以下、光測定装置の実施の形態について、添付図面を参照して説明する。
図1に示す光測定装置1は、「光測定装置」の一例であって、拡散光学系2、受光部3R,3G,3B、I/V変換部4r,4g,4b、A/D変換部5r,5g,5b、操作部6、表示部7、処理部8および記憶部9を備え、被測定光Lについての「予め規定された光学的パラメータ」の一例である「波長(重心波長)」や「放射量」、およびそれらに基づいて演算される各種パラメータを測定可能に構成されている。この場合、被測定光Lは、「被測定光」の一例であって、本例では、視聴覚機器(プロジェクタ)や照明器具などの赤色光源から発せられる赤色光、緑色光源から発せられる緑色光、および青色光源から発せられる青色光の3種類の被測定光Lを対象とする測定処理を行うものとする。
一方、拡散光学系2は、「拡散光学系」の一例であって、本例の光測定装置1では、拡散光学系2が「積分球」で構成されている。この拡散光学系2は、入射部11に開口された入射孔12から入射した被測定光Lを拡散させることにより、受光部3Rにおける後述の受光センサ20a,20b、受光部3Gにおける後述の受光センサ20a,20b、および受光部3Bにおける後述の受光センサ20a,20bに対する被測定光Lの入射方向および入射量を均一化可能に構成されている。また、本例の光測定装置1では、図1に示すように、受光部3Rに対して被測定光Lを出射する出射部13rに出射孔14ra,14rbが形成され、受光部3Gに対して被測定光Lを出射する出射部13gに出射孔14ga,14gbが形成され、かつ受光部3Bに対して被測定光Lを出射する出射部13bに出射孔14ba,14bbが形成されている。
この場合、本例の光測定装置1(拡散光学系2)では、出射部13r,13g,13b(以下、これらを区別しないときには「出射部13」ともいう)における上記の出射孔14ra,14ga,14ba(以下、これらを区別しないときには「出射孔14a」ともいう)の形成部位が「第1の出射部」および「第1の入射量制限部」に相当し、これら各出射孔14aが「第1の光通過孔」に相当する。また、本例の光測定装置1(拡散光学系2)では、各出射部13における上記の出射孔14rb,14gb,14bb(以下、これらを区別しないときには「出射孔14b」ともいう)の形成部位が「第2の出射部」および「第2の入射量制限部」に相当し、これら各出射孔14bが「第2の光通過孔」に相当する。なお、本例の光測定装置1(拡散光学系2)では、各出射孔14a,14bの開口面積(開口径:孔径)が各受光部3R,3G,3B毎に最適化されているが、この点については、後に詳細に説明する。
受光部3R,3G,3Bは、それぞれが「受光部」に相当し、上記したように、赤色光、緑色光および青色光の3種類を被測定光Lとする測定処理を実行可能な本例の光測定装置1では、赤色光を受光する受光部3R、緑色光を受光する受光部3G、および青色光を受光する受光部3Bの3つを備えて構成されている。また、受光部3Rは、受光センサ20a,20bおよび光学フィルタ21rを備えて構成され、受光部3Gは、受光センサ20a,20bおよび光学フィルタ21gを備えて構成され、受光部3Bは、受光センサ20a,20bおよび光学フィルタ21bを備えて構成されている。以下、これら受光部3R,3G,3Bを区別しないときには「受光部3」ともいう。
この場合、光学フィルタ21r,21g,21bは、各受光部3毎に予め規定された「測定対象波長範囲」内の波長の被測定光Lの受光センサ20a,20bに対する入射を許容しつつ、「測定対象波長範囲」よりも短い波長の光や、「測定対象波長範囲」よりも長い波長の光の受光センサ20a,20bに対する入射を規制するように構成されている。具体的には、光学フィルタ21rは、一例として、図2に示す波長λrsから波長λrlまでの波長範囲Hr(「測定対象波長範囲」の一例)内の波長の被測定光L(赤色光)の受光センサ20a,20bに対する入射を許容しつつ、その他の波長の光の受光センサ20a,20bに対する入射を規制する。
また、光学フィルタ21gは、一例として、波長λgsから波長λglまでの波長範囲Hg(「測定対象波長範囲」の他の一例)内の波長の被測定光L(緑色光)の受光センサ20a,20bに対する入射を許容しつつ、その他の波長の光の受光センサ20a,20bに対する入射を規制する。さらに、光学フィルタ21bは、一例として、波長λbsから波長λblまでの波長範囲Hb(「測定対象波長範囲」のさらに他の一例)内の波長の被測定光L(青色光)の受光センサ20a,20bに対する入射を許容しつつ、その他の波長の光の受光センサ20a,20bに対する入射を規制する。なお、以下の説明において光学フィルタ21r,21g,21bを区別しないときには「光学フィルタ21」ともいう。
受光センサ20aは、「第1の受光センサ」の一例であって、光学フィルタ22aおよび光電変換部23aを備えて構成されている。なお、本例の光測定装置1では、受光センサ20aの光電変換部23aが「第1の光電変換部」に相当し、この光電変換部23aから被測定光Lの入射量に応じて出力される検出信号Siaが「第1の検出信号」に相当する。また、受光センサ20bは、「第2の受光センサ」の一例であって、光学フィルタ22bおよび光電変換部23bを備えて構成されている。なお、本例の光測定装置1では、受光センサ20bの光電変換部23bが「第2の光電変換部」に相当し、この光電変換部23bから被測定光Lの入射量に応じて出力される検出信号Sibが「第2の検出信号」に相当する。
この場合、本例の光測定装置1では、一例として、受光部3Rの受光センサ20aにおける光学フィルタ22a、受光部3Gの受光センサ20aにおける光学フィルタ22a、および受光部3Bの受光センサ20aにおける光学フィルタ22aが、同じ光学フィルタ(各波長毎の被測定光Lの透過率が互いに等しい光学フィルタ)でそれぞれ構成されている。具体的には、各受光部3の受光センサ20aを構成する光学フィルタ22aは、図2に実線L2aで示すように、上記の波長範囲Hr,Hg,Hb(以下、区別しないときには「波長範囲H」ともいう)を含む波長範囲内の波長の光に関する受光センサ20aの分光感度特性が「長い波長の光ほど高感度」との条件(すなわち、「長い波長の光ほど光電変換部23aへの光の入射量が多くなる」との条件)を満たすように、「長い波長の光ほど透過率が高い」との光学特性を備えたフィルタで構成されている。
