JP7161460B2 - 無機質球状化粒子製造装置 - Google Patents

無機質球状化粒子製造装置 Download PDF

Info

Publication number
JP7161460B2
JP7161460B2 JP2019176600A JP2019176600A JP7161460B2 JP 7161460 B2 JP7161460 B2 JP 7161460B2 JP 2019176600 A JP2019176600 A JP 2019176600A JP 2019176600 A JP2019176600 A JP 2019176600A JP 7161460 B2 JP7161460 B2 JP 7161460B2
Authority
JP
Japan
Prior art keywords
combustion
burner
fuel
supply
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019176600A
Other languages
English (en)
Other versions
JP2021053539A (ja
Inventor
義之 萩原
康之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2019176600A priority Critical patent/JP7161460B2/ja
Priority to EP20869874.6A priority patent/EP4035766A4/en
Priority to US17/762,124 priority patent/US20220349652A1/en
Priority to PCT/JP2020/034499 priority patent/WO2021060025A1/ja
Priority to CN202080065381.5A priority patent/CN114466693A/zh
Publication of JP2021053539A publication Critical patent/JP2021053539A/ja
Application granted granted Critical
Publication of JP7161460B2 publication Critical patent/JP7161460B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/005Shaft or like vertical or substantially vertical furnaces wherein no smelting of the charge occurs, e.g. calcining or sintering furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D91/00Burners specially adapted for specific applications, not otherwise provided for
    • F23D91/02Burners specially adapted for specific applications, not otherwise provided for for use in particular heating operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/08Shaft or like vertical or substantially vertical furnaces heated otherwise than by solid fuel mixed with charge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99011Combustion process using synthetic gas as a fuel, i.e. a mixture of CO and H2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2214/00Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/21Burners specially adapted for a particular use
    • F23D2900/21005Burners specially adapted for a particular use for flame deposition, e.g. FHD, flame hydrolysis deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2300/00Pretreatment and supply of liquid fuel
    • F23K2300/20Supply line arrangements
    • F23K2300/204Preheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D2017/009Cyclone for separating fines from gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Glanulating (AREA)

