JP7151942B1 - 全固体電池の製造に用いられる工程フィルム、及び全固体電池の製造方法 - Google Patents

全固体電池の製造に用いられる工程フィルム、及び全固体電池の製造方法 Download PDF

Info

Publication number
JP7151942B1
JP7151942B1 JP2022532607A JP2022532607A JP7151942B1 JP 7151942 B1 JP7151942 B1 JP 7151942B1 JP 2022532607 A JP2022532607 A JP 2022532607A JP 2022532607 A JP2022532607 A JP 2022532607A JP 7151942 B1 JP7151942 B1 JP 7151942B1
Authority
JP
Japan
Prior art keywords
layer
solid
film
process film
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022532607A
Other languages
English (en)
Other versions
JPWO2022118938A5 (ja
JPWO2022118938A1 (ja
Inventor
美帆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JPWO2022118938A1 publication Critical patent/JPWO2022118938A1/ja
Application granted granted Critical
Publication of JP7151942B1 publication Critical patent/JP7151942B1/ja
Publication of JPWO2022118938A5 publication Critical patent/JPWO2022118938A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

全固体電池の製造において、全固体電池素子を加圧する工程で用いられる、新規な工程フィルムを提供する。全固体電池の製造において、全固体電池素子を加圧する工程に用いられる工程フィルムであって、前記工程フィルムは、前記工程フィルムで前記全固体電池素子を被覆した状態で前記全固体電池素子を加圧し、その後に前記全固体電池素子から剥離される用途に用いられ、前記工程フィルムは、少なくとも、外側から、基材層及び熱融着性樹脂層を備える積層体から構成されている、工程フィルム。

Description

本開示は、全固体電池の製造に用いられる工程フィルム、及び全固体電池の製造方法に関する。
従来、様々なタイプの蓄電デバイスが開発されており、例えばリチウムイオン電池は、幅広い分野に使用されている。
あらゆる蓄電デバイスにおいては、電極や電解質等の蓄電デバイス素子を封止するために包装材料(外装材)が不可欠な部材になっており、例えばリチウムイオン電池では外装材によって電解液が封止されている。
リチウムイオン電池のように電解液を含む蓄電デバイスは、電解液の沸点以上の温度環境で使用することはできない。これに対して、電解質が固体電解質である全固体電池が知られている。全固体電池は、電池内に有機溶媒を用いないことから、安全性が高く、作動温度範囲が広いといった利点を有している。
一方、全固体電池は、充放電に伴う負極や正極の膨張・収縮により、固体電解質と、負極活物質層や正極活物質層との間で剥離しやすく、電池の劣化が進行しやすいことが知られている。
固体電解質と、負極活物質層や正極活物質層との間の剥離を抑制する方法として、全固体電池を高圧プレスした状態で拘束する技術が知られている。例えば、特許文献1には、正極集電体、正極層、電解質層、負極層、及び負極集電体を該順序で備えた積層体を作製する積層工程と、積層工程で作製した積層体を積層方向に加圧する加圧工程と、加圧工程の後、0.1MPa以上100MPa以下の圧力にて所定の時間の間、積層体を積層方向に加圧したまま拘束する拘束工程とを含む電池の製造方法が開示されている。
特開2012-142228号公報 特開2008-103288号公報
前記の通り、固体電解質と、負極活物質層や正極活物質層との間の剥離を抑制する方法として、全固体電池を高圧プレスした状態で拘束する技術が知られている。しかしながら、包装材料で封止された全固体電池を高圧プレスに供すると、包装材料が薄肉となり、全固体電池の絶縁性や水蒸気バリア性が低下する懸念がある。
このような懸念を解消する方法として、固体電解質、負極活物質層、正極活物質層などを含む全固体電池素子を、包装材料で封止する前に加圧することで、固体電解質と、負極活物質層や正極活物質層との間の密着性を高める方法が考えられる。密着性が高まることで、全固体電池の初期性能が高まることも期待される。また、加圧時に加熱することで、全固体電池の初期性能が高まることも期待される。
しかしながら、本開示の発明者が検討したところ、全固体電池素子を加圧装置で加圧すると、固体電解質、負極活物質層、正極活物質層などが脱落し、電極や加圧装置に付着するという新たな課題が見出された。このような脱落物が、電極に付着すると短絡の原因となり得るし、加圧装置に付着すると、清掃のために加圧工程の中断が必要になるなど、全固体電池の生産効率を著しく低下させる懸念がある。
