JP7153771B2 - プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法 - Google Patents

プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法 Download PDF

Info

Publication number
JP7153771B2
JP7153771B2 JP2021103078A JP2021103078A JP7153771B2 JP 7153771 B2 JP7153771 B2 JP 7153771B2 JP 2021103078 A JP2021103078 A JP 2021103078A JP 2021103078 A JP2021103078 A JP 2021103078A JP 7153771 B2 JP7153771 B2 JP 7153771B2
Authority
JP
Japan
Prior art keywords
delivery system
power delivery
output
period
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021103078A
Other languages
English (en)
Other versions
JP2021144953A (ja
Inventor
ヨハネス ヤコブス バン ジル ギデオン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Energy Industries Inc
Original Assignee
Advanced Energy Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Energy Industries Inc filed Critical Advanced Energy Industries Inc
Publication of JP2021144953A publication Critical patent/JP2021144953A/ja
Priority to JP2021180892A priority Critical patent/JP2022010078A/ja
Application granted granted Critical
Publication of JP7153771B2 publication Critical patent/JP7153771B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32045Circuits specially adapted for controlling the glow discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32128Radio frequency generated discharge using particular waveforms, e.g. polarised waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Golf Clubs (AREA)
  • Inverter Devices (AREA)

Description

本特許協力条約(PCT)出願は、2017年7月7日に出願され“INTER-PERIOD CONTROL SYSTEM FOR PLASMA POWER DELIVERY SYSTEM AND METHOD OF OPERATING THE
SAME”と題された米国特許出願第62/529,963号に関連しており、それに対する優先権を主張するものであり、その全内容は、あらゆる目的のために参照により本明細書中に援用される。
本開示の側面は、電力送達システムを制御するため、特に、プラズマ電力送達システムを制御するための改良された方法およびシステムに関する。
プラズマ処理システムが、化学蒸着(CVD)および物理蒸着(PVD)等のプロセスを使用して、基板上に薄膜を堆積させるため、およびエッチングプロセスを使用して、基板から膜を除去するために使用される。プラズマは、多くの場合、無線周波数(RF)または直流(DC)発電機を、低い圧力においてプラズマチャンバに注入されるガスで充填されるプラズマチャンバに結合することによって、作成される。典型的には、発電機は、RF電力をプラズマチャンバ内のアンテナに送達し、アンテナにおいて送達される電力は、プラズマを着火し、持続させる。いくつかの事例では、RF発電機は、発電機出力において、プラズマインピーダンスを、所望のインピーダンス、典型的には、50Ωに合致させ得る、インピーダンス合致ネットワークに結合される。DC電力は、典型的には、1つ以上の電極を介してチャンバに結合される。インピーダンス合致ネットワーク、同一のプラズマに結合される他の発電機、ケーブル等の発電機単独、または他の機器と組み合わせた発電機は、プラズマ電力送達システムを構成する。
プラズマシステムに送達される電力の変調が、多くの場合、要求される。殆どの変調方式は、反復である、すなわち、同一の変調波形が、波形繰り返し率において繰り返される。関連付けられる波形繰り返し周期は、波形繰り返し率で除算された1に等しい。従来的な制御方式を使用して、規定変調波形に従う能力は、コントローラから、最終的に、測定システムから高帯域幅を要求する。多くのプラズマシステムは、異なる周波数においてプラズマに印加される電力を有する。プラズマ負荷の非線形性質は、発電機の測定システムに干渉し得る、相互変調積を作成する。したがって、時として、狭帯域測定システムを使用し、そのような干渉を限定することが有利である。多くの用途では、プラズマ負荷に送達される電力は、制御されている唯一のパラメータではない。例えば、RF電力送達システムでは、プラズマ負荷によって発電機に提示されるインピーダンスは、発電機出力の周波数を制御することを通して、または発電機とプラズマ負荷との間の可変インピーダンス合致ネットワークを制御することを通してのいずれかで制御されることができる。ある場合には、発電機ソースインピーダンスもまた、制御されてもよい。これらの問題を踏まえて電力を追跡および制御することは、ますます大きくなる制御課題を提示する。
とりわけ、これらの観察を念頭に置いて、本開示の側面が構想された。
一実施形態によると、発電機は、出力対時間の規定パターンに従う、送達された電力、電圧、電流、順方向電力等の出力を生成し、パターンは、過去の1つ以上の繰り返し周期に行われた測定に基づいて、パターンの区分を制御することによって、繰り返し周期を伴って繰り返す。一実施例では、電力送達システムは、繰り返し出力パターンを生成する、発電機と、現在の周期に先立った周期に行われる繰り返しパターンの値の測定に基づいて、繰り返しパターンを制御する、制御要素とを伴う。制御要素はさらに、現在の周期中の繰り返しパターンの値の測定と組み合わせられる、現在の周期に先立った周期に行われる繰り返しパターンの測定に基づいて、繰り返し出力パターンを制御してもよい。繰り返し出力パターンは、出力対時間の規定パターンに従ってもよく、規定パターンは、繰り返し周期を伴って繰り返し、現在の周期に先立った周期に行われる繰り返しパターンの値の測定は、過去の1つ以上の繰り返し周期に起こる。
さらに別の実施形態によると、可変インピーダンス合致ネットワークが、RF発電機に提示されるインピーダンスを制御する一方で、発電機は、出力対時間の規定パターンに従う、送達された電力、電圧、電流、順方向電力等の出力を生成し、パターンは、過去の1つ以上の繰り返し周期に行われた測定に基づいて、パターンの区分中に合致の中の可変インピーダンス要素を制御することによって、繰り返し周期を伴って繰り返す。発電機は、種々の可能性として考えられる実施形態では、プラズマを着火し、持続させるために、送達された電力、電圧、電流、順方向電力等をプラズマシステムに提供してもよい。
さらに別の実施形態によると、発電機は、出力対時間の規定パターンに従う出力を生成し、パターンは、過去の1つ以上の繰り返し周期に行われた測定に基づいて、パターンの区分を制御することと、本コントローラを、過去の繰り返し周期未満に行われた測定に基づいて制御出力を計算する、周期内コントローラと組み合わせることとによって、繰り返し周期を伴って繰り返す。
さらに別の実施形態によると、可変インピーダンス合致ネットワークが、RF発電機に提示されるインピーダンスを制御する一方で、発電機は、出力対時間の規定パターンに従う、送達された電力、電圧、電流、順方向電力等の出力を生成し、パターンは、過去の1つ以上の繰り返し周期に行われた測定に基づいて、パターンの区分中に合致の中の可変インピーダンス要素を制御することと、本コントローラを、過去の繰り返し周期未満に行われた測定に基づいて合致内の可変インピーダンス要素の制御を計算する、周期内コントローラと組み合わせることとによって、繰り返し周期を伴って繰り返す。
別の実施形態によると、発電機は、出力対時間の規定パターンに従う出力を生成し、パターンは、過去の1つ以上の繰り返し周期に行われた測定に基づいて、パターンの区分を制御する一方で、同時に、過去の1つ以上の繰り返し周期に行われた測定に基づいて、発電機内または発電機とプラズマとの間に結合される可変インピーダンス合致ネットワーク内に含有される、発電機出力周波数または可変インピーダンス要素等の別のパラメータを調節することによって、繰り返し周期を伴って繰り返し、電力制御および発電機周波数等の制御入力と発電機に提示される送達された電力およびインピーダンス等の制御出力との間の相関は、制御要素によって決定および使用される。
さらに別の実施形態によると、発電機は、出力対時間の規定パターンに従う出力を生成し、パターンは、制御入力を摂動させ、摂動への応答を決定し、摂動への応答を使用し、波形内の隣接または密接に位置する時間周期の間の結合を補償することによって、過去の1つ以上の繰り返し周期に同一の区分に関して行われる測定、およびパターンの中の他の区分に関するそのような測定に基づいて、パターンの区分を制御することによって、繰り返し周期を伴って繰り返す。
例えば、本願は以下の項目を提供する。
(項目1)
電力送達システムであって、
繰り返し出力パターンを生成する発電機と、
制御要素であって、前記制御要素は、現在の周期に先立った周期に行われる前記繰り返しパターンの値の測定に基づいて、前記繰り返しパターンを制御する、制御要素と
を備える、電力送達システム。
(項目2)
前記制御要素はさらに、現在の周期中の前記繰り返しパターンの値の測定と組み合わせられる前記現在の周期に先立った周期に行われる前記繰り返しパターンの測定に基づいて、前記繰り返し出力パターンを制御する、項目1に記載の電力送達システム。
(項目3)
前記繰り返し出力パターンは、出力対時間の規定パターンに従い、前記規定パターンは、繰り返し周期を伴って繰り返し、前記現在の周期に先立った周期に行われる前記繰り返しパターンの値の測定は、過去の1つ以上の繰り返し周期に起こる、項目1に記載の電力送達システム。
(項目4)
多次元入力を受信し、多次元出力を生成するプラントをさらに備え、前記パターンにおける特定の時間周期にわたる前記プラントへの制御入力の要素と同一の特定の時間周期にわたる前記プラントからの出力の要素との間の相関は、前記制御要素によって決定および使用される、項目3に記載の電力送達システム。
(項目5)
前記制御入力の要素と前記出力の要素との間の前記相関は、前記制御入力を摂動させ、前記摂動への応答を観察することによって決定される、項目4に記載の電力送達システム。
(項目6)
前記プラントへの前記制御入力および前記プラントからの前記出力は、多次元であり、前記周期的パターンにおける特定の時間周期および前記特定の時間周期に隣接する時間周期にわたる前記制御入力の要素と、前記特定の時間周期にわたる前記プラントからの前記出力の要素との間の前記相関は、前記制御要素によって決定および使用される、項目4に記載の電力送達システム。
