JP7160247B2 - 回路診断装置及びそれを含むバッテリーパック - Google Patents

回路診断装置及びそれを含むバッテリーパック Download PDF

Info

Publication number
JP7160247B2
JP7160247B2 JP2021552163A JP2021552163A JP7160247B2 JP 7160247 B2 JP7160247 B2 JP 7160247B2 JP 2021552163 A JP2021552163 A JP 2021552163A JP 2021552163 A JP2021552163 A JP 2021552163A JP 7160247 B2 JP7160247 B2 JP 7160247B2
Authority
JP
Japan
Prior art keywords
signal
line
relay
diagnostic
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021552163A
Other languages
English (en)
Other versions
JP2022522516A (ja
Inventor
ジュン、ゲオン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Energy Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Energy Solution Ltd filed Critical LG Energy Solution Ltd
Publication of JP2022522516A publication Critical patent/JP2022522516A/ja
Application granted granted Critical
Publication of JP7160247B2 publication Critical patent/JP7160247B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/005Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing phase or frequency of 2 mutually independent oscillations in demodulators)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/02Measuring characteristics of individual pulses, e.g. deviation from pulse flatness, rise time or duration
    • G01R29/027Indicating that a pulse characteristic is either above or below a predetermined value or within or beyond a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage

Description

本発明は、回路診断装置及びそれを含むバッテリーパックに関し、より詳しくは、DC-DCコンバータを用いた信号変換に基づいてバッテリーパックの欠陥発生を判断する回路診断装置及びそれを含むバッテリーパックに関する。
本出願は、2019年11月26日付け出願の韓国特許出願第10-2019-0153700号に基づく優先権を主張し、当該出願の明細書及び図面に開示された内容は、すべて本出願に組み込まれる。
近年、ノートパソコン、ビデオカメラ、携帯電話などのような携帯用電子製品の需要が急激に伸び、電気自動車、エネルギー貯蔵用蓄電池、ロボット、衛星などの開発が本格化するにつれて、繰り返して充放電可能な高性能バッテリーに対する研究が活発に行われている。
現在、ニッケルカドミウム電池、ニッケル水素電池、ニッケル亜鉛電池、リチウムバッテリーなどのバッテリーが商用化しているが、中でもリチウムバッテリーはニッケル系列のバッテリーに比べてメモリ効果が殆ど起きず充放電が自在であって、自己放電率が非常に低くてエネルギー密度が高いという長所から脚光を浴びている。
このようなバッテリーを備えるバッテリーパックは、電子製品、電気自動車及びエネルギー貯蔵用蓄電池などの装置に接続されて、バッテリーとこれら装置とを連結する役割をする。
図1は、第1比較例を概略的に示した図である。具体的には、図1は負荷と接続された従来のバッテリーパックの例示的構成を示した図である。
図1を参照すると、第1比較例のバッテリーパックは、バッテリーB、メインスイッチSW、マイクロコントローラユニット(micro controller unit:MCU)及びハイサイドドライバ集積回路(high side driver integrated circuit:HSD IC)を含み、負荷と接続されている。
マイクロコントローラユニットは、ラインLaを通じて制御信号をハイサイドドライバ集積回路に出力する。例えば、制御信号は、パルス幅変調(pulse width modulation:PWM)信号であり得る。そして、ハイサイドドライバ集積回路は、受信したパルス幅変調信号に対応する制御信号をメインスイッチSWにラインLbを通じて出力する。制御信号を受信したメインスイッチSWの動作状態がターンオン状態に切り換えられ、バッテリーBから出力された電流が負荷に流れる。このとき、ハイサイドドライバ集積回路は、ラインLcを通じてメインスイッチSWの一端電圧を測定し、ラインLdを通じてメインスイッチSWの他端電圧を測定する。そして、ハイサイドドライバ集積回路は、測定したメインスイッチSWの一端電圧と他端電圧との差を算出することで、バッテリーパックに欠陥が発生したか否かを判断することができる。
例えば、メインスイッチSWと負荷と間で地絡(short-to-ground:STG)が発生した場合、ハイサイドドライバ集積回路はラインLdを通じてメインスイッチSWの他端電圧を0[V]と測定する。この場合、ラインLcを通じて測定されたメインスイッチSWの一端電圧とラインLdを通じて測定されたメインスイッチSWの他端電圧とが相異なるため、ハイサイドドライバ集積回路はバッテリーパックに欠陥が発生したと判断する。
ただし、ハイサイドドライバ集積回路は、マイクロコントローラユニットからパルス幅変調信号を受信した場合のみに動作する。すなわち、マイクロコントローラユニットから出力されるパルス幅変調信号は、ハイサイドドライバ集積回路を駆動させるためのウェイクアップ信号であり得る。
また、一般にハイサイドドライバ集積回路は、安定性を確保するため、マイクロコントローラユニットから信号が入力されてから所定の時間が経過した後にバッテリーパックの欠陥発生を診断するように設計される。このようにハイサイドドライバ集積回路にマイクロコントローラユニットからの信号が入力された時点から、ハイサイドドライバ集積回路がバッテリーパックの欠陥発生を診断する時点までをブランクタイム(blank time)と称する。すなわち、ブランクタイムは、ハイサイドドライバ集積回路が駆動信号を受信した後、実際に駆動するまでに必要な時間を意味する。ブランクタイムについては、図2を参照して具体的に説明する。
