JP7174207B2 - 磁場誘導装置 - Google Patents

磁場誘導装置 Download PDF

Info

Publication number
JP7174207B2
JP7174207B2 JP2018168725A JP2018168725A JP7174207B2 JP 7174207 B2 JP7174207 B2 JP 7174207B2 JP 2018168725 A JP2018168725 A JP 2018168725A JP 2018168725 A JP2018168725 A JP 2018168725A JP 7174207 B2 JP7174207 B2 JP 7174207B2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
inner space
induction device
field induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018168725A
Other languages
English (en)
Other versions
JP2020039557A (ja
Inventor
光夫 越智
直輔 亀井
義和 田中
尚隆 平見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flying Cell
Original Assignee
Flying Cell
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flying Cell filed Critical Flying Cell
Priority to JP2018168725A priority Critical patent/JP7174207B2/ja
Publication of JP2020039557A publication Critical patent/JP2020039557A/ja
Application granted granted Critical
Publication of JP7174207B2 publication Critical patent/JP7174207B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、体内に注入された磁性複合体を患部へ誘導する磁場誘導装置に関する。
人体の関節に含まれる軟骨が、その近傍に位置する骨の表層とともにはがれることにより軟骨損傷が生じることが知られている。このような軟骨損傷は、離断性骨軟骨炎と呼ばれている。
軟骨および骨の表層がはがれた患部に軟骨および骨を再生させるための方法として、軟骨および骨を再生させる機能を有する細胞と磁性粒子とを複合化した磁性複合体を患部近傍に注射器などを用いて注入し、磁化力を利用して、磁性複合体を患部へ誘導する方法が知られている。軟骨を再生させる機能を有する細胞の一例としては、骨髄間葉系幹細胞が挙げられる。磁性粒子を構成する磁性体の一例としては、マグネタイトが挙げられる。マグネタイトの微粒子は、造影剤などにも含まれている。なお、磁化力を利用して、磁性複合体を患部へ誘導する方法は、磁気ターゲティングとも呼ばれる。
特許文献1には、磁気ターゲティングに利用可能な磁気誘導装置が記載されている。特許文献1の図1に図示された磁気誘導装置は、ソレノイドコイルと、円環状の外形を有するケーシングとを備えている。ソレノイドコイルは、磁場を発生する磁場発生源であり、ケーシングは、ソレノイドコイルを収納する筐体である。
特開2007-151605号公報
ところで、磁性複合体をスムーズに患部に移動させるためには、磁化力ベクトルを患部の方向に発生させる必要がある。
特許文献1に記載の磁気誘導装置では、特許文献1の図7に図示されているように、ケーシングの内側空間に、患部である関節(特許文献1の図7では膝)が挿入される。ここで、ソレノイドコイルにより発生される磁化力ベクトルは、ソレノイドコイルの内側空間においては様々な方向を向く。特に、ソレノイドコイルの軸方向の長さと内径との比が小さいほど、ソレノイドコイルの内側空間の端部近傍において、磁化力ベクトルにおける径方向の成分が大きくなる。
患部の近傍に注射された磁性複合体を、患部にスムーズに移動させるためには、ソレノイドコイルの端部近傍および内側空間において、ソレノイドコイルの軸方向に沿った磁化力が生じることが好ましい。すなわち、ソレノイドコイルの端部近傍および内側空間に生じる磁化力において、軸方向の成分が大きく、径方向の成分が小さいことが好ましい。しかし、特許文献1に記載の磁気誘導装置では、ソレノイドコイルの内径が大きく、且つ、ソレノイドコイルの軸方向の長さが短いため、ソレノイドコイルの軸方向の長さと内径との比が小さくなる。したがって、特にソレノイドコイルの端部近傍に生じる磁化力において、軸方向の成分が小さく、径方向の成分が大きくなるため、患部の近傍に注射された磁性複合体を患部に向かう方向に誘導することが難しい。
本発明の一態様は、上述した課題に鑑みなされたものであり、その目的は、磁性複合体をコイルの軸方向に沿って誘導することが容易な磁場誘導装置を提供することである。
上記の課題を解決するために、本発明の一態様に係る磁場誘導装置は、患部の近傍に注入された磁性複合体を上記患部に向かって誘導する磁場誘導装置であって、横断面形状が環状形状であり、上記患部を上記環状形状の内側空間に収容するコイル、又は、横断面形状がC字型形状であり、上記患部を上記C字型形状の内側空間に収容するコイルであって、上記内側空間の軸方向に沿った長さが上記内側空間の内径の0.3倍以上であるコイルを備えている。
上記内側空間の軸方向に沿った長さ、換言すれば、上記コイルの軸方向に沿った長さが、上記内側空間の内径の0.3倍未満である場合、上記コイルの両端部に生じる磁化力ベクトルは、上記コイルの径方向に大きく傾く。すなわち、磁化力ベクトルと軸方向とのなす角が大きくなる。そのため、上記磁化力ベクトルにおいて、径方向の成分は、軸方向の成分に迫る大きさになる。したがって、患部の近傍に注入された磁性複合体を上記患部に向かって誘導する場合に、該磁性複合体を上記軸方向に沿って誘導することが困難となる。
