JP7173697B2 - 磁歪式トルクセンサ用シャフトの製造方法 - Google Patents

磁歪式トルクセンサ用シャフトの製造方法 Download PDF

Info

Publication number
JP7173697B2
JP7173697B2 JP2018238573A JP2018238573A JP7173697B2 JP 7173697 B2 JP7173697 B2 JP 7173697B2 JP 2018238573 A JP2018238573 A JP 2018238573A JP 2018238573 A JP2018238573 A JP 2018238573A JP 7173697 B2 JP7173697 B2 JP 7173697B2
Authority
JP
Japan
Prior art keywords
shaft
torque sensor
shot peening
heat treatment
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018238573A
Other languages
English (en)
Other versions
JP2020101403A (ja
Inventor
晃之 中村
雄太 杉山
潤司 小野
晃大 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Hitachi Metals Ltd
Original Assignee
NSK Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd, Hitachi Metals Ltd filed Critical NSK Ltd
Priority to JP2018238573A priority Critical patent/JP7173697B2/ja
Priority to US17/416,756 priority patent/US11732318B2/en
Priority to CN201980084097.XA priority patent/CN113196025A/zh
Priority to EP19898666.3A priority patent/EP3901601A4/en
Priority to PCT/JP2019/048461 priority patent/WO2020129769A1/ja
Publication of JP2020101403A publication Critical patent/JP2020101403A/ja
Application granted granted Critical
Publication of JP7173697B2 publication Critical patent/JP7173697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Steering Mechanism (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、磁歪式トルクセンサ用シャフトの製造方法に関する。
従来、磁歪式トルクセンサが知られている。磁歪式トルクセンサは、応力が付与された際に透磁率が変化する磁歪特性を有するシャフトを用い、トルクが付与されてシャフトが捩じれた際のシャフトの透磁率の変化を検出コイルのインダクタンスの変化として検出することにより、シャフトに付与されたトルクを検出する。
なお、この出願の発明に関連する先行技術文献情報としては、特許文献1がある。
特開2018-112451号公報
ところで、シャフトに用いられる鋼材には、残留オーステナイトと呼称される非磁性の組織が含まれていることが知られている。なお、残留オーステナイトは、面心立方格子構造のγ鉄に他元素が固溶したものである。
シャフトに非磁性の残留オーステナイトが多く含まれると、トルクを付与された際の透磁率の変化が小さくなり、磁歪式トルクセンサの感度低下につながる。
しかしながら、熱処理の条件を調整すること等によりシャフト全体の残留オーステナイト量を少なくすると、シャフトの靱性が低下し、シャフトに割れが生じるおそれがある。
また、磁歪式トルクセンサは、例えばトランスミッションのストローク制御、エンジンの出力制御等に用いられるものである。そのため、確実な変速を行うことができるように、できるだけ誤差が小さいことが望まれる。
そこで、本発明は、靱性を確保しつつも、センサ感度の向上及び誤差の低減が可能な磁歪式トルクセンサ用シャフトの製造方法を提供することを目的とする。