図2は、第1比較例のバッテリーパックにおいて、ハイサイドドライバ集積回路のブランクタイムの例を示した図である。
図2を参照すると、t1、t3及びt5でハイサイドドライバ集積回路がマイクロコントローラユニットから制御信号を受信し、t1、t3及びt5からtB時間がブランクタイムであり得る。ハイサイドドライバ集積回路は、このようなブランクタイムではバッテリーパックの欠陥発生を判断できないという問題がある。すなわち、図2において、ハイサイドドライバ集積回路はブランクタイムではない時点のみでバッテリーパックの欠陥発生を判断することができる。
例えば、図1において、ハイサイドドライバ集積回路のブランクタイムにメインスイッチSWと負荷と間のラインに短絡が発生したと仮定する。この場合、メインスイッチSWの一端の電圧とメインスイッチSWの他端の電圧とは相異なり得る。例えば、メインスイッチSWの一端の電圧はバッテリーBの電圧と同じであり、メインスイッチSWの他端の電圧は0[V]であり得る。しかし、短絡がハイサイドドライバ集積回路のブランクタイム中に発生したため、ハイサイドドライバ集積回路はバッテリーパックの欠陥発生を診断することができないという致命的な問題がある。
本発明は、上記問題点に鑑みてなされたものであり、ハイサイドドライバ集積回路を使用しなくてもバッテリーパックの欠陥発生を判断することができる回路診断装置を提供することを目的とする。
本発明の他の目的及び長所は、下記の説明によって理解でき、本発明の実施形態によってより明らかに分かるであろう。また、本発明の目的及び長所は、特許請求の範囲に示される手段及びその組合せによって実現することができる。
本発明の一態様による回路診断装置は、直列で接続されたバッテリーセル及びメインリレーを含むバッテリーパックの回路状態を診断する装置であって、予め設定されたデューティサイクルを有する第1信号を所定の出力周波数に応じてメインリレーと接続された第1ラインを通じて出力するように構成された制御部と、第1ラインにさらに接続され、第1ラインを通じて第1信号を受信し、第1信号によってメインリレーの動作状態がターンオン状態に切り換えられる度にバッテリーセルから出力された第2信号を受信し、第1信号及び第2信号を変換し、変換された第1変換信号及び第2変換信号を制御部に送信するように構成されたDC-DCコンバータと、を含む。
制御部は、DC-DCコンバータから第1変換信号及び第2変換信号を受信し、第1変換信号と第2変換信号とが同一であるか否かを判断し、判断結果に基づいてバッテリーパックの欠陥を判断するように構成され得る。
DC-DCコンバータは、第1信号の電圧の大きさと第2信号の電圧の大きさとを同一に変換するように構成され得る。
制御部は、第1変換信号と第2変換信号とのデューティサイクル及び周波数の少なくとも一つを比較し、第1変換信号と第2変換信号とが同一であるか否かを判断するように構成され得る。
制御部は、第1変換信号と第2変換信号とが同一であると判断されれば、バッテリーパックに欠陥がないと判断し、第1変換信号と第2変換信号とが同一ではないと判断されれば、バッテリーパックに欠陥が存在すると判断するように構成され得る。
第2信号は、第1信号によってメインリレーの動作状態がターンオン状態に切り換えられるとき、バッテリーセルから出力されてメインリレーを通じてDC-DCコンバータに入力される信号であり得る。
メインリレーは、バッテリーセルと接続された第1リレー端子と、第1ラインを通じて制御部と接続された第2リレー端子と、DC-DCコンバータと接続された第3リレー端子と、を含み得る。
DC-DCコンバータは、第1ラインと接続され、第1ラインを通じて第1信号の入力を受ける第1入力端子と、第2ラインと接続され、第2ラインを通じて第2信号の入力を受ける第2入力端子と、第3ラインと接続され、第3ラインを通じて第1変換信号を制御部に出力する第1出力端子と、第4ラインと接続され、第4ラインを通じて第2変換信号を制御部に出力する第2出力端子と、を含み得る。
第2ラインは、第3リレー端子に電気的に接続されるように構成され得る。
本発明の他の一態様による回路診断装置は、バッテリーセルと並列で接続され、互いに直列で接続された診断抵抗及び診断リレーが配置された診断ラインをさらに含み得る。
制御部は、第5ラインを通じて診断リレーと接続され、診断リレーの動作状態を制御するように構成され得る。
制御部は、第5ラインを通じて診断リレーの動作状態をターンオン状態に制御した後、第1信号をメインリレーに出力するように構成され得る。
第2信号は、診断リレー及びメインリレーの動作状態がターンオン状態に制御されれば、診断ラインを通じて流れるように構成され得る。
本発明の他の態様によるバッテリーパックは、本発明の一態様による回路診断装置を含む。
本発明の一態様の回路診断装置によれば、相異なる主体から出力された信号を比較することで、バッテリーパックの欠陥発生をより客観的かつ正確に判断することができる。
また、本発明の一態様の回路診断装置によれば、出力主体が異なる第1信号と第2信号との強度をDC-DCコンバータを通じて同一に変換することで、第1変換信号と第2変換信号とが同一であるか否かを判断するとき、信号の強度による影響を最小化することができる。
本発明の効果は上記の効果に制限されず、他の効果は特許請求の範囲の記載から当業者に明確に理解できるであろう。
本明細書に添付される次の図面は、発明の詳細な説明ともに本発明の技術的な思想をさらに理解させる役割をするものであるため、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
第1比較例を概略的に示した図である。 第1比較例のバッテリーパックにおいて、ハイサイドドライバ集積回路のブランクタイムの例を示した図である。 本発明の一実施形態による回路診断装置を概略的に示した図である。 本発明の一実施形態による回路診断装置を含むバッテリーパックの例示的構成を示した図である。 第2比較例を概略的に示した図である。 本発明の他の実施形態による回路診断装置を含むバッテリーパックの例示的構成を示した図である。
本明細書及び特許請求の範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者自らは発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応ずる意味及び概念で解釈されねばならない。
したがって、本明細書に記載された実施形態及び図面に示された構成は、本発明のもっとも望ましい一実施形態に過ぎず、本発明の技術的な思想のすべてを代弁するものではないため、本出願の時点においてこれらに代替できる多様な均等物及び変形例があり得ることを理解せねばならない。
また、本発明の説明において、関連公知構成または機能についての具体的な説明が本発明の要旨を不明瞭にし得ると判断される場合、その詳細な説明は省略する。
第1、第2などのように序数を含む用語は、多様な構成要素のうちある一つをその他の要素と区別するために使われたものであり、これら用語によって構成要素が限定されることはない。
明細書の全体において、ある部分がある構成要素を「含む」とするとき、これは特に言及されない限り、他の構成要素を除外するものではなく、他の構成要素をさらに含み得ることを意味する。