Description

本発明は、無機質球状化粒子製造装置及び無機質球状化粒子の製造方法に関する。
従来から、無機質の粉体原料を火炎中に通すことにより、無機質球状化粒子(以下、単に「球状化粒子」ということがある)を製造する方法が知られている(特許文献1~3)。
例えば、特許文献2に開示されている無機質球状化粒子製造装置においては、図10に示すように、原料粉体が原料供給機(フィーダ)Aから供給され、キャリアガス供給装置A’から供給されるキャリアガスに同伴されてバーナBに搬送される。このバーナBには、酸素供給設備Cからの酸素と、LPG供給設備Dからの燃料ガス(液化石油ガス:LPG)とが供給される。そして、竪型炉E内の火炎中で球状化された粒子を含む排ガスは、経路Fから竪型炉Eの底部に導入された空気により冷却(温度希釈)され、後段のサイクロンG、バグフィルターHで球状化粒子が捕集される。
ここで、原料粉体をバーナで形成した火炎中で球状化する為には、高温の火炎が必要であることから、図10中に示すバーナBとして、通常は、燃料ガスと純酸素とを用いた酸素燃焼バーナ(以下、単に「酸素バーナ」ということがある)が用いられている。
このような酸素バーナとして、例えば、特許文献1には、同心円状の二重管であって、その内管と外管との間に多数の小管を設けた構造の拡散型バーナが開示されている。
また、特許文献2,3には、同心の四重管構造を有する拡散型の酸素バーナが開示されている。具体的には、特許文献2,3に開示された拡散型バーナは、中心から酸素ガス又は酸素富化ガスをキャリアガスとして原料粉体を燃焼室に供給し、その外周から燃料ガスを、更にその外周から1次酸素と2次酸素を供給するように形成されており、最外周には、バーナを冷却する冷却水通路が設けられている。
このように、特許文献1~3に開示された酸素バーナでは、燃料ガスと支燃性ガス(酸素ガス)とを燃焼室で混合、燃焼させるため、高温の酸素燃焼火炎を得る事が出来る。
特開昭58-145613号公報 特許第3331491号公報 特許第3312228号公報
しかしながら、上述した特許文献1~3に開示された、従来の酸素バーナでは、一般的に都市ガスやLPG等の炭素源を含む燃料ガスを用いるため、燃焼時に温暖化ガスである二酸化炭素が多く発生してしまう。
また、不完全燃焼が生じた際には、固体炭素である煤が発生するため、製品となる無機質球状化粒子中に微量の炭素が混入するおそれがある。
本発明は、上記事情に鑑みてなされたものであり、温暖化ガスの発生量を大幅に削減し、燃焼中の煤の発生を抑制することが可能な無機質球状化粒子製造用バーナ、無機質球状化粒子製造装置及び無機質球状化粒子の製造方法を提供することを課題とする。
上記の課題を達成するために、本発明は以下の構成を採用した。
[1] アンモニアを含む燃料ガスと酸素を含有する支燃性ガスとを用いる無機質球状化粒子製造用バーナと、
前記無機質球状化粒子製造用バーナを、炉頂部に垂直下向きに接続する竪型の球状化炉と、
アンモニア供給源と、
酸素供給源と、
前記アンモニア供給源と前記無機質球状化粒子製造用バーナとの間に位置するアンモニア供給ラインと、
前記酸素供給源と前記無機質球状化粒子製造用バーナとの間に位置する酸素供給ラインと、を備える、無機質球状化粒子製造装置。
[2] 助燃用燃料供給源と、
前記助燃用燃料供給源と前記無機質球状化粒子製造用バーナとの間に位置する助燃用燃料供給ラインと、をさらに備える、前項[1]に記載の無機質球状化粒子製造装置。
[3] 前記球状化炉の下流に位置するサイクロン及びバグフィルターをさらに備える前項[1]又は[2]に記載の無機質球状化粒子製造装置。
[4] 前記無機質球状化粒子製造用バーナが、
原料粉体として無機質粉体を供給する原料粉体供給路と、
第1燃料ガスを供給する第1燃料供給路と、
第1支燃性ガスを供給する第1支燃性ガス供給路と、有し、
前記アンモニア供給ラインと前記第1燃料供給路とが連通され、
前記酸素供給ラインと前記第1支燃性ガス供給路とが連通される、前項[1]乃至[3]のいずれかに記載の無機質球状化粒子製造装置。
[5] 前記助燃用燃料供給ラインと前記第1燃料供給路とが連通される、前項[4]に記載の無機質球状化粒子製造装置。
[6] 前記無機質球状化粒子製造用バーナが、
第2燃料ガスを供給する第2燃料供給路と、
第2支燃性ガスを供給する第2支燃性ガス供給路と、をさらに有し、
前記アンモニア供給ライン及び前記助燃用燃料供給ラインの一方又は両方と、前記第2燃料供給路と、が連通され、
前記酸素供給ラインと前記第2支燃性ガス供給路とが連通される、前項[4]又は[5]に記載の無機質球状化粒子製造装置。
[7] 前記無機質球状化粒子製造用バーナが、水冷ジャケットを有し、
前記水冷ジャケットの冷却水の導出口と導入口との間に位置する冷却水循環ラインをさらに備える、前項[1]乃至[6]のいずれかに記載の無機質球状化粒子製造装置。
[8] 前記アンモニア供給ラインと前記冷却水循環ラインとに位置する熱交換器を備える、前項[7]に記載の無機質球状化粒子製造装置。
[9] 燃料ガスと酸素を含有する支燃性ガスとの燃焼により形成されたバーナ火炎により無機質粉体を溶融し、球状化する無機質球状化粒子の製造方法であって、
前記燃料ガスとしてアンモニアを用いる、無機質球状化粒子の製造方法。
本発明の無機質球状化粒子製造装置は、炭素源を含まないアンモニアを燃料ガスとして用いるため、温暖化ガスの発生量を大幅に削減し、燃焼中の煤の発生を抑制できる。
本発明の無機質球状化粒子の製造方法は、温暖化ガスの発生量を大幅に削減し、燃焼中の煤の発生を抑制できる。
本発明を適用した第1実施形態の無機質球状化粒子の製造装置の構成を示す系統図である。 第1実施形態に適用可能な無機質球状化粒子製造用バーナを示す平面図である。 図2中に示すA-A’線に沿った断面図である。 図3に示すバーナの拡大断面図である。 本発明を適用した第2実施形態の無機質球状化粒子の製造装置の構成を示す系統図である。 本発明を適用した第3実施形態の無機質球状化粒子の製造装置の構成を示す系統図である。 第3実施形態に適用可能な無機質球状化粒子製造用バーナを示す平面図である。 図7中に示すB-B’線に沿った断面図である。 図8に示すバーナの拡大断面図である。 従来の無機質球状化粒子の製造装置の構成を示す系統図である。
<第1の実施形態>
以下、本発明を適用した第1の実施形態である無機質球状化粒子製造装置について、これを用いた無機質球状化粒子の製造方法とともに図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
(無機質球状化粒子の製造装置)
先ず、本発明を適用した第1実施形態の無機質球状化粒子製造装置の構成について、説明する。図1は、本発明を適用した第1実施形態の無機質球状化粒子製造装置の構成の一例を示す系統図である。
図1に示すように、本実施形態の無機質球状化粒子製造装置(以下、単に「装置」という場合がある)10は、無機質球状化粒子製造用バーナ11、アンモニア供給源12、酸素供給源13、原料粉体供給源14、球状化炉15、サイクロン16、バグフィルター17、アンモニア供給ラインL1、酸素供給ラインL2及び冷却水循環ラインL3を備える。
(無機質球状化粒子製造用バーナ)
次に、本実施形態の装置10に適用可能な無機質球状化粒子製造用バーナ11の構成について説明する。
図2~図4は、本実施形態の装置10に適用可能な無機質球状化粒子製造用バーナ(以下、単にバーナと呼ぶことがある)を示しており、図2はバーナをその先端側から眺めた平面図であり、図3は図2中に示すバーナの中心軸Cを通るA-A’に沿って切断した断面図であり、図4はバーナの先端側の拡大断面図である。
図2~図4に示すように、バーナ11は、当該バーナ11の中心軸Cから周方向外側に向けて、原料粉体供給管2、第1燃料供給管3、第1支燃性ガス供給管4、及び水冷ジャケット5から構成される、同心の多重管構造を有している。また、バーナ11は、燃料ガスと酸素を含有する支燃性ガスとを用いた酸素燃焼バーナである。
原料粉体供給管2は、図3に示すように、バーナ11の同心多重管構造の最内側に、当該バーナ11の軸方向に沿って延在している。この原料粉体供給管2の内側の空間は、原料粉体供給路2Aとなっており、原料粉体として無機質粉体をキャリアガス(搬送ガス)との混合物として供給可能となっている。
原料粉体供給路2Aは、バーナ11の軸方向の先端寄りの部分において、バーナ1の中心軸から半径方向へ放射状に延びる複数の原料粉体供給支流路2Bに分岐する。
また、原料粉体供給支流路2Bは、図3及び図4に示すように、バーナ11の軸方向の先端に開口を有する原料粉体噴出孔2aとそれぞれ連通する。
これにより、バーナ11は、原料粉体供給路2A、複数の原料粉体供給支流路2B、及び複数の原料粉体噴出孔2aを介して、バーナ中心軸Cに対して平行な方向に原料粉体を噴出するようになっている。
具体的には、図2に示すように、バーナ11の先端を平面視した際に、複数の原料粉体噴出孔2aの開口は、バーナ1の中心軸を中心とする円環状となるように、等間隔に配設される。これにより、原料粉体供給孔2aの内側あるいは外側に形成される火炎による熱を、効率よく原料粉体に受熱させることができる。
また、原料粉体供給路2Aは、バーナ11の軸方向の先端寄りの部分には、図3及び図4に示すように、原料粉体を複数の原料粉体供給支流路2Bに均一に分散させるための分散板2bが設けられている。
さらに、原料粉体供給路2Aは、基端側において原料粉体供給源14と、後述する酸素ガス供給ラインL2及びL2Bを介して接続されている。
キャリアガス(搬送ガス)は、原料粉体を搬送可能な気体であれば、特に限定されるものではない。キャリアガスとしては、具体的には、例えば、安全性を考慮する場合には、窒素ガス、アルゴンガス等の不活性ガスを用いることができる。一方、キャリアガスとして酸素もしくは酸素富化空気等を用いた場合には、原料粉体の支燃剤として用いることができる。これにより、後述する火炎を形成する際、より高温な火炎を形成できる。
第1燃料供給管3は、図3に示すように、原料粉体供給管2の外側を覆うように設けられている。第1燃料供給管3の中心軸と原料粉体供給管2中心軸とは一致しており、第1燃料供給管3は、原料粉体供給管2と同軸に設けられている。
第1燃料供給管3と原料粉体供給管2との間に設けられた環状の空間は、第1燃料ガスを供給するための第1燃料供給路3Aである。換言すると、第1燃料供給路3Aは、第1粉体供給路2Aの外周を覆うように設けられている。
第1燃料供給路3Aの基端側は、第1燃料ガスであるアンモニア供給源12と、アンモニア供給ラインL1を介して接続されている。
第1燃料ガスとしては、アンモニア(NH)を用いる。第1燃料ガスは、必要に応じて、窒素ガス、アルゴンガス等の不活性ガスによって希釈されたものを用いてもよい。
第1燃料供給路3Aの先端の位置は、バーナ11の軸方向において、原料粉体供給路2Aが複数の原料粉体供給支流路2Bに分岐する位置よりも基端側となっている。したがって、第1粉体供給路2Aの先端寄りの部分の外周には、第1燃料供給路3Aは設けられていない。