このような状況下、本開示は、全固体電池の製造において、全固体電池素子を加圧する工程で用いられる、新規な工程フィルムを提供することを主な目的とする。
本開示の発明者らは、前記課題を解決すべく、鋭意検討を行った。その結果、少なくとも、外側から、基材層及び熱融着性樹脂層を備える積層体から構成されている工程フィルムは、全固体電池の製造において、工程フィルムで全固体電池素子を被覆した状態で全固体電池素子を加圧し、その後に全固体電池素子から剥離される用途に好適に用いられることを見出した。
本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
全固体電池の製造において、全固体電池素子を加圧する工程に用いられる工程フィルムであって、
前記工程フィルムは、前記工程フィルムで前記全固体電池素子を被覆した状態で前記全固体電池素子を加圧し、その後に前記全固体電池素子から剥離される用途に用いられ、
前記工程フィルムは、少なくとも、外側から、基材層及び熱融着性樹脂層を備える積層体から構成されている、工程フィルム。
本開示によれば、全固体電池の製造において、全固体電池素子を加圧する工程で用いられる、新規な工程フィルムを提供することができる。また、本開示によれば、全固体電池の製造方法を提供することもできる。
本開示の工程フィルムを用いて全固体電池素子が被覆された様子を示す模式的断面図の一例である。 本開示の工程フィルムを用いて全固体電池素子が被覆された様子を示す模式的断面図の一例である。 本開示の工程フィルムを用いて全固体電池素子が被覆された様子を示す模式的平面図の一例である。 本開示の工程フィルムの積層構造の一例を示す模式的断面図である。 本開示の工程フィルムの積層構造の一例を示す模式的断面図である。 本開示の工程フィルムの積層構造の一例を示す模式的断面図である。 本開示の工程フィルムの積層構造の一例を示す模式的断面図である。 本開示の工程フィルムの積層構造の一例を示す模式的断面図である。 本開示の工程フィルム(成形されていない)で全固体電池素子を被覆した状態を示す模式的平面図の一例である。 本開示の工程フィルム(成形されていない)で全固体電池素子を被覆した状態を示す模式的平面図の一例である。 本開示の工程フィルム(成形されていない)で全固体電池素子を被覆した状態を示す模式的平面図の一例である。 耐圧試験の方法を説明するための模式図である。 全固体電池素子の加圧による、加圧装置への脱落物の付着の評価方法を説明するための模式図である。
本開示の工程フィルムは、全固体電池の製造において、全固体電池素子を加圧する工程に用いられる工程フィルムであって、当該工程フィルムは、工程フィルムで全固体電池素子を被覆した状態で全固体電池素子を加圧し、その後に全固体電池素子から剥離される用途に用いられ、少なくとも、外側から、基材層及び熱融着性樹脂層を備える積層体から構成されていることを特徴としている。本開示の工程フィルムは、このような構成を備えていることにより、全固体電池の製造において、全固体電池素子を加圧する工程で好適に用いられる。具体的には、全固体電池素子を加圧する工程において、全固体電池素子の加圧によって発生する脱落物が電極や加圧部材に付着することを好適に抑制することができる。
以下、本開示の工程フィルムについて詳述する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
1.工程フィルムの積層構造及び物性
本開示の工程フィルム10は、例えば図4から図8に示すように、少なくとも、外側から、基材層1と熱融着性樹脂層4をこの順に備える積層体から構成されている。工程フィルム10において、基材層1が外層側になり、熱融着性樹脂層4が内層側になる。工程フィルム10と電池素子を用いて全固体電池を組み立てる際に、工程フィルム10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、全固体電池素子が収容される。
工程フィルム10は、図4に示すように、基材層1と熱融着性樹脂層4のみの積層体であってもよい。また、図5から図8に示すように、基材層1と熱融着性樹脂層4との間に水蒸気バリア層3を備えていてもよい。また、水蒸気バリア層3の表面には、保護膜を有していることが好ましく、図5から図8には、水蒸気バリア層3の基材層1側の表面に水蒸気バリア層保護膜3b、熱融着性樹脂層4側の表面に水蒸気バリア層保護膜3aを備えている構成を図示している。図6に示すように、基材層1と水蒸気バリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、図7に示すように、水蒸気バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。さらに、工程フィルムは、必要に応じて緩衝層6を含んでいてもよく、図8に示すように、緩衝層6は、例えば基材層1の外側(熱融着性樹脂層4側とは反対側)などに好適に設けることができる。なお、この場合、緩衝層6は、基材層1と接着させて工程フィルム10の一部としてもよいし、工程フィルム10とは別部材として、全固体電池素子の加圧の際に、工程フィルム10と共に用いてもよい。