本発明は、上記課題を解決することを目的として、磁歪式トルクセンサのセンサ部が取り付けられ、前記センサ部が取り付けられる部分の表面に溝が形成されていない磁歪式トルクセンサ用シャフトの製造方法であって、クロム鋼からなる円柱状の軸材に、浸炭焼入れ焼戻し処理を施す熱処理工程と、少なくとも前記熱処理工程後の軸材の前記センサ部が取り付けられる位置に、ビッカース硬さ1100以上1300以下のスチール製のショット材を用いてショットピーニングを施すショットピーニング工程と、ショットピーニング後の前記軸材に表面研磨を施す表面研磨工程と、を備え、前記表面研磨工程では、前記軸材の表面の算術平均粗さRaが0.3μm以下で、かつ、最大高さRzが3μm以下となるように、表面研磨を行い、前記熱処理工程では、該熱処理工程後の前記軸材の表面硬度がビッカース硬さ650以上となるように熱処理を行ヒステリシス誤差と角度誤差の合計値である合計誤差を3.5%以下とする、磁歪式トルクセンサ用シャフトの製造方法を提供する。
本発明によれば、靱性を確保しつつも、センサ感度の向上及び誤差の低減が可能な磁歪式トルクセンサ用シャフトの製造方法を提供できる。
磁歪式トルクセンサのセンサ部の一例を示す図であり、(a)はシャフトに取り付けた際の側面図、(b)はそのA-A線断面図である。 ボビンを展開した状態を模式的に示す平面図であって、(a)は第1検出コイル及び第4検出コイルを説明する図、(b)は第2検出コイル及び第3検出コイルを説明する図である。 トルクセンサの検出信号によりシャフトに付与されたトルクを測定する測定部の一例を示す回路図である。 (a)は感度及びヒステリシス誤差を説明する図であり、(b)は角度誤差を説明する図である。 (a)はHV700のスチール製のショット材を用いた場合の誤差の測定結果を示す図、(b)はHV1200のスチール製のショット材を用いた場合の誤差の測定結果を示す図である。 (a)はショットピーニング前後のセンサ感度を示すグラフ図、(b)はショットピーニング前後のヒステリシス誤差を示すグラフ図である。 (a)は表面研磨前後の残留オーステナイト量の深さ方向分布示すグラフ図であり、(b)は表面研磨前後の軸材表面における残留オーステナイト量の周方向分布を示すグラフ図である。 表面研磨前後の軸材表面のX線回折結果を示すグラフ図である。 表面研磨前後の誤差の測定結果を示す図である。
[実施の形態]
以下、本発明の実施の形態を添付図面にしたがって説明する。
(磁歪式トルクセンサの説明)
まず、磁歪式トルクセンサ(以下、単にトルクセンサという)について図1乃至図3を用いて説明する。図1は、トルクセンサのセンサ部の一例を示す図であり、(a)はシャフトに取り付けた際の側面図、(b)はそのA-A線断面図である。図2は、ボビンを展開した状態を模式的に示す平面図であって、(a)は第1検出コイル及び第4検出コイルを説明する図、(b)は第2検出コイル及び第3検出コイルを説明する図である。図3は、トルクセンサの検出信号によりシャフトに付与されたトルクを測定する測定部の一例を示す回路図である。
図1(a),(b)に示すように、トルクセンサ1のセンサ部2は、磁歪特性を有する磁歪式トルクセンサ用シャフト(以下、単にシャフトという)100の周囲に取り付けられている。トルクセンサ1は、シャフト100に付与されたトルク(回転トルク)を測定するものである。
シャフト100は、磁歪特性を有する材料(SCr420、SCM420、SNCM616、SUS440C、SUS630等)から構成され、円柱状(棒状)に形成されている。シャフト100は、例えば、車両のパワートレイン系のトルク伝達に用いられるシャフト、あるいは車両のエンジンのトルク伝達に用いられるシャフトである。
センサ部2は、コイル21と、磁性体リング22と、を備えている。磁性体リング22は、磁性体(強磁性体)からなり、中空円筒状に形成されている。磁性体リング22の中空部にはコイル21が挿入される。磁性体リング22は、コイル21の検出コイル3で生じた磁束が外部に漏れて感度が低下することを抑制する役割を果たす。
コイル21は、非磁性体である樹脂からなるボビン23と、ボビン23の外周に絶縁電線を巻き付けて構成される複数の検出コイル3と、を有している。ボビン23は、シャフト100と離間して同軸に設けられており、中空円筒状に形成されている。ボビン23の外周面には、シャフト100の軸方向に対して所定角度(ここでは+45度)傾斜した複数の第1傾斜溝4と、軸方向に対して第1傾斜溝4と反対方向に所定角度(ここでは-45度)傾斜した複数の第2傾斜溝5とが形成されている。第1傾斜溝4及び第2傾斜溝5は、ボビン23の径方向に窪んだ溝によって形成されている。
図2(a),(b)に示すように、コイル21は、検出コイル3として、第1~第4検出コイル31~34を有している。第1検出コイル31及び第4検出コイル34は、第1傾斜溝4に沿って絶縁電線をボビン23に巻き付けて形成される。第2検出コイル32及び第3検出コイル33は、第2傾斜溝5に沿って絶縁電線をボビン23に巻き付けて形成される。