第1燃料供給路3Aの先端寄りの環状の空間は、基端部分及び中央部分と比較して外径が大きくなっている。第1燃料供給路3Aの先端寄りの環状の空間の外径の位置は、原料粉体噴出孔2aの位置よりも外側であることが好ましい。これにより、図2に示すように、バーナ11の先端を平面視した際に、複数の原料粉体噴出孔2aよりも外側の位置に、火炎を形成するための第1燃料ガスを供給することができる。
図3及び図4に示すように、バーナ11の中心軸Cから半径方向に向かって拡径された第1燃料供給路3Aの先端部分には、バーナ11の軸方向と平行方向に延在する複数の第1燃料ガス噴射ノズル(第1燃料供給支流路)3aが接続されている。第1燃料供給路3Aと複数の第1燃料ガス噴射ノズル3aの内側の空間とは、それぞれ連通されている。これにより、第1燃料供給路3Aから複数の第1燃料ガス噴射ノズル3aに、燃料ガスをそれぞれ供給できる。換言すると、第1燃料供給路3Aは、バーナ11の先端寄りの部分において複数の第1燃料ガス噴射ノズル3aに分岐している。
第1支燃性ガス供給管4は、図3に示すように、第1燃料供給管3の外側を覆うように設けられている。第1支燃性ガス供給管4の中心軸と第1燃料供給管3中心軸とは一致しており、第1支燃性ガス供給管4は、第1燃料供給管3及び原料粉体供給管2と同軸に設けられている。
第1支燃性ガス供給管4と第1燃料供給管3との間に設けられた環状の空間は、第1支燃性ガスを供給するための第1支燃性ガス供給路4Aである。換言すると、第1支燃性ガス供給路4Aは、第1燃料供給路3Aの先端及び外周を覆うように設けられている。
第1支燃性ガス供給路4Aの基端側は、第1支燃性ガスである酸素供給源13と、酸素供給ラインL2及びL2Aを介して接続されている。
第1支燃性ガスは、第1燃料ガスと反応して火炎雰囲気を形成可能なガスであれば、特に限定されるものではない。第1支燃性ガスとしては、酸素、酸素富化空気等が挙げられる。
第1支燃性ガス供給路4Aの先端の位置は、バーナ11の軸方向において、原料粉体供給路2Aが複数の原料粉体供給支流路2Bに分岐する位置よりも先端側となっている。したがって、第1支燃性ガス供給路4Aは、第1粉体供給路2Aの先端寄りの部分の外周を覆うように設けられている。
第1支燃性ガス供給路4Aの先端寄りの環状の空間は、基端部分及び中央部分と比較して内径が小さくなっている。第1支燃性ガス供給路4Aの先端寄りの環状の空間の内径の位置は、原料粉体噴出孔2aの位置よりも内側であることが好ましい。これにより、図2に示すように、バーナ11の先端を平面視した際に、複数の原料粉体噴出孔2aよりも内側の位置に、火炎を形成するための第1支燃性ガスを供給することができる。
図3及び図4に示すように、バーナ11の周方向の外側から中心軸Cに向かって拡径された第1支燃性ガス供給路4Aの先端部分には、バーナ11の軸方向と平行方向に延在する複数の第1支燃性ガス供給孔(第1支燃性ガス供給支流路)4aが接続されている。第1支燃性ガス供給路4Aと複数の第1支燃性ガス供給孔4aの内側の空間とは、それぞれ連通されている。これにより、第1支燃性ガス供給路4Aから複数の第1支燃性ガス供給孔4aに、第1支燃性ガスをそれぞれ供給できる。換言すると、第1支燃性ガス供給路4Aは、バーナ11の先端寄りの部分において複数の第1支燃性ガス供給孔4aに分岐している。
水冷ジャケット5は、図3に示すように、第1支燃性ガス供給管4の外側を覆うように設けられている。水冷ジャケット5には、冷却水の導入口5Aと導出口5Bとが設けられている。これにより、導入口5Aから水冷ジャケット5内の流路に供給された冷却水は、バーナ1の特に先端寄りの部分を冷却した後、導出口5Bから排出される。
本実施形態のバーナ11は、図4に示すように、第1燃料ガス噴射ノズル3aが第1支燃性ガス供給孔4aの内側にそれぞれ位置する。また、第1燃料ガス噴射ノズル3aの先端3bは、第1支燃性ガス供給孔4aの内側にそれぞれ位置する。すなわち、第1燃料ガス噴射ノズル3aは、第1支燃性ガス供給孔4aの内側で開口する。
ここで、第1燃料ガス噴射ノズル3aの先端3bから第1支燃性ガス供給孔4aの内側に第1燃料ガスを噴射すると、第1支燃性ガス供給孔4aの内側に向けて第1支燃性ガス供給路4Aから支燃性ガスが供給される。そして、第1燃料ガス噴射ノズル3aの先端3bよりも前方の、第1支燃性ガス供給孔4aの内側において、第1燃料ガスと第1支燃性ガスとが混合される。
このように、第1燃料ガス噴射ノズル3aの先端3bから、第1支燃性ガス供給孔4aの先端4bまでの空間は、第1燃料ガスと第1支燃性ガスとを混合する第1予混合室6となる。また、第1支燃性ガス供給孔4aの先端4bの開口が、第1予混合室6の開口6aとなる。
換言すると、バーナ11は、複数の第1予混合室6を備える。これらの第1予混合室6は、バーナ11の軸方向の先端寄りに位置する。第1予混合室6は、第1燃料ガス噴射ノズル3aの一つ、及び支燃性ガス供給孔4aの一つとそれぞれ連通する。第1予混合室6は、バーナ1の軸方向の先端にそれぞれ開口する。
第1予混合室6の容積v1は、第1燃料ガスと第1支燃性ガスとを充分混合することができ、且つ逆火の恐れがなければ、特に限定されない。
このような容積v1[m]としては、例えば、第1燃料ガスと第1支燃性ガスとの合計流量Q1を25~50[Nm/h]とする場合には、3.0×10-5~1.0×10-3[m]とすればよく、1.0×10-4~1.0×10-3[m]がより好ましい。容積v1を1.0×10-4~1.0×10-3[m]の範囲とすれば、第1燃料ガスと第1支燃性ガスとを充分混合できる。
また、第1燃料ガス噴射ノズル3aの先端3bから、第1支燃性ガス供給孔4aの先端4bまでのオフセット距離L1としては、1.0×10-3~1.0×10-1[m]とすればよく、2×10-3~5×10-2[m]がより好ましい。
また、第1予混合室6の数量は、第1燃料ガスと第1支燃性ガスとの混合ガスの供給量や、原料粉体噴出孔2aの数量やレイアウト(配置)に応じて適宜選択することができる。
第1予混合室6では、第1燃料ガスと第1支燃性ガスとをあらかじめ混合し、混合ガスとして開口6aからバーナ1の軸方向と平行な方向に向けて噴射する。
バーナ11は、第1燃料ガスとして炭素源を含まないアンモニアを用いるため、小さな容積の第1予混合室6を複数備え、これらの第1予混合室6において第1燃料ガスと第1支燃性ガスとをあらかじめ混合する構成となっている。これにより、第1燃料ガスと第1支燃性ガスとを充分に混合して燃焼効率をあげることができ、逆火のおそれもない。
複数の第1予混合室6の開口6aは、図2に示すように、バーナ11の先端を平面視した際に、バーナ11の中心軸Cを中心とする円環状に配設された原料粉体噴出孔2aの内側及び外側に、同心円となるように等間隔にそれぞれ配設される。すなわち、原料粉体噴出孔2aは、第1予混合室6の開口6aによって内側および外側を囲まれる。
バーナ11は、バーナ11の中心部(中央部)に、第1燃料ガスと第1支燃性ガスとの混合ガスからなる火炎(以下、「第1火炎」ともいう)を形成するために、複数の第1予混合室6の開口6aを円環状に配置し、第1火炎の外周を囲むように複数の原料粉体噴出孔2aを円環状に配置する。さらに、複数の原料粉体噴出孔2aの外側に、これらの原料粉体噴出孔2aの外周を囲むように第1燃料ガスと第1支燃性ガスとの混合ガスからなる火炎(以下、「第2火炎」ともいう)を形成するために、複数の第1予混合室6の開口6aを円環状に配置する。これにより、原料粉体噴出孔2aから噴出された原料粉体に対して火炎の熱を効率よく伝達でき、原料粉体を効率よく溶融できる。
また、原料粉体噴出孔2aの外周を囲むように第2火炎を形成することで、バーナ11の周囲からの巻き込み空気もしくは炉内燃焼排ガスを遮断できるため、無機質粉体の溶融・球状化の効率を高めることができる。
アンモニア供給源12は、燃料ガスとして用いるアンモニアを貯蔵する設備である。アンモニアは、通常、液化ガスとして貯蔵される。
アンモニア供給ラインL1は、アンモニア供給源12とバーナ11との間に位置する。具体的には、アンモニア供給ラインL1は、バーナ11の第1燃料供給路3Aの基端側と連通している。換言すると、アンモニア供給源12と第1燃料供給路3Aとは、アンモニア供給ラインL1を介して接続されている。これにより、アンモニア供給源12からアンモニアガスを第1燃料ガスとしてバーナ11に供給できる。
アンモニア供給ラインL1には、後述する熱交換器H2と、流量調節バルブV1とが設けられている。また、アンモニア供給ラインL1には、液体のアンモニアを気化する気化器(図示略)が設けられていてもよい。
酸素供給源13は、支燃性ガスあるいはキャリアガスとして用いる酸素を貯蔵する設備である。酸素の貯蔵方法は、特に限定されないが、大容量を貯蔵可能な態様としては、液化酸素として貯蔵することが好ましい。
酸素供給ラインL2は、酸素供給源13とバーナ11との間に位置する。
また、酸素供給ラインL2は、Q1地点でL2A及びL2Bに分岐する。
酸素供給ラインL2には、後述する熱交換器H1が設けられている。また、酸素供給ラインL2には、液体の酸素を気化する気化器(図示略)が設けられていてもよい。
分岐した酸素供給ラインL2A及びL2Bには、流量調節バルブV2,V3がそれぞれ設けられている。
分岐した酸素供給ラインL2Aは、バーナ11の第1支燃性ガス供給路4Aの基端側と連通している。換言すると、酸素供給源13と第1支燃性ガス供給路4Aとは、酸素供給ラインL2及びL2Aを介して接続されている。これにより、酸素供給源13から酸素ガスを第1支燃性ガスとしてバーナ11に供給できる。
一方、分岐した酸素供給ラインL2Bは、バーナ11の原料粉体供給路2Aの基端側と連通している。換言すると、酸素供給源13と原料粉体供給路2Aとは、酸素供給ラインL2及びL2Bを介して接続されている。これにより、酸素ガスをキャリアガスとしてバーナ11に供給できる。
原料粉体供給源14は、原料粉体を貯蔵する設備であり、分岐した酸素供給ラインL2Bに設けられている。原料粉体供給源14と原料粉体供給路2Aとは、酸素供給ラインL2Bを介して接続されている。これにより、原料粉体である無機質粉体をキャリアガス(酸素ガス)とともにバーナ11に供給できる。
原料粉体供給源14の形態は、特に限定されない。例えば、原料タンク及び原料切り出し機構等を有していてもよい。
原料粉体は、球状粒子を得たい化合物(無機質粉体)であれば、特に限定されるものではない。このような化合物としては、具体的には、例えば、SiO、Al、MgO又はFe等の無機酸化物が挙げられる。
また、原料粉体の粒子形態は、特に限定されるものではなく、角を有する非球形の粒子であってもよいし、角を有さない球形の粒子であってもよい。