(項目7)
前記制御入力の要素と前記出力の要素との間の前記相関は、前記制御入力を摂動させ、前記摂動への応答を観察することによって決定される、項目6に記載の電力送達システム。
(項目8)
前記発電機は、単一の無線周波数発電機または直流発電機のうちの1つであり、前記出力は、電圧、電流、および電力のうちの少なくとも1つである、項目1に記載の電力送達システム。
(項目9)
前記発電機は、複数の無線周波数発電機、または複数の直流発電機、または無線周波数発電機および直流発電機の組み合わせを備え、前記出力は、プラズマシステムに送達される電圧、電流、および電力のうちの少なくとも1つである、項目1に記載の電力送達システム。
(項目10)
前記出力の1つの要素は、電圧、電流および電力、またはそれらの組み合わせのうちの1つであり、前記出力の別の要素は、前記発電機に提示されるインピーダンスおよび前記発電機のソースインピーダンスのうちの1つである、項目4に記載の電力送達システム。
(項目11)
前記出力の1つの要素は、電圧、電流および電力、またはそれらの組み合わせのうちの1つであり、前記出力の別の要素は、前記発電機に提示されるインピーダンスおよび前記発電機のソースインピーダンスのうちの1つである、項目6に記載の電力送達システム。
(項目12)
電力送達システムであって、
メモリと通信する制御システムであって、前記制御システムは、出力対時間の規定パターンに従う出力を生成し、前記規定パターンは、前記メモリの中に記憶された前記出力の測定に基づいて、前記規定パターンの繰り返しを制御することによって、繰り返し周期を伴って繰り返し、メモリの中に記憶された前記出力は、出力対時間の前記規定パターンの1つ以上の前の繰り返しから得られる、制御システム
を備える、電力送達システム。
(項目13)
前記制御システムは、1つ以上の前の繰り返しから得られる測定を現在の繰り返しから得られる測定と組み合わせる、項目12に記載の電力送達システム。
(項目14)
前記プラズマ電力送達システムのプラントへの制御入力および前記プラズマ電力送達システムの出力は、多次元であり、前記規定パターンの繰り返しの開始に対する1つの瞬間における前記制御入力の複数の制御入力要素と、前記繰り返し周期の開始に対する同一の瞬間における前記出力の複数の出力要素との間の相関は、前記制御システムによって決定および使用される、項目12に記載の電力送達システム。
(項目15)
前記制御入力の制御入力要素と前記出力の出力要素との間の前記相関は、前記制御入力を摂動させ、前記摂動への応答を測定することによって決定される、項目14に記載の電力送達システム。
(項目16)
前記プラントへの前記制御入力および前記出力は、多次元であり、前記繰り返し周期の開始に対する1つの瞬間および前記1つの瞬間に隣接する瞬間における前記制御入力の複数の制御入力要素と、前記繰り返し周期の開始に対する前記1つの瞬間における前記出力の出力要素との間の相関は、前記制御システムによって決定および使用される、項目13に記載の電力送達システム。
(項目17)
前記制御入力の制御入力要素と前記出力の出力要素との間の前記相関は、前記制御入力を摂動させ、前記摂動への応答を測定することによって決定される、項目16に記載の電力送達システム。
(項目18)
前記電力送達システムは、単一の無線周波数(RF)または直流(DC)発電機を備え、前記出力の要素は、プラズマシステムに送達される電圧、電流、および電力レベルのうちの少なくとも1つを備える、項目12に記載の電力送達システム。
(項目19)
RF発電機、DC発電機、またはRF発電機およびDC発電機の組み合わせを備える複数の発電機をさらに備え、前記発電機の出力のそれぞれの要素は、電圧、電流、および電力レベルのうちの少なくとも1つを備える、項目18に記載の電力送達システム。
(項目20)
前記出力の出力要素のうちの1つは、電圧、電流、および電力のうちの少なくとも1つを備え、前記出力の別の出力要素は、発電機に提示される負荷インピーダンスおよび前記発電機のソースインピーダンスのうちの少なくとも1つを備える、項目14に記載の電力送達システム。
(項目21)
前記出力の1つの出力要素は、電圧、電流、および電力レベルのうちの少なくとも1つを備え、前記出力の別の出力要素は、発電機に提示される負荷インピーダンスおよび前記発電機のソースインピーダンスのうちの少なくとも1つを備える、項目16に記載の電力送達システム。
(項目22)
電力送達システムであって、
出力を生成するためのコントローラであって、前記コントローラは、周期的擾乱を受け、前記周期的擾乱は、過去の1つ以上の繰り返し周期に行われた前記出力の値の測定に基づいて、前記出力を制御することによって、繰り返し周期を伴って繰り返す、コントローラ
を備える、電力送達システム。
(項目23)
前記プラズマ電力送達システムは、前記周期的擾乱と同期化される信号を受信する、項目22に記載の電力送達システム。
(項目24)
プラズマ電力送達システムであって、
インピーダンス合致ネットワークであって、前記インピーダンス合致ネットワークは、負荷インピーダンスを、前記負荷インピーダンスが繰り返し周期を伴って繰り返す周期的変調パターンを受ける所望のインピーダンスに合致させる、インピーダンス合致ネットワークと、
前記インピーダンス合致ネットワークと動作可能に関連付けられる制御要素であって、前記制御要素は、過去の1つ以上の繰り返し周期に行われた前記負荷インピーダンスの値の測定に基づいて、前記インピーダンス合致ネットワーク内の可変インピーダンス要素を制御する、制御要素と
を備える、プラズマ電力送達システム。
(項目25)
前記制御要素は、過去の繰り返し周期未満に行われた前記負荷インピーダンスの値の測定と組み合わせられる過去の1つ以上の繰り返し周期に行われた前記負荷インピーダンスの値の測定に基づいて、前記インピーダンス合致ネットワーク内の前記可変インピーダンス要素を制御する、項目25に記載のプラズマ電力送達システム。
本開示の技術の種々の特徴および利点は、付随する図面に図示されるように、これらの技術の特定の実施形態の以下の説明から明白であろう。図面は、必ずしも一定の縮尺ではないが、しかしながら、代わりに、技術的概念の原理を例証することが強調されていることに留意されたい。図面では、類似参照番号が、異なる図の全体を通して同一の部品を指し得る。図面は、本開示の典型的実施形態のみを描写し、したがって、範囲が限定的と見なされるものではない。
図1Aは、プラズマ電力送達システムを制御するために使用され得る、単純なアナログ周期内制御システムを図示し、図1Bは、単純なデジタル周期内制御システムを図示する。
図2Aは、周期的入力への比較的に遅い周期内制御システムの応答を図示し、図2Bは、周期的入力への比較的に速い周期内制御システムの応答を図示する。
図3Aおよび図3Bは、本開示の実施形態による、プラズマ電力送達システムで実装され得る、例示的周期間コントローラのブロック図を図示する。
図4A-図4Dは、周期的入力への例示的周期間コントローラの応答を図示する。
図5は、本開示の一実施形態による、プラズマ電力送達システムで実装され得る、例示的複合周期間および周期内コントローラのブロック図を図示する。
図6Aは、例示的純粋周期間コントローラの周波数の関数として、ループ利得を図示する。
図6Bは、図6Aのループ利得を発生させる、周期間コントローラのためのループ利得のナイキストプロットを図示する。
図6Cは、図6Aのループ利得を発生させる、周期間コントローラのための周波数の関数として、閉ループ応答を図示する。
図6Dは、純粋周期間コントローラのための入力波形の高調波における、かつそれに近い周波数の関数として、閉ループ応答を図示する。
図7Aは、周期間部分に関する0.1加重および周期内部分に関する0.9加重を伴う、例示的複合周期間および周期内コントローラの周波数の関数として、ループ利得を図示する。
図7Bは、図7Aに関連するループ利得のナイキストプロットを図示する。
図7Cは、図7Aに関連する例示的複合コントローラの周波数の関数として、閉ループ応答を図示する。
図7Dは、図7Aに関連する例示的複合周期間および周期内コントローラのための入力波形の高調波における、かつそれに近い周波数の関数として、閉ループ応答を図示する。
図8Aは、周期間部分に関する0.01加重および周期内部分に関する0.99加重を伴う、例示的複合周期間および周期内コントローラの周波数の関数として、ループ利得を図示する。
図8Bは、図8Aに関連する複合コントローラのためのループ利得のナイキストプロットを図示する。
図8Cは、図8Aに関連する複合コントローラのための周波数の関数として、閉ループ応答を図示する。
図8Dは、図8Aに関連する同一の複合周期間および周期内コントローラのための入力波形の高調波における、かつそれに近い周波数の関数として、閉ループ応答を図示する。
図9は、本開示の一実施形態による、複合周期間および周期内コントローラの多入力多出力バージョンのブロック図を図示する。
本開示の実施形態は、出力対時間の規定パターンに従う、送達された電力、電圧、電流、および順方向電力等の出力を生成する、プラズマ電力送達システムを提供し、パターンは、現在の周期内と対照的に、過去の1つ以上の繰り返し周期に行われた測定に基づいて、パターンの区分を制御することによって、繰り返し周期を伴って繰り返す。従来のコントローラと比較して、そのような周期間コントローラは、より低い帯域幅測定および制御システムを利用して、より正確に出力を再現することができる。周期間コントローラによって提供される利益は、プラズマ発生混合および相互変調積の存在下を含む、種々の状況で有利であり得る。付加的実施形態では、周期間コントローラは、従来の周期内コントローラと組み合わせられることができる。付加的実施形態では、発電機出力周波数等のパラメータは、過去の1つ以上の繰り返し周期に行われた測定に基づいて、主要出力とともに調節されてもよく、電力制御および発電機周波数等の制御入力と発電機に提示される送達された電力およびインピーダンス等の制御出力との間の相関は、制御システムによって決定および使用される。付加的実施形態では、発電機は、出力対時間の規定パターンに従う出力を生成し、パターンは、制御入力を摂動させ、摂動への応答を決定し、摂動への応答を使用し、波形内の隣接または密接に位置する時間周期の間の結合を補償することによって、過去の1つ以上の繰り返し周期に同一の区分に関して行われる測定、およびパターンの中の他の区分に関するそのような測定に基づいて、パターンの区分を制御することによって、繰り返し周期を伴って繰り返す。
発電機用のコントローラを参照して主に説明されるが、本開示の側面は、スイッチモード電力供給部と、全体的電力送達システムの一部、および同部分用のコントローラ(他の基板バイアス方式として、バイアスを基板に提供するため等に、eV源用途で使用され得る)とに適用可能である。本明細書で議論されるコントローラおよび制御方式はまた、インピーダンス合致ネットワークの可変インピーダンス要素(真空可変コンデンサまたは切替可変リアクタンス要素等)を制御するために使用されてもよい。そのような事例では、本開示の側面は、全体的電力送達システムの一部として、インピーダンス合致ネットワークへのRF供給の制御で使用される場合とそうではない場合がある。コントローラは、電力送達システムの任意の部分内(例えば、発電機内または合致ネットワーク内)に常駐してもよく、電力送達システムの他の部分から情報を受信し、それを制御する場合とそうではない場合がある。例えば、発電機の中に常駐するコントローラは、発電機のみから、合致のみから、または発電機および合致の両方から取得される情報を用いて、電力送達システムの一部である発電機および合致の両方を制御してもよい。本明細書で議論されるコントローラおよび制御方式はまた、プラズマ電力送達環境内で電力を送達することを伴ってまたは伴わずに他のシステムで使用されてもよい。