図2(a)中、符号31a,31bは、それぞれ第1検出コイル31の1層分の入力端と出力端を示し、符号34a,34bは、それぞれ第4検出コイル34の1層分の入力端と出力端を示す。図2(b)中、符号32a,32bは、それぞれ第2検出コイル32の1層分の入力端と出力端を示し、符号33a,33bは、それぞれ第3検出コイル33の1層分の入力端と出力端を示す。なお、図2(a),(b)では1ターン分の絶縁電線の巻き付けを示しており、目的のターン数となるように絶縁電線の巻き付けを繰り返すことで、各検出コイル31~34が形成される。また、図2(a),(b)に示した絶縁電線の巻き付け方法は一例であり、他の巻き付け方を用いて検出コイル31~34を形成してもよい。
第1検出コイル31及び第4検出コイル34は、シャフト100の軸方向に対して所定角度(ここでは+45度)傾斜した第1方向でのシャフト100の透磁率変化を検出するためのものである。また、第2検出コイル32及び第3検出コイル33は、シャフト100の軸方向に対して第1方向と反対側に所定角度(ここでは-45度)傾斜した第2方向でのシャフト100の透磁率変化を検出するためのものである。
図3に示すように、測定部41は、第1~第4検出コイル31~34のインダクタンスの変化を検出することにより、シャフト100に付与されたトルクを測定するものである。
測定部41は、第1検出コイル31、第2検出コイル32、第4検出コイル34、第3検出コイル33をこの順序で環状に接続して構成されたブリッジ回路42と、第1検出コイル31と第2検出コイル32との間の接点aと第3検出コイル33と第4検出コイル34との間の接点bとの間に交流電圧を印加する発信器43と、第1検出コイル31と第3検出コイル33との間の接点cと第2検出コイル32と第4検出コイル34との間の接点d間の電圧を検出する電圧測定回路44と、電圧測定回路44で測定した電圧を基にシャフト100に付与されたトルクを演算するトルク演算部45と、を備えている。ブリッジ回路42は、第1検出コイル31及び第4検出コイル34を対向する一方の辺に配置し、第2検出コイル32及び第3検出コイル33を対向する他方の辺に配置して構成される。
測定部41では、シャフト100にトルクが付与されない状態では、第1~第4検出コイル31~34のインダクタンスL1~L4は等しくなり、電圧測定回路44で検出される電圧は略0となる。
シャフト100にトルクが付与されると、軸方向に対して+45度の方向の透磁率が減少(又は増加)し、軸方向に対して-45度方向の透磁率が増加(又は減少)する。よって、発信器43から交流電圧を印加した状態でシャフト100にトルクが付与されると、第1検出コイル31及び第4検出コイル34ではインダクタンスが減少(又は増加)し、第2検出コイル32及び第3検出コイル33ではインダクタンスが増加(又は減少)する。その結果、電圧測定回路44で検出される電圧が変化するので、この電圧の変化を基に、トルク演算部45がシャフト100に付与されたトルクを演算する。
第1検出コイル31及び第4検出コイル34と、第2検出コイル32及び第3検出コイル33とは、巻き付け方向が異なる以外は全く同じ構成であるから、図3のようなブリッジ回路42を用いることで、第1~第4検出コイル31~34のインダクタンスへの温度等の影響をキャンセルすることが可能であり、シャフト100に付与されたトルクを精度よく検出することができる。また、トルクセンサ1では、第1検出コイル31及び第4検出コイル34でインダクタンスが増加(又は低下)すれば、第2検出コイル32及び第3検出コイル33ではインダクタンスが低下(又は増加)するため、図3のようなブリッジ回路42を用いることで、検出感度をより向上することができる。
(シャフト100とその製造方法の説明)
本実施の形態では、シャフト100として、鉄系の軸材に浸炭焼入れ焼戻し処理を施した後に、ショットピーニングを施し、さらにその後表面研磨を施したものを用いる。
つまり、本実施の形態に係るシャフト100の製造方法は、鉄系の軸材に、浸炭焼入れ焼戻し処理を施す熱処理工程と、少なくとも熱処理工程後の軸材のセンサ部が取り付けられる位置に、ショットピーニングを施すショットピーニング工程と、ショットピーニング後の軸材に表面研磨を施す表面研磨工程と、を備えている。
シャフト100に用いる軸材としては、鉄系の材料、例えば、SCr420(クロム鋼)、SCM420(クロムモリブデン鋼)、SNCM616(ニッケルクロムモリブデン鋼)、SUS440C(マルテンサイト系ステンレス)、あるいはSUS630(析出硬化系ステンレス)等を用いることができる。ここでは、軸材としてSCr420を用いた。