また、原料粉体の粒子径としては、1~500μmの範囲であることが好ましく、1~100μmの範囲であることが好ましい。ここで、原料粉体の粒子径が1μm未満であると、粒子同士が静電気で凝集し、500μmを超えると、バーナ火炎中で十分に加熱する事が出来なくなるために好ましくない。これに対して、上記範囲内であると、火炎中で適切に分散されつつ、十分に加熱・球状化する事が可能となる為に好ましい。
冷却水循環ラインL3は、バーナ11における水冷ジャケット5の冷却水の導出口5Bと導入口5Aとの間に位置する。冷却水循環ラインL3には、冷却水を貯留する冷却塔CT、ポンプP1、熱交換器H1及び熱交換器H2が設けられている。
冷却水循環ラインL3では、冷却塔CTの冷却水がポンプP1によって導入口5Aから水冷ジャケット5内へ供給され、バーナ11の冷却を終えた後に導出口5Bから排出される。次に、ジャケット5から排出された高温の冷却水は、冷却水循環ラインL3と酸素供給ラインL2とにわたって設けられた熱交換器H1において、低温の液化酸素あるいは酸素ガスとの熱交換によって冷却される。さらに、冷却水は、冷却水循環ラインL3とアンモニア供給ラインL1とにわたって設けられた熱交換器H2において、低温の液化アンモニアあるいはアンモニアガスとの熱交換によって冷却された後、冷却塔CTへ供給される。
本実施形態の装置10によれば、バーナ11の水冷ジャケット5に用いた冷却水を、液化酸素や液化アンモニアを気化あるいは加温する際の熱源として利用できる。
球状化炉15は、円筒形の竪型炉であって、その天井部(炉頂部)には上述のバーナ11が、その先端側を炉内に臨ませるようにして垂直下向きに取り付けられている。
球状化炉15の底部付近には、送風ブロワP2が設けられた空気導入ラインL4が接続されており、ここから冷却用空気を内部に導入し、排出される燃焼ガスの温度を下げることができるようになっている。
球状化炉15の底部付近には、排気ブロワP3が設けられた燃焼ガス排出ラインL5が接続されている。これにより、生成した球状化粒子は、燃焼ガスによって搬送され、サイクロン16の入口に送られるようになっている。
また、サイクロン16の出口にはダクトが設けられており、このダクトはバグフィルター17の入口に接続されている。
(無機質球状化粒子の製造方法)
次に、上述した装置10を用いた球状化粒子の製造方法について説明する。本実施形態の無機質球状化粒子の製造方法は、アンモニアを含む燃料ガスと、酸素を含有する支燃性ガスとの燃焼により形成されたバーナ火炎により無機質粉体を溶融し、球状化する。
図1~図4に示すように、先ず、原料粉体供給源14から原料粉体を、酸素供給源13から酸素供給ラインL2及びL2Bを介して供給されるキャリアガス(酸素ガス)を用いてバーナ11の原料粉体供給路2Aにおくり、複数の原料粉体噴出孔2aから球状化炉15に向けて噴出する。
同時に、アンモニア供給源12からアンモニア供給ラインL1を介して所定量のアンモニアガス(第1燃料ガス)をバーナ11の第1燃料供給路3Aに送り込み、酸素供給源13から酸素供給ラインL2及びL2Aを介して所定量の酸素ガス(第1支燃性ガス)をバーナ11の第1支燃性ガス供給路4Aに送り込む。そして、バーナ11の複数の第1予混合室6の開口6aからアンモニアガス(第1燃料ガス)と酸素ガス(第1支燃性ガス)との混合ガスを球状化炉15に向けて噴出する。
この際、第1予混合室6の開口6aから噴出される混合ガスの燃焼によって形成される第1火炎及び第2火炎によって、原料粉体を包囲する。これにより、原料粉体である無機質粉体を溶融・球状化する。
球状化した粒子は、バーナ11から生成した燃焼ガスと空気導入ラインL4から導入される空気とのガスに浮遊して球状化炉15の燃焼ガス排出ラインL5からサイクロン16に送られる。燃焼ガスに空気を混合することでサイクロン16に導入されるガスの温度が低下し、サイクロン16での粒子捕集に適した温度となる。
サイクロン16では、ガス中に浮遊している球状化粒子のうち、粗粒の球状化粒子が捕集される。サイクロン16から導出されたガスはバグフィルター17に送られ、ここで球状化粒子のうち、細粒の球状化粒子が捕集される。
ところで、本実施形態の無機質球状化粒子の製造方法では、第1燃料ガスとして、炭素源を含まない、アンモニアガスを用いる。これらの炭素源を含まない物質を効率よく燃焼させるために、バーナ11の複数の第1予混合室6に第1燃料ガスと第1支燃性ガスとを供給して予め混合した後に燃焼させて火炎を形成し、この火炎中に無機質粉体を投入する。このように、第1予混合室6に第1燃料ガスと第1支燃性ガスとを供給することで、第1燃料ガスとして炭素源を含まない物質を用いた場合であっても、燃焼効率を高めることができる。また、バーナ11の燃焼の際、逆火が生じるおそれを低減できる。
以上説明したように、本実施形態の装置(無機質球状化粒子製造装置)10は、バーナ11に対し、燃料ガスとして炭素源を含まないアンモニア(NH)を用いるため、二酸化炭素(CO)等の温暖化ガスの発生量を大幅に削減できる。また、燃料中の炭素源が原因となる煤の発生を抑制し、製品である無機質球状化粒子中への混入を避ける事ができる。
また、本実施形態の無機質球状化粒子の製造方法によれば、上述の製造装置10を用いるため、温暖化ガスの発生量を大幅に削減し、燃焼中の煤の発生を抑制できる。
本実施形態の装置10によれば、バーナ11の水冷ジャケット5に用いた冷却水を、液化酸素や液化アンモニアを気化あるいは加温する際の熱源として利用できる。したがって、アンモニア供給源12、アンモニア供給経路L1、酸素供給源13及び酸素供給ラインL2に、大型の気化器や加熱器を設ける必要がないため、設備の小型化や省エネルギー化を図ることができる。
<第2の実施形態>
次に、本発明を適用した第2の実施形態について説明する。図2は、本発明の第2実施形態である装置20の構成を示す系統図である。
図2に示すように、本実施形態の装置20は、助燃用燃料供給源18と、助燃用燃料供給ラインL6とをさらに備える点で、第1の実施形態の装置10とは異なる構成となっている。したがって、本実施形態の装置20については、第1の実施形態と同一の構成部分については同じ符号を付すると共に説明を省略する。
(無機質球状化粒子の製造装置)
図5に示すように、本実施形態の装置(以下、単に「装置」という場合がある)10は、無機質球状化粒子製造用バーナ11、アンモニア供給源12、酸素供給源13、原料粉体供給源14、球状化炉15、サイクロン16、バグフィルター17、アンモニア供給ラインL1、酸素供給ラインL2、冷却水循環ラインL3、助燃用燃料供給源18、及び助燃用燃料供給ラインL6を備える。
助燃用燃料供給源18は、燃料ガスの一部として用いる助燃用燃料を貯蔵する設備である。本実施形態の装置20において、燃料ガスとして用いるアンモニアガスは、従来の炭素源を含む気体燃料や水素と比較して燃焼性が低いため、バーナ11の第1燃料ガス噴射ノズル3aに助燃用燃料を供給する事で、燃焼時に発生する二酸化炭素を削減しつつ、バーナの火炎温度を高く維持できるため、原料粉体を効率よく溶融できる。
助燃用燃料としては、例えば、メタン(CH)やプロパン(C)等の気体燃料を用いることができる。また、液体霧化機構を有する場合であれば、灯油、アルコール等の液体燃料を用いることもできる。
助燃用燃料供給ラインL6は、アンモニア供給ラインL1のバーナ11寄りの位置Q2においてアンモニア供給ラインL1と接続されている。具体的には、助燃用燃料供給ラインL6は、助燃用燃料供給源18とバーナ11との間に位置し、アンモニア供給ラインL1を介してバーナ11の第1燃料供給路3Aの基端側と連通している。換言すると、助燃用燃料供給源18と第1燃料供給路3Aとは、助燃用燃料供給ラインL6及びアンモニア供給ラインL1を介して接続されている。これにより、助燃用燃料供給源18から助燃用燃料を第1燃料ガスの一部としてバーナ11に供給できる。
助燃用燃料供給ラインL6には、熱交換器H3と流量調節弁V4とが設けられている。これにより、バーナ11へ供給する助燃用燃料の温度や供給量を適宜調整できる。
(無機質球状化粒子の製造方法)
次に、上述した装置20を用いた球状化粒子の製造方法について説明する。本実施形態の無機質球状化粒子の製造方法は、アンモニア及び助燃用燃料を含む燃料ガスと、酸素を含有する支燃性ガスとの燃焼により形成されたバーナ火炎により無機質粉体を溶融し、球状化する。
また、本実施形態の無機質球状化粒子の製造方法によれば、助燃用燃料供給源18及び助燃用燃料供給ラインL6を用い、バーナ11の着火時に第1燃料ガス噴射ノズル3aに助燃用燃料を供給する事で、燃焼時に発生する二酸化炭素を削減しつつ、バーナの火炎温度を高く維持できるため、原料粉体を効率よく溶融できる。また、助燃用燃料の使用は、着火時のみとし、バーナ11の燃焼が安定した後に助燃用燃料の供給を停止してもよいし、流量調節弁V4で流量を調整しながら供給を継続してもよい。
以上説明したように、本実施形態の装置10及びその製造方法によれば、第1実施形態と同様の効果が得られるとともに、バーナ11の燃焼状態を容易に安定させることができる。
<第3の実施形態>
次に、本発明を適用した第3の実施形態について説明する。図6は、本発明の第3実施形態である装置30の構成を示す系統図である。
図6に示すように、本実施形態の装置30は、バーナの構成およびバーナへの各供給ラインの接続位置が異なる点で、第2の実施形態の装置20とは異なる構成となっている。したがって、本実施形態の装置30については、第1及び第2の実施形態と同一の構成部分については同じ符号を付すると共に説明を省略する。
(無機質球状化粒子製造用バーナ)
図7~図9は、第3実施形態の装置30に適用可能なバーナ21を示しており、図7はバーナ21をその先端側から眺めた平面図であり、図8は図7中に示すバーナ21の中心軸Cを通るB-B’に沿って切断した断面図であり、図9はバーナ21の先端側の拡大断面図である。
図7~図9に示すように、バーナ21は、当該バーナ21の中心軸Cから周方向外側に向けて、原料粉体供給管2、第1燃料供給管23、第1支燃性ガス供給管24、第2燃料供給管7、第2支燃性ガス供給管8、及び水冷ジャケット5から構成される、同心の多重管構造を有している。また、本実施形態のバーナ21は、燃料ガスと酸素を含有する支燃性ガスとを用いた酸素燃焼バーナである。
第1燃料供給管23は、図7に示すように、原料粉体供給管2の外側を覆うように設けられている。第1燃料供給管23の中心軸と原料粉体供給管2中心軸とは一致しており、第1燃料供給管23は、原料粉体供給管2と同軸に設けられている。
第1燃料供給管23と原料粉体供給管2との間に設けられた環状の空間は、第1燃料ガスを供給するための第1燃料供給路23Aである。換言すると、第1燃料供給路23Aは、第1粉体供給路2Aの外周を覆うように設けられている。
第1燃料供給路23Aの基端側は、上述した助燃用燃料供給ラインL6を介して助燃用燃料供給源18と接続されている。
第1燃料ガスとしては、助燃用燃料を用いることができるが、これに限定されない。第1燃料ガスとしては、第1及び第2実施形態と同様に、炭素源を含まない物質であるアンモニア(NH)を用いてもよい。