図1A(従来技術)は、プラズマ電力送達システムを制御するために使用され得る、単純なアナログ周期内制御システムを図示し、図1B(従来技術)は、単純なデジタル周期内制御システムを図示する。図1Aでは、入力101と出力106との間の差異は、コントローラ103がプラント105への制御入力104を生成するために使用する、エラー信号102を生成する。本説明図では、コントローラは、kの利得を伴う単純な積分器である。実際の実装では、制御入力104cは、電力増幅器への駆動レベルであってもよく、プラント105Pは、電力増幅器であってもよい。本コントローラと開示される周期間コントローラとの間の性能差を例証するために、プラント105Pは、ユニティ利得ブロック、すなわち、y=cである。これらの仮定により、ループ利得は、k rad/sまたはk/(2π)Hzにおけるユニティ利得を有し、システムステップ応答の時定数は、1/k sであり、システムのインパルス応答の積分は、1/k sで63.2%(1-1/e)に到達する。図1Bでは、入力151は、サンプラ157によって、1/Tのサンプリングレートにおいてサンプリングされ、デジタル化される。(いくつかの用途では、入力は、すでにデジタルデータストリームであり、サンプラ157は、システムの中に存在しない)。出力156は、サンプラ159によってサンプリングおよびデジタル化され、入力と出力との間の差異は、プラント155にフィードされる、デジタル/アナログ変換器158によってアナログ制御信号に変換される、制御入力154を生成するためにコントローラ153が使用する、エラー信号152を生成する。図1Aに関して、本コントローラと開示される周期間コントローラとの間の性能差を例証するために、プラント105Pは、ユニティ利得ブロックである。kとユニティ利得周波数および応答時間との間の関係に関する同一の記述は、kが2π/Tをはるかに下回ることを前提として、図1Aのアナログコントローラに関して当てはまる。
図2A(従来技術)は、周期T205を伴う周期的入力への図1Aまたは図1Bに示されるような単純な周期内コントローラの応答200を示す。本実施例では、異なる設定点のホスト(例えば、1の設定点電力、その後に2が続き、その後に5が続き、3までの漸増を伴う)が、1つの入力の周期を定義する。出力202は、可視的な不正確度(出力が入力設定点に合致しない)を伴って、入力201の後に続く。本説明図に関する閉ループ応答の時定数は、10マイクロ秒である。所与の点Aにおける出力203は、システムの時間偏移時間逆転インパルス応答を入力で乗算し、積分することによって、取得されることができる。ユニットの正規化された偏移時間逆転インパルス応答204は、点Aにおける出力203が、(点Aに先立った1つの時定数または10マイクロ秒以内の)直近の過去によって大きく影響を受け、点Aに先立った10個の時定数よりも早く起こる事象によって殆ど全く影響を受けないことを示す。パルス内の変化する設定点に適応するために、従来のコントローラは、非常に高速でなければならない。図2B(従来技術)に示されるように、コントローラを加速することは、正確に入力の後に続く出力の能力を向上させる。本説明図に関する閉ループ応答の時定数は、5マイクロ秒である。応答250は、出力252が、より密接に入力251の後に続くことを示す。正規化された時間偏移時間逆転インパルス応答254は、点A253が、ここでは、直近の過去の入力によってさらに大きく影響を受けることを示す。
これらの従来の周期内コントローラでは、エラー制御は、設定点に対する(周期内の)電流出力の測定値に基づく。したがって、図2Aを参照すると、例えば、時間1.5ミリ秒における出力の測定値は、エラー信号を発生させるように、その同一の時間における設定点値に対して比較されるであろう。別の言い方をすれば、設定点値は、従来の周期内コントローラに関するエラー信号を発生させるように、現在の周期中に測定値に対して比較される。対照的に、周期間コントローラは、所与の設定点に関して過去の出力された1つ以上のサイクルの測定値を比較し、設定点における過去の測定値を使用し、現在のエラー信号およびコントローラ出力を発生させる。図2Aを再び参照すると、例えば、3という設定点を伴う時間1.5ミリ秒において、3という同一の設定点を伴う時間0.94ミリ秒における測定値(0.56ミリ秒早い1つの波形繰り返し周期または時間1.5ミリ秒と相関する先行パルスのその部分)が、時間1.5ミリ秒におけるパルス内の測定値と対照的に、エラーおよび出力を発生させるためにコントローラによって使用されるであろう。着目すべきこととして、周期間コントローラは、パルス内の直接近接する値と対照的に、過去の1サイクルの測定値に依拠するため、ほぼ同程度に高速である必要はない。
いくつかの実施例では、パルス(例えば、周期Tにわたるパルス)は、複数の時間周期に分割され、前のパルスの同一の時間周期内の対応する(同一の)出力値は、エラー信号に使用される。以降の第2のパルスの時間1.5ミリ秒におけるエラー補正に関して、第1のパルスの時間0.94ミリ秒における測定値を使用することを直接上記で参照する、実施例を再び参照すると、時間周期は、ある範囲内に0.56ミリ秒の特定の値を包含する。一実施例では、パルスが分割される時間周期は、任意の時間周期が、傾斜設定点遷移を除いて、異なる設定点を包含しないようなものである。
種々の実装では、周期間パルス情報は、後続のパルスのエラーフィードバックに関してコントローラによってアクセスおよび使用され得るように、ある形態のメモリの中に記憶される。傾斜設定点遷移および別様に異なる設定点を伴うような複雑なパルスは、パルスの比較的に小さい時間周期細分から利益を享受し得、したがって、比較的に大きくて速いメモリを要求し得る。特定の実施例では、100ミリ秒~10マイクロ秒周期Tを伴うパルスは、1,024の時間スライスに細分されてもよく、スライス毎の出力値は、後続のパルスの同一の時間スライスの中の測定値との比較のために記憶されてもよい。
いくつかの用途では、いかなるエラー信号も発生されない。周期間制御方式を使用するインピーダンス合致用途では、過去の1つまたは複数の周期T205に発電機に提示されるインピーダンスについての情報は、現時点における合致ネットワーク内の可変インピーダンス要素を調節するために使用されることができる。情報は、最初にエラー信号を発生させることなく、可変インピーダンス合致要素への調節を計算するために使用されることができる。インピーダンス合致用途では、設定点(例えば、101、151、303、351、501)は、概して、一定であるが、所望の入力インピーダンスに合致されなければならない、負荷インピーダンスの周期的擾乱が存在する。そのような周期的擾乱は、例えば、出力対時間の規定パターンに従う、プラズマ負荷に電力を送達することから生じ得、パターンは、繰り返し周期を伴って繰り返す。そのような場合において、例えば、電力の規定パターンを提供する電源からの同期化信号は、擾乱の反復波形と同期化する際に合致ネットワークを支援するように、合致ネットワークに提供されることができる。
図3Aは、本開示の一実施形態による、プラズマ電力送達システムで実装され得る、周期間コントローラ300の一実施例のブロック図を図示する。図3Bは、本開示の別の実施形態による、プラズマ電力送達システムで実装され得る、周期間コントローラ350の代替例示的実装のブロック図を図示する。本明細書に説明される周期間コントローラのいくつかの実装は、多入力多出力(MIMO)コントローラと見なされてもよい。コントローラ、またはより一般的には、制御要素は、ハードウェアおよびソフトウェアで、同部分の種々の可能性として考えられる組み合わせを伴って、実装されてもよい。制御要素は、発電機または他のデバイスと統合されてもよい、または別個のコンポーネントであってもよい。いくつかの用途では、周期間コントローラは、制御されているものと異なる機器の中に常駐してもよい。実施例として、インピーダンス合致ネットワークに接続されるコントローラは、発電機の中に常駐するが、インピーダンス合致ネットワーク内の可変インピーダンス要素を制御してもよい。そのような用途では、結合器からの順方向および反射信号は、発電機の中に常駐する結合器から取得され、アナログでフィルタ処理され、アナログ/デジタル変換器においてデジタル化され、ソフトウェアプログラムを起動するマイクロプロセッサによって、または、例えば、FPGAで実装されるデジタル論理回路によって、合致によって発電機に提示されるインピーダンスを抽出するように処理されてもよい。測定は、マイクロプロセッサまたはFPGAの中に常駐する再構成可能なデジタル回路によって、メモリの中に記憶されることができる。異なる時間におけるインピーダンス測定のサンプルを含有するメモリは、マイクロプロセッサ内で起動するソフトウェアを使用して、またはFPGAによって処理されることができる。ソフトウェアまたはFPGAは、過去の1つまたは複数の波形繰り返し周期のサンプルを使用し、周期間制御方式を実装することができる。そのような方式を実装するために、合致の中の可変インピーダンス要素の過去の値についての情報もまた、使用されることができる。コントローラは、次いで、制御信号を合致に送信し、合致の中の可変インピーダンス要素を変更することができる。図3Aは、入力の繰り返し周期Tにおいてそれぞれ起動する、コントローラの数Nとして、周期間コントローラ(インターリーブ方式を提供する)を実装する。ブロック301は、第1のそのようなコントローラを示し、ブロック302は、N番目のそのようなコントローラを示す。入力303は、1/Tのサンプリングレートにおいて、アナログ/デジタル変換器304によってサンプリングおよびデジタル化される。(入力は、すでにデータストリームとして存在していてもよく、その場合、変換器304は、使用されない。)サンプリングされた入力は、各コントローラが1/Tのレートにおいて更新された入力を受信するように、スイッチ305によって順にコントローラに切り替えられる、またはルーティングされる。コントローラの出力は、スイッチ306によって、共通制御入力cにルーティングされる。制御入力は、デジタル/アナログ変換器307によってアナログに変換され、プラントP308の制御入力に印加される。出力y309は、サンプラ(コントローラ301に関しては313)による1/Tのレートにおいて、各コントローラによってサンプリングされる。
各コントローラは、サンプリングされた出力から入力を減算することによって、誤差関数(コントローラ301に関しては310)を作成する。(サンプリングされた出力が波形周期Tだけ遅延されるため、これは、周期間コントローラを実装する。)誤差関数は、(コントローラ301に関しては311によって)積分され、出力(コントローラ301に関しては312)を生成する。コントローラの数Nおよびサンプリング周期Tは、NT=Tであるように調節される。入力の繰り返し周期Tが、少しのサンプリング周期を変動させ得る、状況に応じるために、余剰コントローラが、利用されてもよい。例えば、3つのサンプリング周期を変動させ得る、Tを取り扱うためのN+3個のコントローラが存在し得る。余剰制御区分が、最大よりも短いTに起因して更新されないとき、最後の更新されたコントローラの状態は、余剰制御区分にコピーされることができる。
図3Bは、本開示のある実施形態による、周期間コントローラ350の代替的実装を示す。入力351は、1/Tのサンプリングレートにおいて、アナログ/デジタル変換器352によってサンプリングおよびデジタル化される。(入力は、すでにデータストリームとして存在していてもよく、その場合、変換器352は、使用されない。)出力358は、アナログ/デジタル変換器359によってサンプリングおよびデジタル化される。(出力は、出力の測定から導出されるデジタルデータストリームであってもよく、その場合、アナログ/デジタル変換器は、示されるように実装されなくてもよい。)誤差関数353が、出力から入力を減算することによって取得される。コントローラ354は、プラントへの制御入力c355および1つの入力の周期T前の誤差関数e353の値から、プラントへの制御入力c355を発生させる。これは、以下に示されるであろうように、従来の周期内コントローラと有意に異なる。プラントへの制御入力は、デジタル/アナログ変換器356によってアナログ信号に変換され、プラント357に印加される。コントローラ300に関して、プロビジョンは、入力の繰り返し周期Tが少ないサンプリング周期を変動させ得る状況に対処するように行われることができる。この場合、Nは、前の入力の周期Tに適合する、サンプリング周期Tの数に基づいて、変動することを可能にされる。
