JP7172311B2 - 二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法 - Google Patents

二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法 Download PDF

Info

Publication number
JP7172311B2
JP7172311B2 JP2018168609A JP2018168609A JP7172311B2 JP 7172311 B2 JP7172311 B2 JP 7172311B2 JP 2018168609 A JP2018168609 A JP 2018168609A JP 2018168609 A JP2018168609 A JP 2018168609A JP 7172311 B2 JP7172311 B2 JP 7172311B2
Authority
JP
Japan
Prior art keywords
negative electrode
layer
foil
current collector
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018168609A
Other languages
English (en)
Other versions
JP2020042958A (ja
Inventor
洸希 永友
良二 井上
喜光 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018168609A priority Critical patent/JP7172311B2/ja
Publication of JP2020042958A publication Critical patent/JP2020042958A/ja
Application granted granted Critical
Publication of JP7172311B2 publication Critical patent/JP7172311B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

この発明は、二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法に関する。
従来、二次電池の負極集電箔として、Ni基合金層の両面にCu層が圧接されたクラッド材が知られている(特許文献1参照)。
一方、近年では、二次電池の電池容量をさらに向上させるために、負極活物質を従来の炭素系材料に変えて、容量の大きいSi系合金またはSn系合金を用いる傾向がある。Si系合金またはSn系合金を負極活物質として用いた場合に、Si系合金またはSn系合金は充放電に伴う体積変化が従来の炭素系材料よりも大きいため、負極活物質の体積変化に伴って負極集電体にかかる応力が従来よりも大きくなる。
そのため、特許文献1に開示されているような、Ni基合金層を備えるクラッド材を負極集電体用箔に用いるとともに負極活物質としてSi系合金またはSn系合金を用いた場合に、負極活物質の充放電時の体積変化に伴って負極集電体にかかる応力が、クラッド材の弾性限界応力σ0.01を超えるため、負極集電体としてのクラッド材にしわ状の変形が生じるという問題点がある。
そこで、負極集電体に特許文献2に開示されたコネクタの端子に用いられる析出硬化型ステンレス鋼から構成されるクラッド材を用いることが提案されている。特許文献2に開示されたクラッド材は、熱処理前の析出硬化型ステンレス鋼の両面にCuまたはCu基合金を接合して構成されており、厚みは0.1mm~1mm程度である。また、特許文献2には、1mmの厚みのSUS630を0.5mmの厚みのCu(無酸素銅)で両面から挟み込み、合計2mmの厚みとしたクラッド素材を、圧延を繰り返しながら0.2mmの厚さのクラッド材を作製することが開示されている。
特許第5329290号公報 特開2008-123964号公報
ここで、近年では、二次電池に用いる負極集電体の厚みを20μm以下の箔状に小さくすることが求められている。そこで、本願発明者が特許文献2に開示されたクラッド材を20μm以下の箔状の厚みに圧延することを検討したところ、圧延後の状態にある0.1mmの厚みのクラッド材を20μm以下の厚みのクラッド材に圧延するための圧下率は80%以上となり、クラッド材が破断するおそれがある。したがって、クラッド材の厚みを0.1mmから20μm以下に圧延する間の適時に軟化を目的とする焼鈍(軟化焼鈍)を行って、圧延時にクラッド材が破断するのを防止する必要がある。しかし、一般的な条件で軟化焼鈍を行った場合、芯材(析出硬化型ステンレス鋼)から表層(CuまたはCu基合金)へ、芯材を構成する金属元素が拡散することによって、表層の厚みに対する金属元素の拡散距離の比率が高くなり、クラッド材の電気抵抗率(体積抵抗率)が増大するという問題点を見出した。また、上記したように軟化焼鈍を行いながら厚みを20μm以下に圧延したクラッド材の機械的強さを向上させることを目的として、芯材を構成する析出硬化型ステンレス鋼の一般的な時効処理条件により熱処理を行った場合、適切な電気抵抗および弾性限界応力σ0.01を有する負極集電体用箔が得られるか不明であった。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、析出硬化型ステンレス鋼から構成されるステンレス鋼層の両面に電気抵抗率(体積抵抗率)が小さいCu層を設けたクラッド材を箔状の小さい厚みにしながら好適な弾性限界応力σ0.01を有することによって、高容量の負極活物質を用いることが可能な二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法を提供することである。
本願発明者は、上記課題を解決するために鋭意検討した結果、析出硬化型ステンレス鋼から構成されるステンレス鋼層の両面にCu層を設けたクラッド材の厚みを20μm以下の箔状に調整した後、特定条件で熱処理を行うことにより、クラッド材の弾性限界応力σ0.01を820MPa以上にすることが可能であることを見出した。そして、本発明を完成させた。
すなわち、この発明の第1の局面による二次電池の負極集電体用箔は、CuまたはCu基合金により構成される第1Cu層と、析出硬化型ステンレス鋼から構成されるステンレス鋼層と、CuまたはCu基合金により構成される第2Cu層とが、この順に配置され、全体の厚みが20μm以下であり、かつ、弾性限界応力σ0.01が820MPa以上および体積抵抗率が6μΩ・cm以下である。
この発明の第1の局面による二次電池の負極集電体用箔では、上記のように、負極集電体用箔の厚みが20μm以下であり、かつ、弾性限界応力σ0.01が820MPa以上である。このように構成することにより、820MPa未満の応力では塑性変形をしないため、高容量の負極活物質の充放電時の体積変化による応力に伴って変形することを抑制することができる。これにより、厚みを20μm以下の箔状の小さい厚みにしながら高容量の負極活物質を用いることが可能な二次電池の負極集電体用箔を提供することができる。ここで、本願発明者は、二次電池の負極集電体用箔の弾性限界応力σ0.01が820MPa以上であることを後述する実験において確認済みである。なお、「弾性限界応力σ0.01」は、引張試験において除荷後に負極集電体用箔に残る永久歪が0.01%となる応力を意味するだけでなく、塑性変形(永久歪)が0.01%未満の略弾性変形の状態で負極集電体用箔が破断した場合は、負極集電体用箔が破断した際の応力(引張強さ)を意味する、広い概念である。また、体積抵抗率が6μΩ・cm以下であることにより、体積抵抗率が低いため、負極集電体用箔の導電性を向上させることができる。そのため、厚みが20μm以下であり、かつ、十分な弾性限界と導電性とを有する二次電池の負極集電体用箔を提供することができる。
上記第1の局面による二次電池の負極集電体用箔において、好ましくは、弾性限界応力σ0.01が906MPa以上である。ここで、本願発明者は、二次電池の負極集電体用箔の弾性限界応力σ0.01が906MPa以上であることを後述する実験において確認済みである。これにより、高容量の負極活物質を用いることにより負極集電体用箔に加わる応力がより大きくなったとしても、負極集電体用箔の塑性変形を十分に抑制することができる。
上記第1の局面による二次電池の負極集電体用箔において、好ましくは、ステンレス鋼層を構成する析出硬化型ステンレス鋼は、15質量%以上19質量%以下のCr、6質量%以上9質量%以下のNi、0.5質量%以上2.0質量%以下のAl、0.01質量%以上0.3質量%以下のCおよび0.01質量%以上0.3質量%以下のN、残部Feおよび不可避的不純物から構成される。このように構成すれば、析出硬化型ステンレス鋼は熱処理により、ステンレス鋼層の組織中にAlやNiによる微細な析出物が生成されるとともに、CやNによる転位の固着が生じる。これにより、ステンレス鋼層および負極集電体用箔の弾性限界応力σ0.01を向上させることができる。
上記第1の局面による二次電池の負極集電体用箔において、第1Cu層および第2Cu層には、析出硬化型ステンレス鋼を構成する金属元素が拡散し、拡散した金属元素の一部が析出物として存在している。このように構成すれば、第1Cu層および第2Cu層に拡散した金属元素の一部が固溶状態から析出状態となるため、負極集電体用箔の電気抵抗をより小さくすることができる。