工程フィルム10を構成する積層体の厚みとしては、特に制限されないが、好ましくは約10000μm以下、約8000μm以下、約5000μm以下、約100μm以下が挙げられ、加圧の際に全固体電池素子を保護するという工程フィルム10の機能を好適に発揮する観点からは、好ましくは約5μm以上、約25μm以上、約100μm以上、約150μm以上、約200μm以上が挙げられ、好ましい範囲については、例えば、5~10000μm程度、5~8000μm程度、5~5000μm程度、25~10000μm程度、25~8000μm程度、25~5000μm程度、100~10000μm程度、100~8000μm程度、100~5000μm程度、150~10000μm程度、150~8000μm程度、150~5000μm程度、200~10000μm程度、200~8000μm程度、200~5000μm程度、5~100μm程度、25~200μm程度が挙げられ、特に25~5000μm程度が好ましい。
また、全固体電池の製造において、全固体電池素子を加圧する工程は、一般にはドライルーム内で行われるが、大気中で行われる場合もある。大気中で加圧が行われる場合に、全固体電池素子が水分を吸収することを抑制する観点から、工程フィルム10の水蒸気透過量は小さいことが好ましい。このような観点から、40℃、100%RHの環境に48時間静置した場合の工程フィルム10の水蒸気透過量は、好ましくは10cc/m2/day以下、より好ましくは5cc/m2/day以下、さらに好ましくは2cc/m2/day以下、さらに好ましくは0cc/m2/dayである。工程フィルム10の水蒸気透過量の測定方法は、以下の通りである。
<水蒸気透過量>
JIS K7129:2008の規定(附属書B)に準拠(試験サンプルのサイズ、測定時間などの測定条件は当該規定と共通)し、市販の測定装置(例えばモコン社のMOCON PERMATRAN-W 3/33)を用い、40℃100%RHの条件で水蒸気透過量(cc/m2/day)を測定する。
2.工程フィルムを形成する各層
本開示の工程フィルム10は、少なくとも、外側から、基材層1及び熱融着性樹脂層4をこの順に備える積層体から構成されている。以下、本開示の工程フィルム10を構成する各層について、詳述する。
[基材層1]
本開示において、基材層1は、工程フィルム10の保護部材や基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、工程フィルム10の外層側に位置する。
基材層1を形成する素材については、保護部材や基材としての機能を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。なお、後述の通り、基材層1が緩衝層6を構成するようにしてもよく、この場合、基材層1を構成する材料として後述の緩衝層6を構成する材料を用いる。
基材層1の形成には、例えば、樹脂により形成された樹脂フィルムを用いてもよいし、基材層1を形成する際に、樹脂を塗布して樹脂フィルムとしてもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などがあげられる。
基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。
基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。
ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。これらの中でも、ポリエチレンテレフタレートが好ましい。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4‐アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。ナイロンは加圧に対する伸びが良好であることから、工程フィルム10の加圧への耐久性を高めるという観点からは、基材層1は、ナイロンを含むことが好ましい。一方、包装体中への水分の浸入をより好適に抑制する観点からは、基材層1は、二軸延伸ポリエチレンテレフタレートを含むことが好ましい。
基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。基材層1が単層である場合、基材層1は、ポリエステル(特にポリエチレンテレフタレート)の単層により構成されていることが好ましい。
基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステルフィルムとポリエステルフィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステルフィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。
基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものがあげられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。
工程フィルム10の高温高圧環境での加圧への耐久性を高める観点から、基材層1の融点は、好ましくは200℃以上、より好ましくは200~450℃程度、さらに好ましくは200~350℃程度である。なお、融点は、示差走査熱量計(DSC)を用いて測定される融解ピーク温度である。
また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
本開示において、工程フィルム10は、成形して用いてもよい。工程フィルム10の成形は、例えば、金型を用いた成形(冷間成形など)、真空成形などの公知の方法で行うことができる。本開示において、工程フィルム10の金型を用いた成形による成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。