図4A-図4Dは、周期的制御入力への本開示の一実施形態によるプラズマ電力送達システムで実装され得る周期間コントローラの応答を図示する。図4Aおよび4Bでは、周期的入力401への出力402の応答400が、示される。応答400に示されるように、出力は、入力にゆっくりと収束する(図4A)が、入力の約30サイクル後(図4B)、出力404は、殆ど感知できない誤差を伴って入力403の後に続く。図4Cは、応答450上の点A451および点Aに影響を及ぼす点を示す。周期間コントローラに関して、点A451は、依然として、過去の入力された5ミリ秒によって有意に影響を受けることに留意されたい。したがって、出力の各区分が約5ミリ秒の時定数を伴う入力に接近しても、入力の少ない周期後に、出力は、殆ど感知できない誤差を伴って入力の後に続くことができる。従来の周期内コントローラに関して、たとえ5マイクロ秒の時定数があっても、出力は、本精度で入力の後に続かない。
図5は、本開示の一実施形態による、プラズマ電力送達システムで実装され得る、例示的複合周期間および周期内コントローラ500のブロック図を図示する。入力501は、1/Tのサンプリングレートにおいて、アナログ/デジタル変換器502によってサンプリングおよびデジタル化される。(入力は、すでにデータストリームとして存在していてもよく、その場合、変換器502は、使用されない。)出力509は、アナログ/デジタル変換器510によってサンプリングおよびデジタル化される。(出力は、出力の測定から導出されるデジタルデータストリームであってもよく、その場合、アナログ/デジタル変換器は、示されるように実装されなくてもよい。)誤差関数503が、出力から入力を減算することによって取得される。コントローラ504は、プラントへの制御入力c506および1つの入力の周期T前および1つのサンプリング周期T前の誤差関数e503の値から、プラントへの制御入力c506を発生させる。NおよびTは、T=NTを満たすように選定される。制御入力c506は、1つのサンプリング周期T前および1つの入力の周期T前の値に基づく、値の加重平均である。本加重は、おそらく、方程式505に示されるシーケンス(サンプリングされた時間)ドメインにより明確に図示される。504および505では、Wは、0~1の実数であり、W=1-Wである。W=1である場合、コントローラは、純粋周期間コントローラであり、W=0である場合、コントローラは、従来の周期内コントローラである。プラントへの制御入力c506は、デジタル/アナログ変換器507によってアナログ信号に変換され、プラント508に印加される。プロビジョンは、入力の繰り返し周期Tが少ないサンプリング周期を変動させ得る状況に対処するように行われることができる。この場合、Nは、前の入力の周期Tに適合する、サンプリング周期Tの数に基づいて、変動することを可能にされる。この場合、繰り返しの終了に向かった区分が最近更新されなかった場合、以前のサンプルから状態をコピーするのではなく、加重は、次の入力の周期の開始まで純粋周期内コントローラを起動するように変更されることができる(W=0)。本例示的複合周期間および周期内コントローラ500は、周期的入力とともに動作することから非反復入力501とともに動作することへ容易に遷移し得るという点で、付加的利点を有する。
図6A、図6B、図6C、および図6Dは、本開示の一実施形態による、プラズマ電力送達システムで実装され得る、(W=1を伴う)300、350、または500等の例示的周期間コントローラの性質を図示する。例証を容易にするために、図6では、プラントP308、357、または506は、単純なユニティ利得ブロックであり、サンプル周期T=1マイクロ秒、繰り返し周期T=1ミリ秒、故に、N=T/T=1,000、k(500ではk)=62.83である。周期間コントローラのループ利得のボードプロットが、図6Aに示される。ループ利得は、従来的な周期内コントローラと非常に異なる。利得k(500ではk)=62.83=2π10に関して予期され得るように、10Hzにおける第1の利得交差周波数が存在するが、利得の規模は、入力の高調波において無限に戻る(1/Tの倍数)、すなわち、それが異例な精度で周期的入力の後に続くことを可能にする、周期間コントローラのユニークな性質である。図6Bは、ループ利得のナイキストプロットを示す。ナイキストプロットの解釈を促進するために、ループ利得の規模は、log(1+log(1+・))によってスケーリングされる。本マッピングは、0を0に、1を1にマップし、単調に増加しているため、依然として、複素平面内の点-1+j0が丸く囲まれていないことを検証することができる。ボードプロット内の複数の利得交差にもかかわらず、ナイキストプロットは、本システムが安定していることを示す。図6Cは、システムの閉ループ応答の規模および位相を示す。図6Dは、入力の高調波のみおよび入力の高調波から+/-1Hzにおけるシステムの閉ループ応答の規模および位相を示す。図6Dは、高調波における利得がユニティ利得であることを示し、周期Tを伴う周期的入力が精密に後に続くであろうことを確認する。図6Dでは、正確に0dBの利得および0位相(ユニティ利得)を有する点は、正確に入力の高調波にあり、-0.04dBの利得および+/-5度の位相を有する点は、入力高調波を1Hz上回る、かつ下回る。
図7A、図7B、図7C、および図7Dは、本開示の一実施形態による、プラズマ電力送達システムで実装され得る、W=0.1を伴う例示的複合周期間コントローラおよび周期内コントローラ500の性質を図示する。例証を容易にするために、図7では、プラントP506は、単純なユニティ利得ブロックであり、サンプル周期T=1マイクロ秒、繰り返し周期T=1ミリ秒、故に、N=T/T=1,000、k=62.83、およびk=62,830である。複合周期間および周期内コントローラのループ利得のボードプロットが、図7Aに示される。ループ利得は、従来的な周期内コントローラと非常に異なる。10HzのW=1に関する交差周波数と10kHzのW=0に関する交差との間である、100Hzにおける第1の利得交差周波数が存在する。利得の規模は、入力の高調波において高いが有限の値に戻る(1/Tの倍数)、すなわち、複合周期間および周期内コントローラのユニークな性質である。図7Bは、ループ利得のナイキストプロットを示す。ナイキストプロットの解釈を促進するために、ループ利得の規模は、log(1+log(1+・))によってスケーリングされる。本マッピングは、0を0に、1を1にマップし、単調に増加しているため、依然として、複素平面内の点-1+j0が丸く囲まれていないことを検証することができる。ボードプロット内の複数の利得交差にもかかわらず、ナイキストプロットは、本システムが安定していることを示す。図7Cは、システムの閉ループ応答の規模および位相を示す。図7Dは、入力の高調波のみおよび入力の高調波から+/-1Hzにおけるシステムの閉ループ応答の規模および位相を示す。図7Dは、入力の最初のいくつかの高調波における利得がユニティ利得に近いことを示し、入力の最初のいくつかの高調波成分が良好な精度で後に続くであろうことを示す。
図8A、図8B、図8C、および図8Dは、本開示の一実施形態による、プラズマ電力送達システムで実装され得る、W=0.01を伴う例示的複合周期間コントローラおよび周期内コントローラ500の性質を図示する。図8では、プラントP506は、単純なユニティ利得ブロックであり、サンプル周期T=1マイクロ秒、繰り返し周期T=1ミリ秒、故に、N=T/T=1,000、k=62.83、およびk=62,830である。複合周期間および周期内コントローラのループ利得のボードプロットが、図8Aに示される。ループ利得は、従来的な周期内コントローラのものに接近する。10HzのW=1に関する交差周波数と10kHzのW=0に関する交差との間である、9.1kHzにおける第1の利得交差周波数が存在する。利得の規模は、周波数が増加するにつれてユニティの2倍高い値に戻る。図8Bは、ループ利得のナイキストプロットを示す。ナイキストプロットの解釈を促進するために、ループ利得の規模は、log(1+log(1+・))によってスケーリングされる。本マッピングは、0を0に、1を1にマップし、単調に増加しているため、依然として、複素平面内の点-1+j0が丸く囲まれていないことを検証することができる。ボードプロット内の複数の利得交差にもかかわらず、ナイキストプロットは、本システムが安定していることを示す。図8Cは、システムの閉ループ応答の規模および位相を示す。図7Dは、入力の高調波のみおよび入力の高調波から+/-1Hzにおけるシステムの閉ループ応答の規模および位相を示す。図7Dは、入力の最初のいくつかの高調波における利得がユニティ利得に近いことを示し、入力の最初のいくつかの高調波成分が良好な精度で後に続くであろうことを示す。本コントローラは、10kHzの利得交差周波数を伴う周期内コントローラの性能に接近する。
図9は、本開示の一実施形態による、プラズマ電力送達システムで実装され得る、例示的複合周期間および周期内コントローラ900の多入力多出力バージョンのブロック図を図示する。入力901は、1/Tのサンプリングレートにおいて、アナログ/デジタル変換器902によってサンプリングおよびデジタル化される。(入力は、すでにデータストリームとして存在していてもよく、その場合、変換器902は、使用されない。)入力は、多次元であり、例えば、出力電力および発電機ソースインピーダンスのための入力を含有してもよい。出力907は、アナログ/デジタル変換器909によってサンプリングおよびデジタル化される。(出力は、出力の測定から導出されるデジタルデータストリームであってもよく、その場合、アナログ/デジタル変換器は、示されるように実装されなくてもよい。)出力は、多次元であり、例えば、発電機に提示される出力電力およびインピーダンスの測定を含んでもよい。入力901および出力907の次元性は、一致する必要はない。これは、出力の要素が最小限または最大限にされているものの測定値を含有し得、したがって、入力を要求しない(例えば、所望の負荷インピーダンスへの発電機に提示される負荷インピーダンスの不一致)ためである。また、入力の要素は、値が単純に設定されることができ、対応する測定を要求しない(例えば、発電機ソースインピーダンスを設定する)場合、対応する測定を要求しない場合がある。入力901、制御入力904、摂動908、および出力907の測定は、メモリ910の中に記憶される。コントローラ903は、1つの入力の周期T前および1つのサンプリング周期T前のメモリの中に記憶された値から、プラントへの制御入力c904を発生させる。NおよびTは、T=NTを満たすように選定される。