上記第1の局面による二次電池の負極集電体用箔において、好ましくは、第1Cu層と、ステンレス鋼層と、第2Cu層とが、この順に積層されて接合されたクラッド材により構成されている。このように構成すれば、第1Cu層および第2Cu層とステンレス鋼層とが拡散接合により強い密着力で接合された負極集電体用箔であって、厚みが20μm以下であり、かつ、十分な弾性限界応力σ0.01を有する負極集電体用箔を提供することができる。
この発明の第1の局面における二次電池の負極集電体用箔において、好ましくは、第1Cu層および第2Cu層は、めっき層である。このように構成すれば、第1Cu層および第2Cu層の厚みを容易に小さくすることができるため、厚みが20μm以下であり、かつ、十分な弾性限界応力σ0.01を有する二次電池の負極集電体用箔を容易に提供することができる。
この発明の第2の局面における二次電池の負極は、上記第1の局面による負極集電体用箔の表面に、Si系合金またはSn系合金からなる負極活物質が固着されている。このように構成すれば、負極集電体用箔は十分な弾性限界応力σ0.01を有しているため、Si系合金またはSn系合金からなる高容量の負極活物質の充放電時の大きな体積変化に耐えることができる。そのため、Si系合金またはSn系合金などの高容量の負極活物質を用いても、負極を構成する負極集電体用箔のしわ状の変形を抑制することができる。
この発明の第3の局面による二次電池の負極集電体用箔の製造方法は、CuまたはCu基合金により構成される第1Cu層と、析出硬化型ステンレス鋼から構成されるステンレス鋼層と、CuまたはCu基合金により構成される第2Cu層とをこの順で積層することにより、20μmを超える第1の厚みを有するCu被覆箔を作製し、作製されたCu被覆箔を全体厚みが20μm以下の第2の厚みになるように圧延した後に、280℃以上400℃未満の温度で1時間以上20時間以下保持する熱処理を行い、弾性限界応力σ0.01が820MPa以上および体積抵抗率が6μΩ・cm以下であるCu被覆箔を得る。なお、この発明では、析出硬化型ステンレス鋼の機械的強さの向上を目的として低温域(たとえば、400℃未満)で加熱する場合を「熱処理」と呼び、高温域(たとえば、800℃以上)で加熱する場合を焼鈍(拡散焼鈍、軟化焼鈍)と呼び、両者を区別して用いている。
この発明の第3の局面による二次電池の負極集電体用箔の製造方法では、上記のように、Cu被覆箔を20μm以下の第2の厚みを有するように圧延した後に、280℃以上400℃未満の温度で1時間以上20時間以下保持する熱処理を行う。このように構成することにより、得られた負極集電体用箔は820MPa未満の応力では塑性変形をしないため、高容量の負極活物質の充放電時の体積変化による応力に伴って変形することを抑制することができる。そのため、厚みが20μm以下の箔状の小さい厚みにしながら高容量の負極活物質を用いることが可能な二次電池の負極集電体用箔を容易に作製することができる。
上記第3の局面による二次電池の負極集電体用箔の製造方法において、好ましくは、上記熱処理を行うことによって、弾性限界応力σ0.01が906MPa以上であるCu被覆箔を得る。このように構成すれば、上記熱処理により、ステンレス鋼層の組織中にAlやNiによる微細な析出物が生成されるとともに、CやNによる転位の固着が生じる。これにより、ステンレス鋼層および負極集電体用箔の弾性限界応力σ0.01を容易に向上させることができる。
上記第3の局面による二次電池の負極集電体用箔の製造方法において、好ましくは、上記熱処理は、3.5時間以上20時間以下行われる。ここで、本願発明者は、上記熱処理を3.5時間以上行うことにより、弾性限界応力σ0.01が820MPa以上であるCu被覆箔を作製することができることを見出した。したがって、このように構成すれば、弾性限界応力σ0.01が820MPa以上のCu被覆箔を確実に作製することができる。
上記第3の局面による二次電池の負極集電体用箔の製造方法において、好ましくは、Cu被覆箔の第1Cu層および第2Cu層に、析出硬化型ステンレス鋼を構成する金属元素を拡散させるとともに、拡散させた金属元素の一部を析出物として析出させる。このように構成すれば、第1Cu層および第2Cu層に拡散した金属元素の一部が固溶状態から析出状態となるため、負極集電体用箔の電気抵抗をより小さくすることができる。
上記第3の局面による二次電池の負極集電体用箔の製造方法において、好ましくは、CuまたはCu基合金から構成されるCu板と、析出硬化型ステンレス鋼から構成されるステンレス鋼板材と、CuまたはCu基合金から構成されるCu板と、をこの順に積層し、第1の厚みを有するように圧延した後に焼鈍することにより、クラッド材によって構成され第1の厚みを有するCu被覆箔を作製する。このように構成すれば、第1Cu層および第2Cu層とステンレス鋼層とが拡散接合により強い密着力で接合された負極集電体用箔であって、厚みが20μm以下であり、かつ、十分な弾性限界応力σ0.01を有する負極集電体用箔を作製することができる。
上記第3の局面による二次電池の負極集電体用箔の製造方法において、好ましくは、析出硬化型ステンレス鋼から構成されるステンレス鋼板材の両面にCuまたはCu基合金をめっきすることによって、ステンレス鋼層の両面にCuまたはCu基合金から構成されるCuめっき層からなる第1Cu層および第2Cu層が作製された、Cu被覆箔を作製する。このように構成すれば、第1Cu層および第2Cu層の厚みを容易に小さくすることができるため、厚みが20μm以下であり、かつ、十分な弾性限界応力σ0.01を有する二次電池の負極集電体用箔を容易に作製することができる。
この発明の第4の局面における二次電池の負極の製造方法では、上記第1の局面による負極集電体用箔の表面の表面に、Si系合金またはSn系合金からなる負極活物質と、バインダーとを含む組成物を配置し、280℃以上400℃未満の温度で1時間以上20時間以下保持する熱処理を行って、負極活物質を負極集電体用箔の表面に固着させる。
この発明の第4の局面による二次電池の負極の製造方法では、上記のように、厚みが20μm以下である負極集電体用箔を280℃以上400℃未満の温度で1時間以上20時間以下保持する熱処理を行う。このように構成することにより、熱処理により弾性限界応力σ0.01は向上し、電気抵抗が下がる。そのため、負極集電体用箔の電気抵抗および弾性限界応力σ0.01を適切な範囲にすることができる。その結果、弾性限界応力σ0.01が高く、Si系合金またはSn系合金などの負極活物質を用いた高容量の負極を得ることができる。
この発明の第4の局面による二次電池の負極の製造方法において、好ましくは、熱処理は、3.5時間以上20時間以下行われる。このように構成すれば、負極集電体用箔の電気抵抗およびの弾性限界応力σ0.01をより適切な範囲にすることができる。ここで、本願発明者は、弾性限界応力σ0.01を適切な範囲にすることができることを後述する実験において確認済みである。
本発明によれば、上記のように、析出硬化型ステンレス鋼から構成されるステンレス鋼層の両面に電気抵抗率(体積抵抗率)が小さいCu層を設けたクラッド材を箔状の小さい厚みにしながら好適な弾性限界応力σ0.01を有することによって、高容量の負極活物質を用いることが可能な二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法を提供することができる。
本発明の第1および第2実施形態による負極集電箔を用いた電池を示した断面模式図である。 本発明の第1実施形態による負極集電箔を用いた負極を示した断面図である。 本発明の第1実施形態による負極集電箔の作製方法を説明するための模式図である。 本発明の第2実施形態による負極集電箔を用いた負極を示した断面図である。 本発明の第2実施形態による負極集電箔の作製方法を説明するための模式図である。
以下、本発明の実施形態を図面に基づいて説明する。
[第1実施形態]
まず、図1および図2を参照して、本発明の第1実施形態による負極集電箔5bを用いた電池100の構造について説明する。
(電池の構造)
本発明の第1実施形態による負極集電箔5bを用いた電池100は、図1に示すように、いわゆる円筒型(缶型とも呼ばれる)のリチウムイオン二次電池である。この電池100は、円筒状の筐体1と、筐体1の開口を封止する蓋材2と、筐体1内に配置される蓄電要素3とを備えている。
筐体1内には、蓄電要素3と電解液(図示せず)とが収容されている。蓋材2は、アルミニウム合金等から構成されており、電池100の正極端子(電池正極)を兼ねている。蓄電要素3は、正極4と、負極5と、正極4と負極5との間に配置された絶縁性のセパレータ6とが巻回されることによって作製される。正極4は、コバルト酸リチウムなどの正極活物質と、アルミニウム箔からなる正極集電体(正極集電箔)とを含んでいる。正極集電体(正極集電箔)の表面には、バインダーなどにより正極活物質が固定されている。また、正極4には、蓋材2と正極4とを電気的に接続するための正極リード材7が固定されている。なお、負極5は、特許請求の範囲の「二次電池の負極」の一例である。
負極5は、図2に示すように、負極活物質5aと、負極集電体(以下、負極集電箔5bという。)と、負極活物質5aを負極集電箔5bに固定させるバインダー5cとを含んでいる。負極活物質5aは、リチウムの挿入および脱離が可能な材料である、Si系合金またはSn系合金から構成されている。Si系合金またはSn系合金は、炭素系材料よりも充放電容量が大きく、Si系合金またはSn系合金を用いることにより高容量電池にすることができる。負極活物質5aは、リチウムの挿入および脱離に応じて、それぞれ、膨張および収縮する。バインダー5cは、例えば、ポリイミド、ポリアミドまたはポリアミドイミドのうちの少なくとも1種により構成されるものであってよい。また、図1に示すように、負極5には、筐体1の内底面1aと負極5とを電気的に接続するための負極リード材8が固定されている。なお、負極集電箔5bは、特許請求の範囲の「二次電池の負極集電体用箔」の一例である。