上記の構成によれば、上記内側空間の軸方向に沿った長さが上記内側空間の内径の0.3倍以上であるため、長さが内径の0.3倍未満である場合と比較して、上記コイルの両端部に生じる磁化力ベクトルと軸方向とのなす角を小さくすることができる。そのため、上記磁化力ベクトルにおいて、径方向の成分を抑制し、且つ、軸方向の成分を大きくすることができる。したがって、患部の近傍に注入された磁性複合体を上記患部に向かって誘導する場合に、該磁性複合体を上記軸方向に沿って誘導することが容易になる。
また、本発明の一態様に係る磁場誘導装置において、上記コイルは、上記横断面形状が環状形状であり、上記患部を上記環状形状の内側空間に収容するコイルである、ことが好ましい。
上記の構成によれば、上記横断面形状がC字型形状であり、上記患部を上記C字型形状の内側空間に収容するコイルを採用する場合と比較して、内側空間により対称性が高い磁場を発生させることができる。また、上記横断面形状がC字型形状であり、上記患部を上記C字型形状の内側空間に収容するコイルを採用する場合と比較して、より少ない電力で所定の強さの磁場を内側空間に発生させることができる。
また、本発明の一態様に係る磁場誘導装置において、上記コイルは、上記横断面形状がC字型形状であり、上記患部を上記C字型形状の内側空間に収容するコイルであってもよい。
上記の構成によれば、上記コイルの横断面形状がC字型形状であるため、上記コイルの内側空間は、上記コイルの両端部だけでなく、上記コイルの側面においても外側空間に対して開放されている。そのため、上記の構成によれば、上記横断面形状が環状形状であり、上記患部を上記環状形状の内側空間に収容するコイルを採用する場合と比較して、上記患部を上記内側空間に容易に配置することができる。したがって、患者の負担を軽減することができる。
また、本発明の一態様に係る磁場誘導装置において、上記C字型形状は、開口角度が180度以下である、ことが好ましい。
上記の構成によれば、上記患部を上記内側空間に容易に配置することができつつ、所定の強さの磁場を発生させるために過度に電力が必要となることを防ぐことができる。
また、本発明の一態様に係る磁場誘導装置は、上記コイルを収容し、且つ、上記内側空間に対応する領域に空洞が形成されたケーシングと、上記ケーシングを支持する支持部であって、上記軸方向の向きを調整可能な支持部と、を更に備えている、ことが好ましい。
上記の構成によれば、上記コイルの上記軸方向を所望の向きに調整することができる。したがって、上記患者が上記患部の位置を動かすことなく、上記軸方向の向きを調整することができるので、上記磁性複合体を誘導する位置をより的確に制御することができる。
また、本発明の一態様に係る磁場誘導装置は、上記コイルを収容し、且つ、上記内側空間に対応する領域に空洞が形成されたケーシングと、上記ケーシングに配置された1又は複数のレーザ光源と、を更に備え、当該1又は複数のレーザ光源の各々が発するレーザ光が上記空洞に含まれる所定の位置を指し示すように、上記1又は複数のレーザ光源の各々が配置されている、ことが好ましい。
上記構成によれば、上記患部を上記ケーシングの上記空洞に挿入する場合において、上記患部の位置を定めるガイドとして上記複数のレーザ光源の各々が発するレーザ光を用いることができる。したがって、上記患部を所定の位置にセットすることが容易になる。
また、本発明の一態様に係る磁場誘導装置において、上記所定の位置は、上記空洞に含まれる領域のうち、磁化力の絶対値が所定の値を上回る位置に設定されている、ことが好ましい。
上記構成によれば、上記患部を磁化力が強い位置にセットすることが容易になる。
本発明の一態様によれば、磁性複合体をコイルの軸方向に沿って誘導することが容易な磁場誘導装置を提供することができる。
(a)は、本発明の実施形態1に係る磁場誘導装置の斜視図である。(b)および(c)の各々は、それぞれ、(a)に示した磁場誘導装置の縦断面図および横断面図である。 本発明の一実施形態に係る磁場誘導装置における磁化力ベクトルの傾きについて説明する図である。 (a)および(c)は、本発明の実施形態2に係る磁場誘導装置を示す斜視図である。(b)および(d)の各々は、それぞれ、(a)および(c)に示した磁場誘導装置の横断面図である。 (a)~(d)はそれぞれ、本発明の比較例1(a)、実施例2(b)、実施例3(c)、および実施例4(d)における磁化力分布のシミュレーション結果を示す図である。 本発明の比較例1および2並びに実施例1および2における磁化力ベクトルの傾きを示すグラフである。 (a)~(d)は、本発明の比較例1(a)、実施例2(b)、実施例3(c)および実施例4(d)における、コイル端部の磁化力ベクトルを示す図である。 (a)および(b)は、本発明の実施例5(a)および実施例6(b)における磁化力分布のシミュレーション結果を示す図である。
〔実施形態1〕
以下、本発明の一実施形態である磁場誘導装置1について説明する。なお、以下の記載は発明の趣旨をより良く理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意味する。本出願における各図面に記載した構成の形状および寸法(長さ、奥行き、幅等)は、実際の形状および寸法を必ずしも反映させたものではなく、図面の明瞭化および簡略化のために適宜変更している。
(磁場誘導装置1の概要)
磁場誘導装置1について、図1および図2を参照して以下に説明する。図1の(a)は、磁場誘導装置1の斜視図である。図1の(b)および(c)の各々は、それぞれ、磁場誘導装置1の縦断面図および横断面図である。なお、本願明細書において縦断面図とは、コイル13の中心軸C(図1参照)を含む断面における断面図を意味する。また、横断面図とは、中心軸Cに直交する断面における断面図を意味する。
図1の(a)~(c)に示すように、磁場誘導装置1は、ケーシング12と、コイル13と、スリーブ14と、レーザダイオード(LD)16a~16eと、一対のスタンドであるスタンド21,22と、一対の支持軸である支持軸23,24とを備えている。
本実施形態では、ケーシング12、コイル13、およびスリーブ14の各々の中心軸をまとめて中心軸Cと呼ぶ(図1の(a)参照)。換言すれば、何れも円筒形であるケーシング12、コイル13、およびスリーブ14の各々は、同心円状に配置されている。
図1は、中心軸Cが床3の表面に沿うように中心軸Cの角度を定めた磁場誘導装置1を示している。すなわち、図1において、床3の表面は、zx平面に沿っている。