プラントへの制御入力904の値を計算することに加えて、コントローラはまた、計算された制御に追加される摂動908を発生させることもできる。摂動908に追加されるプラントへの制御入力904は、デジタル/アナログ変換器905によってアナログ信号に変換され、プラント906に印加される。摂動908は、制御入力904と出力907との間の相関を抽出するために使用されることができる。例えば、出力電力(例えば、電力増幅器への駆動レベル)を主に制御する、904における制御要素を摂動させ、プラズマ負荷によって発電機に提示される出力電力およびインピーダンスの両方の変化を観察し、次いで、発電機(例えば、発電機周波数)に提示されるインピーダンスを主に制御する制御要素を摂動させ、プラズマ負荷によって発電機に提示される出力電力およびインピーダンスの両方を観察することは、コントローラが制御入力904と出力907との間の相関を抽出することを可能にする。入力が周期的に変調される場合、制御入力904と出力907との間の相関もまた、(殆どのプラズマ負荷の場合のように負荷が非線形であると仮定して)変調される。周期間コントローラは、反復入力サイクル内の特定の時間周期毎に制御入力904および出力907を相関させることができる。例えば、T=1ミリ秒およびT=1マイクロ秒に関して、コントローラは、入力の中の1,000時間周期のそれぞれに関して904を907と相関させる、1,000のマトリクスを維持することができる。特定の時間周期毎に制御入力904の要素と出力907の要素との間の相関を抽出することに加えて、相関は、異なる時間周期の間で抽出されることができる。例えば、コントローラは、1つの時間周期内の制御入力の要素の変化が連続時間周期内の出力に影響を及ぼす程度を決定することができる。
単純な実施例は、これらの相関を把握することの利点を図示する。周期的入力の中の第7の時間周期に関して2次元制御ベクトル(例えば、駆動および周波数)および2次元出力(例えば、出力電力および負荷抵抗)を更新する方法についての決定を考慮されたい。第7の時間周期の出力の所望の変化を、
Figure 0007153771000001
とする。
摂動を通して、第7の時間周期内の出力と第6および第7の時間周期内の制御入力との間の相関が推定されると仮定する:
Figure 0007153771000002
(近似的に)以下の結果になる。
Figure 0007153771000003
第7の時間周期のための入力が調節される必要があるとき、第6の時間周期の入力への変更がすでに行われており、したがって、以下が把握され、
Figure 0007153771000004
以下の結果になる。
Figure 0007153771000005
単純な実施例は、プラントへの2つの(駆動および周波数)および2つの出力(出力電力および負荷抵抗)を使用する。出力抵抗は、負荷インピーダンスの1つだけの成分である。実用的用途では、負荷インピーダンスの抵抗部だけではなく、負荷インピーダンスが重要である。そのような場合において、第3の入力(例えば、合致ネットワーク内の可変リアクタンス要素)が、利用される必要があろう、または最適化技法が、実施例における単純な算出ではなく、3つの出力を制御する2つだけの入力を使用して、最良の解を見出すために採用されることができる。
周期間制御と併せた多入力多出力制御は、1つの制御ループ内の複数のパラメータの制御を可能にする。これは、通常、同一のプラズマ電力送達システム内の異なる制御ループのために広く異なる速度を使用することを余儀なくさせる、制御ループに干渉するという問題を回避する。
周期間制御は、単一のコントローラが、電力を同一のプラズマシステムに送達する複数の発電機をより容易に制御することを可能にする。周期間および周期内コントローラのためのデータレートは、プラントへの制御入力がサンプリングレート1/Tにおいて更新されるため、同一である。しかしながら、周期内コントローラが、プラントへの現在の制御入力を更新するために、より早い1つのサンプリング周期Tからの情報を必要とする一方で、周期間コントローラは、プラントへの制御入力を更新するために、より早い1つの入力周期Tからの情報を必要とする。殆どの場合、TがTよりも複数倍長いため、情報が周期間コントローラのために必要とされる前に、コントローラを往復するその情報を入手することは、はるかに容易である。周期間コントローラは、したがって、異なる発電機の間の相互作用をはるかに容易に考慮し、電力を同一のプラズマシステムに送達する全ての発電機の全体的制御を向上させることができる。
周期間および混合周期間および周期内コントローラの所与の実施例では、コントローラは、過去の1つのサンプリング周期Tまたは1つの繰り返し周期Tの信号のサンプルを使用した。当然ながら、コントローラはまた、過去の複数のサンプリング周期または繰り返し周期の信号のサンプルを使用することもできる。
(項目1)
電力送達システムであって、
繰り返し出力パターンを生成する発電機と、
制御要素であって、上記制御要素は、現在の周期に先立った周期に行われる上記繰り返しパターンの値の測定に基づいて、上記繰り返しパターンを制御する、制御要素と
を備える、電力送達システム。
(項目2)
上記制御要素はさらに、現在の周期中の上記繰り返しパターンの値の測定と組み合わせられる上記現在の周期に先立った周期に行われる上記繰り返しパターンの測定に基づいて、上記繰り返し出力パターンを制御する、項目1に記載の電力送達システム。
(項目3)
上記繰り返し出力パターンは、出力対時間の規定パターンに従い、上記規定パターンは、繰り返し周期を伴って繰り返し、上記現在の周期に先立った周期に行われる上記繰り返しパターンの値の測定は、過去の1つ以上の繰り返し周期に起こる、項目1に記載の電力送達システム。
(項目4)
多次元入力を受信し、多次元出力を生成するプラントをさらに備え、上記パターンにおける特定の時間周期にわたる上記プラントへの制御入力の要素と同一の特定の時間周期にわたる上記プラントからの出力の要素との間の相関は、上記制御要素によって決定および使用される、項目3に記載の電力送達システム。
(項目5)
上記制御入力の要素と上記出力の要素との間の上記相関は、上記制御入力を摂動させ、上記摂動への応答を観察することによって決定される、項目4に記載の電力送達システム。
(項目6)
上記プラントへの上記制御入力および上記プラントからの上記出力は、多次元であり、上記周期的パターンにおける特定の時間周期および上記特定の時間周期に隣接する時間周期にわたる上記制御入力の要素と、上記特定の時間周期にわたる上記プラントからの上記出力の要素との間の上記相関は、上記制御要素によって決定および使用される、項目4に記載の電力送達システム。
(項目7)
上記制御入力の要素と上記出力の要素との間の上記相関は、上記制御入力を摂動させ、上記摂動への応答を観察することによって決定される、項目6に記載の電力送達システム。
(項目8)
上記発電機は、単一の無線周波数発電機または直流発電機のうちの1つであり、上記出力は、電圧、電流、および電力のうちの少なくとも1つである、項目1に記載の電力送達システム。
(項目9)
上記発電機は、複数の無線周波数発電機、または複数の直流発電機、または無線周波数発電機および直流発電機の組み合わせを備え、上記出力は、プラズマシステムに送達される電圧、電流、および電力のうちの少なくとも1つである、項目1に記載の電力送達システム。
(項目10)
上記出力の1つの要素は、電圧、電流および電力、またはそれらの組み合わせのうちの1つであり、上記出力の別の要素は、上記発電機に提示されるインピーダンスおよび上記発電機のソースインピーダンスのうちの1つである、項目4に記載の電力送達システム。(項目11)
上記出力の1つの要素は、電圧、電流および電力、またはそれらの組み合わせのうちの1つであり、上記出力の別の要素は、上記発電機に提示されるインピーダンスおよび上記発電機のソースインピーダンスのうちの1つである、項目6に記載の電力送達システム。(項目12)
電力送達システムであって、
メモリと通信する制御システムであって、上記制御システムは、出力対時間の規定パターンに従う出力を生成し、上記規定パターンは、上記メモリの中に記憶された上記出力の測定に基づいて、上記規定パターンの繰り返しを制御することによって、繰り返し周期を伴って繰り返し、メモリの中に記憶された上記出力は、出力対時間の上記規定パターンの1つ以上の前の繰り返しから得られる、制御システム
を備える、電力送達システム。
(項目13)
上記制御システムは、1つ以上の前の繰り返しから得られる測定を現在の繰り返しから得られる測定と組み合わせる、項目12に記載の電力送達システム。
(項目14)
上記プラズマ電力送達システムのプラントへの制御入力および上記プラズマ電力送達システムの出力は、多次元であり、上記規定パターンの繰り返しの開始に対する1つの瞬間における上記制御入力の複数の制御入力要素と、上記繰り返し周期の開始に対する同一の瞬間における上記出力の複数の出力要素との間の相関は、上記制御システムによって決定および使用される、項目12に記載の電力送達システム。
(項目15)
上記制御入力の制御入力要素と上記出力の出力要素との間の上記相関は、上記制御入力を摂動させ、上記摂動への応答を測定することによって決定される、項目14に記載の電力送達システム。
(項目16)
上記プラントへの上記制御入力および上記出力は、多次元であり、上記繰り返し周期の開始に対する1つの瞬間および上記1つの瞬間に隣接する瞬間における上記制御入力の複数の制御入力要素と、上記繰り返し周期の開始に対する上記1つの瞬間における上記出力の出力要素との間の相関は、上記制御システムによって決定および使用される、項目13に記載の電力送達システム。
(項目17)
上記制御入力の制御入力要素と上記出力の出力要素との間の上記相関は、上記制御入力を摂動させ、上記摂動への応答を測定することによって決定される、項目16に記載の電力送達システム。
(項目18)
上記電力送達システムは、単一の無線周波数(RF)または直流(DC)発電機を備え、上記出力の要素は、プラズマシステムに送達される電圧、電流、および電力レベルのうちの少なくとも1つを備える、項目12に記載の電力送達システム。
(項目19)
RF発電機、DC発電機、またはRF発電機およびDC発電機の組み合わせを備える複数の発電機をさらに備え、上記発電機の出力のそれぞれの要素は、電圧、電流、および電力レベルのうちの少なくとも1つを備える、項目18に記載の電力送達システム。
(項目20)
上記出力の出力要素のうちの1つは、電圧、電流、および電力のうちの少なくとも1つを備え、上記出力の別の出力要素は、発電機に提示される負荷インピーダンスおよび上記発電機のソースインピーダンスのうちの少なくとも1つを備える、項目14に記載の電力送達システム。
(項目21)
上記出力の1つの出力要素は、電圧、電流、および電力レベルのうちの少なくとも1つを備え、上記出力の別の出力要素は、発電機に提示される負荷インピーダンスおよび上記発電機のソースインピーダンスのうちの少なくとも1つを備える、項目16に記載の電力送達システム。
(項目22)
電力送達システムであって、
出力を生成するためのコントローラであって、上記コントローラは、周期的擾乱を受け、上記周期的擾乱は、過去の1つ以上の繰り返し周期に行われた上記出力の値の測定に基づいて、上記出力を制御することによって、繰り返し周期を伴って繰り返す、コントローラ
を備える、電力送達システム。
(項目23)
上記プラズマ電力送達システムは、上記周期的擾乱と同期化される信号を受信する、項目22に記載の電力送達システム。
(項目24)
プラズマ電力送達システムであって、
インピーダンス合致ネットワークであって、上記インピーダンス合致ネットワークは、負荷インピーダンスを、上記負荷インピーダンスが繰り返し周期を伴って繰り返す周期的変調パターンを受ける所望のインピーダンスに合致させる、インピーダンス合致ネットワークと、
上記インピーダンス合致ネットワークと動作可能に関連付けられる制御要素であって、上記制御要素は、過去の1つ以上の繰り返し周期に行われた上記負荷インピーダンスの値の測定に基づいて、上記インピーダンス合致ネットワーク内の可変インピーダンス要素を制御する、制御要素と
を備える、プラズマ電力送達システム。
(項目25)
上記制御要素は、過去の繰り返し周期未満に行われた上記負荷インピーダンスの値の測定と組み合わせられる過去の1つ以上の繰り返し周期に行われた上記負荷インピーダンスの値の測定に基づいて、上記インピーダンス合致ネットワーク内の上記可変インピーダンス要素を制御する、項目25に記載のプラズマ電力送達システム。