(負極集電体の構成)
ここで、第1実施形態では、負極集電箔5bは、CuまたはCu基合金からなる第1Cu層51と、析出硬化型ステンレス鋼から構成されるステンレス鋼層52と、CuまたはCu基合金からなる第2Cu層53とを備える、3層構造のクラッド材から構成される。なお、ステンレス鋼層52を構成する金属元素の一部は、後述する第1Cu層51および第2Cu層53とステンレス鋼層52との接合の強化を目的とする焼鈍(図3に示す拡散焼鈍)および軟化を目的とする焼鈍(図3に示す軟化焼鈍)において、ステンレス鋼層52から第1Cu層51および第2Cu層53に拡散する。このとき、ステンレス鋼層52と第1Cu層51との接合界面52aにおいて拡散したステンレス鋼層52を構成する金属元素の一部は、第1Cu層51を構成するCu(元素)と結合する。さらに、ステンレス鋼層52と第2Cu層53との接合界面52bにおいて拡散したステンレス鋼層52を構成する金属元素の一部は、第2Cu層53を構成するCu(元素)と結合する。これにより、第1Cu層51および第2Cu層53とステンレス鋼層52とが強い密着力で接合される。また、ステンレス鋼層52から第1Cu層51および第2Cu層53に拡散した金属元素の一部は、後述する機械的強さ(特に0.01%耐力)の向上を目的とする熱処理によって第1Cu層51および第2Cu層53において析出する。
ステンレス鋼層52を構成する析出硬化型ステンレス鋼は、熱処理を行うことにより微細な析出物が生成され、微細な析出物が生成されることによって機械的強さの一種である弾性限界応力σ0.01を大きくすることが可能である。析出硬化型ステンレス鋼としては、たとえば、JIS G4305に準拠するSUS630およびSUS631などがある。また、析出硬化型ステンレス鋼は、15質量%以上19質量%以下のCr(クロム)、6質量%以上9質量%以下のNi(ニッケル)、0.5質量%以上2.0質量%以下のAl(アルミニウム)、0.01質量%以上0.3質量%以下のC(炭素)、0.01質量%以上0.3質量%以下のN(窒素)、残部Feおよび不可避的不純物から構成されるステンレス鋼であるのが好ましい。
また、析出硬化型ステンレス鋼として、たとえばSUS631または上記組成を有するステンレス鋼を用いた場合には、ステンレス鋼層52内において、微細なAlまたはNiを含む金属間化合物の粒子が析出物として生成されて分散する。
第1Cu層51および第2Cu層53は、99質量%以上のCuを含有するCu板材(第1Cu板材151および第2Cu板材153)を用いて作製された層であり、主にCu(銅)から構成されている(図3参照)。また、第1Cu層51および第2Cu層53には、ステンレス鋼層52を構成する金属元素の一部が含まれている。上記したとおり、後述する焼鈍によって、第1Cu層51および第2Cu層53の主にステンレス鋼層52側の領域に金属元素の拡散が起こるため、拡散した金属元素の一部が熱処理により析出物として第1Cu層51および第2Cu層53に存在する。これにより、第1Cu層51および第2Cu層53に拡散した金属元素の一部が固溶状態から析出状態となるため、負極集電体用箔の電気抵抗をより小さくすることができる。
具体的には、ステンレス鋼層52を構成する析出硬化型ステンレス鋼として、たとえばSUS631または上記組成を有する析出硬化型ステンレス鋼を用いた場合には、第1Cu層51および第2Cu層53には、Al、Fe、CrおよびNiが拡散している。また、ステンレス鋼層52を構成する析出硬化型ステンレス鋼として、たとえばSUS630を用いた場合には、第1Cu層51および第2Cu層53には、FeおよびCrが拡散している。
第1実施形態では、負極集電箔5bの弾性限界応力σ0.01は820MPa以上である。これにより、820MPa未満の応力が負極集電箔5bに加えられた場合、負極集電箔5bでは、塑性変形がほとんど生じずに、弾性変形のみが生じる。この結果、電池100において充放電が繰り返し行われた場合であっても、負極集電箔5bにしわ状の凹凸が生じることを十分に抑制することが可能である。なお、負極集電箔5bの弾性限界応力σ0.01は、906MPa以上であるのがより好ましい。上限値としては、必要に応じて、例えば、1200MPa以下としてもよく、1100MPa以下としてもよく、1000MPa以下としてもよく、あるいは1000MPa未満としてもよい。
また、図2に示すように、負極集電箔5bを構成するCu被覆箔50のZ方向の長さ(厚み)t1は、20μm以下である。なお、厚みt1は、10μm以下であるのが好ましい。
また、Z方向における、第1Cu層51とステンレス鋼層52と第2Cu層53との厚み比率(第1Cu層51の厚みt2:ステンレス鋼層52の厚みt3:第2Cu層53の厚みt4)は、たとえば、1:3:1である。
また、第1実施形態では、負極集電箔5bの体積抵抗率(単位体積当たりの電気抵抗値)は、6μΩ・cm以下である。これにより、負極集電箔5bの導電率は、28.7%IACS以上になる。なお、「負極集電箔5bの導電率が28.7%IACS以上である」とは、体積抵抗率が1.7241μΩ・cmの国際標準軟銅の導電率を100%とした場合に、負極集電箔5bの導電率が28.7(=1.7241(μΩ・cm)/6(μΩ・cm)×100)%IACS以上であることを意味する。
(負極の構成)
図2に示すように、負極5は、負極集電箔5bの第1Cu層51のステンレス鋼層52と接合される側とは反対側の表面51a、および、第2Cu層53のステンレス鋼層52と接合される側とは反対側の表面53aにそれぞれ、負極活物質5aがバインダー5cによって固定されている。
(負極集電箔の製造工程)
次に、図2および図3を参照して、第1実施形態における負極集電箔5bの製造工程について説明する。
まず、図3に示すように、析出硬化型ステンレス鋼からなるステンレス鋼板材152と、99質量%以上のCuを含む第1Cu板材151および99質量%以上のCuを含む第2Cu板材153を準備する。ここで、第1Cu板材151とステンレス鋼板材152と第2Cu板材153との厚み比率(第1Cu板材151の厚み:ステンレス鋼板材152の厚み:第2Cu板材153の厚み)が、「1:3:1」になるように、ステンレス鋼板材152、第1Cu板材151および第2Cu板材153を準備する。なお、容易に準備可能で、かつ、後述する圧延において破断等が生じるのを抑制するために、ステンレス鋼板材152、第1Cu板材151および第2Cu板材153の厚みは、共に、20μmを超えているのが好ましい。たとえば、ステンレス鋼板材152の厚みは0.50mmであり、第1Cu板材151および第2Cu板材153の厚みは共に0.17mmである。
なお、第1Cu板材151および第2Cu板材153は、共に、Cuを99.96質量%以上含む無酸素銅、Cuを99.75質量%以上含むりん脱酸銅、または、Cuを99.9質量%以上含むタフピッチ銅などから構成することができる。なお、第1Cu板材151および第2Cu板材153は、同一の組成を有するCu板材から作製されてもよいし、異なる組成を有するCu板材から作製されてもよい。
そして、ステンレス鋼板材152を第1Cu板材151および第2Cu板材153によって厚み方向に挟み込んだ状態で、圧延ロール101を用いて冷間(室温、たとえば約20℃以上約40℃以下)下で圧延接合を行う。これにより、ステンレス鋼板材152の両面に第1Cu板材151および第2Cu板材153がそれぞれ層状に接合された20μmを超える第1の厚みを有するCu被覆中間材150aを作製する。その後、Cu被覆中間材150aに対して、圧延ロール102を用いて冷間(室温)下で圧延を行うことによって、Cu被覆箔150bを作製する(第1圧延工程)。このとき圧下率は、たとえば50%以上80%以下に設定する。
そして、Cu被覆箔150bに対して、層状に圧接された状態の第1Cu板材151および第2Cu板材153とステンレス鋼板材152との接合の強化を目的とする焼鈍(拡散焼鈍)を行う。具体的には、Cu被覆箔150bを、窒素雰囲気などの非酸化雰囲気にされた焼鈍炉103内を通過させる。この際、830℃以上1050℃以下(好ましくは830℃以上950℃以下)の温度に設定された焼鈍炉103内に30秒以上5分以下(好ましくは30秒以上90秒以下)の間で保持されるように、Cu被覆箔150bを焼鈍炉103内に配置する。
これにより、ステンレス鋼板材152からなるステンレス鋼層52の両面に第1Cu板材151からなる第1Cu層51および第2Cu板材153からなる第2Cu層53が接合されたクラッド材からなるCu被覆箔150cが作製される。また、拡散焼鈍により、ステンレス鋼層52を構成する金属元素の一部が、ステンレス鋼層52と第1Cu層51との接合界面52aにおいて拡散し、第1Cu層51を構成するCu(元素)と結合するとともに、ステンレス鋼層52と第2Cu層53との接合界面52bにおいて拡散し、第2Cu層53を構成するCu(元素)と結合する。