軸材の全体に浸炭焼入れ焼戻し処理を施すことによって、シャフト100の靱性を含む機械的強度を高めることができる。本実施の形態では、熱処理工程後の軸材の表面硬度を、HV(ビッカース硬さ)650以上としている。これは、熱処理工程後の軸材の表面硬度が低いと、センサ感度が低下したりヒステリシス誤差が高くなったりする場合があるためである。センサ感度及びヒステリシス誤差の悪化を抑制するために、熱処理工程後の軸材の表面硬度はHV650以上とすることが望ましい。つまり、熱処理工程では、熱処理工程後の軸材の表面硬度がHV650以上となるように熱処理を行うことが望ましい。本実施の形態では、ガス浸炭(920℃×3時間→830℃×15分→油冷,焼戻200℃×1.5時間)により熱処理工程を行った。
熱処理工程を行うと、軸材に歪が生じる。そのため、熱処理工程に、軸材の曲げ戻しを行う工程や、軸材の表面を研削して直線状とする研削工程を行うことが望ましい。研削工程においては、センサ部2を装着する部分(測定部という)での研削量(研削深さ)が周方向で均一になるように研削を行うことが望ましい。これは、軸材の深さ方向(径方向)で組成が異なるためであり、測定部において研削量(研削深さ)が均一でないと、測定部の表面において組成が異なる部分が生じ、後述する角度誤差の原因となる場合があるためである。なお、研削工程後に所望の外径を得るため、熱処理前の軸材としては、仕上がり外径よりも若干太いもの(例えば直径が0.2mm程度大きいもの)を用いるとよい。
ショットピーニング工程では、熱処理後の軸材に、ショットピーニングが施される。熱処理後の軸材にショットピーニングを施すことで、シャフト100の表面(表面から所定深さの領域)においてマルテンサイト変態(無拡散変態)を生じさせ、非磁性の残留オーステナイトを減少させ、強磁性のマルテンサイトを増大させることができる。その結果、シャフト100の表面における非磁性領域が減少し磁性領域が増大することにより、トルクが付与された際の透磁率の変化が大きくなり、トルクセンサ1の感度を向上させることが可能になる。なお、残留オーステナイトは、面心立方格子構造の鉄(γ鉄)に他元素が固溶したものである。また、マルテンサイトは、体心正方格子の鉄の結晶中に炭素が侵入した固溶体である。
また、熱処理後の軸材にショットピーニングを施すことで、軸材の表面が加工硬化されヒステリシス特性が改善される。より詳細には、熱処理後の軸材にショットピーニングを施すことにより、シャフト100の表面における磁区(磁気モーメントの向きが揃った区域)が細分化されると共に、磁区の境界である磁壁の移動を妨げるピニングサイトとなる残留オーステナイトが低減される。その結果、付与しているトルクを開放した際に、磁区や磁壁がもとの状態に戻り易くなり、ヒステリシス誤差が低減される。
なお、トルクセンサ1の感度とは、図4(a)に示すように、センサ出力V(mV)を、シャフト100に付与されるトルクT(Nm)で除したものであり、V/T(mV/Nm)で表される。シャフト100に付与するトルクTを-T1以上+T1以下とし、トルク-T1に対応するセンサ出力をV1、トルク+T1に対応するセンサ出力をV2とすると、センサ感度は(V2-V1)/(2×T1)=Vs/Tsで表される。また、ヒステリシス誤差は、直線性誤差とも呼称されるものであり、センサ出力Vs(=V2-V1)に対するトルク増加時及び減少時の同トルクでのセンサ出力差の最大値Vhの比率であり、Vh/Vs(%FS、FSはフルスケールを意味する)で表すことができる。
また、本実施の形態では、ヒステリシス誤差に加えて、シャフト100の周方向でのセンサ出力のばらつき(以下、角度誤差という)についても評価を行った。図4(b)に示すように、角度誤差とはシャフト回転時に発生する誤差であり、センサ出力の最大値をVmax、最小値をVminとしたとき、(Vmax-Vmin)/Vs(%)で表される。以下、ヒステリシス誤差と角度誤差の合計値を合計誤差という。本実施の形態では、合計誤差を3.5%以下とすることを目標とする。
本実施の形態では、シャフト100の軸材としてクロム鋼(SCr420)を用い、最適なショットピーニングの条件について検討した。本実施の形態では、粒径0.6mmのスチール製のショット材を用いた。また、シャフト100の直径は18mmとした。また、ショットピーニングを行う際には、シャフト100を低速(例えば6rpm)で回転させつつショット材の噴射を行った。
まず、HV700のスチール製のショット材を用い、噴射圧を0.4MPa,0.55MPaとした場合の誤差の測定結果を図5(a)に示す。図5(a)に示すように、HV700のショット材を用いた場合、合計誤差が4%以上と大きくなっている。なお、図5(a)に示される誤差(ヒステリシス誤差及び角度誤差)は、温度特性(環境温度―40℃~150℃の条件下で測定)を含めた最大値を表している。また、図5(a)の横軸は、ショット材の噴射時間を表しており、総噴射時間をシャフト100の長さで除した値、すなわちシャフト100の軸方向1cmあたりの噴射時間を表している(以下、単に噴射時間という)。