Claims (16)

  1. 電力送達システムであって、
    前記電力送達システムは、出力信号を生成するように構成されているコントローラを備え、
    前記コントローラは、周期的擾乱を受け、前記周期的擾乱は、過去の1つ以上の繰り返し周期において行われた前記出力信号の値の測定と、多次元制御入力値の複数の要素と多次元出力値の複数の要素との間の複数の記憶された相関とに基づいて、前記コントローラが前記出力信号を制御する繰り返し周期伴って繰り返される、電力送達システム。
  2. 前記電力送達システムは、前記周期的擾乱と同期化されている信号を受信する、請求項1に記載の電力送達システム。
  3. 前記コントローラは、現在の繰り返し周期の測定と組み合わされた過去の1つ以上の繰り返し周期の測定に基づいて前記繰り返し周期を制御するように構成されている、請求項1に記載の電力送達システム。
  4. 前記コントローラは、前記繰り返し周期における特定の時間周期にわたる前記多次元制御入力値の前記複数の要素と、同一の特定の時間周期にわたる前記多次元出力値の前記複数の要素との間の前記複数の記憶された相関を決定し、使用するように構成されている、請求項1に記載の電力送達システム。
  5. 前記コントローラは、制御入力を摂動させることにより、前記多次元制御入力値の前記複数の要素と前記多次元出力値の前記複数の要素との間の前記複数の相関を取得するように構成されている、請求項1に記載の電力送達システム。
  6. 前記繰り返し周期における前記特定の時間周期および前記特定の時間周期に隣接する時間周期にわたる前記多次元制御入力値の前記複数の要素と、前記特定の時間周期にわたる前記多次元出力値の前記複数の要素との間の前記複数の相関は、前記コントローラによって決定され、使用される、請求項4に記載の電力送達システム。
  7. 前記多次元出力値の1つの要素は、電圧、電流、電力、または、それらの組み合わせのうちの1つであり、前記多次元出力値の別の要素は、前記発電機に提示されるインピーダンスおよび前記発電機のソースインピーダンスのうちの1つである、請求項1に記載の電力送達システム。
  8. 前記多次元制御入力値の次元性と前記多次元出力値の次元性とは一致しない、請求項1に記載の電力送達システム。
  9. プラズマ電力送達システムであって、
    負荷インピーダンスを所望のインピーダンスに合致させるインピーダンス合致ネットワークであって、前記所望のインピーダンスにおいて、前記負荷インピーダンスは、繰り返し周期伴って繰り返す値の周期的変調パターンを受ける、インピーダンス合致ネットワークと、
    前記インピーダンス合致ネットワークと動作可能に関連付けられている制御要素であって、前記制御要素は、過去の周期的変調周期の1つ以上の繰り返し周期において行われた前記負荷インピーダンスの値の測定と、多次元制御入力値の複数の要素と多次元出力値の複数の要素との間の複数の相関に基づいて、前記インピーダンス合致ネットワーク内の可変インピーダンス要素を制御する、制御要素と
    を備える、プラズマ電力送達システム。
  10. 前記制御要素は、周期的変調パターンの現在の繰り返し周期において得られる負荷インピーダンスの値の測定と組み合わせられる過去の周期的変調パターンの1つ以上の繰り返し周期の間に行われた前記負荷インピーダンスの値の測定に基づいて、前記インピーダンス合致ネットワーク内の前記可変インピーダンス要素を制御する、請求項9に記載のプラズマ電力送達システム。
  11. 前記制御要素は、前記繰り返し周期における特定の時間周期にわたる前記多次元制御入力値の前記複数の要素と、同一の特定の時間周期にわたる前記多次元出力値の前記複数の要素との間の前記複数の相関を決定し、使用するように構成されている、請求項9に記載のプラズマ電力送達システム。
  12. 前記制御要素は、制御入力を摂動させることにより、前記多次元制御入力値の前記複数の要素と前記多次元出力値の前記複数の要素との間の前記複数の相関を取得するように構成されている、請求項9に記載のプラズマ電力送達システム。
  13. 前記繰り返し周期における前記特定の時間周期および前記特定の時間周期に隣接する時間周期にわたる前記多次元制御入力値の前記複数の要素と、前記特定の時間周期にわたる前記多次元出力値の前記複数の要素との間の前記複数の相関は、前記コントローラによって決定され、使用される、請求項11に記載のプラズマ電力送達システム。
  14. プラズマを含有するように構成されているプラズマ処理チャンバと、
    前記プラズマのプラズマ特性を周期的変調パターンを使用して変調する電力信号を生成する発電機と
    をさらに備える、請求項9に記載のプラズマ電力送達システム。
  15. 前記発電機は、単一の無線周波数発電機または直流発電機のうちの1つであり、前記周期的変調パターンは、電圧、電流、電力のうちの少なくとも1つである、請求項14に記載のプラズマ電力送達システム。
  16. 前記発電機は、複数の無線周波数発電機、または、複数の直流発電機、または、無線周波数発電機および直流発電機の組み合わせを備え、前記周期的変調パターンは、電圧、電流、電力のうちの少なくとも1つである、請求項14に記載のプラズマ電力送達システム。
JP2021103078A 2017-07-07 2021-06-22 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法 Active JP7153771B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021180892A JP2022010078A (ja) 2017-07-07 2021-11-05 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762529963P 2017-07-07 2017-07-07
US62/529,963 2017-07-07
JP2020500181A JP6971376B2 (ja) 2017-07-07 2018-07-05 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020500181A Division JP6971376B2 (ja) 2017-07-07 2018-07-05 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021180892A Division JP2022010078A (ja) 2017-07-07 2021-11-05 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法