基材層1の厚みについては、保護部材や基材としての機能を発揮すれば特に制限されないが、例えば、3~200μm程度、好ましくは5~100μm、さらに好ましくは10~50μm程度が挙げられる。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2~50μm程度が挙げられる。
基材層1の片面または両面にガスバリア膜を設けてもよい。ガスバリア膜は、ガスバリア性を有する膜である。ガスバリア膜は、工程フィルム10のガスバリア性に主に寄与する。ガスバリア膜は、無機物であってもよいし、有機物であってもよく、ガスバリア性が高いことから無機物を含むことが好ましい。ガスバリア膜は、有機と無機の複合材料を含んでいてもよい。
有機物としては、エチレン-ビニルアルコール共重合体(EVOH)、プロピレン-ビニルアルコール共重合体(PVOH)、ポリ塩化ビニリデン(PVDC)等が挙げられる。
無機物としては、例えば、金属(合金を含む)、無機化合物等が挙げられる。また、無機物を含むガスバリア膜としては、例えば、金属膜(例えば金属蒸着膜)、無機化合物を主成分とする膜(以下、無機化合物膜と称する場合がある。)、後述する有機と無機の複合材料等が挙げられる。
金属膜を構成する金属としては、例えば、アルミニウム、ステンレス、チタン、ニッケル、鉄、銅等の金属またはこれらを含む合金を挙げることができる。フレキシブル性の観点から、金属膜は、アルミニウムであることが特に好ましい。
無機化合物膜を構成する無機化合物としては、例えば、珪素、アルミニウム、マグネシウム、カルシウム、カリウム、スズ、ナトリウム、チタン、ホウ素、イットリウム、ジルコニウム、セリウム、亜鉛等の金属元素または非金属元素を含有する化合物が挙げられる。また、上記無機化合物としては、無機酸化物、無機酸化窒化物、無機窒化物、無機酸化炭化物、無機酸化炭化窒化物、酸化珪素亜鉛等が挙げられる。具体的には、SiO2等の珪素酸化物、Al23等のアルミニウム酸化物、マグネシウム酸化物、チタン酸化物、スズ酸化物、珪素亜鉛合金酸化物、インジウム合金酸化物、珪素窒化物、アルミニウム窒化物、チタン窒化物、酸化窒化珪素等を挙げることができる。無機化合物は、単独で用いてもよいし、上述の材料を任意の割合で混合して用いてもよい。
有機と無機の複合材料としては、例えば、無機成分としてのシリカと、有機成分としての樹脂との複合材料が挙げられる。無機成分と有機成分の複合材料としては、例えば、ゾルゲル法を採用して形成されるものが公知であり、具体例としては、シリカとポリビニルアルコールとの複合材料(ポリビニルアルコール(PVA)中にシリカが均一に分散したもの)が挙げられる。ゾルゲル法において、有機成分としては、PVAの他、カルボキシル基、アセトアセチル基などで変性したPVAを用いることができ、無機成分としては、ケイ素アルコキシド(テトラエトキシシラン、メチルトリエトキシシランなど)を用いることができる。有機と無機の複合材料においては、有機材料中に無機材料が均一に分散して薄膜層を構成している。薄膜層を構成する有機と無機の複合材料は、1種類のみであってもよいし、2種類以上であってもよい。
上記ガスバリア膜は、コーティング等による塗布膜であってもよく、蒸着膜であってもよい。中でも基材層1との密着性が高く、高ガスバリア性能を発揮することができる観点から蒸着膜であることが好ましい。上記ガスバリア膜は、1回蒸着により形成された単膜であってもよく、複数回蒸着により形成された多層膜であってもよい。ガスバリア膜が多層膜である場合、同一組成の膜を組み合わせてもよく、異なる組成の膜を組み合わせてもよい。ガスバリア膜が多層膜である場合、多層膜全体でガスバリア膜1層分とする。
上記ガスバリア膜の厚みは、所望のガスバリア性を発揮することが可能であれば特に限定されず、ガスバリア膜の種類に応じて適宜設定することが出来る。ガスバリア膜の厚みは、例えば5nm以上200nm以下の範囲内とすることができ、中でも10nm以上100nm以下の範囲内であることが好ましい。なお、ガスバリア膜が多層膜である場合は、上記厚みは1回あたりの厚みをいう。上記ガスバリア膜の厚みが上述の範囲に満たないと、製膜が不十分となり所望のガスバリア性を示すことができない場合がある。また、強度を確保できず経時劣化する場合がある。一方、上記ガスバリア膜の厚みが上述の範囲を超えると、折り曲げ等の機械的な応力を受けたときに欠陥が発生しやすくなる場合や、フレキシブル性が低下する場合がある。
ガスバリア膜の形成方法は、基材層1の片面または両面に所望の厚みで成膜可能な方法であればよく、塗布法、蒸着法、圧着法等、ガスバリア膜の種類に応じて従来公知の方法を用いることができる。
[接着剤層2]
工程フィルム10において、接着剤層2は、基材層1と水蒸気バリア層3との接着性(水蒸気バリア層保護膜3bを有する場合には、基材層1と水蒸気バリア層保護膜3bとの接着性)を高めることを目的として、必要に応じて、これらの間に設けられる層である。
接着剤層2は、基材層1と水蒸気バリア層3(又は水蒸気バリア層保護膜3b)とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。
接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。
ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。