なお、図1に図示する座標系は、鉛直方向に沿う方向をy軸方向と定め、中心軸Cに沿う方向をz軸方向と定め、y軸方向およびz軸方向とともに右手系の直交座標系を形成するようにx軸方向を定めている。より詳しくは、鉛直方向上向きの方向をy軸正方向と定め、磁場誘導装置1に挿入された際に、足2の先端から基端に向かう向きをz軸正方向と定め、後述するスタンド22から後述するスタンド21へ向かう向きをx軸正方向と定めている。
スリーブ14は、両端(z軸正方向側およびz軸負方向側の端部)が開放され、その横断面における断面形状が円形の筒状部材である。スリーブ14の側壁により囲まれた空洞は、後述する内側空間15に対応する領域として構成される。スリーブ14は、上記空洞に対して、患部2aを含む足2を挿入することができるようにその内径(長軸方向の長さおよび短軸方向の長さ)が定められている。
なお、本実施形態においては、足2を上記空洞に挿入するものとして説明している。しかし、上記空洞に挿入する体の部位は、足2に限定されるものではなく、体の如何なる部位であってもよい。スリーブ14の内径は、上記空洞に挿入する体の部位のサイズに応じて適宜定めることができる。また、スリーブ14は、図1の(a)に示した状態において、その横断面における長軸がx軸方向に沿い、その横断面における短軸がy軸方向に沿うように配置されている。
スリーブ14は、熱伝導率が低く、強度が高い材料により構成されていることが好ましい。本実施形態において、スリーブ14は、断熱性を持った強化プラスチック製である。熱伝導率が低い材料を用いることによって、スリーブ14は、コイル13において発生する熱が後述する足2に伝わりにくくすることができる。また、強度が高い材料を用いることによって、足2の重さが磁場誘導装置1に掛かるような場合であっても、その重さに耐え、ケーシング12およびコイル13が変形することを防止することができる。
ケーシング12は、コイル13を収容する環状の筐体であり、スリーブ14の外側を取り囲み、且つ、スリーブ14と同軸になるように構成されている。ケーシング12は、その横断面における断面形状が円形である筒状部材である。この点において、ケーシング12は、スリーブ14と同様である。本実施形態において、ケーシング12は、強化プラスチック製である。
ケーシング12の内側には、図1の(b)に示すように、縦断面における断面形状が長方形である空間が形成されている。この空間内には、コイル13が収容されている。コイル13は、ケーシング12の内側壁に対して導線(本実施形態では銅線)を巻き付けることによって、横断面形状が環状形状となるように構成されている。コイル13において、中心軸Cを含む中空部分の空間を、本実施形態では内側空間15と呼ぶ。コイル13は、図1に図示しない電流源から電流を供給されることによって、電磁石として機能し、磁場を発生する。すなわち、コイル13は、磁場発生源である。なお、図1の(b)および(c)においては、コイル13を構成する導線の図示を省略し、格子状のハッチングを付している。
スリーブ14の内壁には、LD16a~16eが取り付けられている。LD16a~16eは、それぞれ、図1の(b)に示すように、スリーブ14の内壁のうち、スリーブ14のz軸負方向側の端部近傍に取り付けられている。また、LD16a~16eは、それぞれ、図1の(c)に示すように、スリーブ14の内壁のうち、y軸正方向側の端部(天頂部)、x軸正方向側の端部およびx軸負方向側の端部、並びに、これらの中間となる位置に、それぞれ取り付けられている。
LD16a~16eの各々の光軸は、それぞれが発するレーザ光が中心軸C上において交わるように設定されている。LD16a~16eの各々が発するレーザ光が交わる中心軸C上のある点は、特許請求の範囲に記載の所定の位置の一例である。
スタンド21は、支持軸23を用いて、ケーシング12に対して回転可能に取り付けられている。同様に、スタンド22は、支持軸24を用いて、ケーシング12に対して回転可能に取り付けられている。スタンド21,22は、それぞれの側面がyz平面に沿うように配置されており、それぞれの底面がzx平面に沿うように配置されている。
支持軸23,24は、何れもx軸に沿い、互いに同軸になるように配置されている。したがって、磁場誘導装置1において、ケーシング12、コイル13、およびスリーブ14の各々は、支持軸23,24を回転軸として、回転することができる。したがって、磁場誘導装置1は、中心軸Cの向き(中心軸Cとzx平面とのなす角)を調整可能である。スタンド21,22および支持軸23,24は、特許請求の範囲に記載された支持部の一例である。
(磁場誘導装置1の効果)
このように構成されたコイル13は、図1に図示しない電流源から電流を供給されることによって、電磁石として機能し、磁場を発生することができる。ここでは、内側空間15に生じる磁場について説明する。なお、磁性複合体を誘導させる力は、磁場の強さである磁束密度そのものではなく、磁化力に起因する。磁化力は、磁束密度の分布を空間的に微分することによって得られるベクトル量であるため、以下では、磁化力のことを磁化力ベクトルFと記載する。磁化力ベクトルFは、内側空間15における開放端部近傍において大きくなる(例えば図4参照)。
磁場誘導装置1により誘導される磁性化細胞Cは、磁性体(例えばマグネタイト)からなる磁性粒子を含む細胞である。そのため、磁性化細胞Cは磁化力ベクトルFの作用によって患部2aに誘導される。したがって、磁性化細胞Cを効率良く患部2aに誘導させるためには、患部2aを上記開放端部に近接させることが好ましい。なお、磁性化細胞Cは、特許請求の範囲に記載された磁性複合体の一例である。
このとき、電流源からコイル13に供給する電流値を制御することによって、内側空間15に生じる磁場の磁束密度を調整することができる。この電流値は、磁性化細胞Cを誘導可能な磁束密度であればよく適宜定めることができる。磁性化細胞Cを誘導可能な磁束密度としては、例えば0.1T以上が挙げられる。したがって、電流源からコイル13に供給する電流値は、LD16a~16eの各々が発するレーザ光が交わる中心軸C上のある点における磁束密度が0.1T以上となるように制御することが好ましい。すなわち、0.1Tという磁束密度は、磁気ターゲティングを実施する場合の閾値といえる。
なお、0.1Tは、磁気ターゲティングを実施する場合の閾値の一例である。この閾値は、磁性化細胞Cに含まれる磁性粒子を構成する磁性体の磁気特性等に応じて変化する。コイル13の各設計パラメータおよびコイル13に供給される電流量などは、上述した磁性体の種類などに応じて最適化することができる。
このように構成された磁場誘導装置1は、磁気ターゲティングの手法を用いた軟骨および骨の再生に利用可能である。