次に、HV1200のスチール製のショット材を用い、噴射圧を0.4MPa,0.55MPaとした場合の誤差の測定結果を図5(b)に示す。なお、ショット材には硬度のばらつきが存在するため、ショット材としては、HV1100以上1300以下のものを用いればよい。図5(b)に示すように、HV1200のショット材を用いた場合、HV700のショット材を用いた場合と比較してヒステリシス誤差が低減しているものの、角度誤差が大きくなっており、結果として合計誤差が大きくなっている。
本実施の形態では、粒径0.6mm以上のショット材を用い、噴射圧を0.4MPa以上0.55MPa以下としている。図5(b)の結果より、粒径0.6mmのショット材を用いた場合、合計誤差を小さくするためには、噴射圧を0.4MPaとし、噴射時間を8秒/cm以上20秒/cm以下とするショット条件が望ましいといえる。本実施の形態では、噴射圧を0.4MPaとし、噴射時間を8秒/cmとするショット条件でショットピーニングを行うようにした。この条件でショットピーニングを行うことにより、図6(a)に示すように、ショットピーニング前に1.5mV/Nmであったセンサ感度を6.4mV/Nmまで向上でき、目標値に設定した4.0mV/Nm以上のセンサ感度が得られた。また、図6(b)に示すように、ショットピーニング前に5.5%FSであったヒステリシス誤差を1.3%FSまで低減でき、目標値に設定した1.75%FS以下のヒステリシス誤差を実現できた。
上述のように、ショット材の硬度を高くするのみでは、合計誤差を小さくすることはできないことが分かった。そこで、本発明者らは、角度誤差が大きくなる理由について検討を行った。この検討の結果、本発明者らは、主に2つの要因で角度誤差が大きくなっていることを見出した。
1つ目の要因は、ショットピーニング工程で残留した残留オーステナイトがシャフト100の周方向に均一に分布していないことである。上述のようにショットピーニングを行うことで、残留オーステナイトを加工誘起によりマルテンサイト変態させ非磁性領域を磁性化すると同時に、塑性変形しやすい残留オーステナイト領域を低減させ、表面の高硬度化を実現でき、その結果、センサ感度向上と、ヒステリシス誤差の低減を同時に実現できる。しかし、残留オーステナイトが完全に除かれるわけではなく、図7(a)に破線で示すように、ショットピーニング後の軸材の表面には、残留オーステナイトが残っている。
そこで、図7(b)に破線で示すように、ショットピーニング後の軸材の角度位置毎に残留オーステナイト量を測定したところ、残留オーステナイト量が0.4%~1.0%とばらついていることが分かった。残留オーステナイトは非磁性であるため、測定部において残留オーステナイトの分布が周方向にばらついていると、角度誤差が大きくなる。このような残留オーステナイトのばらつきは、ショットピーニングを行うのみでは十分に解消できないと考えられる。
2つ目の要因は、ショット材に含まれるホウ素の影響により軸材表面にFeBが生成されることである。HV1200のスチール製のショット材には、ショット材の硬度を高めるためにホウ素が添加されている。そのため、このようなショット材を用いることによって、軸材の表面にFeBが形成されてしまう。FeBは、結晶磁気異方性が大きいため、角度誤差が大きくなっていると考えられる。図8に破線で示すように、X線回折装置を用いてショットピーニング後の軸材表面の分析を行ったところ、軸材の表面にFeBが形成されていることが確認された。
そこで、本実施の形態では、これら2つの要因を除き、角度誤差を改善するために、ショットピーニング後の軸材に表面研磨を施す表面研磨工程を行うようにした。表面研磨工程では、例えば、ウォーターペーパーあるいは耐水ペーパーと呼称される研磨用ペーパーを用いて、軸材の表面の研磨を行うとよい。研磨後の軸材の表面の算術平均粗さRaは0.3μmで、最大高さRzが3μmであった。
ショットピーニング後の軸材に表面研磨を施すことによって、表面研磨時の応力によってマルテンサイト変態を促進させ、残留オーステナイトの分布を均一にすることができる。研磨後の残留オーステナイトの分布を図7(a),(b)に実線で併せて示す。図7(a),(b)に実線で示されるように、ショットピーニング後の軸材に表面研磨を施すことによって、残留オーステナイト量が低減しており、角度位置による残留オーステナイト量のばらつきは0.2%程度(0.4%~0.6%)抑えられていることが分かる。