また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、工程フィルム10を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。
着色剤の中でも、例えば工程フィルム10の外観を黒色とするためには、カーボンブラックが好ましい。
顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
接着剤層2における顔料の含有量としては、工程フィルム10が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。
接着剤層2の厚みは、基材層1と水蒸気バリア層3とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上が挙げられ、また、約10μm以下、約5μm以下が挙げられ、好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。
[着色層]
着色層は、基材層1と水蒸気バリア層3(又は水蒸気バリア層保護膜3b)との間又は基材層1の外側に、必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2と水蒸気バリア層3(又は水蒸気バリア層保護膜3b)との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、工程フィルム10を着色することができる。工程フィルム10が着色されることにより、全固体電池素子の加圧が均一に行われていることを目視などで確認しやすくなるという利点がある。
着色層は、例えば、着色剤を含むインキを基材層1の表面、または水蒸気バリア層3の表面(水蒸気バリア層保護膜3bを有する場合には、水蒸気バリア層保護膜3bの表面)に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。また、基材層1の外側に着色層を設ける場合には、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。
着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。
[水蒸気バリア層3]
工程フィルム10において、水蒸気バリア層3は、少なくとも水分の浸入を抑止する層であり、必要に応じて設けられる。
水蒸気バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、水蒸気バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。水蒸気バリア層3は、複数層設けてもよい。水蒸気バリア層3は、金属材料により構成された層を含むことが好ましい。水蒸気バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。
アルミニウム合金箔は、工程フィルム10の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する工程フィルムを得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた工程フィルムを得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。
また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた工程フィルム10を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。
ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。
水蒸気バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止する水蒸気バリア層としての機能を発揮すればよく、例えば1~200μm程度が挙げられる。水蒸気バリア層3の厚みは、例えば、好ましくは約85μm以下、より好ましくは約75μm以下、さらに好ましくは70μm以下、さらに好ましくは約50μm以下、さらに好ましくは約40μm以下が挙げられ、また、好ましくは約1μm以上、さらに好ましくは約5μm以上、さらに好ましくは45μm以上、さら好ましくは50μm以上、さらに好ましくは55μm以上が挙げられ、当該厚みの好ましい範囲としては、1~85μm程度、1~75μm程度、1~70μm程度、1~50μm程度、1~40μm程度、5~85μm程度、5~75μm程度、5~70μm程度、5~50μm程度、5~40μm程度、45~85μm程度、45~75μm程度、45~70μm程度、45~50μm程度、50~85μm程度、50~75μm程度、50~70μm程度、55~85μm程度、55~75μm程度が挙げられる。
本開示の工程フィルム10を用いて全固体電池素子の加圧を行った後、工程フィルム10は全固体電池素子から剥離される。加熱後の工程フィルム10の剥離性を容易にする観点から、水蒸気バリア層3の厚みは、約20μm以下、約10μm以下、5~20μm程度、5~10μm程度であることが特に好ましい。
[水蒸気バリア層保護膜3a、3b]
工程フィルム10においては、水蒸気バリア層3の熱融着性樹脂層4側の表面に、必要に応じて水蒸気バリア層保護膜3aを備えている。工程フィルム10においては、水蒸気バリア層3の熱融着性樹脂層4側の表面のみに、水蒸気バリア層保護膜3aを備えていてもよいし、水蒸気バリア層3の両面に、それぞれ、水蒸気バリア層保護膜3a,3bを備えていてもよい。本開示の全固体電池70において、熱融着性樹脂層側の表面に水蒸気バリア層保護膜3aを備えることが好ましい。また、水蒸気バリア層3の密着性を向上する観点から、水蒸気バリア層の両面に水蒸気バリア層保護膜3a,3bを備えることが好ましい。