なお、同図では、光学フィルタ21や光学フィルタ22a,22bが存在しない場合の受光センサ20a,20bの分光感度特性(すなわち、拡散光学系2から出射された被測定光Lのすべてが光電変換部23a,23bに入射した場合の光電変換部23aや光電変換部23bへの被測定光Lの入射量)を実線L1で示している。また、同図では、光学フィルタ21が存在せず、光学フィルタ22aだけが存在する場合の受光センサ20aの分光感度特性(すなわち、拡散光学系2から出射された被測定光Lが光学フィルタ22aだけを通過して光電変換部23aに入射した場合の光電変換部23aへの被測定光Lの入射量)を実線L2aで示している。
また、本例の光測定装置1では、一例として、受光部3Rの受光センサ20bにおける光学フィルタ22b、受光部3Gの受光センサ20bにおける光学フィルタ22b、および受光部3Bの受光センサ20bにおける光学フィルタ22bが、同じ光学フィルタ(各波長毎の被測定光Lの透過率が互いに等しい光学フィルタ)でそれぞれ構成されている。具体的には、各受光部3の受光センサ20bを構成する光学フィルタ22bは、図2に実線L2bで示すように、上記の各波長範囲Hを含む波長範囲内の波長の光に関する受光センサ20bの分光感度特性が「短い波長の光ほど高感度」との条件(すなわち、「短い波長の光ほど光電変換部23bへの光の入射量が多くなる」との条件)を満たすように、「短い波長の光ほど透過率が高い」との光学特性を備えたフィルタで構成されている。
なお、同図では、光学フィルタ21が存在せず、光学フィルタ22bだけが存在する場合の受光センサ20bの分光感度特性(すなわち、拡散光学系2から出射された被測定光Lが光学フィルタ22bだけを通過して光電変換部23bに入射した場合の光電変換部23bへの被測定光Lの入射量)を実線L2bで示している。
このような光学フィルタ22a,22bを備えた本例の光測定装置1の各受光部3では、受光センサ20aの測定対象波長範囲(波長範囲H)内の分光感度と、受光センサ20bの測定対象波長範囲(波長範囲H)内の分光感度との比が、測定対象波長範囲内の各波長の被測定光L毎にそれぞれ相違する状態となっている。
光電変換部23aは、光学フィルタ21,22aを透過した被測定光Lを受光可能に配設されて受光量に応じた検出信号Siaを出力し、光電変換部23bは、光学フィルタ21,22bを透過した被測定光Lを受光可能に配設されて受光量に応じた検出信号Sibを出力する。なお、本例では、一例として、同じ製品で構成された光電変換部23a,23bが採用されて両受光センサ20a,20bがそれぞれ構成されている。これにより、受光センサ20aに対する被測定光Lの入射量と、受光センサ20bに対する被測定光Lの入射量とが等しいときには、同じ信号レベルの検出信号Sia,Sibが受光センサ20a,20bからそれぞれ出力される。
各I/V変換部4r,4g,4b(以下、区別しないときには「I/V変換部4」ともいう)は、A/D変換部5r,5g,5b(以下、区別しないときには「A/D変換部5」ともいう)と相俟って「データ生成部」を構成し、I/V変換部4rが受光部3Rの光電変換部23a,23b(受光センサ20a,20b)から出力される検出信号Sia,SibをI/V変換して検出信号Sva,Svbを出力し、I/V変換部4gが受光部3Gの光電変換部23a,23b(受光センサ20a,20b)から出力される検出信号Sia,SibをI/V変換して検出信号Sva,Svbを出力し、かつI/V変換部4bが受光部3Bの光電変換部23a,23b(受光センサ20a,20b)から出力される検出信号Sia,SibをI/V変換して検出信号Sva,Svbを出力する。
この場合、本例の光測定装置1では、上記の各I/V変換部4が、両受光センサ20a,20bからの検出信号Sia,Sibを並行してI/V変換処理可能な「2チャンネルI/V変換部(2チャンネルI/V変換素子)」で構成されている。このI/V変換部4は、両チャンネルについて共通の利得が設定された状態で動作する「2チャンネルI/V変換部(2チャンネルI/V変換素子)」で構成されている。これにより、本例の光測定装置1では、受光センサ20a,20bからの検出信号Sia,Sibが、同様の変換条件で変換されて検出信号Sva,Svbが出力される。
A/D変換部5rは、I/V変換部4rから出力される検出信号Svaを所定の周期でA/D変換処理して検出信号データDa(「第1の検出信号の信号レベルを特定可能な第1のデータ」の一例)を生成すると共に、I/V変換部4rから出力される検出信号Svbを所定の周期でA/D変換処理して検出信号データDb(「第2の検出信号の信号レベルを特定可能な第2のデータ」の一例)を生成し、生成した検出信号データDa,Dbを処理部8に出力する。
A/D変換部5gは、I/V変換部4gから出力される検出信号Svaを所定の周期でA/D変換処理して検出信号データDa(「第1の検出信号の信号レベルを特定可能な第1のデータ」の他の一例)を生成すると共に、I/V変換部4gから出力される検出信号Svbを所定の周期でA/D変換処理して検出信号データDb(「第2の検出信号の信号レベルを特定可能な第2のデータ」の他の一例)を生成し、生成した検出信号データDa,Dbを処理部8に出力する。
A/D変換部5bは、I/V変換部4bから出力される検出信号Svaを所定の周期でA/D変換処理して検出信号データDa(「第1の検出信号の信号レベルを特定可能な第1のデータ」のさらに他の一例)を生成すると共に、I/V変換部4bから出力される検出信号Svbを所定の周期でA/D変換処理して検出信号データDb(「第2の検出信号の信号レベルを特定可能な第2のデータ」のさらに他の一例)を生成し、生成した検出信号データDa,Dbを処理部8に出力する。
操作部6は、後述する測定処理の条件の設定操作や、測定処理の開始/停止を指示する各種の操作スイッチを備え、スイッチ操作に応じた操作信号を処理部8に出力する。表示部7は、処理部8の制御に従い、測定条件設定画面や測定結果表示画面など(いずれも図示せず)を表示する。