また、明細書に記載された制御部のような用語は少なくとも一つの機能や動作を処理する単位を意味し、ハードウェア、ソフトウェア、またはハードウェアとソフトウェアとの組合せで具現され得る。
さらに、明細書の全体において、ある部分が他の部分と「連結(接続)」されるとするとき、これは「直接的な連結(接続)」だけではなく、他の素子を介在した「間接的な連結(接続)」も含む。
以下、添付された図面を参照して本発明の望ましい実施形態を詳しく説明する。
図3は、本発明の一実施形態による回路診断装置100を概略的に示した図である。図4は、本発明の一実施形態による回路診断装置100を含むバッテリーパック1の例示的構成を示した図である。
図4を参照すると、バッテリーパック1は、バッテリーセル10、メインリレー20及び回路診断装置100を含むことができる。また、バッテリーパック1の正極端子P+とバッテリーパック1の負極端子P-とに負荷30が接続され得る。
ここで、バッテリーセル10とは、負極端子及び正極端子を備え、物理的に分離可能な一つの独立したセルを意味する。一例として、一つのパウチ型リチウムポリマーセルをバッテリーセル10として見なし得る。また、バッテリーパック1は、一つ以上のバッテリーセル10が直列及び/または並列で接続された一つ以上のバッテリーモジュールも含み得る。以下、説明の便宜上、バッテリーパック1に一つのバッテリーセル10が含まれたとして説明する。
また、バッテリーセル10は、メインリレー20と電気的に直列で接続され得る。
例えば、図4を参照すると、バッテリーセル10の正極端子とバッテリーパック1の正極端子P+との間にメインリレー20が直列で接続され得る。すなわち、メインリレー20は、バッテリーパック1のメイン充放電経路上に配置され得る。ここで、メイン充放電経路とは、バッテリーパック1に流れる大電流経路であり得る。すなわち、メイン充放電経路は、バッテリーパック1の正極端子P+、メインリレー20、バッテリーセル10及びバッテリーパック1の負極端子P-を連結する経路であり得る。
本発明の一実施形態による回路診断装置100がバッテリーパック1に備えられた場合、回路診断装置100は、バッテリーパック1の回路状態を診断することができる。
図3を参照すると、本発明の一実施形態による回路診断装置100は、制御部110及びDC-DCコンバータ120を含むことができる。
制御部110は、予め設定されたデューティサイクルを有する第1信号を所定の出力周波数に応じてメインリレー20と接続された第1ラインL1を通じて出力するように構成され得る。すなわち、第1信号は、制御部110によって生成されたパルス幅変調(PWM)信号であり得る。
ここで、デューティサイクルとは、パルスの周期に対するパルス幅の比率を表す数値であって、単位は%であり得る。例えば、図2において、パルス周期はt1~t3時間であり、パルス幅はt1~t2時間であり得る。
望ましくは、制御部110は、デューティサイクルを0.2%~99.8%のうちいずれか一つとして予め設定し得る。より望ましくは、制御部110は、デューティサイクルを0.2%~20%のうちいずれか一つとして予め設定し得る。
そして、出力周波数は、制御部110が第1信号を出力する周期に係わる周波数であり得る。例えば、図2において、出力周波数はパルスの周期(t1~t3時間)に反比例する周波数であり、単位はHzであり得る。
望ましくは、制御部110は、出力周波数を1Hz~800Hzのうちいずれか一つとして選択し得る。より望ましくは、制御部110は、出力周波数を500Hz~800Hzのうちいずれか一つとして選択し得る。
例えば、図4の実施形態において、メインリレー20と制御部110とは第1ラインL1を通じて電気的に接続され得る。したがって、制御部110が第1ラインL1に出力した第1信号は、メインリレー20に入力され得る。すなわち、制御部110が選択された出力周波数に応じて、予め設定されたデューティサイクルを有する第1信号を第1ラインL1を通じて出力すれば、出力された第1信号はメインリレー20に入力され得る。
DC-DCコンバータ120は、第1ラインL1にさらに接続されるように構成され得る。
具体的には、メインリレー20と制御部110とを連結する第1ラインL1は分岐されてDC-DCコンバータ120にも接続され得る。
例えば、図4の実施形態において、第1ラインL1は分岐点BPを基準にして第1単位ラインと第2単位ラインとに分岐され得る。ここで、第1単位ラインは第1ラインL1の分岐点BPとメインリレー20とを連結する単位ラインであり、第2単位ラインは第1ラインL1の分岐点BPとDC-DCコンバータ120とを連結する単位ラインであり得る。DC-DCコンバータ120は、第2単位ラインに接続されることで、第1ラインL1に接続されるように構成され得る。
DC-DCコンバータ120は、第1ラインL1を通じて第1信号の入力を受けるように構成され得る。
具体的には、制御部110が第1ラインL1に出力した第1信号は、分岐点BPを基準にして第1単位ラインと第2単位ラインを通じて送信され得る。すなわち、第1信号は、第1ラインL1及び第1単位ラインを通じて制御部110からメインリレー20に送信され、第1ラインL1及び第2単位ラインを通じて制御部110からDC-DCコンバータ120に送信され得る。
例えば、図4の実施形態において、制御部110が第1ラインL1に出力した第1信号は、メインリレー20及びDC-DCコンバータ120の両方に入力され得る。
DC-DCコンバータ120は、第1信号によってメインリレー20の動作状態がターンオン状態に切り換えられる度にバッテリーセル10から出力された第2信号の入力を受けるように構成され得る。すなわち、第1信号は、メインリレー20の動作状態を制御するために制御部110が出力した信号であり得る。
例えば、制御部110が出力した第1信号が図2に示された信号と同一であると仮定する。信号の強度がV1[V]であるとき、メインリレー20の動作状態はターンオン状態に制御され、信号の強度が0[V]であるとき、メインリレー20の動作状態はターンオフ状態に制御され得る。
したがって、制御部110が出力周波数に応じて第1信号を出力すれば、メインリレー20の動作状態はターンオン状態及びターンオフ状態に交互に切り換えられ得る。そして、メインリレー20の動作状態がターンオン状態になるときのみに、バッテリーセル10から出力された電流がメインリレー20を通過することができる。
また、DC-DCコンバータ120は、第2ラインL2を通じてメイン充放電経路と接続され得る。例えば、図4の実施形態において、DC-DCコンバータ120は、メインリレー20とバッテリーパック1の正極端子P+との間に接続された第2ラインL2と接続され得る。したがって、メインリレー20の動作状態がターンオン状態に切り換えられる度に、DC-DCコンバータ120は、第2ラインL2を通じてバッテリーセル10から出力される第2信号の入力を受けることができる。
DC-DCコンバータ120は、第1信号及び第2信号を変換するように構成され得る。
DC-DCコンバータ120は、直流の大きさを変換する構成であって、第1信号及び第2信号の電流の大きさを変換することができる。
そして、DC-DCコンバータ120は、変換された第1変換信号及び第2変換信号を制御部110に送信するように構成され得る。