また、拡散焼鈍が行われたCu被覆箔150cでは、拡散焼鈍時の熱によって、ステンレス鋼層52を構成するステンレス鋼板材152に含まれる金属元素の一部が第1Cu層51および第2Cu層53に拡散している。たとえば、ステンレス鋼層52が15質量%以上19質量%以下のCr、6質量%以上9質量%以下のNi、0.5質量%以上2.0質量%以下のAl、0.01質量%以上0.3質量%以下のCおよび0.01質量%以上0.3質量%以下のN、残部Feおよび不可避的不純物から構成された析出硬化型ステンレス鋼、または、SUS631から構成されている場合には、Al、FeおよびCrなどが第1Cu層51および第2Cu層53に拡散している。また、ステンレス鋼層52が、たとえばSUS630から構成されている場合には、FeおよびCrが第1Cu層51および第2Cu層53に拡散している。
そして、拡散焼鈍が行われた20μmを超える第1の厚みを有するCu被覆箔150cに対して、圧延ロール104を用いて冷間下(室温)で圧延を行うことによって、Cu被覆箔150dを作製する(第2圧延工程)。この際、圧延ロール104における圧下率はたとえば30%以上50%以下になるように、圧延を行う。
圧延された20μmを超える厚みのCu被覆箔150dに対して、軟化を目的とする焼鈍(軟化焼鈍)を行う。具体的には、Cu被覆箔150dを、窒素雰囲気などの非酸化雰囲気にされた焼鈍炉105内を通過させる。このとき、たとえば、800℃以上1050℃以下(好ましくは800℃以上950℃以下)の温度に設定された焼鈍炉105内に30秒以上5分以下(好ましくは30秒以上90秒以下)の間で保持されるように、Cu被覆箔150dを焼鈍炉105内に配置する。
軟化焼鈍が行われたCu被覆箔150dでは、軟化焼鈍時の熱によって、ステンレス鋼層52が軟化するため、箔の破断や耳割れを生じることなく再度圧延が可能となる。
そして、軟化焼鈍が行われた20μmを超える厚みのCu被覆箔150eに対して、圧延ロール106を用いて冷間下(室温)で圧延を行うことによって、Cu被覆箔150fを作製する(第3圧延工程)。この際、圧延ロール106における圧下率が、たとえば30%以上80%以下になるように調整することにより、Cu被覆箔150fを20μm以下の第2の厚みにする。
そして、20μm以下の第2の厚みを有するCu被覆箔150fに対して、熱処理炉107を用いて熱処理を行う。具体的には、窒素雰囲気などの非酸化雰囲気にされ、280℃以上400℃未満(好ましくは280℃以上350℃以下)の温度に設定された熱処理炉107内を、Cu被覆箔150fが1時間以上20時間以下で通過するようにする。なお、熱処理炉107内は、窒素雰囲気などの非酸化雰囲気にされているのが好ましいものの、酸化雰囲気(通常の大気下)または水素雰囲気であってもよい。これにより、第1Cu層51および第2Cu層53では、ステンレス鋼層52から第1Cu層51および第2Cu層53に拡散していたステンレス鋼層52を構成する金属元素の一部が析出物に変化するため、電気抵抗を小さくすることができる。また、ステンレス鋼層52では、ステンレス鋼層52を構成するAlやNiによる微細析出物の生成や、CやNの転位の固着が生じるため、機械的強さが向上する。
これにより、厚み(第2の厚み)が20μm以下であり、弾性限界応力σ0.01が向上されたCu被覆箔50から構成される負極集電箔5b(図2参照)が作製される。
なお、上記した熱処理の保持温度(280℃以上400℃未満)において、負極活物質5aを負極集電箔5bに固着させるために用いられる樹脂(たとえば、ポリイミド、ポリアミドまたはポリアミドイミドなど)により構成されるバインダー5cが硬化する。したがって、20μm以下の第2の厚みを有するCu被覆箔150fに対して上記した熱処理を行う際に、Cu被覆箔150fを負極集電箔5bに用いて、Cu被覆箔150fの表面に、Si系合金またはSn系合金からなる負極活物質5aと、例えば、ポリイミド、ポリアミドまたはポリアミドイミドのうちの少なくとも1種により構成されたバインダー5cとを含む組成物を配置し、負極活物質5aを負極集電箔5b(Cu被覆箔150f)の表面に固着させることができる。これにより、図2に示すように、全体の厚みが20μm以下であるCu被覆箔150fにより構成された、弾性限界応力σ0.01が820MPa以上である負極集電箔5bの表面に、Si系合金またはSn系合金からなる負極活物質5aが固着されている、二次電池の負極5を作製することができる。
また、第3圧延工程後のCu被覆箔150fに熱処理を行うように記載したが、第1圧延工程後のCu被覆箔150bまたは第2圧延工程後のCu被覆箔150dが20μm以下の第2の厚みを有することができた場合、第1圧延工程後のCu被覆箔150bまたは第2圧延工程後のCu被覆箔150dに上記した熱処理を行い、全体の厚みが20μm以下であり、かつ、弾性限界応力σ0.01が820MPa以上(上限値は例えば1200MPa以下としてもよく、1100MPa以下としてもよく、1000MPa以下としてもよく、あるいは1000MPa未満としてもよい)である負極集電箔5bを作製することができる。つまり、第1圧延工程後のCu被覆箔150bが第2の厚みを有していてもよく、第2圧延工程後のCu被覆箔150dが第2の厚みを有していてもよい。また、負極集電箔5bの製造工程は、圧延接合工程の直後から熱処理工程の直前までのCu被覆箔150の圧下率が80%以上になればよく、また、圧下率を大きくするため軟化焼鈍を行ってから圧延するとよい。
熱処理が行われた負極集電箔5b(Cu被覆箔50)では、焼鈍において第1Cu層51および第2Cu層53に拡散した金属元素に起因する第1Cu層51および第2Cu層53の体積抵抗率の上昇の影響が軽減されている。これにより、負極集電箔5bの体積抵抗率が小さくなり、6μΩ・cm以下になる。
なお、第1実施形態において、負極集電箔5bの作製は、図3に示すように、ロール・ツー・ロール方式で連続的に行われる。つまり、ロール状のステンレス鋼板材152、ロール状の第1Cu板材151およびロール状の第2Cu板材153を用いて、ロール状の負極集電箔5bが連続的に作製される。また、焼鈍炉103、焼鈍炉105および熱処理炉107は、共に連続炉である。
なお、ロール状の負極集電箔5bは、電池100の負極集電箔として用いられる際に、所望の長さに切断される。
<第1実施形態の効果>
第1実施形態では、以下のような効果を得ることができる。
第1実施形態では、上記のように、負極集電箔5bは、第1Cu層51と、析出硬化型ステンレス鋼から構成されるステンレス鋼層52と、第2Cu層53とが、この順に配置され、負極集電箔5bの厚みが20μm以下であり、かつ、弾性限界応力σ0.01が820MPa以上である。このようにすることにより、820MPa未満の応力では塑性変形をしないため、高容量の負極活物質5aの充放電時の体積変化による応力に伴って変形することを抑制することができる。これにより、厚みを20μm以下の箔状の小さい厚みにしながら高容量の負極活物質5aを用いることが可能な二次電池の負極集電体用箔を提供することができるし、この負極集電体用箔の表面に高容量の負極活物質5aを有する二次電池の負極5を提供することができる。
また、第1実施形態では、弾性限界応力σ0.01が906MPa以上である。これにより、高容量の負極活物質5aを用いて二次電池の負極5を構成したときに、高容量の負極活物質5aを有することにより負極集電箔5bに加わる応力がより大きくなったとしても、負極集電箔5bの塑性変形を十分に抑制することができる。
また、第1実施形態では、ステンレス鋼層52を構成する析出硬化型ステンレス鋼は、15質量%以上19質量%以下のCr、6質量%以上9質量%以下のNi、0.5質量%以上2.0質量%以下のAl、0.01質量%以上0.3質量%以下のC、0.01質量%以上0.3質量%以下のN、残部Feおよび不可避的不純物から構成することが好ましい。これにより、析出硬化型ステンレス鋼は熱処理することにより、ステンレス鋼層52の組織中にAlやNiによる微細な析出物が生成されるとともに、CやNによる転位の固着が生じる。これにより、ステンレス鋼層52および負極集電箔5bの弾性限界応力σ0.01を向上させることができる。
また、第1実施形態では、第1Cu層51および第2Cu層53には、析出硬化型ステンレス鋼を構成する金属元素が拡散し、拡散した金属元素の一部が析出物として存在している。これにより、第1Cu層51および第2Cu層53に拡散した金属元素の一部が固溶状態から析出状態となるため、負極集電箔5bの電気抵抗をより小さくすることができる。
また、第1実施形態では、体積抵抗率が6μΩ・cm以下である。これにより、体積抵抗率が低いため、負極集電箔5bの導電性を向上させることができる。そのため、厚みが20μm以下であり、かつ、十分な弾性限界と導電性とを有する二次電池の負極集電箔5bを提供することができる。
また、第1実施形態では、第1Cu層51と、ステンレス鋼層52と、第2Cu層53とが、この順に積層されて接合されたクラッド材により構成されている。これにより、第1Cu層51および第2Cu層53とステンレス鋼層52とが拡散接合により強い密着力で接合された負極集電箔5bであって、厚みが20μm以下であり、かつ、十分な弾性限界を有する負極集電箔5bを提供することができる。
また、第1実施形態では、負極集電箔5bの表面に、Si系合金またはSn系合金からなる負極活物質5aが固着されている。これにより、負極集電箔5bは十分な弾性限界応力σ0.01を有しているため、Si系合金またはSn系合金からなる高容量の負極活物質5aの充放電時の大きな体積変化に耐えることができる。そのため、Si系合金またはSn系合金などの高容量の負極活物質5aを用いても、負極5を構成する負極集電箔5bのしわ状の変形を抑制することができる。