第1燃料ガスは、必要に応じて、窒素ガス、アルゴンガス等の不活性ガスによって希釈されたものを用いてもよい。
第1燃料供給路23Aの先端の位置は、バーナ21の軸方向において、原料粉体供給路2Aが複数の原料粉体供給支流路2Bに分岐する位置よりも基端側となっている。したがって、第1粉体供給路2Aの先端寄りの部分の外周には、第1燃料供給路23Aは設けられていない。
第1燃料供給路23Aの先端寄りの環状の空間は、基端部分及び中央部分と比較して外径が同じか僅かに大きくなっている。第1燃料供給路23Aの先端寄りの環状の空間の外径の位置は、原料粉体噴出孔2aの位置よりも内側であることが好ましい。これにより、図7に示すように、バーナ21の先端を平面視した際に、複数の原料粉体噴出孔2aよりも内側に、火炎(第1火炎)を形成するための第1燃料ガスを供給することができる。
図8及び図9に示すように、第1燃料供給路23Aの先端部分には、バーナ21の軸方向と平行方向に延在する複数の第1燃料ガス噴射ノズル(第1燃料供給支流路)3aが接続されている。第1燃料供給路23Aと複数の第1燃料ガス噴射ノズル3aの内側の空間とは、それぞれ連通されている。これにより、第1燃料供給路23Aから複数の第1燃料ガス噴射ノズル3aに、燃料ガスをそれぞれ供給できる。換言すると、第1燃料供給路23Aは、バーナ21の先端寄りの部分において複数の第1燃料ガス噴射ノズル3aに分岐している。
第1支燃性ガス供給管24は、図8に示すように、第1燃料供給管23の外側を覆うように設けられている。第1支燃性ガス供給管24の中心軸と第1燃料供給管23の中心軸とは一致しており、第1支燃性ガス供給管24は、第1燃料供給管23及び原料粉体供給管2と同軸に設けられている。
第1支燃性ガス供給管24と第1燃料供給管23との間に設けられた環状の空間は、第1支燃性ガスを供給するための第1支燃性ガス供給路24Aである。換言すると、第1支燃性ガス供給路24Aは、第1燃料供給路23Aの先端及び外周を覆うように設けられている。
第1支燃性ガス供給路24Aの基端側は、酸素供給ラインL2及びL2Aを介して酸素供給源13と接続されている。
第1支燃性ガスは、第1実施形態と同様に、第1燃料ガスと反応して火炎雰囲気を形成可能なガスであれば、特に限定されるものではない。第1支燃性ガスとしては、酸素、酸素富化空気等が挙げられる。
第1支燃性ガス供給路24Aの先端の位置は、バーナ21の軸方向において、原料粉体供給路2Aが複数の原料粉体供給支流路2Bに分岐する位置よりも先端側となっている。したがって、第1支燃性ガス供給路24Aは、第1粉体供給路2Aの先端寄りの部分の外周を覆うように設けられている。
第1支燃性ガス供給路24Aの先端寄りの環状の空間は、基端部分及び中央部分と比較して内径が小さくなっている。第1支燃性ガス供給路24Aの先端寄りの環状の空間の内径の位置は、原料粉体噴出孔2aの位置よりも内側であることが好ましい。これにより、図7に示すように、バーナ21の先端を平面視した際に、複数の原料粉体噴出孔2aよりも内側の位置に、第1火炎を形成するための第1支燃性ガスを供給することができる。
図8及び図9に示すように、バーナ21の周方向の外側から中心軸Cに向かって拡径された第1支燃性ガス供給路24Aの先端部分には、バーナ21の軸方向と平行方向に延在する複数の第1支燃性ガス供給孔(第1支燃性ガス供給支流路)4aが接続されている。第1支燃性ガス供給路24Aと複数の第1支燃性ガス供給孔4aの内側の空間とは、それぞれ連通されている。これにより、第1支燃性ガス供給路24Aから複数の第1支燃性ガス供給孔4aに、第1支燃性ガスをそれぞれ供給できる。換言すると、第1支燃性ガス供給路24Aは、バーナ21の先端寄りの部分において複数の第1支燃性ガス供給孔4aに分岐している。
第2燃料供給管7は、図7に示すように、第1支燃性ガス供給管24の外側を覆うように設けられている。第1燃料供給管23の中心軸と第1支燃性ガス供給管24の中心軸とは一致しており、第2燃料供給管7は、第1支燃性ガス供給管24と同軸に設けられている。
第2燃料供給管7と第1支燃性ガス供給管24との間に設けられた環状の空間は、第2燃料ガスを供給するための第2燃料供給路7Aである。換言すると、第2燃料供給路7Aは、第1支燃性ガス供給路24Aの外周を覆うように設けられている。
第2燃料供給路7Aの基端側は、アンモニア供給ラインL1を介してアンモニア供給源12と接続されている。
本実施形態では、第2燃料ガスとしてアンモニアガスを用いる態様を一例として説明するが、本発明はこれに限定されない。第2燃料ガスとしては、第1燃料ガスと同様に助燃用燃料を含むものを用いてもよい。
第2燃料ガスは、必要に応じて、窒素ガス、アルゴンガス等の不活性ガスによって希釈されたものを用いてもよい。
第2燃料供給路7Aの先端の位置は、バーナ21の軸方向において、第1燃料供給路23Aと同程度の位置となっている。したがって、第1粉体供給路2Aの先端寄りの部分の外周には、第2燃料供給路7Aは設けられていない。
第2燃料供給路7Aの先端寄りの環状の空間は、基端部分及び中央部分と比較して外径が同じか僅かに大きくなっている。第2燃料供給路7Aの先端寄りの環状の空間の外径の位置は、原料粉体噴出孔2aの位置よりも外側であることが好ましい。これにより、図7に示すように、バーナ21の先端を平面視した際に、複数の原料粉体噴出孔2aよりも外側に、火炎(第2火炎)を形成するための第2燃料ガスを供給することができる。
図8及び図9に示すように、第2燃料供給路7Aの先端部分には、バーナ21の軸方向と平行方向に延在する複数の第2燃料ガス噴射ノズル(第2燃料供給支流路)7aが接続されている。第2燃料供給路7Aと複数の第2燃料ガス噴射ノズル7aの内側の空間とは、それぞれ連通されている。これにより、第2燃料供給路7Aから複数の第2燃料ガス噴射ノズル7aに、第2燃料ガスをそれぞれ供給できる。換言すると、第2燃料供給路7Aは、バーナ21の先端寄りの部分において複数の第2燃料ガス噴射ノズル7aに分岐している。
第2支燃性ガス供給管8は、図8に示すように、第2燃料供給管7の外側を覆うように設けられている。第2支燃性ガス供給管8の中心軸と第2燃料供給管7の中心軸とは一致しており、第2支燃性ガス供給管8は、第2燃料供給管7及び原料粉体供給管2と同軸に設けられている。
第2支燃性ガス供給管8と第2燃料供給管7との間に設けられた環状の空間は、第2支燃性ガスを供給するための第2支燃性ガス供給路8Aである。換言すると、第2支燃性ガス供給路8Aは、第2燃料供給路7Aの先端及び外周を覆うように設けられている。
第2支燃性ガス供給路8Aの基端側は、酸素供給ラインL2及びL2Cを介して酸素供給源13と接続されている。
第2支燃性ガスは、第1支燃性ガスと同様に、第2燃料ガスと反応して火炎雰囲気を形成可能なガスであれば、特に限定されるものではない。第2支燃性ガスとしては、酸素、酸素富化空気等が挙げられる。第2支燃性ガスとしては、第1支燃性ガスと同一の成分であってもよいし、異なる成分であってもよい。
第2支燃性ガス供給路8Aの先端の位置は、バーナ21の軸方向において、原料粉体供給路2Aが複数の原料粉体供給支流路2Bに分岐する位置よりも先端側となっている。したがって、第2支燃性ガス供給路8Aは、第1支燃性ガス供給路24の先端寄りの部分の外周を覆うように設けられている。
第2支燃性ガス供給路8Aの先端寄りの環状の空間は、基端部分及び中央部分と比較して内径が小さくなっている。第2支燃性ガス供給路8Aの先端寄りの環状の空間の内径の位置は、原料粉体噴出孔2aの位置よりも外側であることが好ましい。これにより、図7に示すように、バーナ21の先端を平面視した際に、複数の原料粉体噴出孔2aよりも外側の位置に、火炎(第2火炎)を形成するための第2支燃性ガスを供給することができる。
図8及び図9に示すように、バーナ21の周方向の外側から中心軸Cに向かって拡径された第2支燃性ガス供給路8Aの先端部分には、バーナ21の軸方向と平行方向に延在する複数の第2支燃性ガス供給孔(第2支燃性ガス供給支流路)8aが接続されている。第2支燃性ガス供給路8Aと複数の第2支燃性ガス供給孔8aの内側の空間とは、それぞれ連通されている。これにより、第2支燃性ガス供給路8Aから複数の第2支燃性ガス供給孔8aに、第2支燃性ガスをそれぞれ供給できる。換言すると、第2支燃性ガス供給路8Aは、バーナ21の先端寄りの部分において複数の第2支燃性ガス供給孔8aに分岐している。
本実施形態のバーナ21は、図9に示すように、第2燃料ガス噴射ノズル7aが第2支燃性ガス供給孔8aの内側にそれぞれ位置する。また、第2燃料ガス噴射ノズル7aの先端7bは、第2支燃性ガス供給孔8aの内側にそれぞれ位置する。すなわち、第2燃料ガス噴射ノズル7aは、第2支燃性ガス供給孔8aの内側で開口する。
ここで、第2燃料ガス噴射ノズル7aの先端7bから第2支燃性ガス供給孔8aの内側に第2燃料ガスを噴射すると、第2支燃性ガス供給孔8aの内側に向けて第2支燃性ガス供給路8Aから第2支燃性ガスが供給される。そして、第2燃料ガス噴射ノズル7aの先端7bよりも前方の、第2支燃性ガス供給孔8aの内側において、第2燃料ガスと第2支燃性ガスとが混合される。
このように、第2燃料ガス噴射ノズル7aの先端7bから、第2支燃性ガス供給孔8aの先端8bまでの空間は、第2燃料ガスと第2支燃性ガスとを混合する第2予混合室9となる。また、第2支燃性ガス供給孔8aの先端8bの開口が、第2予混合室9の開口9aとなる。
換言すると、本実施形態のバーナ21は、複数の第2予混合室9を備える。これらの第2予混合室9は、バーナ21の軸方向の先端寄りに位置する。第2予混合室9は、第2燃料ガス噴射ノズル7aの一つ、及び第2支燃性ガス供給孔8aの一つとそれぞれ連通する。第2予混合室9は、バーナ21の軸方向の先端にそれぞれ開口する。
第2予混合室9の容積v2は、第1燃料ガスと第1支燃性ガスとを充分混合することができ、逆火の恐れがなければ、特に限定されない。
このような容積v2[m]としては、上述した第1予混合室6の容積v1と同様とすることができる。すなわち、第1燃料ガスと第1支燃性ガスとの合計流量Q1を25~50[Nm/h]とする場合には、3.0×10-5~1.0×10-3[m]とすればよく、1.0×10-4~1.0×10-3[m]がより好ましい。容積v2を1.0×10-4~1.0×10-3[m]の範囲とすれば、第2予混合室9内で第1燃料ガスと第1支燃性ガスとを充分混合できる。
また、第2燃料ガス噴射ノズル7aの先端7bから、第2支燃性ガス供給孔8aの先端8bまでのオフセット距離L2としては、上述したオフセット距離L1と同様に、1.0×10-3~1.0×10-4[m]とすればよく、2.0×10-3~5.0×10-2[m]がより好ましい。
また、第2予混合室9の数量は、第1燃料ガスと第1支燃性ガスとの混合ガスの供給量や、原料粉体噴出孔2aの数量やレイアウト(配置)に応じて適宜選択することができる。
第2予混合室9では、第2燃料ガスと第2支燃性ガスとをあらかじめ混合し、混合ガスとして開口9aからバーナ21の軸方向と平行な方向に向けて噴射する。