具体的には、DC-DCコンバータ120は、制御部110と有線で電気的に接続され得る。より望ましくは、DC-DCコンバータ120は、制御部110と複数のラインを通じて電気的に接続され得る。
そして、DC-DCコンバータ120は、有線で第1変換信号及び第2変換信号を出力することで、制御部110に第1変換信号及び第2変換信号を送信することができる。ここで、DC-DCコンバータ120から出力される信号はデジタル信号であり得る。
例えば、図4の実施形態において、DC-DCコンバータ120は、第3ラインL3及び第4ラインL4を通じて制御部110と接続され得る。そして、DC-DCコンバータ120は、第3ラインL3を通じて第1変換信号を出力し、第4ラインL4を通じて第2変換信号を出力し得る。
制御部110は、DC-DCコンバータ120から第1変換信号及び第2変換信号を受信するように構成され得る。
具体的には、制御部110は、DC-DCコンバータ120からデジタル信号である第1変換信号及びデジタル信号である第2変換信号を受信することができる。例えば、図4の実施形態において、制御部110は、第3ラインL3及び第4ラインL4を通じて、第1変換信号及び第2変換信号をそれぞれ受信できる。
また、制御部110は、第1変換信号と第2変換信号とが同一であるか否かを判断するように構成され得る。
例えば、制御部110は、第1変換信号と第2変換信号との強度、周波数及びデューティサイクルのうち少なくとも一つを比較し、第1変換信号と第2変換信号とが同一であるか否かを判断することができる。
最後に、制御部110は、判断結果に基づいてバッテリーパック1の欠陥を判断するように構成され得る。すなわち、制御部110は、第1変換信号と第2変換信号とが同一であるか否かを判断した結果に基づいて、バッテリーパック1の欠陥を判断することができる。
図1及び図4を参照して、従来技術と本発明とを比較すると、従来技術はバッテリーから出力された信号のみに基づいてバッテリーパック1の欠陥発生を判断した。
図1を参照すると、マイクロコントローラユニットはバッテリーから出力された信号に基づいて、メインスイッチSWの両端の電圧差によってバッテリーパック1の欠陥発生を判断した。すなわち、従来は、バッテリーから出力された信号がメインスイッチSWを通過する前と通過した後とで差が生じたかをもってバッテリーパック1の欠陥発生を判断した。
しかし、図4を参照すると、回路診断装置100は、制御部110から出力された第1信号とバッテリーセル10から出力された第2信号とを比べた結果に基づいてバッテリーパック1の欠陥発生を判断することができる。
すなわち、制御部110から出力された第1信号とバッテリーセル10から出力された第2信号とは互いに影響を及ぼさない独立的な信号である。したがって、本発明の一実施形態による回路診断装置100は、制御部110とバッテリーセル10との相異なる主体から出力された信号を比較することで、バッテリーパック1の欠陥発生をより客観的かつ正確に判断することができる。
一方、本発明の一実施形態による回路診断装置100に備えられた制御部110は、本発明で実行される多様な制御ロジックを実行するため、当業界に知られたプロセッサ、ASIC(application-specific integrated circuit)、他のチップセット、論理回路、レジスタ、通信モデム、データ処理装置などを選択的に含み得る。また、制御ロジックがソフトウェアとして具現されるとき、制御部110はプログラムモジュールの集合として具現され得る。このとき、プログラムモジュールはメモリに保存され、制御部110によって実行され得る。メモリは制御部110の内部または外部に備えられ得、周知の多様な手段で制御部110と接続され得る。
望ましくは、DC-DCコンバータ120は、第1信号の電圧の大きさと第2信号の電圧の大きさとを同一に変換するように構成され得る。
DC-DCコンバータ120は、第1信号及び第2信号のデューティサイクル及び周波数はそのまま維持し、第1信号及び第2信号の電圧の大きさのみを同一に変換することができる。すなわち、第1変換信号と第2変換信号とは等しい強度を有する信号であり得る。
例えば、図4の実施形態において、第1信号は制御部110から出力された信号であり、第2信号はバッテリーセル10から出力された信号である。制御部110がバッテリーセル10と同じ強度を有する信号を出力することはできないため、DC-DCコンバータ120は、第1信号の強度と第2信号の強度とを同一に変換することができる。
そして、制御部110は、第1変換信号と第2変換信号とのデューティサイクル及び周波数の少なくとも一つを比較し、第1変換信号と第2変換信号とが同一であるか否かを判断するように構成され得る。
例えば、制御部110は、第1変換信号と第2変換信号とのデューティサイクルを比較して、第1変換信号と第2変換信号とが同一信号であるか否かを判断し得る。他の例として、制御部110は、第1変換信号と第2変換信号との周波数を比較して、第1変換信号と第2変換信号とが同一信号であるか否かを判断し得る。さらに他の例として、より望ましくは、制御部110は、第1変換信号と第2変換信号との周波数及びデューティサイクルをすべて比較して、第1変換信号と第2変換信号とが同一信号であるか否かを判断し得る。
すなわち、DC-DCコンバータ120によって第1変換信号の強度と第2変換信号の強度とが等しくなったため、制御部110は、デューティサイクル及び周波数の少なくとも一つを比較することで、第1変換信号と第2変換信号とが同一であるか否かを判断することができる。
したがって、本発明の一実施形態による回路診断装置100は、出力主体が異なる第1信号と第2信号との強度をDC-DCコンバータ120を通じて同一に変換することで、第1変換信号と第2変換信号とが同一であるか否かを判断するとき、信号の強度による影響を最小化することができる。すなわち、回路診断装置100は、バッテリーパック1の欠陥発生を判断するための独立変数のうち一つ(信号の強度)を同一に調節することで、残りの独立変数(デューティサイクル及び周波数)に基づいてバッテリーパック1の欠陥発生を判断することができる。したがって、信号の強度を同一に変換する過程によって、バッテリーパック1の欠陥発生をより正確かつ精密に判断することができる。
また、DC-DCコンバータ120は、第1変換信号及び第2変換信号をデジタル信号の形態で制御部110に出力するように構成され得る。
図5は、第2比較例を概略的に示した図である。具体的には、図5は、制御部110にアナログ信号が直接入力される第2比較例を示した図である。
図5を参照すると、制御部110は、メインリレー20と第1ラインL1を通じて接続され、第1信号を出力し得る。そして、制御部110は、第2ラインL2を通じてメイン充放電経路と直接接続され、バッテリーセル10から第2信号の入力を受け得る。ここで、第2信号はアナログ信号である。
もし、図5に示されたように、制御部110にアナログ信号が直接印加されれば、制御部110にはアナログ信号をデジタル信号に変換するための別途のユニットが備えられなければならない。例えば、制御部110は、ADC(analog-to-digital)コンバータをさらに備えなければならない。そして、入力されたアナログ信号をデジタル信号に変換するため、制御部110の作業量(load)が急激に増加し得る。