処理部8は、光測定装置1を総括的に制御する。具体的には、処理部8は、「処理部」に相当し、操作部6の操作によって測定処理の開始を指示されたときに、各A/D変換部5から出力される検出信号データDa,Dbを記憶部9に記憶させる。また、処理部8は、A/D変換部5rから出力された検出信号データDa,Dbに基づき、受光部3Rに入射している被測定光L(赤色光)の波長および放射量を測定する。さらに、処理部8は、A/D変換部5gから出力された検出信号データDa,Dbに基づき、受光部3Gに入射している被測定光L(緑色光)の波長および放射量を測定する。また、処理部8は、A/D変換部5bから出力された検出信号データDa,Dbに基づき、受光部3Bに入射している被測定光L(青色光)の波長および放射量を測定する。
この場合、本例の光測定装置1では、処理部8が、一例として、記憶部9に記憶させた検出信号データDa,Dbに基づき、各受光部3の光電変換部23a,23bから出力された検出信号Sia,Sibの信号レベルをそれぞれ特定すると共に、特定した検出信号Siaの信号レベルおよび検出信号Sibの信号レベルの比(両信号レベルのいずれか一方に対する他方の比)に基づき、受光部3に入射している被測定光L(赤色光、緑色光および青色光)の波長をそれぞれ演算(測定)する。また、処理部8は、演算した波長と、上記の特定した両信号レベルのいずれか予め規定された一方とに基づいて被測定光Lの放射量を演算(測定)する。
記憶部9は、処理部8の動作プログラムや、各A/D変換部5から出力された検出信号データDa,Dbなどを記憶する。
次に、光測定装置1による被測定光Lの波長や放射量の測定処理について、貼付図面を参照して説明する。
この光測定装置1による測定処理に際しては、まず、拡散光学系2の入射部11における入射孔12に対して被測定光L(赤色光、緑色光および青色光など)が入射するように光測定装置1を設置する。この際には、入射孔12から入射した被測定光Lが拡散光学系2内において拡散されて、各出射部13の各出射孔14a,14bから各受光部3に向けて被測定光Lが出射される。
この場合、本例の光測定装置1では、前述したように、各受光部3の受光センサ20aに同じ光学フィルタ(各波長毎の被測定光Lの透過率が互いに等しい光学フィルタ)で構成された光学フィルタ22aが配設されると共に、各受光部3の受光センサ20bに同じ光学フィルタ(各波長毎の被測定光Lの透過率が互いに等しい光学フィルタ)で構成された光学フィルタ22bが配設されている。また、本例の光測定装置1では、拡散光学系2から受光センサ20a,20bに対して同量の被測定光Lが出射されたときに、一例として、各受光部3のうちの受光部3Gの測定対象波長範囲である波長範囲Hg内の受光センサ20a,20bの分光感度特性が同程度の感度となるように(すなわち、波長範囲Hg内の各波長の被測定光Lの光電変換部23a,23bに対する入射量が同程度となるように)両光学フィルタ22a,22bの光学特性が規定されている。つまり、本例の光測定装置1において採用されている光学フィルタ22a,22bでは、波長範囲Hg内の各波長の被測定光Lの透過量が同程度となっている。
したがって、拡散光学系2(積分球)の出射部13に設けた出射孔14aの開口面積(第1の開口面積)、および出射孔14bの開口面積(第2の開口面積)を等しい面積としたとき(すなわち、受光センサ20a,20bに対する拡散光学系2からの被測定光Lの出射量を同量としたとき)には、図2に実線L2a,L2bで示すように、波長範囲Hgを測定対象波長範囲とする受光部3Gにおいては、両受光センサ20a,20bの分光感度特性が同程度となり、光電変換部23a,23bに対する被測定光Lの入射量(すなわち、光電変換部23a,23bから出力される検出信号Sia,Sibの信号レベル)が同程度となる。
このため、受光部3Gにおいては、受光センサ20aについてのSN比(光学フィルタ21,22aを透過して光電変換部23aに入射した被測定光Lの入射量に応じた本来的な信号成分と、外乱の影響等で検出信号Siaに混入したノイズ成分との比)と、受光センサ20bについてのSN比(光学フィルタ21,22bを透過して光電変換部23bに入射した被測定光Lの入射量に応じた本来的な信号成分と、外乱の影響等で検出信号Sibに混入したノイズ成分との比)とが同程度となる。
しかしながら、本例の光測定装置1では、前述したように、「長い波長の光ほど光電変換部23aへの光の入射量が多くなる」との条件)を満たす光学特性の光学フィルタ22a、および「短い波長の光ほど光電変換部23bへの光の入射量が多くなる」との条件)を満たす光学特性の光学フィルタ22bを採用して受光センサ20a,20bを構成している。
この結果、本例の光測定装置1において採用されている光学フィルタ22a,22bでは、波長範囲Hr内の各波長の被測定光Lの光学フィルタ22aの透過量が、波長範囲Hr内の各波長の被測定光Lの光学フィルタ22bの透過量よりも多く(波長範囲Hr内の各波長の被測定光Lの光学フィルタ22bの透過量が、波長範囲Hr内の各波長の被測定光Lの光学フィルタ22aの透過量よりも少なく)なっている。また、本例の光測定装置1において採用されている光学フィルタ22a,22bでは、波長範囲Hb内の各波長の被測定光Lの光学フィルタ22aの透過量が、波長範囲Hb内の各波長の被測定光Lの光学フィルタ22bの透過量よりも少なく(波長範囲Hb内の各波長の被測定光Lの光学フィルタ22bの透過量が、波長範囲Hb内の各波長の被測定光Lの光学フィルタ22aの透過量よりも多く)なっている。
したがって、出射孔14a,14bの開口面積(第1の開口面積および第2の開口面積)を等しい面積としたとき(拡散光学系2からの被測定光Lの出射量を同量としたとき)に、波長範囲Hrを測定対象波長範囲とする受光部3Rにおいては、光電変換部23aに対する被測定光Lの入射量が光電変換部23bに対する被測定光Lの入射量よりも多くなり(光電変換部23bに対する被測定光Lの入射量が光電変換部23aに対する被測定光Lの入射量よりも少なくなり)、両受光センサ20aの分光感度特性が受光センサ20bの分光感度特性よりも高くなる(両受光センサ20bの分光感度特性が受光センサ20aの分光感度特性よりも低くなる)結果、検出信号Siaの信号レベルが検出信号Sibの信号レベルよりも高くなる(検出信号Sibの信号レベルが検出信号Siaの信号レベルよりも低くなる)。このため、受光部3Rにおいては、受光センサ20aについてのSN比と、の受光センサ20aについてのSN比とが異なる状態となってしまう。