また、ショットピーニング後の軸材に表面研磨を施すことによって、ショットピーニング時に軸材表面に形成されたFeBが除去される。表面研磨後の軸材のX線回折装置による分析結果を図8に実線で併せて示す。図8に実線で示されるように、表面研磨後の軸材の表面ではFeBが少なく(体積率が小さく)なっていることが分かる。
表面研磨工程では、軸材の表面の算術平均粗さRaが0.3μm以下で、かつ、最大高さRzが3μm以下となるように、表面研磨を行うとよい。これは、軸材の表面の算術平均粗さRaが0.3μmより大きい、あるいは最大高さRzが3μmより大きい場合、表面研磨が十分でなく、残留オーステナイトの分布の均一化やFeBの除去が十分に行われない場合があるためである。
このように、ショットピーニング後の軸材に表面研磨を施すことによって、残留オーステナイトの分布の均一化と、軸材表面に形成されたFeBの除去を同時に実現することができ、その結果、角度誤差を大幅に小さくすることができる。図9に示すように、表面研磨前(ショットピーニング後)の軸材と比較して、表面研磨後のシャフト100では、角度誤差が大幅に小さくなっている。
具体的には、シャフト100では、ヒステリシス誤差を2%程度、角度誤差を1%程度にでき、合計誤差を3.5%以下にすることができる。検出回路に起因する回路誤差を含めた場合であっても、その誤差の総計を3.5%以下とし、非常に誤差が小さいトルクセンサ1を実現することができる。なお、図9では、粒径0.6mm、HV1200のスチール製のショット材を用い、噴射圧を0.4MPa、噴射時間を8秒/cmとしてショットピーニングを行った場合について示している。
(実施の形態の作用及び効果)
以上説明したように、本実施の形態に係るトルクセンサ1の製造方法では、鉄系の軸材に、浸炭焼入れ焼戻し処理を施す熱処理工程と、少なくとも熱処理工程後の軸材のセンサ部2が取り付けられる位置に、ビッカース硬さ1100以上1300以下のスチール製のショット材を用いてショットピーニングを施すショットピーニング工程と、ショットピーニング後の軸材に表面研磨を施す表面研磨工程と、を備えている。
ショットピーニング工程を備えることにより、シャフト100の表面のみで非磁性の残留オーステナイトを減少させることが可能となり、シャフト100の靱性の低下を抑制できる。また、HV1200の高硬度のショット材を用いてショットピーニングを行うことで、ヒステリシス誤差を低減しセンサ感度を向上することが可能になる。しかし、ショット材に含まれるホウ素の影響等により角度誤差は大きくなってしまう。本実施の形態では、ショットピーニング後の軸材に表面研磨を施すことで、残留オーステナイトの周方向の分布を均一化すると共に、ショット材に含まれるホウ素の影響で軸材表面に形成されたFeBを除去することができ、角度誤差を小さくすることができる。その結果、靱性を確保しつつもセンサ感度が高く、また、合計誤差が3.5%以下と誤差が小さいトルクセンサ1を得ることができる。
(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
[1]磁歪式トルクセンサ(1)のセンサ部(2)が取り付けられる磁歪式トルクセンサ用シャフト(100)の製造方法であって、鉄系の軸材に、浸炭焼入れ焼戻し処理を施す熱処理工程と、少なくとも前記熱処理工程後の軸材の前記センサ部(2)が取り付けられる位置に、ビッカース硬さ1100以上1300以下のスチール製のショット材を用いてショットピーニングを施すショットピーニング工程と、ショットピーニング後の前記軸材に表面研磨を施す表面研磨工程と、を備えた、磁歪式トルクセンサ用シャフトの製造方法。
[2]前記表面研磨工程では、前記軸材の表面の算術平均粗さRaが0.3μm以下で、かつ、最大高さRzが3μm以下となるように、表面研磨を行う、[1]に記載の磁歪式トルクセンサ用シャフトの製造方法。
[3]前記軸材が、クロム鋼からなる、[1]または[2]に記載の磁歪式トルクセンサ用シャフトの製造方法。
[4]前記熱処理工程では、該熱処理工程後の前記軸材の表面硬度がビッカース硬さ650以上となるように熱処理を行う、[1]乃至[3]の何れか1項に記載の磁歪式トルクセンサ用シャフトの製造方法。
[5]前記ショットピーニング工程では、粒径0.6mm以上の前記ショット材を用い、噴射圧を0.4MPa以上0.55MPa以下とする、[1]乃至[4]の何れか1項に記載の磁歪式トルクセンサ用シャフトの製造方法。
以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。また、本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。
1…トルクセンサ(磁歪式トルクセンサ)
2…センサ部
3…検出コイル
100…シャフト(磁歪式トルクセンサ用シャフト)