バーナ21は、小さな容積の第1予混合室6及び第2予混合室9を複数備え、第1予混合室6において第1燃料ガスと第1支燃性ガスとをあらかじめ混合し、第2予混合室9において第2燃料ガスと第2支燃性ガスとをあらかじめ混合する構成となっている。これにより、燃料ガスと支燃性ガスとを充分に混合して燃焼効率をあげることができ、逆火のおそれもない。
本実施形態のバーナ21によれば、図7に示すように、バーナ21の先端を平面視した際に、バーナ21の中心軸Cを中心とする円環状に配設された原料粉体噴出孔2aの内側に、同心円となるように、複数の第1予混合室6の開口6aが等間隔に配設され、原料粉体噴出孔2aの外側に、同心円となるように、複数の第2予混合室9の開口9aが等間隔に配設される。すなわち、原料粉体噴出孔2aは、第1予混合室6の開口6aによって内側を、第2予混合室9の開口9aによって外側をそれぞれ囲まれる。
換言すると、本実施形態のバーナ21は、バーナ21の中心部(中央部)に、第1燃料ガスと第1支燃性ガスとの混合ガスからなる火炎(以下、「第1火炎」ともいう)を形成するために、複数の第1予混合室6の開口6aを円環状に配置し、第1火炎の外周を囲むように複数の原料粉体噴出孔2aを円環状に配置する。さらに、複数の原料粉体噴出孔2aの外側に、これらの原料粉体噴出孔2aの外周を囲むように第2燃料ガスと第2支燃性ガスとの混合ガスからなる火炎(以下、「第2火炎」ともいう)を形成するために、複数の第2予混合室9の開口9aを円環状に配置する。これにより、原料粉体噴出孔2aから噴出された原料粉体に対して火炎の熱を効率よく伝達でき、原料粉体を効率よく溶融できる。
また、原料粉体噴出孔2aの外周を囲むように第2火炎を形成することで、バーナ21の周囲からの巻き込み空気もしくは炉内燃焼排ガスを遮断できるため、無機質粉体の溶融・球状化の効率を高めることができる。
また、本実施形態のバーナ21によれば、第1火炎を形成するための第1燃料ガスの流量と、第2火炎を形成するための第2燃料ガスの流量を各々独立に制御し、第1火炎を形成するための第1支燃性ガス流量と、第2火炎を形成するための第2支燃性ガスの流量を各々独立に制御することができる。これにより、バーナ21の先端から噴射される原料粉体に対して、適切な燃焼状態を作り出す事が可能となる。
アンモニア供給ラインL1は、アンモニア供給源12とバーナ21との間に位置する。具体的には、アンモニア供給ラインL1は、バーナ21の第2燃料供給路7Aの基端側と連通している。換言すると、アンモニア供給源12と第2燃料供給路7Aとは、アンモニア供給ラインL1を介して接続されている。これにより、アンモニア供給源12からアンモニアガスを第2燃料ガスとしてバーナ21に供給できる。
酸素供給ラインL2は、酸素供給源13とバーナ21との間に位置する。
また、酸素供給ラインL2は、Q1地点でL2A、L2B及びL2Cに分岐する。
酸素供給ラインL2には、後述する熱交換器H1が設けられている。また、酸素供給ラインL2には、液体の酸素を気化する気化器(図示略)が設けられていてもよい。
分岐した酸素供給ラインL2Cには、流量調節バルブV5が設けられている。
分岐した酸素供給ラインL2Aは、バーナ21の第1支燃性ガス供給路24Aの基端側と連通している。換言すると、酸素供給源13と第1支燃性ガス供給路24Aとは、酸素供給ラインL2及びL2Aを介して接続されている。これにより、酸素供給源13から酸素ガスを第1支燃性ガスとしてバーナ21に供給できる。
また、分岐した酸素供給ラインL2Bは、バーナ21の原料粉体供給路2Aの基端側と連通している。換言すると、酸素供給源13と原料粉体供給路2Aとは、酸素供給ラインL2及びL2Bを介して接続されている。これにより、酸素ガスをキャリアガスとしてバーナ21に供給できる。
また、分岐した酸素供給ラインL2Cは、バーナ21の第2支燃性ガス供給路8Aの基端側と連通している。換言すると、酸素供給源13と第2支燃性ガス供給路8Aとは、酸素供給ラインL2及びL2Cを介して接続されている。これにより、酸素供給源13から酸素ガスを第2支燃性ガスとしてバーナ21に供給できる。
原料粉体供給源14は、原料粉体を貯蔵する設備であり、分岐した酸素供給ラインL2Bに設けられている。原料粉体供給源14と原料粉体供給路2Aとは、酸素供給ラインL2Bを介して接続されている。これにより、原料粉体である無機質粉体をキャリアガス(酸素ガス)とともにバーナ11に供給できる。
原料粉体供給源14の形態は、特に限定されない。例えば、原料タンク及び原料切り出し機構等を有していてもよい。
冷却水循環ラインL3は、バーナ21における水冷ジャケット5の冷却水の導出口5Bと導入口5Aとの間に位置する。冷却水循環ラインL3には、冷却水を貯留する冷却塔CT、ポンプP1、熱交換器H1、熱交換器H3及び熱交換器H2が設けられている。
冷却水循環ラインL3では、冷却塔CTの冷却水がポンプP1によって導入口5Aから水冷ジャケット5内へ供給され、バーナ11の冷却を終えた後に導出口5Bから排出される。次に、ジャケット5から排出された高温の冷却水は、冷却水循環ラインL3と酸素供給ラインL2とにわたって設けられた熱交換器H1において、低温の液化酸素あるいは酸素ガスとの熱交換によって冷却される。次いで、冷却水は、冷却水循環ラインL3と助燃用燃料供給経路L6とにわたって設けられた熱交換器H3において、低温の助燃用燃料との熱交換によって冷却される。さらに、冷却水は、冷却水循環ラインL3とアンモニア供給ラインL1とにわたって設けられた熱交換器H2において、低温の液化アンモニアあるいはアンモニアガスとの熱交換によって冷却された後、冷却塔CTへ供給される。
助燃用燃料供給ラインL6は、助燃用燃料供給源18とバーナ21との間に位置する。具体的には、助燃用燃料供給ラインL6は、バーナ21の第1燃料供給路23Aの基端側と連通している。換言すると、助燃用燃料供給源18と第1燃料供給路23Aとは、助燃用燃料供給ラインL6を介して接続されている。これにより、助燃用燃料供給源18から助燃用燃料を第1燃料ガスとしてバーナ21に供給できる。
(無機質球状化粒子の製造方法)
次に、上述したバーナ21を備えた装置30を用いた球状化粒子の製造方法について説明する。
本実施形態の無機質球状化粒子の製造方法は、燃料ガスと酸素を含有する支燃性ガスとの燃焼により形成されたバーナ火炎により無機質粉体を溶融し、球状化する。
本実施形態の無機質球状化粒子の製造方法では、第1及び第2燃料ガスの少なくとも一方に、炭素源を含まない、アンモニアガスを用いる。アンモニアガスを効率よく燃焼させるために、バーナ21の複数の第1予混合室6及び複数の第2の予混合室9に、それぞれ燃料ガスと支燃性ガスとを供給して予め混合した後に燃焼させて火炎を形成し、この火炎中に無機質粉体を投入する。
また、本実施形態の無機質球状化粒子の製造方法では、バーナ21の第1及び第2燃料ガス噴射ノズルへの燃料ガス及び支燃性ガスの供給が各々独立しているため、第1燃料ガス噴射ノズルに炭素源を含む物質を助燃用燃料として供給し、第2燃料ガス噴射ノズルにアンモニア(NH)を燃料ガスとして供給する事が出来る。
特に、アンモニアは、従来の炭素源を含む気体燃料や水素と比較して燃焼性が低いため、燃料ガスとしてアンモニアを用いる場合は、第1燃料ガス噴射ノズル3aに助燃用燃料を供給する事で、燃焼時に発生する二酸化炭素を削減しつつ、バーナの火炎温度を高く維持できるため、原料粉体を効率よく溶融できる。また、助燃用燃料の使用は、着火時のみとし、バーナ21の燃焼が安定した後、助燃用燃料の供給を停止してもよい。
以上説明したように、本実施形態の装置30およびその製造方法によれば、第1及び第2実施形態と同様の効果が得られる。
また、本実施形態の装置30によれば、バーナ21の第1燃料ガス噴射ノズル3aへの燃料ガスの供給と、第2燃料ガス噴射ノズル7aへの燃料ガスの供給とが各々独立しているため、第1火炎を形成するための第1燃料ガス及び第1支燃性ガスの流量と、第2火炎を形成するための第2燃料ガス及び第2支燃性ガスの流量とを各々独立に制御することができる。これにより、原料ガスとしてアンモニアガスを用いる場合であっても、バーナ21の先端から噴射される原料粉体に対して、適切な燃焼状態を作り出す事が可能となる。
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上述した第2実施形態の装置20では、燃料ガスとしてアンモニアを用い、バーナ11の着火時に助燃用燃料を使用する場合、アンモニア供給ラインL1と助燃用燃料供給ラインL6とが合流する構成を例示したが、第3実施形態に適用してもよい。
第2実施形態のバーナ11及び第3実施形態のバーナ21に助燃用燃料を供給するための態様は、特に限定されない。
例えば、第1燃料供給路3A又は第2燃料供給路7Aが、助燃用燃料供給源18と接続されており、第1燃料ガス噴射ノズル3aあるいは第2燃料ガス噴射ノズル7aに対して助燃用燃料を供給可能であればよい。
また、助燃用燃料が供給される第1予混合室6または第2予混合室9において、アンモニアと助燃用燃料との混合燃焼から、アンモニア100%燃焼に切り替え可能とされていてもよい。
また、第3実施形態の装置30及び無機質球状化粒子の製造方法では、バーナ21の第1燃料ガス噴射ノズルに炭素源を含む物質を助燃用燃料として供給し、第2燃料ガス噴射ノズルにアンモニア(NH)を燃料ガスとして供給する態様を一例として説明したが、これに限定されない。例えば、バーナ21の第1燃料ガス噴射ノズルにアンモニア(NH)を燃料ガスとして供給し、第2燃料ガス噴射ノズルに炭素源を含む物質を助燃用燃料として供給する態様であってもよい。
10,20,30・・・無機質球状化粒子製造装置(装置)
11,21・・・バーナ(無機質球状化粒子製造用バーナ)
2A・・・原料粉体供給路
2B・・・原料粉体供給支流路
2a・・・原料粉体噴出孔
3A,23A・・・第1燃料供給路
3a・・・第1燃料ガス噴射ノズル(第1燃料供給支流路)
3b・・・第1燃料供給支流路の先端
4A,24A・・・第1支燃性ガス供給路
4a・・・第1支燃性ガス供給孔(第1支燃性ガス供給支流路)
4b・・・第1支燃性ガス供給支流路の先端
6・・・第1予混合室
6a・・・第1予混合室の開口
7・・・第2燃料供給路
7a・・・第2燃料ガス噴射ノズル(第2燃料供給支流路)
7b・・・第2燃料供給支流路の先端
8・・・第2支燃性ガス供給路
8a・・・第2支燃性ガス供給孔(第2支燃性ガス供給支流路)
8b・・・第2支燃性ガス供給支流路の先端
9・・・第2予混合室
9a・・・第2予混合室の開口
12・・・アンモニア供給源
13・・・酸素供給源
14・・・原料粉体供給源
15・・・球状化炉
16・・・サイクロン
17・・・バグフィルター
18・・・助燃用燃料供給源
L1・・・アンモニア供給ライン
L2・・・酸素供給ライン
L3・・・冷却水循環ライン
L6・・・助燃用燃料供給ライン
C・・・バーナの中心軸
H1,H2,H3・・・熱交換器