また、出射孔14a,14bの開口面積(第1の開口面積および第2の開口面積)を等しい面積としたとき(拡散光学系2からの被測定光Lの出射量を同量としたとき)に、波長範囲Hbを測定対象波長範囲とする受光部3Bにおいては、光電変換部23aに対する被測定光Lの入射量が光電変換部23bに対する被測定光Lの入射量よりも少なくなり(光電変換部23bに対する被測定光Lの入射量が光電変換部23aに対する被測定光Lの入射量よりも多くなり)、両受光センサ20aの分光感度特性が受光センサ20bの分光感度特性よりも低くなる(両受光センサ20bの分光感度特性が受光センサ20aの分光感度特性よりも高くなる)結果、検出信号Siaの信号レベルが検出信号Sibの信号レベルよりも低くなる(検出信号Sibの信号レベルが検出信号Siaの信号レベルよりも高くなる)。このため、受光部3Bにおいても、受光センサ20aについてのSN比と、の受光センサ20aについてのSN比とが異なる状態となってしまう。
そこで、本例の光測定装置1では、受光部3R,3Bにおける受光センサ20a,20bについてのSN比が異なる状態となるのを回避すべく、拡散光学系2の「出射部」に設けた「第1の入射量制限部」における「第1の光通過孔(出射孔14a)」の「第1の開口面積」、および「第2の入射量制限部」における「第2の光通過孔(出射孔14b)」の「第2の開口面積」が最適化されて、受光センサ20a,20bに対する被測定光Lの入射量が調整されている。
具体的には、前述したように、波長範囲Hg内の各波長の被測定光Lの透過量が同程度の光学特性となっている光学フィルタ22a,22bを備えた本例の光測定装置1では、波長範囲Hgを測定対象波長範囲とする受光部3Gについては、拡散光学系2から受光センサ20aへの被測定光Lの出射量、および拡散光学系2から受光センサ20bへの被測定光Lの出射量が同量の状態において、光電変換部23a,23bに対する被測定光Lの入射量(すなわち、光電変換部23a,23bから出力される検出信号Sia,Sibの信号レベル)が同程度となる。したがって、受光部3Gに対して被測定光Lを出射する出射部13gでは、開口面積が等しくなるように出射孔14ga,14gbが開口されている。この場合、一例として、出射孔14ga,14gbを丸孔で形成する場合には、両出射孔14ga,14gbの開口径を同径とすることにより、光電変換部23a,23bに対する被測定光Lの入射量を同程度とすることができる。
また、前述したように、波長範囲Hr内の各波長の被測定光Lの受光センサ20aの透過量が、波長範囲Hr内の各波長の被測定光Lの受光センサ20bの透過量よりも多くなる光学特性を有する光学フィルタ22a,22bを備えた本例の光測定装置1では、波長範囲Hrを測定対象波長範囲とする受光部3Rについては、拡散光学系2から受光センサ20aへの被測定光Lの出射量が、拡散光学系2から受光センサ20bへの被測定光Lの出射量よりも少ない状態(拡散光学系2から受光センサ20bへの被測定光Lの出射量が、拡散光学系2から受光センサ20aへの被測定光Lの出射量よりも多い状態)において、光電変換部23a,23bに対する被測定光Lの入射量(すなわち、光電変換部23a,23bから出力される検出信号Sia,Sibの信号レベル)が同程度となる。
したがって、受光部3Rに対して被測定光Lを出射する出射部13rでは、出射孔14raの開口面積が出射孔14rbの開口面積よりも小さくなるように、(出射孔14rbの開口面積が出射孔14raの開口面積よりも大きくなるように)出射孔14ra,14rbが開口されている(「測定対象波長範囲内の各波長の被測定光の第1の光電変換部に対する入射量と第2の光電変換部に対する入射量との差が予め規定された光量範囲内の光量となるように第1の光通過孔の第1の開口面積と第2の光通過孔の開口面積とが相違させられている」との構成の一例)。この場合、一例として、出射孔14ra,14rbを丸孔で形成する場合には、出射孔14raの開口径を出射孔14rbの開口径よりも小径とする(出射孔14rbの開口径を出射孔14raの開口径よりも大径とする)ことにより、光電変換部23a,23bに対する被測定光Lの入射量を同程度とすることができる。
なお、本例の光測定装置1では、一例として、出射孔14rbからの被測定光Lの出射量(実線L1で示す量)よりも出射孔14raからの被測定光Lの出射量(一点鎖線L3aで示す量)が少量となるように、出射孔14raの開口面積(開口径)が出射孔14rbの開口面積(開口径)よりも小さくなっている。これにより、本例の光測定装置1では、拡散光学系2の出射孔14raから出射されて光学フィルタ21rおよび受光部3Rの受光センサ20aにおける光学フィルタ22aを透過して光電変換部23aに入射する被測定光Lの入射量(波長範囲Hr内の波長の光電変換部23aへの入射量:一点鎖線L4aで示す量)と、拡散光学系2の出射孔14rbから出射されて光学フィルタ21rおよび受光部3Rの受光センサ20bにおける光学フィルタ22bを透過して光電変換部23bに入射する被測定光Lの入射量(波長範囲Hr内の波長の光電変換部23bへの入射量:実線L2bで示す量)とが同程度となっている。
さらに、前述したように、波長範囲Hb内の各波長の被測定光Lの受光センサ20aの透過量が、波長範囲Hb内の各波長の被測定光Lの受光センサ20bの透過量よりも少なくなる光学特性を有する光学フィルタ22a,22bを備えた本例の光測定装置1では、波長範囲Hbを測定対象波長範囲とする受光部3Bについては、拡散光学系2から受光センサ20aへの被測定光Lの出射量が、拡散光学系2から受光センサ20bへの被測定光Lの出射量よりも多い状態(拡散光学系2から受光センサ20bへの被測定光Lの出射量が、拡散光学系2から受光センサ20aへの被測定光Lの出射量よりも少ない状態)において、光電変換部23a,23bに対する被測定光Lの入射量(すなわち、光電変換部23a,23bから出力される検出信号Sia,Sibの信号レベル)が同程度となる。
したがって、受光部3Bに対して被測定光Lを出射する出射部13bでは、出射孔14baの開口面積が出射孔14bbの開口面積よりも大きくなるように、(出射孔14bbの開口面積が出射孔14baの開口面積よりも小さくなるように)出射孔14ba,14bbが開口されている(「測定対象波長範囲内の各波長の被測定光の第1の光電変換部に対する入射量と第2の光電変換部に対する入射量との差が予め規定された光量範囲内の光量となるように第1の光通過孔の第1の開口面積と第2の光通過孔の開口面積とが相違させられている」との構成の他の一例)。この場合、一例として、出射孔14ba,14bbを丸孔で形成する場合には、出射孔14baの開口径を出射孔14bbの開口径よりも大径とする(出射孔14bbの開口径を出射孔14baの開口径よりも小径とする)ことにより、光電変換部23a,23bに対する被測定光Lの入射量を同程度とすることができる。