Claims (5)

  1. 磁歪式トルクセンサのセンサ部が取り付けられる磁歪式トルクセンサ用シャフトの製造方法であって、
    鉄系の軸材に、浸炭焼入れ焼戻し処理を施す熱処理工程と、
    少なくとも前記熱処理工程後の軸材の前記センサ部が取り付けられる位置に、ビッカース硬さ1100以上1300以下のスチール製のショット材を用いてショットピーニングを施すショットピーニング工程と、
    ショットピーニング後の前記軸材に表面研磨を施し、前記ショットピーニング工程において前記軸材の表面に生成されたFe Bを除去する表面研磨工程と、を備えた、
    磁歪式トルクセンサ用シャフトの製造方法。
  2. 前記表面研磨工程では、前記軸材の表面の算術平均粗さRaが0.3μm以下で、かつ、最大高さRzが3μm以下となるように、表面研磨を行う、
    請求項1に記載の磁歪式トルクセンサ用シャフトの製造方法。
  3. 前記軸材が、クロム鋼からなる、
    請求項1または2に記載の磁歪式トルクセンサ用シャフトの製造方法。
  4. 前記熱処理工程では、該熱処理工程後の前記軸材の表面硬度がビッカース硬さ650以上となるように熱処理を行う、
    請求項1乃至3の何れか1項に記載の磁歪式トルクセンサ用シャフトの製造方法。
  5. 前記ショットピーニング工程では、粒径0.6mm以上の前記ショット材を用い、噴射圧を0.4MPa以上0.55MPa以下とする、
    請求項1乃至4の何れか1項に記載の磁歪式トルクセンサ用シャフトの製造方法。
JP2018238573A 2018-12-20 2018-12-20 磁歪式トルクセンサ用シャフトの製造方法 Active JP7173697B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018238573A JP7173697B2 (ja) 2018-12-20 2018-12-20 磁歪式トルクセンサ用シャフトの製造方法
US17/416,756 US11732318B2 (en) 2018-12-20 2019-12-11 Method for manufacturing magnetostrictive torque sensor shaft
CN201980084097.XA CN113196025A (zh) 2018-12-20 2019-12-11 磁致伸缩式扭矩传感器用轴的制造方法
EP19898666.3A EP3901601A4 (en) 2018-12-20 2019-12-11 METHOD OF MAKING A MAGNETOSTRICTIVE TORQUE SENSOR SHAFT
PCT/JP2019/048461 WO2020129769A1 (ja) 2018-12-20 2019-12-11 磁歪式トルクセンサ用シャフトの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238573A JP7173697B2 (ja) 2018-12-20 2018-12-20 磁歪式トルクセンサ用シャフトの製造方法