(コイル13の長さ)
内側空間15の開放端部に発生する磁化力ベクトルFの向きは、内側空間15の軸方向に沿った長さLと、内側空間15の内径Dとの比L/Dと相関する。上記L/Dの値が小さいほど、内側空間15の開放端部近傍において、磁化力ベクトルFの径方向の成分が大きくなり、軸方向の成分が小さくなる。すなわち、磁化力ベクトルFの軸方向(z軸方向)に対する傾きである傾きθ(図2参照)が大きくなる。一方、上記L/Dの値を大きいほど、内側空間15の開放端部近傍において、磁化力ベクトルFの軸方向の成分が大きくなり、径方向の成分が小さくなる。すなわち、磁化力ベクトルFと軸方向であるz軸方向とのなす角である傾きθ(図2参照)が小さくなる。
このように、内径Dに対して長さLを長くすることで、内側空間15の開放端部近傍にいて、磁化力ベクトルFの傾きθを抑制することができる。したがって、磁性化細胞Cを軸方向に沿って誘導することが容易になる。すなわち、磁性化細胞Cを患部2aに誘導することが容易になる。
図2は、磁場誘導装置1における磁化力ベクトルFの傾きθについて説明する図である。図2は、膝を構成する骨のうち大腿骨Bの端部に患部2aがある場合を図示している。ここで、患部2aの表面が図1に図示した座標系のxy平面におよそ沿うように、足2は、内側空間15に挿入されている。したがって、軸方向の成分は、患部2aに向かう方向の成分であり、径方向の成分は、患部2aの表面に沿う方向の成分である。
磁化力ベクトルFは、軸方向の成分である成分Fzと、径方向の成分である成分Fyとに分解できる。このとき、成分Fzが大きいほど(すなわち成分Fyが小さいほど)、患部2aにおける磁性化細胞Cの横滑りを抑制することができ、磁性化細胞Cを患部2aに効率よく定着させることができる。Fz>Fyの関係を満たすこと、すなわち、傾きθが45度未満となるように、磁場誘導装置1は、比L/Dが0.3以上になるように設計されている。例えば、図1に示した磁場誘導装置1において、比L/Dは、1である。
比L/Dの値が0.3以上であれば、内側空間15の開放端部近傍において傾きθは、45度未満となる。そのため、磁性化細胞Cをコイル13の軸方向に沿って患部2aに誘導することが容易になる。
L/Dの値は、0.5以上がより好ましい。このようなL/Dの値によれば、上記傾きθが35度未満となり、磁性化細胞Cはさらに患部2aに沿って横滑りしにくくなる。また、L/Dの値は、1.0以上がより好ましい。このようなL/Dの値によれば、上記傾きθが25度未満となり、磁性化細胞Cはさらに患部2aに沿って横滑りしにくくなる。
また、磁場誘導装置1は、上述した通り支持軸23,24を回転軸として回転することができる。この構成によれば、磁性化細胞Cに作用する磁化力ベクトルFと、患部2aの法線とのなす傾きθが少なくとも45度未満となるように、中心軸Cの向きを容易に調整することができる。したがって、磁性化細胞Cが患部2aの表面に沿って横滑りすることを抑制可能であり、効率良く磁性化細胞Cを患部2aに定着させることができる。
(レーザ光源)
磁場誘導装置1は、上述したように、特許請求の範囲に記載の1又は複数のレーザ光源の一態様であるLD16a~16eを備えている。LD16a~16eの各々が発するレーザ光は、内側空間15に含まれる所定の位置を指し示す。
このような構成によれば、患部2aを内側空間15に挿入する場合の位置を定めるガイドとして、LD16a~16eの各々が発するレーザ光を用いることができる。したがって、患部2aを所定の位置にセットすることが容易になる。また、LD16a~16eの各々が発するレーザ光の光軸は、中心軸Cと交わるように設定されている。すなわち、LD16a~16eの各々が発するレーザ光は、中心軸C上のある点を指し示す。
また、図1の(b)に示すように、磁場誘導装置1において、LD16a~16eは、スリーブ14の内壁において、患部2aに近接する端部近傍に形成されている。コイル13により発生される磁化力ベクトルFは、コイル13の開放端部付近で極大となる。LD16a~16eは、磁化力ベクトルFが極大となる位置を指し示すように、スリーブ14の内壁に配置されていることが好ましい。磁化力ベクトルFが極大となる位置は、特許請求の範囲に記載の磁化力の絶対値が所定の値を上回る位置の一例である。
ここで、上記所定の値とは、磁性化細胞Cが患部2aに誘導されることができる磁化力ベクトルFの大きさである。コイル13は、少なくとも内側空間15の開放端部付近において、磁化力ベクトルFの大きさが上記所定の値を上回るように設計される。なお、磁化力ベクトルFの大きさが極大となる位置はL/Dの値が大きいほど、コイル13の開放端部から内側に移動する。例えば、L/Dの値が1.5であるとき、コイル13の開放端部から内側略30mmの位置において、磁化力が極大となる。
以上のようなLD16a~16eの構成によれば、患部2aを磁化力が強い位置にセットすることが容易になる。
(磁場誘導装置1の変形例)
本実施形態において、ケーシング12、コイル13、およびスリーブ14の横断面の形状は、円形であるものとして説明した。しかし、当該横断面の形状は、円形に限定されるものではなく、例えば、楕円形および長円形であってもよいし、正方形および長方形であってもよい。当該横断面の形状は、内側空間15に挿入する体の部位に応じて適宜定められてもよい。
また、本実施形態においては、コイル13を構成する導線の線材として、常伝導体である銅を採用した。しかし、線材は、銅以外の常伝導体により構成されていてもよいし、超伝導体により構成されていてもよい。超伝導体としては、例えばBi系の高温超伝導体などを採用することができる。
なお、ケーシング12、コイル13、およびスリーブ14の横断面の形状が円形とは異なる場合、内側空間15の内径としては、内側空間15の最大内径を採用すればよい。
また、本実施形態において、ケーシング12は、支持軸23,24を回転軸として回転することができる態様により、スタンド21,22に対して回転可能に取り付けられている。しかし、特許請求の範囲に記載された支持部は、このようなスタンド21,22に限られない。例えば、ケーシング12をx軸,y軸およびz軸方向に自在に回転および移動させることが可能な回転関節部を備えるアームにより、ケーシング12が支持されていてもよい。このような構成によれば、患者を動かすことなく、患部2aに対し好適な角度となるように、内側空間15の軸方向の向きを調整することが容易となる。