なお、本例の光測定装置1では、一例として、出射孔14baからの被測定光Lの出射量(実線L1で示す量)よりも出射孔14bbからの被測定光Lの出射量(二点鎖線L3bで示す量)が少量となるように、出射孔14bbの開口面積(開口径)が出射孔14baの開口面積(開口径)よりも小さくなっている。これにより、本例の光測定装置1では、拡散光学系2の出射孔14baから出射されて光学フィルタ21bおよび受光部3Bの受光センサ20aにおける光学フィルタ22aを透過して光電変換部23aに入射する被測定光Lの入射量(波長範囲Hb内の波長の光電変換部23aへの入射量:実線L2aで示す量)と、拡散光学系2の出射孔14bbから出射されて光学フィルタ21bおよび受光部3Bの受光センサ20bにおける光学フィルタ22bを透過して光電変換部23bに入射する被測定光Lの入射量(波長範囲Hb内の波長の光電変換部23bへの入射量:二点鎖線L4bで示す量)とが同程度となっている。
この場合、出射孔14aの開口面積(開口径)および出射孔14bの開口面積(開口径)については、光学フィルタ22a,22bの光学特性に応じて、光電変換部23aへの被測定光Lの入射量と光電変換部23bへの被測定光Lの入射量との差が「予め規定された光量範囲内の光量」となるように規定されている。具体的には、一例として、光電変換部23aに対する被測定光Lの入射量、および光電変換部23bに対する被測定光Lの入射量のうちの多い一方の1/2の量(光電変換部23aに対する被測定光Lの入射量、および光電変換部23bに対する被測定光Lの入射量のうちの少ない一方の2倍の量)を「予め規定された光量範囲」とし、光電変換部23aに対する被測定光Lの入射量と光電変換部23bに対する被測定光Lの入射量との差がこの光量範囲内となるように両出射孔14a,14bの開口面積(開口径)が相違させられている。
また、本例の光測定装置1では、上記のような条件を満たすだけでなく、各受光部3毎に、受光センサ20a,20bの分光感度が測定波長範囲内で反転するように出射孔14aの開口面積(開口径)および出射孔14bの開口面積(開口径)を規定して拡散光学系2から受光センサ20a,20bへの被測定光Lの出射量を相違させている。
具体的には、本例の光測定装置1では、測定対象波長範囲において最も短い波長の被測定光Lの光電変換部23aへの入射量が光電変換部23bへの入射量よりも少ないときに、測定対象波長範囲において最も長い波長の被測定光Lの光電変換部23aへの入射量が光電変換部23bへの入射量よりも多くなるように、出射孔14aの開口面積(開口径)および出射孔14bの開口面積(開口径)が規定されている。これにより、図2に一点鎖線L4aおよび実線L2bで示すように、波長範囲Hrを測定対象波長範囲とする受光部3Rでは、波長λrsの被測定光Lが受光センサ20a,20bに入射したとき、および波長λrlが受光センサ20a,20bに入射したときのいずれにおいても、光電変換部23a,23bへの被測定光Lの入射量が同程度となり、その検出信号Sia,Sibの信号レベルが同程度となる。
また、本例の光測定装置1では、測定対象波長範囲において最も短い波長の被測定光Lの光電変換部23aへの入射量が光電変換部23bへの入射量よりも多いときに、測定対象波長範囲において最も長い波長の被測定光Lの光電変換部23aへの入射量が光電変換部23bへの入射量よりも少なくなるように、出射孔14aの開口面積(開口径)および出射孔14bの開口面積(開口径)が規定されている。これにより、図2に実線L2aおよび二点鎖線L4bで示すように、波長範囲Hbを測定対象波長範囲とする受光部3Bでは、波長λbsの被測定光Lが受光センサ20a,20bに入射したとき、および波長λblが受光センサ20a,20bに入射したときのいずれにおいても、光電変換部23a,23bへの被測定光Lの入射量が同程度となり、その検出信号Sia,Sibの信号レベルが同程度となる。
したがって、本例の光測定装置1では、受光部3R,3G,3Bのすべてにおいて、測定対象波長範囲(波長範囲Hr,Hg,Hb)の最も短い波長の被測定光Lが入射したとき、および測定対象波長範囲(波長範囲Hr,Hg,Hb)の最も長い波長の被測定光Lが入射したときのいずれの状態においても、検出信号Sia,SibのSN比が同程度となる。
一方、上記のように拡散光学系2の各出射部13から出射された被測定光Lが入射している各受光部3の受光センサ20aでは、光学フィルタ21,22aを透過した被測定光Lが光電変換部23aによって受光され、その受光量に応じた電流値の検出信号Siaが光電変換部23aから出力される。また、各受光部3の受光センサ20bでは、光学フィルタ21を透過した被測定光Lが光電変換部23bによって受光され、その受光量に応じた電流値の検出信号Sibが光電変換部23bから出力される。さらに、各I/V変換部4が受光センサ20a,20b(光電変換部23a,23b)から出力された検出信号Sia,SibをI/V変換処理して検出信号Sva,Svbを出力すると共に、各A/D変換部5が検出信号Sva,Svbを所定の周期でA/D変換処理して各受光部3毎の検出信号データDa,Dbをそれぞれ出力する。また、処理部8は、各A/D変換部5から出力された検出信号データDa,Dbを記憶部9に記憶させる。
この場合、本例の光測定装置1では、上記したように、各受光部3の受光センサ20a,20bにおける光学フィルタ22a,22bの光学特性等に応じて拡散光学系2の各出射部13における出射孔14a,14bの開口面積(開口径)が最適化され、各受光部3毎の光電変換部23a,23bに対する被測定光Lの入射量が同程度となっている(両受光センサ20a,20bの波長範囲H内における分光感度特性が同様となっている)。これにより、各受光部3の受光センサ20a,20b(光電変換部23a,23b)から出力される検出信号Sia,SibのSN比が同程度となっている。