また、第1実施形態では、上記のように、Cu被覆箔50を20μm以下の第2の厚みを有するように圧延した後に、280℃以上400℃未満の温度で1時間以上20時間以下保持する熱処理を行う。これにより、得られた負極集電箔5bは820MPa未満の応力では塑性変形をしないため、高容量の負極活物質5aの充放電時の体積変化による応力に伴って変形することを抑制することができる。そのため、厚みが20μm以下の箔状の小さい厚みにしながら高容量の負極活物質5aを用いることが可能な二次電池の負極集電箔5bを容易に作製することができる。
また、第1実施形態では、20μm以下の第2の厚みに圧延した後に熱処理を行うことによって、弾性限界応力σ0.01が906MPa以上であるCu被覆箔50を得ることができる。これにより、ステンレス鋼層52の組織中にAlやNiによる微細な析出物が生成されるとともに、CやNによる転位の固着が生じている。これにより、ステンレス鋼層52および負極集電箔5bの弾性限界応力σ0.01を容易に向上させることができる。
また、第1実施形態では、20μm以下の第2の厚みに圧延した後に行う熱処理は、3.5時間以上20時間以下で行われることが好ましい。これにより、弾性限界応力σ0.01が820MPa以上のCu被覆箔50を確実に作製することができる。
また、第1実施形態では、拡散焼鈍、軟化焼鈍および熱処理を行うことによって、Cu被覆箔50の第1Cu層51および第2Cu層53に、析出硬化型ステンレス鋼を構成する金属元素を拡散させるとともに、拡散させた金属元素の一部を析出物として析出させる。これにより、第1Cu層51および第2Cu層53に拡散した金属元素の一部が固溶状態から析出状態となるため、負極集電箔5bの電気抵抗をより小さくすることができる。
また、第1実施形態では、CuまたはCu基合金から構成される第1Cu板材151と、析出硬化型ステンレス鋼から構成されるステンレス鋼板材152と、CuまたはCu基合金から構成される第2Cu板材153と、をこの順に積層し、20μmを超える第1の厚みを有するように圧延した後に焼鈍(拡散焼鈍)することにより、クラッド材によって構成される20μmを超える第1の厚みを有するCu被覆箔50を作製する。これにより、後工程において20μm以下の第2の厚みを有するように圧延してから熱処理することにより、第1Cu層51および第2Cu層53とステンレス鋼層52とが拡散接合により強い密着力で接合されるとともに電気抵抗が小さい負極集電箔5bであって、厚みが20μm以下であり、かつ、十分な弾性限界応力σ0.01を有する負極集電箔5bを作製することができる。
また、第1実施形態では、二次電池の負極5の製造方法では、上記のように、厚みが20μm以下である負極集電箔5bを280℃以上400℃未満の温度で1時間以上20時間以下保持する熱処理を行う。これにより、熱処理により弾性限界応力σ0.01は向上し、電気抵抗が下がる。そのため、負極集電箔5bの電気抵抗および弾性限界応力σ0.01を適切な範囲にすることができる。その結果、弾性限界応力σ0.01が高く、Si系合金またはSn系合金などの負極活物質5aを用いた高容量の負極5を得ることができる。
また、第1実施形態では、熱処理は、3.5時間以上20時間以下行われる。これにより、負極集電箔5bの電気抵抗およびの弾性限界応力σ0.01をより適切な範囲にすることができる。
[第2実施形態]
次に、図1、図4および図5を参照して、本発明の第2実施形態による負極集電箔205bについて説明する。第2実施形態では、上記第1実施形態の負極集電箔5bの第1Cu層51および第2Cu層53の替わりに、第1Cuめっき層251および第2Cuめっき層253を用いた例について説明する。なお、負極集電箔205bは、特許請求の範囲の「二次電池の負極集電体用箔」の一例である。
(電池の構造)
本発明の第2実施形態による電池200は、図1に示すように、負極205を含む蓄電要素203を備えている。負極205は、図4に示すように、負極活物質5aと、負極集電箔205bと、バインダー5cとを含んでいる。
(負極集電体の構成)
ここで、第2実施形態では、負極集電箔205bは、析出硬化型ステンレス鋼から構成されるステンレス鋼層252と、ステンレス鋼層252の厚み方向(Z方向)の両面252aおよび252bにそれぞれめっきされた第1Cuめっき層251および第2めっき層253とから構成されたCu被覆箔250である。つまり、負極集電箔205bは、3層構造を有している。また、第1Cuめっき層251のステンレス鋼層252が配置される側とは反対側の表面251a、および、第2Cuめっき層253のステンレス鋼層252が配置される側とは反対側の表面253aには、それぞれ、負極活物質5aがバインダー5cを介して固定されている。なお、第1Cuめっき層251および第2Cuめっき層253は、特許請求の範囲の「第1Cu層」および「第2Cu層」の一例である。
第1Cuめっき層251および第2Cuめっき層253は、主にCu(銅)から構成されている。また、第1Cuめっき層251および第2Cuめっき層253には、ステンレス鋼層252を構成する金属元素の一部が含まれている。この一部の金属元素は、後述する焼鈍(図5に示す焼鈍工程および軟化焼鈍工程)において、ステンレス鋼層252から第1Cuめっき層251および第2Cuめっき層253に拡散することによって、第1Cuめっき層251および第2Cuめっき層253の主にステンレス鋼層252側の領域に含まれている。なお、ステンレス鋼層252上に下地層(たとえばNiめっき層)を設け、その下地層上に第1Cuめっき層251および第2Cuめっき層253を設けてもよい。これにより、ステンレス鋼層252と第1Cuめっき層251および第2Cuめっき層253との密着性を高めることが可能である。
第2実施形態では、負極集電箔205bの弾性限界応力σ0.01は820MPa以上、好ましくは、弾性限界応力σ0.01が906MPa以上である。上限値としては、必要に応じて、例えば、1200MPa以下としてもよく、1100MPa以下としてもよく、1000MPa以下としてもよく、あるいは1000MPa未満としてもよい。
また、負極集電箔205bの体積抵抗率(単位体積当たりの電気抵抗値)は、6μΩ・cm以下である。また、負極集電箔205bを構成するCu被覆箔250のZ方向の長さ(厚み)t11は、20μm以下である。なお、厚みt11は、10μm以下であるのが好ましい。なお、第2実施形態のその他の構成は、第1実施形態と同様である。
(負極集電箔の製造工程)
次に、図4および図5を参照して、第2実施形態における負極集電箔205bの製造工程について説明する。
まず、図5に示すように、20μmを超える厚みを有する析出硬化型ステンレス鋼からなるステンレス鋼板材152を準備する。そして、ステンレス鋼板材152に対して、めっき処理(フープめっき処理)を行うことによって、ステンレス鋼板材152の両面に第1Cuめっき層251および第2Cuめっき層253(図4参照)を形成する。これにより、第1Cuめっき層251、ステンレス鋼板材152および第2Cuめっき層253が、この順に積層されたCu被覆中間材250aを作製することができる。
具体的には、ステンレス鋼板材152に対して、電気めっき浴201内を通過させることによって、第1Cuめっき層251および第2Cuめっき層253を形成する。電気めっき浴201には、めっき液(たとえば、硫酸銅水溶液)と、めっき液内に配置されるとともに適所に電極が接続されて陽極となるように構成された、Cu板材201aが配置されている。そして、ステンレス鋼板材152が陰極となるように構成された状態で、ステンレス鋼板材152とCu板材201aとの間に通電されることにより、めっき液中の銅イオンがステンレス鋼板材152の両面に銅として析出し、Cu被膜が生成される。
このCu被膜は、銅イオンがCu板材201aから少しずつめっき液中に溶け込んでステンレス鋼板材152の両面に継続して析出するため、やがて第1Cuめっき層251および第2Cuめっき層253に成長する。こうして、ステンレス鋼板材152の両面に一対の第1Cuめっき層251および第2Cuめっき層253がそれぞれ所定の厚みに形成され、第1Cuめっき層251と、ステンレス鋼板材152(後のステンレス鋼層252)と、第2Cuめっき層253とが、この順に配置された20μmを超える第1の厚みを有するCu被覆中間材250aが作製される。図5では図示を省略しているが、めっき前には少なくともステンレス鋼板材152の洗浄が行われ、めっき後には少なくともCu被覆中間材250aの洗浄および乾燥が行われる。
その後、Cu被覆中間材250aに対して、圧延ロール102を用いて冷間(室温、たとえば約20℃以上約40℃以下)下で圧延を行うことによって、Cu被覆箔250bを作製する(第1圧延工程)。このとき圧下率は、たとえば50%以上80%以下に設定する。
そして、Cu被覆箔250bに対して、上記第1実施形態の拡散焼鈍工程(図3参照)と同様にして、焼鈍炉103を用いて焼鈍(図5に示す焼鈍工程)を行う。これにより、ステンレス鋼板材152からなるステンレス鋼層252の両面に、焼鈍を経た第1Cuめっき層251および第2Cuめっき層253が配置されたCu被覆箔250cが作製される。
また、上記第1実施形態の拡散焼鈍工程と同様にして焼鈍が行われたCu被覆箔250cでは、焼鈍時の熱によって、ステンレス鋼板材152を構成する金属元素の一部が、第1Cuめっき層251および第2Cuめっき層253に拡散している。なお、Niめっきによる下地層(Niめっき層)を設けた場合は、焼鈍時の熱によって、下地層から第1Cuめっき層251および第2Cuめっき層253への拡散(主にNiの拡散)も発生する。