Claims (8)

  1. アンモニアを含む燃料ガスと酸素を含有する支燃性ガスとを用いる無機質球状化粒子製造用バーナと、
    前記無機質球状化粒子製造用バーナを、炉頂部に垂直下向きに接続する竪型の球状化炉と、
    アンモニア供給源と、
    酸素供給源と、
    前記アンモニア供給源と前記無機質球状化粒子製造用バーナとの間に位置するアンモニア供給ラインと、
    前記酸素供給源と前記無機質球状化粒子製造用バーナとの間に位置する酸素供給ラインと、を備え
    前記無機質球状化粒子製造用バーナが、
    原料粉体として無機質粉体を供給する原料粉体供給路と、
    前記アンモニア供給ラインと連通し、第1燃料ガスとしてアンモニアを供給するとともに、当該無機質球状化粒子製造用バーナの先端寄りの部分において複数の第1燃料ガス噴射ノズルに分岐する第1燃料供給路と、
    前記酸素供給ラインと連通し、第1支燃性ガスとして酸素を供給するとともに、当該無機質球状化粒子製造用バーナの先端寄りの部分において複数の第1支燃性ガス供給孔に分岐する第1支燃性ガス供給路と、
    当該無機質球状化粒子製造用バーナの軸方向の先端寄りに位置し、当該無機質球状化粒子製造用バーナの軸方向の先端にそれぞれ開口する、複数の第1予混合室を有し、
    第1燃料ガス噴射ノズルは、第1支燃性ガス供給孔の内側にそれぞれ位置し、前記第1燃料ガス噴射ノズルが前記第1支燃性ガス供給孔の内側でそれぞれ開口し、
    前記第1予混合室は、前記第1燃料ガス噴射ノズルの先端から、前記第1支燃性ガス供給孔の先端までの空間である、無機質球状化粒子製造装置。
  2. 複数の前記第1予混合室の開口は、前記無機質球状化粒子製造用バーナの先端を平面視した際に、当該無機質球状化粒子製造用バーナの中心軸と同心円となるようにそれぞれ配設される、請求項1に記載の無機質球状化粒子製造装置。
  3. 助燃用燃料供給源と、
    前記助燃用燃料供給源と前記無機質球状化粒子製造用バーナとの間に位置する助燃用燃料供給ラインと、をさらに備え
    前記助燃用燃料供給ラインと前記第1燃料供給路とが連通される、請求項1又は2に記載の無機質球状化粒子製造装置。
  4. 助燃用燃料供給源と、
    前記助燃用燃料供給源と前記無機質球状化粒子製造用バーナとの間に位置する助燃用燃料供給ラインと、をさらに備え、
    前記無機質球状化粒子製造用バーナが
    前記アンモニア供給ライン及び前記助燃用燃料供給ラインの一方又は両方と連通し、第2燃料ガスとしてアンモニア及び助燃用燃料の一方又は両方を供給するとともに、当該無機質球状化粒子製造用バーナの先端寄りの部分において複数の第2燃料ガス噴射ノズルに分岐する第2燃料供給路と、
    前記酸素供給ラインと連通し、第2支燃性ガスとして酸素を供給するとともに、当該無機質球状化粒子製造用バーナの先端寄りの部分において複数の第2支燃性ガス供給孔に分岐する第2支燃性ガス供給路と
    当該無機質球状化粒子製造用バーナの軸方向の先端寄りに位置し、当該無機質球状化粒子製造用バーナの軸方向の先端にそれぞれ開口する、複数の第2予混合室を有し、
    第2燃料ガス噴射ノズルは、第2支燃性ガス供給孔の内側にそれぞれ位置し、前記第2燃料ガス噴射ノズルが前記第2支燃性ガス供給孔の内側でそれぞれ開口し、
    前記第2予混合室は、前記第2燃料ガス噴射ノズルの先端から、前記第2支燃性ガス供給孔の先端までの空間である、請求項1又は2に記載の無機質球状化粒子製造装置。
  5. 複数の前記第2予混合室の開口は、前記無機質球状化粒子製造用バーナの先端を平面視した際に、当該無機質球状化粒子製造用バーナの中心軸と同心円となるようにそれぞれ配設される、請求項4に記載の無機質球状化粒子製造装置。
  6. 前記無機質球状化粒子製造用バーナが、水冷ジャケットを有し、
    前記水冷ジャケットの冷却水の導出口と導入口との間に位置する冷却水循環ラインをさらに備える、請求項1乃至のいずれか一項に記載の無機質球状化粒子製造装置。
  7. 前記アンモニア供給ラインと前記冷却水循環ラインとに位置する熱交換器を備える、請求項に記載の無機質球状化粒子製造装置。
  8. 前記球状化炉の下流に位置するサイクロン及びバグフィルターをさらに備える請求項1乃至7のいずれか一項に記載の無機質球状化粒子製造装置。
JP2019176600A 2019-09-27 2019-09-27 無機質球状化粒子製造装置 Active JP7161460B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019176600A JP7161460B2 (ja) 2019-09-27 2019-09-27 無機質球状化粒子製造装置
EP20869874.6A EP4035766A4 (en) 2019-09-27 2020-09-11 APPARATUS FOR PRODUCING SPHEROIDIZED INORGANIC PARTICLES AND METHOD FOR PRODUCING SPHEROIDIZED INORGANIC PARTICLES
US17/762,124 US20220349652A1 (en) 2019-09-27 2020-09-11 Apparatus for producing inorganic spheroidized particles and method for producing inorganic spheroidized particles
PCT/JP2020/034499 WO2021060025A1 (ja) 2019-09-27 2020-09-11 無機質球状化粒子製造装置及び無機質球状化粒子の製造方法
CN202080065381.5A CN114466693A (zh) 2019-09-27 2020-09-11 无机质球状化粒子制造装置及无机质球状化粒子制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019176600A JP7161460B2 (ja) 2019-09-27 2019-09-27 無機質球状化粒子製造装置