Publications (2)

Publication Number Publication Date
JP2021144953A JP2021144953A (ja) 2021-09-24
JP7153771B2 true JP7153771B2 (ja) 2022-10-14

Family

ID=64903415

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020500181A Active JP6971376B2 (ja) 2017-07-07 2018-07-05 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法
JP2021103078A Active JP7153771B2 (ja) 2017-07-07 2021-06-22 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法
JP2021180892A Withdrawn JP2022010078A (ja) 2017-07-07 2021-11-05 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020500181A Active JP6971376B2 (ja) 2017-07-07 2018-07-05 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021180892A Withdrawn JP2022010078A (ja) 2017-07-07 2021-11-05 プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法

Country Status (7)

Country Link
US (3) US10861677B2 (ja)
EP (1) EP3616235A4 (ja)
JP (3) JP6971376B2 (ja)
KR (2) KR102364528B1 (ja)
CN (2) CN115662868A (ja)
TW (3) TWI811658B (ja)
WO (2) WO2019010312A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148250B (zh) * 2017-06-15 2020-07-17 北京北方华创微电子装备有限公司 阻抗匹配装置和阻抗匹配方法
KR102364528B1 (ko) * 2017-07-07 2022-02-17 어드밴스드 에너지 인더스트리즈 인코포레이티드 플라즈마 전력 전달 시스템을 위한 주기 간 제어 시스템 및 그 동작 방법
US11615943B2 (en) * 2017-07-07 2023-03-28 Advanced Energy Industries, Inc. Inter-period control for passive power distribution of multiple electrode inductive plasma source
US11651939B2 (en) 2017-07-07 2023-05-16 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same
US11315757B2 (en) 2019-08-13 2022-04-26 Mks Instruments, Inc. Method and apparatus to enhance sheath formation, evolution and pulse to pulse stability in RF powered plasma applications
US10741363B1 (en) 2019-10-08 2020-08-11 Mks Instruments, Inc. Extremum seeking control apparatus and method for automatic frequency tuning for RF impedance matching
JP2022122425A (ja) * 2021-02-10 2022-08-23 東京エレクトロン株式会社 プラズマ処理装置及び監視装置
WO2022211915A1 (en) * 2021-04-01 2022-10-06 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating the same
US11476090B1 (en) * 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US20230125521A1 (en) * 2021-10-25 2023-04-27 Advanced Energy Industries, Inc. Robust tensorized shaped setpoint waveform streaming control
KR20230129089A (ko) 2022-02-28 2023-09-06 주식회사 엘지에너지솔루션 원통형 이차전지, 이를 포함하는 배터리 팩 및 자동차

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163514A1 (en) 2014-12-04 2016-06-09 Mks Instruments, Inc. Adaptive Periodic Waveform Controller