したがって、図5のように、制御部110にアナログ信号である第2信号が直接入力されれば、第2信号をデジタル信号に変換するため、多くの時間とシステム資源が非効率的に消耗されるという問題がある。
また、第1信号は制御部110から出力された信号であり、第2信号はバッテリーセル10から出力された信号である。したがって、第1信号と第2信号とは信号の強度が非常に相違し得る。したがって、このような信号の強度の相違によって、制御部110によるバッテリーパック1の欠陥発生如何の診断に影響が及ぼされるおそれがある。例えば、第2信号の強度が制御部110に入力可能な許容強度よりも大きい場合、制御部110は第2信号によって破損され得る。
したがって、本発明の一実施形態による回路診断装置100は、DC-DCコンバータ120を通じて第1信号の強度と第2信号の強度とを同一に変換することで、上述した問題を解決することができる。また、望ましくは、DC-DCコンバータ120は、第1信号及び第2信号の強度を制御部110に入力可能な許容強度以下に変換することで、第2信号の入力による制御部110の破損を予め防止することができる。
制御部110は、第1変換信号と第2変換信号とが同一であると判断されれば、バッテリーパック1に欠陥がないと判断するように構成され得る。
逆に、制御部110は、第1変換信号と第2変換信号とが同一ではないと判断されれば、バッテリーパック1に欠陥が存在すると判断するように構成され得る。
具体的には、第2信号は、第1信号によってメインリレー20の動作状態がターンオン状態に切り換えられるとき、バッテリーセル10から出力されてメインリレー20を通じてDC-DCコンバータ120に入力される信号である。
例えば、メインリレー20の動作状態は、第1信号に含まれたハイレベル信号がメインリレー20に入力されるときのみにターンオン状態に切り換えられ得る。すなわち、メインリレー20は、第1信号のデューティサイクルのみにターンオン状態に切り換えられ得る。
そして、メインリレー20の動作状態がターンオン状態である場合のみ、バッテリーセル10から出力された第2信号がメインリレー20を通過してDC-DCコンバータ120に入力され得る。
結果的に、DC-DCコンバータ120に入力される第2信号のデューティサイクル及び周波数は、DC-DCコンバータ120に入力された第1信号のデューティサイクル及び周波数と同一であり得る。また、DC-DCコンバータ120によって第1信号の強度と第2信号の強度とが同一に変換されるため、バッテリーパック1に欠陥がなければ、第1変換信号と第2変換信号とのデューティサイクル及び周波数は同一であり得る。すなわち、バッテリーパック1に欠陥がなければ、第1変換信号と第2変換信号とは同じ信号であり得る。したがって、制御部110は、第1変換信号と第2変換信号とが同一であれば、バッテリーパック1に欠陥がないと判断することができる。
バッテリーパック1に欠陥がある場合の例を説明する。図4の実施形態において、バッテリーパック1の正極端子P+と負荷30との間のノードで短絡が発生したと仮定する。特に、バッテリーパック1の正極端子P+と負荷30との間のノードで接地への短絡(short-to-ground:STG)が発生したと仮定する。この場合、第2信号の強度は0[V]であり得る。そして、第2信号のデューティサイクルは0%であり、周波数は0Hzであり得る。この場合、DC-DCコンバータ120が第2信号の強度を変更できないため、制御部110は、第1変換信号と第2変換信号とが同一であると判断することができない。したがって、制御部110は、バッテリーパック1に欠陥が発生したと判断することができる。
また、図4の実施形態において、バッテリーパック1の正極端子P+と負荷30との間のノードでバッテリーへの短絡(short-to-battery:STB)が発生したか、または、ノードが断線(open line:OL)した場合にも、第2信号の強度は0[V]であり得る。したがって、制御部110は、STG欠陥だけでなく、STB欠陥及びOL欠陥の場合にもバッテリーパック1の欠陥発生を診断することができる。
本発明の一実施形態による回路診断装置100は、第1信号によってメインリレー20の動作状態を制御することで、第2信号のデューティサイクル及び周波数を制御することができる。すなわち、回路診断装置100は、メインリレー20の動作状態を制御することで、バッテリーセル10から出力された信号をパルス幅変調信号に変換するための別途の構成がなくても、バッテリーセル10から出力された信号をパルス幅変調信号(第2信号)に変換することができる。そして、回路診断装置100は、信号の強度が同一に変換された第1変換信号と第2変換信号とによってバッテリーパック1の欠陥発生をより正確に判断することができる。
以下、図4を参照して、本発明の一実施形態による回路診断装置100、及び回路診断装置100を含むバッテリーパック1の回路的構成についてより具体的に説明する。
メインリレー20は、バッテリーセル10と接続された第1リレー端子、第1ラインL1を通じて制御部110と接続された第2リレー端子、及びDC-DCコンバータ120と接続された第3リレー端子を含むことができる。
望ましくは、メインリレー20は、FET(Field Effect Transistor、電界効果トランジスタ)であり得る。より望ましくは、メインリレー20は、MOSFET(Metal Oxide Semiconductor FET、金属酸化物半導体電界効果トランジスタ)であり得る。
例えば、メインリレー20がNチャネルMOSFETである場合、第1リレー端子はドレイン端子であり、第2リレー端子はゲート端子であり、第3リレー端子はソース端子であり得る。
他の例として、メインリレー20がPチャネルMOSFETである場合、第1リレー端子はソース端子であり、第2リレー端子はゲート端子であり、第3リレー端子はドレイン端子であり得る。
したがって、制御部110は、第1信号が印加されたとき、メインリレー20の第1リレー端子と第3リレー端子とが互いに通電されるように、メインリレー20の種類に応じて第1信号の強度を設定するように構成され得る。
DC-DCコンバータ120は、第1入力端子i1、第2入力端子i2、第1出力端子O1及び第2出力端子O2を含むことができる。
図4を参照すると、第1入力端子i1は、第1ラインL1と接続され得る。具体的には、第1入力端子i1は、第1ラインL1から分岐された第2単位ラインと接続され得る。そして、第1入力端子i1は、第1ラインL1を通じて、制御部110から出力された第1信号の入力を受けることができる。
第2入力端子i2は、第2ラインL2と接続され得る。例えば、図4の実施形態において、第2ラインL2は、メインリレー20と負荷30との間に接続され得る。そして、第2入力端子i2は、第2ラインL2を通じて、バッテリーセル10から出力された第2信号の入力を受けることができる。特に、第2入力端子i2は、メインリレー20の動作状態がターンオン状態である場合のみに、第2信号の入力を受けることができる。
すなわち、DC-DCコンバータ120は、第1信号と第2信号とが互いに干渉しないように、第1信号の入力を受ける第1入力端子i1と第2信号の入力を受ける第2入力端子i2とを別途に備えることができる。
