (ja) 2015-07-23 2017-02-02 ハネウェル・インターナショナル・インコーポレーテッド 主ばね直線案内システムを含む絶縁装置

Also Published As

Publication number Publication date
EP3492771B1 (en) 2020-04-15
US10451139B2 (en) 2019-10-22
US20190162267A1 (en) 2019-05-30
EP3492771A1 (en) 2019-06-05
JP2019100538A (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
JP7177646B2 (ja) 減衰係数調整式誘導加熱システムおよび同システムを含むアイソレータ組立体
EP2975293B1 (en) Adaptive three parameter isolator assemblies including external magneto-rheological valves
EP2524872B1 (en) Thermally-conductive vibration isolators and spacecraft isolation systems employing the same
EP1848899B1 (en) Improved isolator using externally pressurized sealing bellows
JP5977568B2 (ja) 3パラメータ、多軸分離装置、これを用いる分離システム、およびこれを製造する方法
US9416842B2 (en) Isolators having damper-external thermal compensators and spacecraft isolation systems employing the same
US20090020381A1 (en) Vibration isolators and isolation systems
EP3155327B1 (en) Frequency-matched cryocooler scaling for low-cost, minimal disturbance space cooling
US20150204413A1 (en) Negative stiffness hydraulic system
JP2000509804A (ja) 複合型の振動絶縁装置と構造制御アクチェエータストラット
CN108644299B (zh) 一种碟簧组合式磁流变阻尼减振器
EP3077702B1 (en) Negative stiffness hydraulic system
US9670983B2 (en) Isolators including damper assemblies having variable annuli and spacecraft isolation systems employing the same
EP3121480B1 (en) Isolators including main spring linear guide systems
JP3031289B2 (ja) 人工衛星搭載機器用振動衝撃緩衝装置及び振動衝撃緩衝方法
JP6913046B2 (ja) パルス管冷凍機
Wolfe et al. Jitter suppression techniques for mechanical cryocooler-induced disturbances
RU77372U1 (ru) Гидравлический виброгаситель

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150