また、本実施形態において、磁場誘導装置1は、レーザ光源として5つのLD16a~16eを備えている。しかし、磁場誘導装置1がレーザ光源を備える場合、レーザ光源の数はこれに限られず、いくつ備えていてもよい。例えば、無数のレーザ光源が、内側空間15に囲まれる所定の位置を取り囲むように配置されていてもよい。このような構成によれば、レーザ光が360°全方向から、略面状に上記所定の位置を指し示す。したがって、患部2aを上記所定の位置に精密にセットすることができる。
また、本実施形態において、磁場誘導装置1は単一のコイル13を備えている。しかし、本発明の一態様に係る磁場誘導装置は、複数のコイルを備えていてもよい。
〔実施形態2〕
本発明の実施形態2に係る磁場誘導装置101について、図3を参照して説明する。図3の(a)は、磁場誘導装置101の斜視図である。図3の(b)は、磁場誘導装置101の横断面図である。なお、図3に図示する座標系は、図1に図示した座標系と同様に定めている。図3の(a)および(b)に示すように、磁場誘導装置101は、ケーシング112と、コイル113と、スリーブ114と、レーザダイオード(LD)116a~116hと、スタンド121,122と、支持軸123,124とを備えている。
磁場誘導装置101を構成する各部材の部材番号の多くは、実施形態1に係る磁場誘導装置1を構成する各部材の部材番号を100番台に変更することによって得られる。すなわち、磁場誘導装置101、ケーシング112、コイル113、スリーブ114、内側空間115、およびLD116a~116eは、それぞれ、磁場誘導装置1のケーシング12、コイル13、スリーブ14、内側空間15、およびLD16a~16eに対応する。また、磁場誘導装置101のスタンド121,122および支持軸123,124は、それぞれ、磁場誘導装置1のスタンド21,22および支持軸23,24に対応する。したがって、本実施形態では、磁場誘導装置101の構成のうち磁場誘導装置1と同様に構成され、同じ機能を有する部材については、その説明を省略する。
(コイル113の横断面形状)
ケーシング112は、両端(z軸正方向側およびz軸負方向側の端部)が開放されるとともに、側面の一部が両端を接続するように開放された側面開口部117が形成され、その横断面における断面形状が半円形である半円筒状部材である。スリーブ114は、ケーシング112の内側壁に形成される。
スリーブ114の側壁および側面開口部117により囲まれた空間は、コイル113の内側空間115に対応する空洞を構成する。スリーブ114は、当該空洞に対して、患部2aを含む足2を挿入することができるようにその内径(長軸方向の長さおよび短軸方向の長さ)が定められている。
本実施形態において、磁場誘導装置101は、側面開口部117を通して、足2に被せることで装着することができる。これにより、内側空間115に、患部2aを含む足2が配置される。そのため、ケーシング112の開放された一端から、内側空間115に対して足2を挿入する必要がない。よって、磁場誘導装置101を足2に装着することが容易になる。
なお、本実施形態においては、足2を内側空間115に配置するものとして説明している。しかし、内側空間115に配置する体の部位は、足2に限定されるものではなく、体の如何なる部位であってもよい。スリーブ114の内径は、内側空間115に挿入する体の部位のサイズに応じて適宜定めることができる。
ケーシング112の内側には、図1の(b)に示すケーシング12と同様に、縦断面における断面形状が長方形である空間が形成されている。この空間内には、コイル113が収容されている。すなわち、コイル113もまた、横断面における断面形状が半円形である。このような形状は、特許請求の範囲に記載のC字型形状の一例である。なお、図3の(b)においては、コイル113を構成する導線の図示を省略している。
ケーシング112、コイル113、およびスリーブ114の各々は、同軸となるように配置されている。ケーシング112、コイル113、およびスリーブ114に共通の中心軸を中心軸Cとする。
コイル113の内側空間115は、コイル113の内側壁および側面開口部117により囲まれた空間である。内側空間115の横断面の断面形状が半円である場合、内側空間115の内径として上記半円における直径を採用すればよい。また、内側空間115の横断面の断面形状が半円とは異なる場合、内側空間115の内径としては、内側空間115の最大内径を採用すればよい。
ケーシング112における側面開口部117は、開口角度が180度である。ここで、上記開口角度とは、ケーシング112における横断面の全周において、側面開口部117が開口していなかった場合の全周を360度としたときに側面開口部117に対応する中心角の角度を表す。すなわち、本実施形態において、ケーシング112の横断面の断面形状はちょうど半円形であることから、ケーシング112における上記開口角度は180度となる。
このような開口角度によれば、磁場誘導装置101を上から置くことで、足2に容易に装着できるため、患部2aを内側空間115に容易に配置することができる。また、0.1T以上の磁場を印加するために過度に電力が必要となることを防ぐことができる。
(磁場誘導装置101の変形例)
磁場誘導装置101の変形例として、磁場誘導装置201について図3の(c)および(d)を参照して以下に説明する。図3の(c)は、磁場誘導装置201の斜視図である。図3の(d)は、磁場誘導装置201の横断面図である。
磁場誘導装置201を構成する各部材の部材番号の多くは、実施形態2に係る磁場誘導装置101を構成する各部材の部材番号を200番台に変更することによって得られる。すなわち、磁場誘導装置201、ケーシング212、コイル213、スリーブ214、内側空間215、LD216a~216e、側面開口部217、およびコイル芯218は、それぞれ、磁場誘導装置101のケーシング112、コイル113、スリーブ114、内側空間115、LD116a~116e、側面開口部117、およびコイル芯118に対応する。また、磁場誘導装置201のスタンド221,222および支持軸223,224は、それぞれ、磁場誘導装置101のスタンド121,122および支持軸123,124に対応する。したがって、磁場誘導装置201の構成のうち磁場誘導装置101と同様に構成され、同じ機能を有する部材については、その説明を省略する。