第1出力端子O1は、第3ラインL3と接続され得る。そして、DC-DCコンバータ120は、第1出力端子O1を通じて第3ラインL3に第1変換信号を出力することができる。出力された第1変換信号は、制御部110に入力され得る。
第2出力端子O2は、第4ラインL4と接続され得る。そして、DC-DCコンバータ120は、第2出力端子O2を通じて第4ラインL4に第2変換信号を出力することができる。出力された第2変換信号は、制御部110に入力され得る。
すなわち、DC-DCコンバータ120は、第1変換信号と第2変換信号とが互いに干渉しないように、第1変換信号を出力する第1出力端子O1と第2変換信号を出力する第2出力端子O2とを別途に備えることができる。
第2ラインL2は、第3リレー端子に電気的に接続され得る。
望ましくは、第2ラインL2は、第3リレー端子と直接接続されたメイン充放電経路に接続され得る。したがって、バッテリーセル10から出力された第2信号がメインリレー20を通過した後、第2ラインL2を通じてDC-DCコンバータ120の第2入力端子i2に入力され得る。
図4を参照すると、第1入力端子i1と第2入力端子i2とに入力される信号の出力主体が相異なる。具体的には、第1入力端子i1に入力される第1信号の出力主体は制御部110であり、第2入力端子i2に入力される第2信号の出力主体はバッテリーセル10である。そして、第1信号は、制御部110から自体的に生成して出力する信号であるため、バッテリーパック1の欠陥発生如何に影響を受けない信号である。
したがって、本発明の一実施形態による回路診断装置100は、バッテリーパック1の欠陥発生如何に影響を受けない第1信号、及びバッテリーパック1の欠陥発生如何に影響を受ける第2信号に基づいて、バッテリーパック1の欠陥発生をより正確に判断することができる。
図6は、本発明の他の実施形態による回路診断装置100を含むバッテリーパック3の例示的構成を示した図である。
図6を参照すると、本発明の他の実施形態による回路診断装置100は、診断ラインをさらに含むことができる。すなわち、図6のバッテリーパック3は、図4のバッテリーパック1に診断ラインをさらに含むことができる。以下、上述した説明と重なる説明は省略する。
診断ラインは、バッテリーセル10と並列で接続されたラインであり得る。
そして、診断ラインは、互いに直列で接続された診断抵抗50及び診断リレー40が配置されたラインであり得る。すなわち、診断ラインに配置された診断抵抗50及び診断リレー40は、バッテリーセル10と並列的に接続され得る。
図6を参照すると、バッテリーセル10、メインリレー20、診断抵抗50及び診断リレー40は閉回路を形成し得る。すなわち、診断ラインは、バッテリーセル10の自己放電経路を構成するラインであり得る。そして、バッテリーセル10の自己放電経路には、メインリレー20、診断抵抗50及び診断リレー40が配置され得る。
制御部110は、第5ラインL5を通じて診断リレー40と接続されるように構成され得る。
そして、制御部110は、第5ラインL5を通じて診断リレー40の動作状態を制御するように構成され得る。
具体的には、制御部110は、ターンオフ命令信号またはターンオン命令信号を第5ラインL5に出力することで、診断リレー40の動作状態を制御することができる。
制御部110は、第5ラインL5を通じて診断リレー40の動作状態をターンオン状態に制御した後、第1信号をメインリレー20に出力するように構成され得る。
制御部110が第5ラインL5を通じてターンオン命令信号を出力し、第1ラインL1を通じて第1信号を出力した場合、診断リレー40及びメインリレー20の動作状態がすべてターンオン状態に切り換えられ得る。
具体的には、第1信号のデューティサイクルのみにメインリレー20の動作状態がターンオン状態に切り換えられ得る。すなわち、第1信号のデューティサイクルの間、バッテリーセル10、メインリレー20、診断抵抗50及び診断リレー40を含む閉回路が導通し得る。
第2信号は、診断リレー40及びメインリレー20の動作状態がターンオン状態に制御されれば、診断ラインを通じて流れるように構成され得る。
すなわち、バッテリーセル10、メインリレー20、診断抵抗50及び診断リレー40が導通した場合、バッテリーセル10から第2信号が出力され得る。そして、出力された第2信号は、第2ラインL2を通じてDC-DCコンバータ120に入力され得る。具体的には、図6の実施形態において、第2信号は、DC-DCコンバータ120の第2入力端子i2に入力され得る。
その後、制御部110は、診断リレー40の動作状態をターンオン状態に維持しながら、第1信号を所定の出力周波数に応じて出力することで、バッテリーパック3の欠陥発生を判断することができる。
すなわち、本発明の他の実施形態による回路診断装置100は、バッテリーセル10の自己放電経路を備えることで、バッテリーパック3に負荷30が連結されなくても、回路診断装置100によってバッテリーパック3の欠陥発生如何をいつでも判断することができる。
そして、本発明による制御部110は、バッテリーパック(1、3)に欠陥が発生したと判断されれば、メインリレー20の動作状態をターンオフ状態に維持して、欠陥が発生したバッテリーパック(1、3)によって予期せぬ事故が発生することを予め防止することができる。
本発明による回路診断装置100は、BMS(Battery Management System:バッテリー管理システム)に適用され得る。すなわち、本発明によるBMSは、上述した回路診断装置100を含むことができる。このような構成において、回路診断装置100の各構成要素のうち少なくとも一部は、従来のBMSに含まれた構成の機能を補完するか又は追加することで具現され得る。例えば、回路診断装置100の制御部110及びDC-DCコンバータ120はBMSの構成要素として具現され得る。
また、本発明による回路診断装置100は、バッテリーパック(1、3)に備えられ得る。すなわち、本発明によるバッテリーパック(1、3)は、上述した回路診断装置100及び一つ以上のバッテリーセル10を含むことができる。また、バッテリーパック(1、3)は、電装品(リレー、ヒューズなど)及びケースなどをさらに含むことができる。
上述した本発明の実施形態は、装置及び方法のみによって具現されるものではなく、本発明の実施形態の構成に対応する機能を実現するプログラムまたはそのプログラムが記録された記録媒体を通じても具現され得、このような具現は上述した実施形態の記載から当業者であれば容易に具現できるであろう。
以上のように、本発明を限定された実施形態と図面によって説明したが、本発明はこれに限定されるものではなく、本発明の属する技術分野で通常の知識を持つ者によって本発明の技術思想と特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることは言うまでもない。
また、上述した本発明は、本発明が属する技術分野で通常の知識を持つ者により、本発明の技術的思想を逸脱しない範囲内で様々な置換、変形及び変更が可能であって、上述した実施形態及び添付の図面によって限定されるものではなく、多様な変形のため各実施形態の全部または一部が選択的に組み合わせられて構成され得る。
1、2、3:バッテリーパック
10:バッテリーセル
20:メインリレー
30:負荷
40:診断リレー
50:診断抵抗
100:回路診断装置
110:制御部
120:DC-DCコンバータ
B:バッテリー
SW:メインスイッチ