Publications (2)

Publication Number Publication Date
JP2021053539A JP2021053539A (ja) 2021-04-08
JP7161460B2 true JP7161460B2 (ja) 2022-10-26

Family

ID=75166632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019176600A Active JP7161460B2 (ja) 2019-09-27 2019-09-27 無機質球状化粒子製造装置

Country Status (5)

Country Link
US (1) US20220349652A1 (ja)
EP (1) EP4035766A4 (ja)
JP (1) JP7161460B2 (ja)
CN (1) CN114466693A (ja)
WO (1) WO2021060025A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7256778B2 (ja) * 2020-09-09 2023-04-12 大陽日酸株式会社 無機質球状化粒子製造装置、及び無機質球状化粒子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007785A (ja) 2010-06-23 2012-01-12 Taiyo Nippon Sanso Corp 無機質球状化粒子製造用バーナ、無機質球状化粒子製造装置、及び無機質球状化粒子の製造方法
JP2012206077A (ja) 2011-03-30 2012-10-25 Taiyo Nippon Sanso Corp 無機質球状化粒子の製造方法、無機質球状化粒子製造用バーナ及び無機質球状化粒子製造装置
JP2016130619A (ja) 2015-01-15 2016-07-21 国立大学法人東北大学 低燃焼性燃料燃焼装置
JP2016169933A (ja) 2015-03-16 2016-09-23 株式会社ティラド 気体燃料用バーナー
JP2019138565A (ja) 2018-02-13 2019-08-22 株式会社セイブ・ザ・プラネット 燃料の燃焼装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145613A (ja) 1982-02-15 1983-08-30 Denki Kagaku Kogyo Kk 溶融シリカ球状体、その製造法およびその装置
JP3312228B2 (ja) 1993-06-02 2002-08-05 日本酸素株式会社 無機質球状化粒子製造用バーナー
US5876683A (en) * 1995-11-02 1999-03-02 Glumac; Nicholas Combustion flame synthesis of nanophase materials
JP3331491B2 (ja) 1996-09-18 2002-10-07 日本酸素株式会社 無機質球状化粒子の製造装置
US6244854B1 (en) * 1999-05-13 2001-06-12 The Boc Group, Inc. Burner and combustion method for the production of flame jet sheets in industrial furnaces
JP3991098B2 (ja) * 2000-10-23 2007-10-17 独立行政法人産業技術総合研究所 火炎で合成した窒化アルミニウム製フィラー粉体
CN100369803C (zh) * 2005-05-31 2008-02-20 昆明理工大学 一种制备气相法纳米氧化物的方法和装置
DE102006034007A1 (de) * 2006-07-22 2008-02-07 Messer Group Gmbh Verfahren und Vorrichtung zum Eintragen eines Mediums in einen thermischen Behandlungsraum
JP4769276B2 (ja) * 2008-08-04 2011-09-07 大陽日酸株式会社 無機質球状化粒子製造用バーナ
JP5287265B2 (ja) * 2009-01-08 2013-09-11 トヨタ自動車株式会社 アンモニア燃焼内燃機関
US8904994B2 (en) * 2010-04-26 2014-12-09 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine
US8561578B2 (en) * 2010-12-30 2013-10-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Hydrogen generator and internal combustion engine provided with hydrogen generator
CN207716413U (zh) * 2017-11-15 2018-08-10 厦门大学 氨燃料燃烧咀及具有该燃烧咀的燃烧器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007785A (ja) 2010-06-23 2012-01-12 Taiyo Nippon Sanso Corp 無機質球状化粒子製造用バーナ、無機質球状化粒子製造装置、及び無機質球状化粒子の製造方法
JP2012206077A (ja) 2011-03-30 2012-10-25 Taiyo Nippon Sanso Corp 無機質球状化粒子の製造方法、無機質球状化粒子製造用バーナ及び無機質球状化粒子製造装置
JP2016130619A (ja) 2015-01-15 2016-07-21 国立大学法人東北大学 低燃焼性燃料燃焼装置
JP2016169933A (ja) 2015-03-16 2016-09-23 株式会社ティラド 気体燃料用バーナー
JP2019138565A (ja) 2018-02-13 2019-08-22 株式会社セイブ・ザ・プラネット 燃料の燃焼装置

Also Published As

Publication number Publication date
WO2021060025A1 (ja) 2021-04-01
US20220349652A1 (en) 2022-11-03
EP4035766A1 (en) 2022-08-03
EP4035766A4 (en) 2023-10-25
CN114466693A (zh) 2022-05-10
JP2021053539A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
JPS6222726Y2 (ja)
AU2005314037B2 (en) Method and apparatus for conditioning liquid hydrocarbon fuels
US7677882B2 (en) Smokeless liquid dual-phase burner system
JP7161460B2 (ja) 無機質球状化粒子製造装置
US11747014B2 (en) Atmosphere-adjustable multi-staged swirl ammonia burner
JP2023549386A (ja) 燃焼器システム及び方法
JP6580341B2 (ja) 揮発性有機化合物燃焼装置、ボイラ、タンカーおよび揮発性有機化合物燃焼方法
WO2021060027A1 (ja) 無機質球状化粒子製造用バーナ、無機質球状化粒子製造装置及び無機質球状化粒子の製造方法
JP6152417B2 (ja) 液体燃料の触媒燃焼を行うための触媒加熱器と反応器とに使用される燃料噴射システム
JP7316313B2 (ja) 無機質球状化粒子製造装置
JP7029432B2 (ja) 無機質球状化粒子製造用バーナ、無機質球状化粒子製造装置及び無機質球状化粒子の製造方法
JP2022145245A (ja) 無機質球状化粒子製造用バーナ及び無機質球状化粒子の製造方法、並びに無機質球状化粒子
JP7256778B2 (ja) 無機質球状化粒子製造装置、及び無機質球状化粒子の製造方法
CN114450519B (zh) 无机质球状化粒子制造用燃烧器、无机质球状化粒子制造装置及无机质球状化粒子制造方法
CN108955273B (zh) 一种内置于炉内的热能回收型内冷式dx气氛发生器
JP2022145244A (ja) 無機質球状化粒子製造用バーナ及び無機質球状化粒子の製造方法、並びに無機質球状化粒子
TWI845763B (zh) 高溫氧氣產生裝置及高溫氧氣產生方法
CN118189175A (zh) 燃烧器
JP2003004208A (ja) ベンチュリー・クラスター、バーナー装置及びこのクラスターを使用する方法
JP2023031404A (ja) 高炉羽口用バーナ
TW202319685A (zh) 2流體噴射噴嘴用之霧化流體供給單元、供給單元、燃燒系統,以及供給方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221014

R150 Certificate of patent or registration of utility model

Ref document number: 7161460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150