そして、図5に示す焼鈍工程を経たCu被覆箔250cに対して、上記第1実施形態と同様に、圧延ロール104を用いて冷間(室温)下で圧延を行うことによって、Cu被覆箔250dを作製する。この際、圧延ロール104における圧下率はたとえば30%以上80%以下になるように圧延を行う(第2圧延工程)。
圧延されたCu被覆箔250dに対して、さらに軟化焼鈍を行う。具体的には、Cu被覆箔250dを、窒素雰囲気などの非酸化雰囲気にされた焼鈍炉105内を通過させる。なお、焼鈍炉105内の温度は、たとえば、850℃以上1000℃以下である。
そして、軟化焼鈍を経たCu被覆箔250eに対して、圧延ロール106を用いて冷間下(室温)で圧延を行うことによって、Cu被覆箔250fを作製する(第3圧延工程)。この際、圧延ロール106における圧下率は、たとえば30%以上80%以下になるように、圧延を行う。なお、図5に示すめっき処理工程後から熱処理炉107を用いた熱処理工程前までの間に、Cu被覆箔250は、20μm以下の第2の厚みに圧延される。
そして、Cu被覆箔250fに対して、上記第1実施形態と同様に、熱処理炉107を用いて熱処理を行う。具体的には、280℃以上400℃未満、たとえば280℃以上350℃以下の温度(熱処理温度)に設定された熱処理炉107内に1時間以上20時間以下の保持時間で保持されるように、Cu被覆箔250fを熱処理炉107内に配置する。なお、熱処理炉107内は、窒素雰囲気などの非酸化雰囲気にされているのが好ましいものの、酸化雰囲気(通常の大気下)または水素雰囲気であってもよい。これにより、第1Cuめっき層251および第2Cuめっき層253では、ステンレス鋼層252から第1Cuめっき層251および第2Cuめっき層253に拡散していたステンレス鋼層252を構成する金属元素の一部が析出物に変化するため、電気抵抗を小さくすることができる。また、ステンレス鋼層252では、ステンレス鋼層252を構成するAlやNiによる微細析出物の生成や、CやNの転位の固着が生じるため、機械的強さが向上する。
これにより、厚み(第2の厚み)が20μm以下であり、弾性限界応力σ0.01が向上されたCu被覆箔250から構成される負極集電箔205b(図5参照)が作製される。
なお、上記した熱処理の保持温度(280℃以上400℃未満)において、負極活物質5aを負極集電箔205bに固着させるために用いられる樹脂(たとえば、ポリイミド、ポリアミドまたはポリアミドイミドのうちの少なくとも1種など)により構成されるバインダー5cが硬化する。したがって、20μm以下の第2の厚みを有するCu被覆箔250fに対して上記した熱処理を行う際に、Cu被覆箔250fを負極集電箔205bに用いて、Cu被覆箔250fの表面に、Si系合金またはSn系合金からなる負極活物質5aと、ポリイミド、ポリアミドまたはポリアミドイミドのうちの少なくとも1種により構成されたバインダー5cとを含む組成物を配置し、負極活物質5aを負極集電箔205b(Cu被覆箔250f)の表面に固着させることができる。これにより、図4に示すように、全体の厚みが20μm以下であるCu被覆箔250fにより構成された、弾性限界応力σ0.01が820MPa以上である負極集電箔205bの表面に、Si系合金またはSn系合金からなる負極活物質5aが固着されている、二次電池の負極205を作製することができる。
また、第3圧延工程後のCu被覆箔250fに熱処理を行うように記載したが、第1圧延工程後のCu被覆箔250bまたは第2圧延工程後のCu被覆箔250dが20μm以下の第2の厚みを有することができた場合、第1圧延工程後のCu被覆箔250bまたは第2圧延工程後のCu被覆箔250dに上記した熱処理を行い、全体の厚みが20μm以下であり、かつ、弾性限界応力σ0.01が820MPa以上(上限値は例えば、1200MPa以下としてもよく、1100MPa以下としてもよく、1000MPa以下としてもよく、あるいは1000MPa未満としてもよい)である負極集電箔205bを作製することができる。つまり、第1圧延工程後のCu被覆箔250bが第2の厚みを有していてもよく、第2圧延工程後のCu被覆箔250dが第2の厚みを有していてもよい。また、負極集電箔205bの製造工程は、めっき処理工程の直後から熱処理工程の直前までのCu被覆箔250の圧下率が80%以上になればよく、また、圧下率を大きくするため軟化焼鈍を行ってから圧延するとよい。
ここで、熱処理が行われた負極集電箔205b(Cu被覆箔250)では、焼鈍において第1Cuめっき層251および第2Cuめっき層253に拡散した金属元素に起因する第1Cuめっき層251および第2Cuめっき層253の体積抵抗率の上昇の影響が軽減されている。これにより、負極集電箔5bの体積抵抗率が小さくなり、6μΩ・cm以下になる。
なお、第2実施形態において、負極集電箔205bの作製は、図5に示すように、ロール・ツー・ロール方式で連続的に行われる。つまり、ロール状のステンレス鋼板材152を用いて、ロール状の負極集電箔205bが連続的に作製される。また、電気めっき浴201は、いわゆるフープめっき用の電気めっき浴装置であり、焼鈍炉103、焼鈍炉105および熱処理炉107は、共に連続炉である。なお、ロール状の負極集電箔205bは、電池200の負極集電箔205bとして用いられる際に、所望の長さに切断される。
第2実施形態のその他の構成は、上記第1実施形態と同様である。
<第2実施形態の効果>
第2実施形態では、以下のような効果を得ることができる。
第2実施形態では、負極集電箔205bは、第1Cuめっき層251と、析出硬化型ステンレス鋼から構成されるステンレス鋼層252と、第2Cuめっき層253とが、この順に配置され、厚みが20μm以下であり、かつ、弾性限界応力σ0.01が820MPa以上である。このように構成することにより、820MPa未満の応力では塑性変形をしないため、高容量の負極活物質5aの充放電時の体積変化による応力に変形することを抑制することができる。これにより、厚みを20μm以下の箔状の小さい厚みにしながら高容量の負極活物質5aを用いることが可能な二次電池の負極集電箔205bを提供することができるし、この負極集電体用箔の表面に高容量の負極活物質5aを有する二次電池の負極205を提供することができる。
第2実施形態では、負極集電箔205bは、第1Cuめっき層251および第2Cuめっき層253を有する。これにより、負極集電箔205bを構成するCu層(第1Cuめっき層251および第2Cuめっき層253)の厚みを容易に小さくすることができるため、厚みが20μm以下であり、かつ、十分な弾性限界応力σ0.01を有する二次電池の負極集電箔205bを容易に提供することができるし、この負極集電箔205bの表面に高容量の負極活物質5aを有する二次電池の負極205を提供することができる。なお、第2実施形態のその他の効果は、上記第1実施形態の効果と同様である。
[実施例]
次に、上記第1実施形態の効果を確認するために行った実験について説明する。
(試験材のCu被覆箔の作製)
まず、上記第1実施形態の製造方法に基づいて、試験材のCu被覆箔を作製した。具体的には、析出硬化型ステンレス鋼であるSUS631に相当する一般的なステンレス鋼板材152と、C1020(JIS H0500に準拠)の無酸素銅からなる一対の第1Cu板材151および第2Cu板材153とを準備した。なお、SUS631は、16質量%以上18質量%以下のCr、6.50質量%以上7.75質量%以下のNi、0.75質量%以上1.50質量%以下のAl、0.09質量%以下のC、1.00質量%以下のSi(ケイ素)、1.00質量%以下のMn(マンガン)、0.040質量%以下のP(リン)、0.030質量%以下のS(硫黄)、残部Feおよび不可避不純物から構成されたステンレス鋼である。また、ステンレス鋼板材152の厚みは0.50mmであり、第1Cu板材151および第2Cu板材153の厚みは、共に0.17mmである。
そして、ステンレス鋼板材152を第1Cu板材151および第2Cu板材153によって厚み方向に挟み込んだ状態で、圧延ロール101を用いて冷間(室温)下で圧延接合を行うことによって、ステンレス鋼板材152の両面に第1Cu板材151および第2Cu板材153がそれぞれ接合され、0.353mmの厚みを有するCu被覆中間材を作製した。その後、Cu被覆中間材に対して、圧延ロール102を用いて冷間(室温)下で圧延を行うことによって、0.135mmの厚みを有するCu被覆箔を作製した。Cu被覆箔をさらに、900℃で1分間、焼鈍炉103に保持し、拡散焼鈍を行った。さらに、圧延ロール104を用いて冷間(室温)下での圧延と焼鈍炉105を用いた軟化焼鈍によって、0.05mmの厚みを有するCu被覆箔を作製した。Cu被覆箔をさらに圧延ロール106を用いて冷間(室温)下で圧延し、0.01mm(10μm)の板厚のCu被覆箔を作製した。
そして、作製した複数の試験材のCu被覆箔に対して、熱処理温度と熱処理時間とを異ならせて熱処理を行った。
実施例1では、熱処理温度を280℃に設定し、熱処理時間を20時間に設定した。実施例2では、熱処理温度を300℃に設定し、熱処理時間を3.5時間に設定した。実施例3では、熱処理温度を300℃に設定し、熱処理時間を20時間に設定した。実施例4では、熱処理温度を350℃に設定し、熱処理時間を3.5時間に設定した。実施例5では、熱処理温度を350℃に設定し、熱処理時間を20時間に設定した。