また、本例の光測定装置1では、前述したように、各I/V変換部4が、共通の利得が設定された状態で動作する「2チャンネルI/V変換部(2チャンネルI/V変換素子)」で構成されている。したがって、SN比が同程度の検出信号Sia,Sibvが同様の変換条件下でI/V変換処理された検出信号Sva,Svbについても、そのSN比が同程度となっている。これにより、この検出信号Sva,SvbをA/D変換処理した検出信号データDa,DbについてもそのSN比が同程度となっている。
この状態で、操作部6の操作によって測定処理の開始が指示されたときに、処理部8は、各受光部3毎の検出信号データDaの値(A/D変換部5によるサンプリング値:「第1の検出信号の信号レベル」に対応する値の一例)、および検出信号データDbの値(A/D変換部5によるサンプリング値:「第2の検出信号の信号レベル」に対応する値の一例)のいずれか予め規定された一方に対する他方の比(一例として、検出信号データDaの値に対する検出信号データDbの値の比:検出信号データDbの値/検出信号データDaの値)を演算し、演算した比に基づいて、各受光部3の受光センサ20a,20bに入射した被測定光Lの波長(赤色光、緑色光および青色光のそれぞれの波長)を特定(演算)する。
この場合、この光測定装置1では、各受光部3における両受光センサ20a,20bの光学フィルタ22a,22bが前述したような光学特性を有して光電変換部23a,23bへの光の入射量が制限される構成が採用されている。このため、受光部3に入射している被測定光Lの波長が長いときほど、受光センサ20aの感度が高くなって検出信号Siaの信号レベルが高くなり、かつ受光センサ20bの感度が低くなって検出信号Sibの信号レベルが低くなると共に、被測定光Lの波長が短いときほど、受光センサ20aの感度が低くなって検出信号Siaの信号レベルが低くなり、かつ受光センサ20bの感度が高くなって検出信号Sibの信号レベルが高くなる。
したがって、処理部8は、検出信号データDaに基づいて特定した検出信号Siaの信号レベルと検出信号データDbに基づいて特定した検出信号Sibの信号レベルとの比(すなわち、検出信号データDaの値と検出信号データDbの値との比)の大きさに基づき、被測定光Lの波長を特定(演算)する。次いで、処理部8は、被測定光Lの放射量をそれぞれ測定する。具体的には、処理部8は、直前に演算した被測定光Lの波長と、検出信号Siaの信号レベル(検出信号データDaの値)および検出信号Sibの信号レベル(検出信号データDbの値)のいずれか一方と、その値から放射量を演算可能に予め規定された放射量算出用の係数(または、テーブル)とに基づき、被測定光L(赤色光)の放射量を演算する。この後、処理部8は、演算した(測定した)波長および放射量を測定結果として記憶部9に記憶させると共に、各受光部3毎(赤色光、緑色光および青色光毎)に表示部7に表示させ、被測定光Lについての一連の測定処理が完了する。
このように、この光測定装置1では、被測定光Lの通過が可能な出射孔14aが形成されて受光センサ20aにおける光電変換部23aに対する被測定光Lの入射量を制限する「第1の入射量制限部」、および被測定光Lの通過が可能な出射孔14bが形成されて受光センサ20bにおける光電変換部23bに対する被測定光Lの入射量を制限する「第2の入射量制限部」を備え、「第1の入射量制限部」および「第2の入射量制限部」が、「測定波長範囲(波長範囲H)」内の各波長の被測定光Lの光電変換部23aに対する入射量と光電変換部23bに対する入射量との差が「予め規定された光量範囲」内の光量となるように出射孔14aの「第1の開口面積」と出射孔14bの「第2の開口面積」とが相違させられている。
したがって、この測定装置によれば、測定対象波長範囲(波長範囲H)内の各波長の被測定光Lの透過率が大きく異なる光学フィルタ22a,22bを採用したとしても出射孔14aの通過時および出射孔14bの通過時に両光電変換部23a,23bに入射する被測定光Lの光量が好適に調整されるため、任意の光学特定を有する「光学フィルタ」を採用して光測定装置1を構成することができる。また、受光センサ20a,20b(両光電変換部23a,23b)の検出信号Sia,Sibを同じ処理条件でI/V変換するI/V変換部4(利得の調整値が共通の2チャンネルI/V変換部(2チャンネルI/V変換素子))を備えて「データ生成部」を構成しても、両検出信号Sia,Sibの信号レベルが同程度となっていることで、検出信号Sva,SvbのSN比(および、その後にA/D変換部5によって生成される検出信号データDa,DbのSN比)を同程度の状態とすることができる。したがって、検出信号データDa,Dbに基づいて被測定光Lについての高精度な波長や放射量を演算(測定)することができるため、測定精度を低下させることなく、採用し得る構成部品(光電変換部23a,23bやI/V変換部4)の自由度を十分に高めることができるため、必要とされる光学特性や部品コストに応じて任意の部品を選択して製造することができる。
また、この光測定装置1では、受光センサ20a,20bに対する被測定光Lの入射方向および被測定光Lの入射量を均一化するための拡散光学系2において受光センサ20aへの被測定光Lを出射する「第1の出射部(出射部13)」に「第1の入射量制限部」が設けられて出射孔14aが形成されると共に、拡散光学系2において受光センサ20bへの被測定光Lを出射する「第2の出射部(出射部13)」に「第2の入射量制限部」が設けられて出射孔14bが形成されている。
したがって、この光測定装置1によれば、「拡散光学系」を備えた「光測定装置」において必須の「出射部」(本例では、拡散光学系2の各出射部13)において、その「出射孔(本例では、出射孔14a,14b)」を「第1の光通過孔」および「第2の光通過孔」として開口面積(「第1の開口面積」および「第2の開口面積」)を異ならせることで「出射部」を「第1の入射量制限部」および「第2の入射量制限部」として機能させることができるため、「拡散光学系」の「出射部」とは別個に「第1の入射量制限部」および「第2の入射量制限部」を設けた構成と比較して、光電変換部23a,23bに対する被測定光Lの入射量を調整するための光学部品の数を少数化することができる結果、製造コストの低減を図ることができると共に、光測定装置1を十分に小形化することができる。