本実施形態において、ケーシング112の横断面の形状は、半円形であるものとして説明した。しかし、図3の(c)および(d)に示すように、当該横断面形状は半円形ではなく、ケーシング212のように、側面開口部217の開口角度が90度のC字型形状であってもよい。
このような構成によれば、磁場誘導装置201の内側空間215を患部2aに容易に配置することができ、かつ、0.1T以上の磁場を印加するために必要な電力は、磁場誘導装置101よりも少なくすることができる。上記開口角度が小さいほど、内側空間215を覆うコイル213は大きくなり、コイル213が大きいほど、少ない電力により内側空間215に強い磁場を印加することができるためである。なお、側面開口部117の開口角度は180度以下の如何なる角度であってもよい。
また、磁場誘導装置101,201の変形例として、磁場誘導装置1の変形例として記載した各構成を適宜適用することができる。したがって、ここでは、磁場誘導装置101,201に適用可能な変形例の構成に関する説明を省略する。
〔実施例および比較例〕
本発明の実施例1~4と、本発明の比較例1,2とについて、図3~図6を参照して説明する。
(コイル13の長さL)
磁場誘導装置1におけるコイル13の長さLを設計パラメータとして複数の条件を設定し、内側空間15における磁化力分布のシミュレーションを行った。コイル13の内径Dは200mm、コイル13の径方向の巻き段数は20段とした。本発明の比較例1,2の各々においては、長さLとして、それぞれ、20mmおよび40mmを採用した。それに対して、実施例1~4の各々においては、長さLとして、それぞれ、60mm、100mm、200mm、および300mmを採用した。したがって、比L/Dは、比較例1では0.1、比較例2では0.2、実施例1では0.3、実施例2では0.5、実施例3では1.0、実施例4では1.5となる。
また、コイル13の軸方向の巻き段数は、比較例1では10段、比較例2では20段、実施例1では30段、実施例2では50段、実施例3では100段、実施例4では150段とした。コイル13を構成する導線の直径は、2mm(被膜込み)とした。コイル13に供給する電流は2.5Aとした。磁気感受率は1とした。
図4の(a)は、本発明の比較例1における磁化力ベクトルFの分布のシミュレーション結果を示す図である。図4の(b)~(d)の各々はそれぞれ、本発明の実施例2~4における磁化力分布のシミュレーション結果を示す図である。図4の(a)~(d)の各々において、コイル13の形状を二点鎖線により示している。図4の(a)~(d)の各々に図示する座標系は、図1に図示した座標系と同様に定めている。
図5は、本発明の比較例1,2および実施例1,2における磁化力ベクトルFの傾きθを示すグラフである。図5のグラフの横軸は、コイル13のx軸方向における位置を中心からの距離として示している(単位はcm)。また、当該グラフの縦軸は、コイル13により発生される磁化力ベクトルFの傾きθ(図2参照)を示す。
図6の(a)~(d)の各々は、それぞれ、本発明の比較例1、実施例2、実施例3、および実施例4において、コイル13の開放端部における所定の線分上の磁化力ベクトルを示す図である。図6においては、コイル13の開放端部の位置をx=0としている。なお、図6の(a)~(d)において使用する座標系は、図4の(a)~(d)に図示した座標系と同様である。図6の(a)~(d)各々の図において、横軸はコイル13のz軸方向における中心からの距離を示し、縦軸はコイル13のx軸方向における中心からの距離を示す(いずれも単位はcm)。
図5に示すように、実施例1,2において、磁化力ベクトルFにおける傾きθは45度未満であった。一方、比較例1において、傾きθの最大値は45度を大きく上回り、60度を超えていた。また、比較例2において、傾きθの最大値は略45度であった。
図6の(a)に示すように、比較例1において、磁化力ベクトルFにおける径方向の成分は、軸方向の成分よりも大きかった。一方、図6の(b)~(d)に示すように、実施例2~4において、磁化力ベクトルFにおける径方向の成分は、軸方向の成分よりも小さかった。
以上の結果より、コイル13のL/Dの値が0.3以上である場合に、コイル13から発生する磁化力ベクトルFにおける傾きθは45度未満となることが分かった。すなわち、L/Dの値が0.3以上となるような形状であるコイル13によれば、患部2aの近傍に注入された磁性化細胞Cを患部2aに向かって誘導する場合に、磁性化細胞Cを上記軸方向に沿って誘導することが容易になることが分かった。
(C字型形状のコイル113,213)
磁場誘導装置101のコイル113および磁場誘導装置201のコイル213における、内側空間115,215の磁化力分布のシミュレーションを行った(それぞれ、本発明の実施例5および6とする)。図7の(a)および(b)は、本発明の実施例5および実施例6における磁化力ベクトルFの分布のシミュレーション結果を示す図である。図7の(a)および(b)において、コイル113,213の形状を二点鎖線により示している。なお、図7の(a)および(b)に図示する座標系は、図1に図示した座標系と同様に定めている。
コイル113,213はいずれも、最大内径は200mm、径方向の巻き段数は20段、軸方向の巻き段数は200段、長さLは400mmとした。コイル113,213を構成する導線の直径は、2mm(被膜込み)とした。また、コイル113,213に供給する電流は2.5Aとした。磁気感受率は1とした。
実施例5および6において、横断面形状がC字型形状のコイル113,213に2.5Aの電流を流した場合でも、コイル113,213の端部付近において大きな磁化力ベクトルFが発生することが分かった。また、磁化力ベクトルFは、径方向の成分よりも軸方向の成分が多いことが分かった。
以上の結果より、横断面形状がC字型形状のコイル113,213によっても、過度に大きな電力を必要とせず、患部2aの近傍に注入された磁性化細胞Cに磁化力を作用させることができることが示された。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1、101、201 磁場誘導装置
2 足
2a 患部
12、112、212 ケーシング
13、113、213 コイル
14、114、214 スリーブ
15、115、215 内側空間
16a~16e、116a~116e、216a~216e レーザダイオード(LD)(レーザ光源)
21、22、121、122、221、222 スタンド(支持部)
23、24、123、124、223、224 支持軸
117、217 側面開口部