Claims (11)

  1. 直列で接続されたバッテリーセル及びメインリレーを含むバッテリーパックの回路状態を診断する回路診断装置であって、
    予め設定されたデューティサイクルを有する第1信号を所定の出力周波数に応じて前記メインリレーと接続された第1ラインを通じて出力するように構成された制御部と、
    前記第1ラインにさらに接続され、前記第1ラインを通じて前記第1信号を受信し、前記第1信号によって前記メインリレーの動作状態がターンオン状態に切り換えられる度に前記バッテリーセルから出力された第2信号を受信し、前記第1信号及び前記第2信号を変換し、変換された第1変換信号及び第2変換信号を前記制御部に送信するように構成されたDC-DCコンバータと、を含み、
    前記制御部は、
    前記DC-DCコンバータから前記第1変換信号及び前記第2変換信号を受信し、前記第1変換信号と前記第2変換信号とが同一であるか否かを判断し、判断結果に基づいて前記バッテリーパックの欠陥を判断するように構成された、回路診断装置。
  2. 前記DC-DCコンバータは、
    前記第1信号の電圧の大きさと前記第2信号の電圧の大きさとを同一に変換するように構成された、請求項1に記載の回路診断装置。
  3. 前記制御部は、
    前記第1変換信号と前記第2変換信号とのデューティサイクル及び周波数の少なくとも一つを比較し、前記第1変換信号と前記第2変換信号とが同一であるか否かを判断するように構成された、請求項1または2に記載の回路診断装置。
  4. 前記制御部は、
    前記第1変換信号と前記第2変換信号とが同一であると判断されれば、前記バッテリーパックに欠陥がないと判断し、
    前記第1変換信号と前記第2変換信号とが同一ではないと判断されれば、前記バッテリーパックに欠陥が存在すると判断するように構成された、請求項3に記載の回路診断装置。
  5. 前記第2信号は、
    前記第1信号によって前記メインリレーの動作状態がターンオン状態に切り換えられるとき、前記バッテリーセルから出力されて前記メインリレーを通じて前記DC-DCコンバータに入力される信号である、請求項1から4のいずれか一項に記載の回路診断装置。
  6. 前記メインリレーは、
    前記バッテリーセルと接続された第1リレー端子と、前記第1ラインを通じて前記制御部と接続された第2リレー端子と、前記DC-DCコンバータと接続された第3リレー端子と、を含む、請求項1から5のいずれか一項に記載の回路診断装置。
  7. 前記DC-DCコンバータは、
    前記第1ラインと接続され、前記第1ラインを通じて前記第1信号の入力を受ける第1入力端子と、
    第2ラインと接続され、前記第2ラインを通じて前記第2信号の入力を受ける第2入力端子と、
    第3ラインと接続され、前記第3ラインを通じて前記第1変換信号を前記制御部に出力する第1出力端子と、
    第4ラインと接続され、前記第4ラインを通じて前記第2変換信号を前記制御部に出力する第2出力端子と、を含む、請求項6に記載の回路診断装置。
  8. 前記第2ラインは、
    前記第3リレー端子に電気的に接続されるように構成された、請求項7に記載の回路診断装置。
  9. 前記バッテリーセルと並列で接続され、互いに直列で接続された診断抵抗及び診断リレーが配置された診断ラインをさらに含み、
    前記制御部は、
    第5ラインを通じて前記診断リレーと接続され、前記診断リレーの動作状態を制御するように構成された、請求項8に記載の回路診断装置。
  10. 前記制御部は、
    前記第5ラインを通じて前記診断リレーの動作状態をターンオン状態に制御した後、前記第1信号を前記メインリレーに出力するように構成され、
    前記第2信号は、
    前記診断リレー及び前記メインリレーの動作状態がターンオン状態に制御されれば、前記診断ラインを通じて流れるように構成された、請求項9に記載の回路診断装置。
  11. 請求項1から10のうちいずれか一項に記載の回路診断装置を含むバッテリーパック。
JP2021552163A 2019-11-26 2020-11-26 回路診断装置及びそれを含むバッテリーパック Active JP7160247B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020190153700A KR102628966B1 (ko) 2019-11-26 2019-11-26 회로 진단 장치 및 이를 포함하는 배터리 팩
KR10-2019-0153700 2019-11-26
PCT/KR2020/016897 WO2021107627A1 (ko) 2019-11-26 2020-11-26 회로 진단 장치 및 이를 포함하는 배터리 팩