比較例1では、熱処理を行わなかった。また、比較例2では、熱処理温度を250℃に設定し、熱処理時間を20時間に設定した。比較例3では、熱処理温度を300℃に設定し、熱処理時間を50分に設定した。
そして作製したCu被覆箔の弾性限界応力σ0.01と体積抵抗率とを測定した。弾性限界応力σ0.01は、引張試験によって得られた応力―歪曲線(グラフ)において、歪が0.01%の位置に対応する応力値である。体積抵抗率は、JIS C 2525に準拠する4端子法に基づいて測定した。具体的には、JIS C 2525に準拠する4端子法を適用した回路を室温環境下で構成し、この回路内にCu被覆箔から切り出した試験体を配置し、電流を印加し、電圧を測定した。この電圧(平均値)と、試験体の体積(厚みと幅)と、電圧端子の接点間の距離(端子間の距離)および印加電流とによって、Cu被覆箔の体積抵抗率を求めた。
(測定結果)
作製した実施例1~実施例5、比較例1、比較例2および比較例3の測定結果を、それぞれ、表1に示す。
Figure 0007172311000001
測定結果としては、熱処理を行わなかったクラッド材である比較例1では、弾性限界応力σ0.01が813MPaであるのに対し、熱処理を行った実施例1では、弾性限界応力σ0.01が830MPa、実施例2では、弾性限界応力σ0.01が820MPa、実施例3では、弾性限界応力σ0.01が906MPa、実施例4では、弾性限界応力σ0.01が840MPa、実施例5では、弾性限界応力σ0.01が924MPaといずれも高い値を示した。
また、比較例2では、熱処理温度250℃で20時間の熱処理を行ったが、弾性限界応力σ0.01が725MPaと熱処理を行わなかった比較例1の弾性限界応力σ0.01813MPaよりも低くなった。一方、熱処理温度280℃で20時間の熱処理を行った実施例1では弾性限界応力σ0.01が830MPaと比較例1の弾性限界応力σ0.01813MPaよりも高くなった。そのため、本願発明者は、280℃以上で熱処理を行うことにより、熱処理を行わない場合と比べて弾性限界応力σ0.01が向上することを見出した。
また、比較例3では、熱処理温度300℃で50分間の熱処理を行ったが、弾性限界応力σ0.01が800MPaと比較例1の弾性限界応力σ0.01813MPaよりも低かった。一方、熱処理温度300℃で3.5時間の熱処理を行った実施例2では弾性限界応力σ0.01が820MPaと比較例1の弾性限界応力σ0.01の813MPaよりも高くなった。そのため、発明者は、280℃以上400℃未満の温度で保持する熱処理を行う場合であっても、弾性限界応力σ0.01を向上させるためには熱処理で保持する時間を1時間以上20時間以下の範囲で適切に選択する必要があることを見出した。
また、実施例2と実施例3とでは熱処理温度を300℃に設定し、実施例2では、熱処理時間を3.5時間に設定したのに対し、実施例3では20時間に設定した。その結果、実施例2では弾性限界応力σ0.01が820MPaであったのに対し、実施例3では906MPaと高くなった。さらに、実施例4と実施例5とでは熱処理温度を350℃に設定し、実施例4では、熱処理時間を3.5時間に設定したのに対し、実施例5では20時間に設定した。その結果、実施例4では弾性限界応力σ0.01が840MPaであったのに対し、実施例5では924MPaと高くなった。以上の結果より、本願発明者は、熱処理時間が長いほど弾性限界応力σ0.01が向上することを見出した。
また、熱処理を行わなかった比較例1では、体積抵抗率が6.39μΩ・cmであるのに対し、熱処理を行った実施例1では、体積抵抗率が5.74μΩ・cm、実施例2では、体積抵抗率が5.84μΩ・cm、実施例3では、体積抵抗率が5.82μΩ・cm、実施例4では、体積抵抗率が5.72μΩ・cm、実施例5では、体積抵抗率が5.8μΩ・cmといずれも低い値を示した。以上の知見をもとに本願発明者は、最適な熱処理温度と熱処理時間を知得し、本発明を完成させた。
[変形例]
なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態および実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記第1および第2実施形態では、Cu被覆箔50(250)(二次電池の負極集電体用箔)から構成された負極集電箔205bをリチウムイオン二次電池(電池100)に適用した例を示したが、本発明はこれに限られない。本発明では、二次電池の負極集電体用箔から構成された負極集電箔をリチウムイオン二次電池以外の二次電池に適用してもよい。たとえば、負極集電箔をナトリウムイオン二次電池またはマグネシウム二次電池などに適用してもよい。
また、Cu被覆箔50(二次電池の負極集電体用箔)から構成された負極集電箔5bをリチウムイオン二次電池(電池100)に適用した例を示し、上記第2実施形態では、Cu被覆箔250(二次電池の負極集電体用箔)から構成された負極集電箔205bをリチウムイオン二次電池(電池200)に適用した例を示したが、本発明はこれらに限られない。本発明では、いわゆるラミネート型のリチウムイオン二次電池であってもよい。
また、上記第1実施形態では第1Cu層/ステンレス鋼層/第2Cu層の3層構造のクラッド材からなるCu被覆箔50を負極集電箔5bとして用いた例を示し、上記第2実施形態では第1Cuめっき層/ステンレス鋼層/第2Cuめっき層の3層構造のCu被覆箔250を負極集電箔205bとして用いた例を示したが、本発明はこれに限られない。本発明では、負極集電箔(Cu被覆箔)は、3層構造に限られない。たとえば、クラッド材のCu層またはCuめっき層のステンレス層とは反対側の表面に、Cu層(またはCuめっき層)の酸化を抑制するNi層などを作製してもよい。また、上記第2実施形態で記載したように、Cuめっき層とステンレス層との間に微小の厚みを有する下地層(たとえばNi層)を配置してもよい。また、この下地層は、クラッド材からなるCu被覆箔にも適用できる。なお、Cu層(またはCuめっき層)およびステンレス層以外の層の厚みは、二次電池の小型化の観点からCu層(またはCuめっき層)およびステンレス層のそれぞれの厚みよりも十分に小さいのが好ましい。この場合、4層構造以上の層構造を有する負極集電箔の厚みは、20μm以下であるのがよい。
また、上記第2実施形態では、電解めっき処理として電気めっき浴201により、ステンレス鋼板材152(後のステンレス鋼層52)の両面に一対のCuめっき層251および253をそれぞれ作製した例を示したが、本発明はこれに限られない。本発明では、無電解めっき処理により、ステンレス鋼層の両面に一対のCuめっき層をそれぞれ作製してもよい。
また、上記第1および第2実施形態では、第1Cu層51および第2Cu層53(Cuめっき層251および253)を、主にCu(銅)から構成した例を示したが、本発明はこれに限られない。本発明では、第1Cu層および第2Cu層を作製するための一対の第1Cu板材および第2Cu板材をC1940などのCu-Fe合金、Cu-Ni合金、Cu-Zr合金などのCu基合金から構成してもよいし、第1Cuめっき層および第2Cuめっき層を作製するためのCu板材をC1940などのCu-Fe合金、Cu-Ni合金、Cu-Zr合金などのCu基合金から構成してもよい。
また、上記第1および第2実施形態では、Cu被覆箔を第1Cu層、ステンレス鋼層および第2Cu層がこの順で積層された状態で熱処理を行う例を示したが、本発明はこれに限られない。本発明では、第3圧延後にCu被覆箔をコイル状に巻き、熱処理をバッチ式の熱処理炉を用いて行ってもよい。
5、205 負極
5a 負極活物質
5b、205b 負極集電箔(二次電池の負極集電体用箔)
5c バインダー
50、250 Cu被覆箔
51 第1Cu層
52、252 ステンレス鋼層
53 第2Cu層
251 第1Cuめっき層(第1Cu層)
253 第2Cuめっき層(第2Cu層)

Claims (15)

  1. CuまたはCu基合金により構成される第1Cu層と、析出硬化型ステンレス鋼から構成されるステンレス鋼層と、CuまたはCu基合金により構成される第2Cu層とが、この順に配置され、
    全体の厚みが20μm以下であり、かつ、弾性限界応力σ0.01が820MPa以上および体積抵抗率が6μΩ・cm以下である二次電池の負極集電体用箔。
  2. 弾性限界応力σ0.01が906MPa以上である、請求項1に記載の二次電池の負極集電体用箔。
  3. 前記ステンレス鋼層を構成する析出硬化型ステンレス鋼は、15質量%以上19質量%以下のCr、6質量%以上9質量%以下のNi、0.5質量%以上2.0質量%以下のAl、0.01質量%以上0.3質量%以下のC、残部Feおよび不可避的不純物から構成される、請求項1または2に記載の二次電池の負極集電体用箔。
  4. 前記第1Cu層および前記第2Cu層には、前記析出硬化型ステンレス鋼を構成する金属元素が拡散し、拡散した前記金属元素の一部が析出物として存在している、請求項1~3のいずれか1項に記載の二次電池の負極集電体用箔。
  5. 前記第1Cu層と、前記ステンレス鋼層と、前記第2Cu層とが、この順に積層されて接合されたクラッド材により構成されている、請求項1~のいずれか1項に記載の二次電池の負極集電体用箔。
  6. 前記第1Cu層および前記第2Cu層は、めっき層である、請求項1~のいずれか1項に記載の二次電池の負極集電体用箔。
  7. 請求項1~のいずれか1項に記載の負極集電体用箔の表面に、Si系合金またはSn系合金からなる負極活物質が固着されている、二次電池の負極。