Claims (7)

  1. 患部の近傍に注入された磁性複合体を上記患部に向かって誘導する磁場誘導装置であって、
    横断面形状が環状形状であり、上記患部を上記環状形状の内側空間に収容するコイル、又は、横断面形状がC字型形状であり、上記患部を上記C字型形状の内側空間に収容するコイルであって、上記内側空間の軸方向に沿った長さが上記内側空間の内径の1.0倍以上であるコイルを備えている、
    ことを特徴とする磁場誘導装置。
  2. 上記コイルは、上記横断面形状が環状形状であり、上記患部を上記環状形状の内側空間に収容するコイルである、
    ことを特徴とする請求項1に記載の磁場誘導装置。
  3. 上記コイルは、上記横断面形状がC字型形状であり、上記患部を上記C字型形状の内側空間に収容するコイルである、
    ことを特徴とする請求項1に記載の磁場誘導装置。
  4. 上記C字型形状は、開口角度が180度以下である、
    ことを特徴とする請求項3に記載の磁場誘導装置。
  5. 上記コイルを収容し、且つ、上記内側空間に対応する領域に空洞が形成されたケーシングと、
    上記ケーシングを支持する支持部であって、上記軸方向の向きを調整可能な支持部と、を更に備えている、
    ことを特徴とする請求項1~4の何れか1項に記載の磁場誘導装置。
  6. 上記コイルを収容し、且つ、上記内側空間に対応する領域に空洞が形成されたケーシングと、
    上記ケーシングに配置された複数のレーザ光源と、を更に備え、
    該複数のレーザ光源の各々が発するレーザ光が上記軸上において交わるように、上記複数のレーザ光源の各々が配置されている、
    ことを特徴とする請求項1~4の何れか1項に記載の磁場誘導装置。
  7. 上記複数のレーザ光源の各々が発するレーザ光が交わる位置は、上記空洞に含まれる領域のうち、磁化力の絶対値が、上記磁性複合体が上記患部に向かって誘導される値を上回る位置に設定されている、
    ことを特徴とする請求項6に記載の磁場誘導装置。
JP2018168725A 2018-09-10 2018-09-10 磁場誘導装置 Active JP7174207B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018168725A JP7174207B2 (ja) 2018-09-10 2018-09-10 磁場誘導装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018168725A JP7174207B2 (ja) 2018-09-10 2018-09-10 磁場誘導装置