Publications (2)

Publication Number Publication Date
JP2022522516A JP2022522516A (ja) 2022-04-19
JP7160247B2 true JP7160247B2 (ja) 2022-10-25

Family

ID=76129476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021552163A Active JP7160247B2 (ja) 2019-11-26 2020-11-26 回路診断装置及びそれを含むバッテリーパック

Country Status (6)

Country Link
US (1) US20220179005A1 (ja)
EP (1) EP3982139B1 (ja)
JP (1) JP7160247B2 (ja)
KR (1) KR102628966B1 (ja)
CN (1) CN113711460B (ja)
WO (1) WO2021107627A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120081825A (ko) 2011-01-12 2012-07-20 (주)브이이엔에스 전기자동차 및 그 제어방법
JP2012518159A (ja) 2009-02-16 2012-08-09 ヴァレオ システム テルミク 短絡を検知する方法と、この方法を実施しうる用いた供給モジュール
KR20170060672A (ko) 2015-11-24 2017-06-02 현대자동차주식회사 친환경 차량의 전원 제어 시스템 및 방법
JP2017127090A (ja) 2016-01-13 2017-07-20 トヨタ自動車株式会社 電源システム
JP2018115971A (ja) 2017-01-19 2018-07-26 トヨタ自動車株式会社 電源装置
JP2018196252A (ja) 2017-05-18 2018-12-06 矢崎総業株式会社 電力分配システム
JP2019508716A (ja) 2016-10-10 2019-03-28 エルジー・ケム・リミテッド 診断装置及びそれを含む電源システム
JP2019186880A (ja) 2018-04-17 2019-10-24 株式会社デンソー 負荷駆動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867834B1 (ko) * 2007-08-16 2008-11-10 현대자동차주식회사 하이브리드자동차 고전압 릴레이 및 릴레이 제어회로의고장 진단 방법
JP5221468B2 (ja) * 2009-02-27 2013-06-26 株式会社日立製作所 電池監視装置
KR101204512B1 (ko) * 2011-07-11 2012-11-27 한국과학기술원 전기구동 이동체의 릴레이 오류 및 릴레이 제어오류 검출 시스템 및 방법
JP5983171B2 (ja) * 2012-08-10 2016-08-31 株式会社Gsユアサ スイッチ故障診断装置、蓄電装置
KR102059076B1 (ko) * 2016-02-19 2020-02-11 주식회사 엘지화학 스위치 부품의 고장 진단 장치 및 방법
KR102601985B1 (ko) * 2016-10-18 2023-11-14 한국단자공업 주식회사 Pra 고장 진단 장치
KR102369338B1 (ko) * 2017-06-07 2022-03-03 현대자동차주식회사 배터리 연결 상태 진단 시스템 및 방법
KR102204983B1 (ko) * 2017-09-25 2021-01-18 주식회사 엘지화학 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
KR102256101B1 (ko) * 2018-01-30 2021-05-25 주식회사 엘지에너지솔루션 프리차지 저항 보호 장치
KR102002859B1 (ko) * 2018-03-26 2019-07-23 숭실대학교산학협력단 배터리 진단 기능을 갖는 충전기 및 그 제어방법
KR20200050899A (ko) * 2018-11-02 2020-05-12 주식회사 엘지화학 배터리 진단 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518159A (ja) 2009-02-16 2012-08-09 ヴァレオ システム テルミク 短絡を検知する方法と、この方法を実施しうる用いた供給モジュール
KR20120081825A (ko) 2011-01-12 2012-07-20 (주)브이이엔에스 전기자동차 및 그 제어방법
KR20170060672A (ko) 2015-11-24 2017-06-02 현대자동차주식회사 친환경 차량의 전원 제어 시스템 및 방법
JP2017127090A (ja) 2016-01-13 2017-07-20 トヨタ自動車株式会社 電源システム
JP2019508716A (ja) 2016-10-10 2019-03-28 エルジー・ケム・リミテッド 診断装置及びそれを含む電源システム
JP2018115971A (ja) 2017-01-19 2018-07-26 トヨタ自動車株式会社 電源装置
JP2018196252A (ja) 2017-05-18 2018-12-06 矢崎総業株式会社 電力分配システム
JP2019186880A (ja) 2018-04-17 2019-10-24 株式会社デンソー 負荷駆動装置

Also Published As

Publication number Publication date
EP3982139A4 (en) 2022-08-31
EP3982139A1 (en) 2022-04-13
US20220179005A1 (en) 2022-06-09
KR102628966B1 (ko) 2024-01-23
KR20210064932A (ko) 2021-06-03
CN113711460B (zh) 2023-07-18
WO2021107627A1 (ko) 2021-06-03
EP3982139B1 (en) 2023-07-26
CN113711460A (zh) 2021-11-26
JP2022522516A (ja) 2022-04-19

Similar Documents

Publication Publication Date Title
US10895603B2 (en) Voltage monitoring module and voltage monitoring system to detect a current leakage
US10819124B2 (en) Fast charging method and related device for series battery pack
JP6392997B2 (ja) 制御装置、蓄電装置及び蓄電システム
US9470761B2 (en) Voltage monitoring module and voltage monitoring system
US8564325B2 (en) Voltage detection device and system
US10110021B2 (en) Balancing device and electrical storage device
KR101806996B1 (ko) 릴레이 구동 회로 상태진단 장치 및 방법
JP6844101B2 (ja) リレー駆動回路診断装置
US11101672B2 (en) Secondary battery protection apparatus
KR101562016B1 (ko) 셀 밸런싱 스위치의 고장 진단 장치 및 방법
US11824390B2 (en) Battery monitoring system provided with battery monitoring control circuit for reducing consumption power in sleep state
JP2013092397A (ja) 電池監視装置
KR102433848B1 (ko) 스위치 진단 장치 및 방법
JP2013088357A (ja) 電池監視装置
US10393816B2 (en) Voltage-detecting device applied to battery pack having serially connected body
JP7160247B2 (ja) 回路診断装置及びそれを含むバッテリーパック
US11255915B2 (en) Switch control apparatus and method
CN110832726A (zh) 供电系统、供电系统的故障诊断方法和系统控制装置
JP3979594B2 (ja) バッテリの電圧検出装置
CN113316527A (zh) 电源系统
US10988028B2 (en) DC-to-DC voltage converter, voltage supply device, and diagnostic method for a DC-to-DC voltage converter
JP6362812B2 (ja) 車載用充電器
KR102404816B1 (ko) 전류 센서를 진단하기 위한 장치 및 방법
JP2023027446A (ja) 蓄電池制御装置、蓄電システム、及び蓄電池制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R150 Certificate of patent or registration of utility model

Ref document number: 7160247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150