  8. CuまたはCu基合金により構成される第1Cu層と、析出硬化型ステンレス鋼から構成されるステンレス鋼層と、CuまたはCu基合金により構成される第2Cu層とをこの順で積層することにより、20μmを超える第1の厚みを有するCu被覆箔を作製し、
    作製された前記Cu被覆箔を全体厚みが20μm以下の第2の厚みになるように圧延した後に、280℃以上400℃未満の温度で1時間以上20時間以下保持する熱処理を行い、弾性限界応力σ0.01が820MPa以上および体積抵抗率が6μΩ・cm以下である前記Cu被覆箔を得る、二次電池の負極集電体用箔の製造方法。
  9. 前記熱処理を行うことによって、弾性限界応力σ0.01が906MPa以上である前記Cu被覆箔を得る、請求項に記載の二次電池の負極集電体用箔の製造方法。
  10. 前記熱処理は、3.5時間以上20時間以下行われる、請求項またはに記載の二次電池の負極集電体用箔の製造方法。
  11. 前記Cu被覆箔の前記第1Cu層および前記第2Cu層に、前記析出硬化型ステンレス鋼を構成する金属元素を拡散させるとともに、拡散させた前記金属元素の一部を析出物として析出させる、請求項10のいずれか1項に記載の二次電池の負極集電体用箔の製造方法。
  12. CuまたはCu基合金から構成されるCu板と、前記析出硬化型ステンレス鋼から構成されるステンレス鋼板材と、CuまたはCu基合金から構成されるCu板と、をこの順に積層し、前記第1の厚みを有するように圧延した後に焼鈍することにより、クラッド材によって構成され前記第1の厚みを有する前記Cu被覆箔を作製する、請求項11のいずれか1項に記載の二次電池の負極集電体用箔の製造方法。
  13. 前記析出硬化型ステンレス鋼から構成されるステンレス鋼板材の両面にCuまたはCu基合金をめっきすることによって、前記ステンレス鋼層の両面にCuまたはCu基合金から構成されるCuめっき層からなる前記第1Cu層および前記第2Cu層が作製された、前記Cu被覆箔を作製する、請求項11のいずれか1項に記載の二次電池の負極集電体用箔の製造方法。
  14. 請求項1~6のいずれか1項に記載の負極集電体用箔の表面に、Si系合金またはSn系合金からなる負極活物質とバインダーとを含む組成物を配置し、280℃以上400℃未満の温度で1時間以上20時間以下保持する熱処理を行って、前記負極活物質を前記負極集電体用箔の表面に固着させる、二次電池の負極の製造方法。
  15. 前記熱処理は、3.5時間以上20時間以下行われる、請求項14に記載の二次電池の負極の製造方法。
JP2018168609A 2018-09-10 2018-09-10 二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法 Active JP7172311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018168609A JP7172311B2 (ja) 2018-09-10 2018-09-10 二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018168609A JP7172311B2 (ja) 2018-09-10 2018-09-10 二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法

Publications (2)

Publication Number Publication Date
JP2020042958A JP2020042958A (ja) 2020-03-19
JP7172311B2 true JP7172311B2 (ja) 2022-11-16

Family

ID=69799426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018168609A Active JP7172311B2 (ja) 2018-09-10 2018-09-10 二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法

Country Status (1)

Country Link
JP (1) JP7172311B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024186068A1 (ko) * 2023-03-03 2024-09-12 주식회사 엘지에너지솔루션 음극 집전체 및 캔형 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203534A (ja) 2001-09-20 2003-07-18 Nisshin Steel Co Ltd ステンレス鋼製接点
JP2008123964A (ja) 2006-11-15 2008-05-29 Hitachi Cable Ltd 高強度・高導電性クラッド材及びその製造方法
JP2012033470A (ja) 2010-07-09 2012-02-16 Nisshin Steel Co Ltd 銅被覆鋼箔、負極集電体及びその製法並びに電池
JP2013143314A (ja) 2012-01-12 2013-07-22 Nisshin Steel Co Ltd リチウムイオン二次電池の負極用防錆金属シート、負極及びその製法並びに電池
WO2018142723A1 (ja) 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 電池用リードおよび捲回型電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2513298B2 (ja) * 1989-02-16 1996-07-03 日立電線株式会社 制振効果を有する導電用クラッドばね材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203534A (ja) 2001-09-20 2003-07-18 Nisshin Steel Co Ltd ステンレス鋼製接点
JP2008123964A (ja) 2006-11-15 2008-05-29 Hitachi Cable Ltd 高強度・高導電性クラッド材及びその製造方法
JP2012033470A (ja) 2010-07-09 2012-02-16 Nisshin Steel Co Ltd 銅被覆鋼箔、負極集電体及びその製法並びに電池
JP2013143314A (ja) 2012-01-12 2013-07-22 Nisshin Steel Co Ltd リチウムイオン二次電池の負極用防錆金属シート、負極及びその製法並びに電池
WO2018142723A1 (ja) 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 電池用リードおよび捲回型電池

Also Published As

Publication number Publication date
JP2020042958A (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
JP5329290B2 (ja) リチウムイオン電池の負極集電体用クラッド材及びその製造方法
JP6475404B2 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
JP6648088B2 (ja) 二次電池負極集電体用圧延銅箔、それを用いた二次電池負極及び二次電池並びに二次電池負極集電体用圧延銅箔の製造方法
JP7172311B2 (ja) 二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法
KR101997428B1 (ko) 이차 전지의 부극 집전체용 박 및 그 제조 방법
TW202145627A (zh) 鎳氫二次電池集電體用鍍Ni鋼箔、鎳氫二次電池集電體、及鎳氫二次電池
US6878458B2 (en) Metal foil for current collector of secondary battery and method of producing the same
KR102003342B1 (ko) 리튬이온 2차전지용 음극집전 동박, 리튬이온 2차전지용 음극 및 리튬이온 2차전지
CN113166868B (zh) 二次电池的负极集电体用箔
JP2013069684A (ja) リチウムイオン二次電池用負極集電銅箔、リチウムイオン二次電池用負極、リチウムイオン二次電池及びリチウムイオン二次電池用負極集電銅箔の製造方法
JP6806116B2 (ja) 二次電池の負極集電体用箔
JP2018076590A (ja) 電極集電体用アルミニウム合金箔及びその製造方法
CN109216591B (zh) 电池用Ni材、负极和电池壳材
TWI507550B (zh) Copper - zinc - tin - based copper alloy
CN109565054B (zh) 二次电池的负极集电体用包层材料及其制造方法
CN115782321A (zh) 复合金属带、电触头及复合金属带制造方法
JP2002134117A (ja) 鉛蓄電池用格子体の製造方法および密閉式鉛蓄電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350