Publications (2)

Publication Number Publication Date
JP2020101403A JP2020101403A (ja) 2020-07-02
JP7173697B2 true JP7173697B2 (ja) 2022-11-16

Family

ID=71102093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238573A Active JP7173697B2 (ja) 2018-12-20 2018-12-20 磁歪式トルクセンサ用シャフトの製造方法

Country Status (5)

Country Link
US (1) US11732318B2 (ja)
EP (1) EP3901601A4 (ja)
JP (1) JP7173697B2 (ja)
CN (1) CN113196025A (ja)
WO (1) WO2020129769A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021123394A1 (de) * 2021-09-09 2023-03-09 Trafag Ag Belastungsmessanordnung zum magnetostriktiven Messen einer Belastung an einem Testobjekt sowie Herstellverfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036115A (ja) 2000-07-31 2002-02-05 Sintokogio Ltd ショットピ−ニング処理方法及びその被処理品
JP2014213441A (ja) 2013-04-30 2014-11-17 山陽特殊製鋼株式会社 高い圧縮残留応力を得るショットピーニング方法
JP2018112451A (ja) 2017-01-11 2018-07-19 日立金属株式会社 磁歪式トルクセンサ用シャフトの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756043B2 (ja) * 1988-09-27 1995-06-14 マツダ株式会社 鋼部材の製造方法
US5205145A (en) * 1989-09-25 1993-04-27 Kubota Corporation Method of producing torque sensor shafts
JP3100433B2 (ja) * 1991-09-06 2000-10-16 株式会社小松製作所 トルクセンサ用検出軸およびその製造方法
JPH1029160A (ja) * 1996-07-12 1998-02-03 Sintokogio Ltd 高硬度金属製品のショットピ−ニング方法及び高硬度金属製品
JP3246657B2 (ja) * 1998-01-14 2002-01-15 日産自動車株式会社 高面圧部材の製造方法
EP1516940B1 (en) * 2003-09-18 2010-09-15 Mahindra & Mahindra Ltd. Method for producing gears and/or shaft components with superior bending fatigue strength and pitting fatigue life from conventional alloy steel
JP4283263B2 (ja) * 2005-10-20 2009-06-24 本田技研工業株式会社 磁歪式トルクセンサの製造方法
JP2010230636A (ja) * 2009-03-30 2010-10-14 Honda Motor Co Ltd 磁歪式トルクセンサの製造方法
JP7008616B2 (ja) * 2018-12-20 2022-01-25 日立金属株式会社 磁歪式トルクセンサ用シャフトの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036115A (ja) 2000-07-31 2002-02-05 Sintokogio Ltd ショットピ−ニング処理方法及びその被処理品
JP2014213441A (ja) 2013-04-30 2014-11-17 山陽特殊製鋼株式会社 高い圧縮残留応力を得るショットピーニング方法
JP2018112451A (ja) 2017-01-11 2018-07-19 日立金属株式会社 磁歪式トルクセンサ用シャフトの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
奥村 潔, 黒崎 順功, 西村 一敏, 木村 久道, 井上 明久,ピーニング向け高強度,長寿命アモルファス合金投射材「アモビーズ」の開発,まてりあ,日本,日本金属学会,2004年02月20日,43巻, 2号,pp.142-144,https://doi.org/10.2320/materia.43.142
小川一義、浅野高司,ショットピーニングと化学研磨による浸炭焼入れ歯車の疲労強度向上,豊田中央研究所R&Dレビュー,日本,株式会社豊田中央研究所,1995年03月,Vol.30, No.1,pp.37-44,https://www.tytlabs.com/japanese/review/rev301j.html
澤田 俊之, 柳谷 彰彦,ショットピーニング投射材用1200HV級FeCrBガスアトマイズ粉末の開発,まてりあ,日本,日本金属学会,2010年,49巻, 1号,pp.17-19,https://doi.org/10.2320/materia.49.17
片岡泰弘、黒澤和芳、河原良尚,微粒子ピーニングによるSCM420浸炭材の表面改質,愛知県産業技術研究所研究報告,日本,あいち産業科学技術総合センター技術研究所,2004年,https://aichi-inst.jp/research/report/

Also Published As

Publication number Publication date
EP3901601A4 (en) 2022-09-14
US11732318B2 (en) 2023-08-22
WO2020129769A1 (ja) 2020-06-25
EP3901601A1 (en) 2021-10-27
CN113196025A (zh) 2021-07-30
US20220074010A1 (en) 2022-03-10
JP2020101403A (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
CN108303203B (zh) 磁致伸缩式扭矩传感器用轴的制造方法
KR920006454B1 (ko) 자기 탄성 토오크 트랜스듀서와 그 제조방법 및 토오크 검출방법
KR100365836B1 (ko) 칼라가 없는 원주상으로 자화된 토오크 변환기 및 이를 이용하여 토오크를 측정하는 방법
US11346731B2 (en) Detection circuit and detection method for magnetostrictive torque sensor
JP2016176928A (ja) 冗長トルクセンサ−多重バンドアレイ
JP7173697B2 (ja) 磁歪式トルクセンサ用シャフトの製造方法
WO2020129770A1 (ja) 磁歪式トルクセンサ用シャフトの製造方法
Serbin et al. On the possibility of evaluating magnetostriction characteristics of bulk ferromagnets based on their magnetic properties
JP6880469B2 (ja) 磁歪式トルクセンサ用シャフトの製造方法
JP2016027318A (ja) トルク測定装置
WO2022070581A1 (ja) トルク負荷部材およびその製造方法、並びに、トルク測定装置
Gorkunov et al. Effect of elasto-plastic loading on the magnetic characteristics of steel 20 hardened with gas case-hardening
JP2006300902A (ja) 応力検出方法及び装置
JP4876393B2 (ja) トルク検出装置
JP2006300901A (ja) 応力検出方法及び装置
JPH0290030A (ja) トルク検出装置
JP4919013B2 (ja) 磁歪リング及び磁歪リング式トルクセンサ
JP2006090883A (ja) トルク伝達軸体及びその製造方法並びにトルク伝達軸体を用いたトルクセンサ
US20180149529A1 (en) Arrangement and use of a workpiece made of steel for measuring a force or a torque
JP3095864B2 (ja) トルク検出軸の製造方法
JP2019052913A (ja) トルク負荷部材およびトルク伝達装置
JP2005008971A (ja) トルクセンサ軸材用マルテンサイト系ステンレス鋼
JPH10197369A (ja) トルクセンサおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221103

R150 Certificate of patent or registration of utility model

Ref document number: 7173697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350