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245202A (ja) * 1985-04-23 1986-10-31 Isao Takahashi 非干渉最短時間制御方法
US5187454A (en) * 1992-01-23 1993-02-16 Applied Materials, Inc. Electronically tuned matching network using predictor-corrector control system
KR100304138B1 (ko) 1992-03-12 2001-11-22 크레이머 칼 공중전화스테이션의평균전기에너지소비감소방법및장치
US5325019A (en) * 1992-08-21 1994-06-28 Sematech, Inc. Control of plasma process by use of harmonic frequency components of voltage and current
KR20010031093A (ko) * 1997-10-14 2001-04-16 로버트 엠. 포터 신속한 전압 상승에 의한 플라즈마 점화용 시스템
JP2002184598A (ja) * 2000-12-12 2002-06-28 Shimadzu Corp Icp用高周波電源装置
US6459067B1 (en) * 2001-04-06 2002-10-01 Eni Technology, Inc. Pulsing intelligent RF modulation controller
JP3778842B2 (ja) 2001-10-30 2006-05-24 パール工業株式会社 高周波検出方法および高周波検出回路
US20040016402A1 (en) 2002-07-26 2004-01-29 Walther Steven R. Methods and apparatus for monitoring plasma parameters in plasma doping systems
US7115185B1 (en) * 2003-09-16 2006-10-03 Advanced Energy Industries, Inc. Pulsed excitation of inductively coupled plasma sources
US7169256B2 (en) 2004-05-28 2007-01-30 Lam Research Corporation Plasma processor with electrode responsive to multiple RF frequencies
US7988816B2 (en) 2004-06-21 2011-08-02 Tokyo Electron Limited Plasma processing apparatus and method
CN102263026B (zh) 2004-06-21 2016-01-20 东京毅力科创株式会社 等离子体处理装置和方法
JP4739793B2 (ja) 2005-03-31 2011-08-03 株式会社ダイヘン 高周波電源装置
US7173495B1 (en) 2005-04-05 2007-02-06 Pericom Semiconductor Corp Redundant back-up PLL oscillator phase-locked to primary oscillator with fail-over to back-up oscillator without a third oscillator
US7602127B2 (en) 2005-04-18 2009-10-13 Mks Instruments, Inc. Phase and frequency control of a radio frequency generator from an external source
US7477711B2 (en) 2005-05-19 2009-01-13 Mks Instruments, Inc. Synchronous undersampling for high-frequency voltage and current measurements
KR20080072642A (ko) 2005-10-31 2008-08-06 엠케이에스 인스트루먼츠, 인코포레이티드 고주파 전력 전달 시스템
US20080179948A1 (en) * 2005-10-31 2008-07-31 Mks Instruments, Inc. Radio frequency power delivery system
US9011633B2 (en) * 2005-11-17 2015-04-21 Mks Instruments, Inc. Broadband techniques to reduce the effects of impedance mismatch in plasma chambers
US8932430B2 (en) 2011-05-06 2015-01-13 Axcelis Technologies, Inc. RF coupled plasma abatement system comprising an integrated power oscillator
US7777567B2 (en) * 2007-01-25 2010-08-17 Mks Instruments, Inc. RF power amplifier stability network
DE112007003667A5 (de) * 2007-07-23 2010-07-01 Hüttinger Elektronik GmbH & Co. KG Plasmaversorgungseinrichtung
US9039871B2 (en) * 2007-11-16 2015-05-26 Advanced Energy Industries, Inc. Methods and apparatus for applying periodic voltage using direct current
US7839223B2 (en) * 2008-03-23 2010-11-23 Advanced Energy Industries, Inc. Method and apparatus for advanced frequency tuning
US8847561B2 (en) 2008-05-07 2014-09-30 Advanced Energy Industries, Inc. Apparatus, system, and method for controlling a matching network based on information characterizing a cable
US7872523B2 (en) * 2008-07-01 2011-01-18 Mks Instruments, Inc. Radio frequency (RF) envelope pulsing using phase switching of switch-mode power amplifiers
CN102714167B (zh) * 2008-07-07 2015-04-22 朗姆研究公司 用于检测等离子处理室内的原位电弧放电事件的被动电容耦合静电(cce)探针装置
US9997325B2 (en) * 2008-07-17 2018-06-12 Verity Instruments, Inc. Electron beam exciter for use in chemical analysis in processing systems
US8044594B2 (en) * 2008-07-31 2011-10-25 Advanced Energy Industries, Inc. Power supply ignition system and method
US7894927B2 (en) * 2008-08-06 2011-02-22 Tokyo Electron Limited Using Multi-Layer/Multi-Input/Multi-Output (MLMIMO) models for metal-gate structures
US9093853B2 (en) * 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8319436B2 (en) * 2009-02-02 2012-11-27 Advanced Energy Industries, Inc. Passive power distribution for multiple electrode inductive plasma source
US8040068B2 (en) 2009-02-05 2011-10-18 Mks Instruments, Inc. Radio frequency power control system
US8674606B2 (en) * 2009-04-27 2014-03-18 Advanced Energy Industries, Inc. Detecting and preventing instabilities in plasma processes
US9287092B2 (en) * 2009-05-01 2016-03-15 Advanced Energy Industries, Inc. Method and apparatus for controlling ion energy distribution
US8716984B2 (en) 2009-06-29 2014-05-06 Advanced Energy Industries, Inc. Method and apparatus for modifying the sensitivity of an electrical generator to a nonlinear load
US8774743B2 (en) * 2009-10-14 2014-07-08 Blackberry Limited Dynamic real-time calibration for antenna matching in a radio frequency receiver system
US8436643B2 (en) * 2010-11-04 2013-05-07 Advanced Energy Industries, Inc. High frequency solid state switching for impedance matching
KR101675625B1 (ko) 2011-01-04 2016-11-22 어드밴스드 에너지 인더스트리즈 인코포레이티드 플라즈마 처리 부하에 대한 시스템 레벨 전원 공급
US8416008B2 (en) * 2011-01-20 2013-04-09 Advanced Energy Industries, Inc. Impedance-matching network using BJT switches in variable-reactance circuits
US8501499B2 (en) * 2011-03-28 2013-08-06 Tokyo Electron Limited Adaptive recipe selector
JP5808012B2 (ja) * 2011-12-27 2015-11-10 東京エレクトロン株式会社 プラズマ処理装置
US8576013B2 (en) 2011-12-29 2013-11-05 Mks Instruments, Inc. Power distortion-based servo control systems for frequency tuning RF power sources
US8773019B2 (en) * 2012-02-23 2014-07-08 Mks Instruments, Inc. Feedback control and coherency of multiple power supplies in radio frequency power delivery systems for pulsed mode schemes in thin film processing
US8952765B2 (en) * 2012-03-23 2015-02-10 Mks Instruments, Inc. System and methods of bimodal automatic power and frequency tuning of RF generators
KR102133057B1 (ko) * 2012-06-22 2020-07-10 램 리써치 코포레이션 플라즈마 프로세싱 시스템에서의 제어를 위한 방법 및 장치
US9214901B2 (en) 2012-07-27 2015-12-15 Mks Instruments, Inc. Wideband AFT power amplifier systems with frequency-based output transformer impedance balancing
US9210790B2 (en) * 2012-08-28 2015-12-08 Advanced Energy Industries, Inc. Systems and methods for calibrating a switched mode ion energy distribution system
US9685297B2 (en) * 2012-08-28 2017-06-20 Advanced Energy Industries, Inc. Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system
US9316675B2 (en) 2012-09-06 2016-04-19 Mks Instruments, Inc. Secondary plasma detection systems and methods
US8736377B2 (en) * 2012-10-30 2014-05-27 Mks Instruments, Inc. RF pulse edge shaping
US9294100B2 (en) * 2012-12-04 2016-03-22 Advanced Energy Industries, Inc. Frequency tuning system and method for finding a global optimum
US9014648B2 (en) 2012-12-21 2015-04-21 Qualcomm Incorporated Diversity receiver with shared local oscillator signal in diversity mode
US8781415B1 (en) 2013-02-07 2014-07-15 Mks Instruments, Inc. Distortion correction based feedforward control systems and methods for radio frequency power sources
US9536713B2 (en) * 2013-02-27 2017-01-03 Advanced Energy Industries, Inc. Reliable plasma ignition and reignition
JP5787926B2 (ja) * 2013-03-29 2015-09-30 株式会社東芝 半導体スイッチ回路
US9620382B2 (en) * 2013-12-06 2017-04-11 University Of Maryland, College Park Reactor for plasma-based atomic layer etching of materials
JP6413261B2 (ja) 2014-03-03 2018-10-31 株式会社島津製作所 Icp発光分析装置用高周波電源装置
WO2015148490A1 (en) * 2014-03-24 2015-10-01 Advanced Energy Industries, Inc. System and method for control of high efficiency generator source impedance
US9591739B2 (en) 2014-05-02 2017-03-07 Reno Technologies, Inc. Multi-stage heterodyne control circuit
US9544987B2 (en) * 2014-06-30 2017-01-10 Advanced Energy Industries, Inc. Frequency tuning for pulsed radio frequency plasma processing
US10043638B2 (en) * 2014-08-15 2018-08-07 Applied Materials, Inc. Compact configurable modular radio frequency matching network assembly for plasma processing systems
US9854659B2 (en) * 2014-10-16 2017-12-26 Advanced Energy Industries, Inc. Noise based frequency tuning and identification of plasma characteristics
US9595424B2 (en) * 2015-03-02 2017-03-14 Lam Research Corporation Impedance matching circuit for operation with a kilohertz RF generator and a megahertz RF generator to control plasma processes
US9596744B2 (en) 2015-03-31 2017-03-14 Lam Research Corporation Radio frequency generator having multiple mutually exclusive oscillators for use in plasma processing
US9812305B2 (en) * 2015-04-27 2017-11-07 Advanced Energy Industries, Inc. Rate enhanced pulsed DC sputtering system
US10199879B2 (en) * 2015-06-30 2019-02-05 Ossia Inc. Techniques for facilitating beacon sampling efficiencies in wireless power delivery environments
US9947514B2 (en) 2015-09-01 2018-04-17 Mks Instruments, Inc. Plasma RF bias cancellation system
US9515633B1 (en) * 2016-01-11 2016-12-06 Lam Research Corporation Transformer coupled capacitive tuning circuit with fast impedance switching for plasma etch chambers
US10431889B2 (en) * 2016-04-22 2019-10-01 The Charles Stark Draper Laboratory, Inc. Low-loss compact transmit impedance matching tuning technique
US10187032B2 (en) * 2016-06-17 2019-01-22 Lam Research Corporation Combiner and distributor for adjusting impedances or power across multiple plasma processing stations
US10269545B2 (en) * 2016-08-03 2019-04-23 Lam Research Corporation Methods for monitoring plasma processing systems for advanced process and tool control
US10109460B2 (en) * 2016-11-30 2018-10-23 Lam Research Corporation Universal non-invasive chamber impedance measurement system and associated methods
US10263577B2 (en) * 2016-12-09 2019-04-16 Advanced Energy Industries, Inc. Gate drive circuit and method of operating the same
US11651939B2 (en) * 2017-07-07 2023-05-16 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same
KR102364528B1 (ko) * 2017-07-07 2022-02-17 어드밴스드 에너지 인더스트리즈 인코포레이티드 플라즈마 전력 전달 시스템을 위한 주기 간 제어 시스템 및 그 동작 방법
US11615943B2 (en) * 2017-07-07 2023-03-28 Advanced Energy Industries, Inc. Inter-period control for passive power distribution of multiple electrode inductive plasma source
EP3711080B1 (en) * 2017-11-17 2023-06-21 AES Global Holdings, Pte. Ltd. Synchronized pulsing of plasma processing source and substrate bias
TWI767088B (zh) 2017-11-17 2022-06-11 新加坡商Aes全球公司 電漿處理系統,用於調變其中的電源的控制方法及相關的電漿處理控制系統
US10504744B1 (en) * 2018-07-19 2019-12-10 Lam Research Corporation Three or more states for achieving high aspect ratio dielectric etch
US11183368B2 (en) 2018-08-02 2021-11-23 Lam Research Corporation RF tuning systems including tuning circuits having impedances for setting and adjusting parameters of electrodes in electrostatic chucks
US11177115B2 (en) * 2019-06-03 2021-11-16 Applied Materials, Inc. Dual-level pulse tuning
US11158488B2 (en) * 2019-06-26 2021-10-26 Mks Instruments, Inc. High speed synchronization of plasma source/bias power delivery
US10741363B1 (en) * 2019-10-08 2020-08-11 Mks Instruments, Inc. Extremum seeking control apparatus and method for automatic frequency tuning for RF impedance matching
US11232931B2 (en) * 2019-10-21 2022-01-25 Mks Instruments, Inc. Intermodulation distortion mitigation using electronic variable capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163514A1 (en) 2014-12-04 2016-06-09 Mks Instruments, Inc. Adaptive Periodic Waveform Controller

Also Published As

Publication number Publication date
KR102364528B1 (ko) 2022-02-17
JP6971376B2 (ja) 2021-11-24
CN110870039B (zh) 2022-09-16
CN115662868A (zh) 2023-01-31
US20210118650A1 (en) 2021-04-22
EP3616235A4 (en) 2021-02-24
KR20220025919A (ko) 2022-03-03
US11610763B2 (en) 2023-03-21
CN110870039A (zh) 2020-03-06
KR102504624B1 (ko) 2023-02-27
US20190013182A1 (en) 2019-01-10
WO2022250997A9 (en) 2023-10-26
EP3616235A1 (en) 2020-03-04
US11450510B2 (en) 2022-09-20
JP2020526881A (ja) 2020-08-31
TW202249400A (zh) 2022-12-16
WO2022250997A1 (en) 2022-12-01
KR20200018662A (ko) 2020-02-19
JP2022010078A (ja) 2022-01-14
US10861677B2 (en) 2020-12-08
WO2019010312A4 (en) 2019-02-21
TW201907762A (zh) 2019-02-16
US20210287880A1 (en) 2021-09-16
WO2019010312A1 (en) 2019-01-10
TW202131765A (zh) 2021-08-16
TWI811658B (zh) 2023-08-11
TWI727184B (zh) 2021-05-11
JP2021144953A (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
JP7153771B2 (ja) プラズマ電力送達システムのための周期間制御システムおよびそれを動作させるための方法
CN113826184B (zh) 等离子体源/偏置功率输送的高速同步
US11615943B2 (en) Inter-period control for passive power distribution of multiple electrode inductive plasma source
CN108140530A (zh) 等离子rf偏置消除系统
US11651939B2 (en) Inter-period control system for plasma power delivery system and method of operating same
KR102364185B1 (ko) 발전기의 적응적 제어
US11715624B2 (en) Adaptive pulse shaping with post match sensor
US20230049104A1 (en) Apparatus And Tuning Method For Mitigating RF Load Impedance Variations Due To Periodic Disturbances
TW202304259A (zh) 用於多電極感應電漿源的被動功率分配之週期間控制
TW202241217A (zh) 用於電漿電源輸送系統之跨週期控制系統以及操作其之方法
WO2023136923A1 (en) Pulse and bias synchronization methods and systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R150 Certificate of patent or registration of utility model

Ref document number: 7153771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150