さらに、この光測定装置1では、処理部8が、被測定光Lについての「予め規定された光学的パラメータ」として、検出信号データDaに基づいて特定した検出信号Siaの信号レベルおよび検出信号データDbに基づいて特定した検出信号Sibの信号レベルのいずれか一方に対する他方の比に基づいて被測定光Lの波長を演算すると共に、演算した波長と、いずれか一方とに基づいて被測定光Lの放射量を演算する。したがって、この光測定装置1によれば、両受光センサ20a,20b(両光電変換部23a,23b)から出力される検出信号Sia,SibのSN比が大きく相違する場合に高精度な測定結果を得るのが困難な波長および放射量について、十分に高精度な測定結果を演算(測定)することができる。
なお、「光測定装置」の構成は、上記の光測定装置1の構成の例に限定されない。例えば、「拡散光学系」の一例である拡散光学系2の各出射部13(「第1の入射量制限部」および「第2の入射量制限部」)に設けた出射孔14a,14bを「第1の光通過孔」および「第2の光通過孔」として、その開口面積(開口径)を相違させることで光電変換部23a,23bに対する被測定光Lの入射量を調整する構成の光測定装置1を例に挙げて説明したが、このような構成に代えて(または、このような構成に加えて)、図3の左図に示す光測定装置1Aのように、「拡散光学系」の各「出射部」(図示せず)とは別個に「拡散光学系」と受光部3a(「受光部」の他の一例)との間に入射量制限部30(「第1の入射量制限部」および「第2の入射量制限部」の他の一例)を配設し、この入射量制限部30に設けた光通過孔31a,31b(「第1の光通過孔」および「第2の光通過孔」の他の一例)の開口面積(開口径)を相違させることで光電変換部23a,23bに対する被測定光Lの入射量を調整する構成を採用することもできる。なお、この光測定装置1A、および後に説明する光測定装置1B,1Cにおいて光測定装置1の各構成要素と同様の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。
また、「拡散光学系」の「出射部」、および/または「拡散光学系」と受光部3との間に「第1の入射量制限部」や「第2の入射量制限部」を配設する構成に代えて(または、そのような構成に加えて)、「第1の受光センサ」および「第2の受光センサ」内に「第1の入射量制限部」や「第2の入射量制限部」を配設する構成を採用することもできる(図示せず)。
具体的には、例えば、図3中央図に示す光測定装置1Bの受光部3b(「受光部」のさらに他の一例)における受光センサ20a,20bのように、測定対象波長範囲を制限するための光学フィルタ21、および測定対象波長範囲内の各波長の被測定光について第1の光電変換部の検出信号の信号レベル、および第2の光電変換部の検出信号の信号レベルのいずれか一方に対する他方の比を生じさせるための光学フィルタ22a,22bの双方を備えている場合には、この光学フィルタ21と光学フィルタ22a,22bとの間に入射量制限部30を配設し、この入射量制限部30に設けた光通過孔31a,31bの開口面積(開口径)を相違させることで光電変換部23a,23bに対する被測定光Lの入射量を調整する構成を採用することもできる。
また、例えば、図3右図に示す光測定装置1Cの受光部3c(「受光部」のさらに他の一例)における受光センサ20a,20bのように、光学フィルタ21、および光学フィルタ22a,22bの少なくとも一方(受光部3cでは、双方)を備えている場合には、これら光学フィルタ21,22a,22bよりも光電変換部23a,23bの側(光学フィルタの出射面側(光電変換部の側):光電変換部23a,23bにおける入射面側)に入射量制限部30を配設し、この入射量制限部30に設けた光通過孔31a,31bの開口面積(開口径)を相違させることで光電変換部23a,23bに対する被測定光Lの入射量を調整する構成を採用することもできる。
さらに、「拡散光学系」としての「積分球」で構成された拡散光学系2を備えた光測定装置1を例に挙げて説明したが、「拡散光学系」は「積分球」等の「反射型拡散光学系」に限定されず、例えば、拡散板(透過時に光を拡散させる光学部品)などの「透過型拡散光学系」を「拡散光学系」として備えて構成することもできる(図示せず)。
また、「拡散光学系」に代えて(または、拡散光学系に加えて)、光ファイバー、プリズムおよび回折格子などの「分散光学系」を備えて「第1の受光センサ」や「第2の受光センサ」への被測定光Lの入射方向および入射量を均一化する構成を採用することもできる(図示せず)。
この場合、一例として、「分散光学系」としての「分岐型光ファイバー(例えば、2分岐光ファイバー)」を採用する場合には、「第1の受光センサ」に向けて光を導光するファイバーを「第1の光通過孔」として機能させ、「第2の受光センサ」に向けて光を導光するファイバーを「第2の光通過孔」として機能させて両ファイバーの口径を相違させることで「第1の光電変換部」および「第2の光電変換部」に対する「被測定光」の入射量を調整する構成を採用することもできる(図示せず)。また、「第1の受光センサ」に向けて光を導光するファイバーの口径、および「第2の受光センサ」に向けて光を導光するファイバーの口径が等しい「分岐型光ファイバー」を採用し、両ファイバーと「第1の受光センサ」および「第2の受光センサ」との間に前述の入射量制限部30のような「第1の入射量制限部」および「第2の入射量制限部」を配設して「第1の光電変換部」および「第2の光電変換部」に対する「被測定光」の入射量を調整する構成を採用することもできる(図示せず)。
さらに、「被測定光」の光源と「光測定装置」の測定光軸とを好適な測定が可能な状態に位置決めできる場合には、「拡散光学系」や「分散光学系」を備えずに「光測定装置」を構成することもできる。
また、「第1の受光センサ」としての受光センサ20aの分光感度特性が長い波長の光ほど感度が高くなるように「第1の光電変換部」としての光電変換部23aに対する被測定光Lの入射量を制限する光学フィルタ22a、および「第2の受光センサ」としての受光センサ20bの分光感度特性が短い波長の光ほど感度が高くなるように「第2の光電変換部」としての光電変換部23bに対する被測定光Lの入射量を制限する光学フィルタ22bを備えた構成を例に挙げて説明したが、「第1の受光センサ」の分光感度特性が短い波長の光ほど感度が高くなるように「第1の光電変換部」に対する「被測定光」の入射量を制限する光学フィルタ、および「第2の受光センサ」の分光感度特性が長い波長の光ほど感度が高くなるように「第2の光電変換部」に対する「被測定光」の入射量を制限する光学フィルタを備えて構成することもできる(図示せず)。