Publications (2)

Publication Number Publication Date
JP2020039557A JP2020039557A (ja) 2020-03-19
JP7174207B2 true JP7174207B2 (ja) 2022-11-17

Family

ID=69796774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018168725A Active JP7174207B2 (ja) 2018-09-10 2018-09-10 磁場誘導装置

Country Status (1)

Country Link
JP (1) JP7174207B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151605A (ja) 2005-11-30 2007-06-21 Mitsuo Ochi 磁気誘導装置および磁性複合体の誘導システム
JP2007530209A (ja) 2004-04-01 2007-11-01 ドランテス ルイス カニェド 不適切な血液潅流、部分除神経、組織の損失、疼痛、浮腫、炎症、及び感染を伴う損傷を治療するための電磁装置
US20150080740A1 (en) 2013-09-18 2015-03-19 iMIRGE Medical INC. Optical targeting and visualization of trajectories
JP2017221696A (ja) 2011-04-01 2017-12-21 メディカル ディベロプメント テクノロジーズ エス.ア. 腎動脈を内部から焼灼するインプラント装置及びシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530209A (ja) 2004-04-01 2007-11-01 ドランテス ルイス カニェド 不適切な血液潅流、部分除神経、組織の損失、疼痛、浮腫、炎症、及び感染を伴う損傷を治療するための電磁装置
JP2007151605A (ja) 2005-11-30 2007-06-21 Mitsuo Ochi 磁気誘導装置および磁性複合体の誘導システム
JP2017221696A (ja) 2011-04-01 2017-12-21 メディカル ディベロプメント テクノロジーズ エス.ア. 腎動脈を内部から焼灼するインプラント装置及びシステム
US20150080740A1 (en) 2013-09-18 2015-03-19 iMIRGE Medical INC. Optical targeting and visualization of trajectories

Also Published As

Publication number Publication date
JP2020039557A (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
JP4733741B2 (ja) 粒子線治療装置
US7375357B2 (en) Permanent magnet radiation dose delivery enhancement
JP7383643B2 (ja) 常伝導電磁石システム
JP2005081146A (ja) 磁石コイルシステム
EP4082467A1 (en) Hybrid electromagnetic device for remote control of micro-nano scale robots, medical tools and implantable devices
CN107851474B (zh) 粒子束控制电磁体及配备有这种电磁体的照射治疗设备
JP2007260222A (ja) 荷電粒子線偏向装置および荷電粒子線照射装置
CN103026429A (zh) 用于手术器械的电磁致动器
Leclerc et al. A magnetic manipulator cooled with liquid nitrogen
JP7174207B2 (ja) 磁場誘導装置
US20150340141A1 (en) Superconductive electromagnet device
KR102389251B1 (ko) 이동형 마이크로로봇 제어장치
WO2014203105A1 (en) Cryostat and system for combined magnetic resonance imaging and radiation therapy
Abbott et al. Optimization of coreless electromagnets to maximize field generation for magnetic manipulation systems
KR101790297B1 (ko) 마이크로 로봇을 구동하기 위한 자기장 제어 장치 및 동작 방법
Koyanagi et al. Development of saddle-shaped coils for accelerator magnets wound with YBCO-coated conductors
JP2018057858A (ja) Mriを備える粒子治療装置
Nguyen et al. A composite electro-permanent magnetic actuator for microrobot manipulation
JP6039896B2 (ja) 電磁石装置及びシムコイルの製造方法
Kee et al. Analysis of drivable area and magnetic force in quadrupole electromagnetic actuation system with movable cores
JP6942340B2 (ja) 磁場誘導装置
KR20210047090A (ko) 마이크로 로봇 제어장치
KR102293087B1 (ko) 마이크로 로봇 제어용 듀얼 전자석 모듈
RU2683204C1 (ru) Устройство управления движением инородного тела внутри пациента внешним магнитным полем
CN103252024B (zh) 粒子束治疗系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221005

R150 Certificate of patent or registration of utility model

Ref document number: 7174207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150