また、測定波長範囲内の感度の変化率が互いに異なることを条件として、「第1の受光センサ」の分光感度特性および「第2の受光センサ」の分光感度特性の双方が長い波長の光ほど感度が高くなるように「第1の光電変換部」および「第2の光電変換部」に対する「被測定光」の入射量をそれぞれ制限する光学フィルタを備えて構成したり(図示せず)、「第1の受光センサ」の分光感度特性および「第2の受光センサ」の分光感度特性の双方が短い波長の光ほど感度が高くなるように「第1の光電変換部」および「第2の光電変換部」に対する「被測定光」の入射量をそれぞれ制限する光学フィルタを備えて構成したり(図示せず)することもできる。
さらに、「第1の受光センサ」および「第2の受光センサ」のいずれか一方に上記の光学フィルタ22a,22bのような光学フィルタ(測定対象波長範囲内の各波長毎に受光センサ(光電変換部)の感度を異ならせるための光学フィルタ)を設け、他方にそのような光学フィルタを設けない構成を採用することもできる。なお、両「受光センサ」の一方だけに上記のような光学フィルタを設けた場合においても、その一方の「受光センサ」に設けた光学フィルタの存在により、「被測定光」の「第1の光電変換部」に対する入射量、および「第2の光電変換部」に対する入射量が測定対象波長範囲内の各波長毎に相違する状態となるため、両「受光センサ」に上記のような光学フィルタを設けた構成と同様にして、「被測定光」の波長(重心波長)や放射量を好適に演算(測定)することができる。
この場合、両「受光センサ」の一方だけに上記のような光学フィルタを設けた構成において、「第1の入射量制限部」における「第1の光通過孔」の「第1の開口面積(丸孔の場合には開口径)」、および「第2の入射量制限部」における「第2の光通過孔」の「第2の開口面積(丸孔の場合には開口径)」を一致させたときには、光学フィルタの存在による「被測定光」の減衰が生じない分だけ、光学フィルタを設けない「受光センサ」の「光電変換部」に対する「被測定光」の入射量が、光学フィルタを設けた「受光センサ」の「光電変換部」に対する「被測定光」の入射量より多くなる。この結果、両「受光センサ(光電変換部)」のSN比が大きく相違する状態となる。
したがって、両「受光センサ」の一方だけに上記のような光学フィルタを設けた構成においては、光学フィルタを設けない「受光センサ」の「光電変換部」に対する「被測定光」の入射量を制限する「入射量制限部(第1の入射量制限部および第2の入射量制限部のいずれか一方)」における「光通過孔(第1の光通過孔および第2の光通過孔のいずれか一方)」の開口面積(丸孔の場合には開口径)が、光学フィルタを設けた「受光センサ」の「光電変換部」に対する「被測定光」の入射量を制限する「入射量制限部(第1の入射量制限部および第2の入射量制限部の他方)」における「光通過孔(第1の光通過孔および第2の光通過孔の他方)」の開口面積(丸孔の場合には開口径)よりも小さくなるように、両「入射量制限部」を構成するのが好ましい。
また、両チャンネルについて共通の利得が設定された状態で動作する「2チャンネルI/V変換部(2チャンネルI/V変換素子)」で構成されたI/V変換部4を備えた例について説明したが、両チャンネルについて別個の利得を設定した状態で動作させることができるものの、調整値を大きく異ならせることができない「2チャンネルI/V変換部(2チャンネルI/V変換素子)」、すなわち、「光電変換部」への「被測定光」の入射量の相違の影響をI/V変換処理時の利得の調整で軽減するのが困難な「2チャンネルI/V変換部(2チャンネルI/V変換素子)」を採用した構成においても、「第1の入射量制限部」における「第1の光通過孔」の「第1の開口面積(丸孔の場合には開口径)」、および「第2の入射量制限部」における「第2の光通過孔」の「第2の開口面積(丸孔の場合には開口径)」を一致させた場合には、前述したような課題が生じるため、そのような「2チャンネルI/V変換部(2チャンネルI/V変換素子)」を採用した構成においても、「第1の開口面積」および「第2の開口面積」を相違させて、「第1の光電変換部」への「被測定光」の入射量、および「第2の光電変換部」への「被測定光」の入射量を同程度にするのが好ましい。
さらに、「第1の受光センサ」および「第2の受光センサ」毎に別個の「I/V変換部」を設ける構成において、両「I/V変換部」についての利得の調整値を大きく異ならせることができないときには、前述したような課題が生じるため、「第1の開口面積」および「第2の開口面積」を相違させて、「第1の光電変換部」への「被測定光」の入射量、および「第2の光電変換部」への「被測定光」の入射量を同程度にするのが好ましい。
また、「第1の入射量制限部」に設ける「第1の光通過孔」の開口面積、および「第2の入射量制限部」に設ける「第2の光通過孔」の開口面積を異ならせることで光電変換部23a,23bに対する被測定光Lの入射量を同程度とする構成を例に挙げて説明したが、このような構成に代えて(または、このような構成に加えて)、「第1の受光センサ」および「第2の受光センサ」の少なくとも一方に「減光フィルタ」を付加することで、「第1の光電変換部」に対する「被測定光」の入射量と「第2の光電変換部」に対する「被測定光」の入射量を同程度とする構成を採用することもできる(図示せず)。
加えて、赤色光、緑色光および青色光の3種類の被測定光Lを「被測定光」として波長や放射量などの「光学的パラメータ」を測定する構成を例に挙げて説明したが、1台の「光測定装置」によって並行して測定可能な「被測定光」の種類数(「測定対象波長範囲の数」)は「3」に限定されず、2種類の「被測定光」(2つの「測定対象波長範囲」)を並行して測定可能な構成や、4種類以上の「被測定光」(4つ以上の「測定対象波長範囲」)を並行して測定可能な構成を採用することもできる。また、1台の「光測定装置」によって1種類の「被測定光」(1つの「測定対象波長範囲」)を測定可能な構成を採用することもできる。さらに、「放射量」に代えて「測光量」を「光学的パラメータ」として測定可能に構成することもできる。