水蒸気バリア層保護膜3a,3bは、水蒸気バリア層3の表面を、酸化クロムなどのクロム化合物を含む処理液で化成処理することにより形成することができる。
クロム化合物を含む処理液を用いた化成処理としては、例えば、リン酸及び/またはその塩中に、酸化クロムなどのクロム化合物を分散させたものを水蒸気バリア層3の表面に塗布し、焼付け処理を行うことにより、水蒸気バリア層3の表面に水蒸気バリア層保護膜を形成する方法が挙げられる。
水蒸気バリア層保護膜3a,3bの厚さとしては、それぞれ、特に制限されないが、水蒸気バリア層3の劣化を効果的に抑制する観点から、好ましくは1nm~10μm程度、より好ましくは1~100nm程度、さらに好ましくは1~50nm程度が挙げられる。なお、水蒸気バリア層保護膜の厚さは、透過電子顕微鏡による観察、又は、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。
同様の観点から、水蒸気バリア層3の表面1m2当たりの水蒸気バリア層保護膜3a,3bの量としては、それぞれ、好ましくは1~500mg程度、より好ましくは1~100mg程度、さらに好ましくは1~50mg程度が挙げられる。
クロム化合物を含む処理液を水蒸気バリア層の表面に塗布する方法としては、例えば、バーコート法、ロールコート法、グラビアコート法、浸漬法などが挙げられる。
水蒸気バリア層3の表面の化成処理をより効率的に行う観点から、水蒸気バリア層3の表面に水蒸気バリア層保護膜3a,3bを設ける前には、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法などの公知の処理方法で脱脂処理を行うことが好ましい。
[熱融着性樹脂層4]
本開示の工程フィルム10において、熱融着性樹脂層4は、最内層に該当し、熱融着性樹脂層4同士が熱融着して全固体電池素子を被覆する機能を発揮する層(シーラント層)である。熱融着性樹脂層4同士を熱融着させるヒートシールの方法としては、例えば、バーシール、熱板シール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等が挙げられる。
熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。
酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。
酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。
好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。
熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。
本開示の工程フィルム10においては、熱融着性樹脂層4が、ポリブチレンテレフタレートフィルム又はポリテトラフルオロエチレンフィルムにより形成されていることも好ましい。これらのフィルムは耐熱性に優れており、高温環境でのヒートシールが可能である。このため、工程フィルム10を用いて高温高圧環境で全固体電池素子を加圧する場合に特に有効である。なお、熱融着性樹脂層4を形成するポリブチレンテレフタレートフィルム又はポリテトラフルオロエチレンフィルムは、それぞれ、予め用意したポリブチレンテレフタレートフィルム又はポリテトラフルオロエチレンフィルムを接着層5と積層して熱融着性樹脂層4としてもよいし、ポリブチレンテレフタレートフィルム又はポリテトラフルオロエチレンフィルムを形成する樹脂を溶融押出しするなどしてフィルムとすると共に、接着層5と積層してもよい。
ポリブチレンテレフタレートフィルムは、ポリブチレンテレフタレートに加えて、さらに、エラストマーをさらに含むことが好ましい。エラストマーは、ポリブチレンテレフタレートフィルムの高温環境における耐久性を担保しつつ、その柔軟性を高める役割を果たすものである。好ましいエラストマーとしては、ポリテトラメチレングリコールが挙げられる。ポリブチレンテレフタレートフィルムにおいて、エラストマーの含有量としては、ポリブチレンテレフタレートフィルムの高温環境における耐久性を担保しつつ、その柔軟性を高められる程度であれば、特に制限はなく、例えば約0.1質量%以上、好ましくは約0.5質量%以上、より好ましくは約1.0質量%以上、さらに好ましくは約3.0質量%以上である。また、当該含有量は、例えば約10.0質量%以下、約8.0質量%以下、約5.0質量%以下などである。当該含有量の好ましい範囲としては、0.1~10.0質量%程度、0.1~8.0質量%程度、0.1~5.0質量%程度、0.5~10.0質量%程度、0.5~8.0質量%程度、0.5~5.0質量%程度、1.0~10.0質量%程度、1.0~8.0質量%程度、1.0~5.0質量%程度、3.0~10.0質量%程度、3.0~8.0質量%程度、3.0~5.0質量%程度などが挙げられる。
また、熱融着性樹脂層4が2層以上で形成されている場合、少なくとも1層が、ポリブチレンテレフタレートフィルム又はポリテトラフルオロエチレンフィルムにより形成されており、ポリブチレンテレフタレートフィルムは、最内層であることが好ましい。熱融着性樹脂層4が2層以上で形成されている場合、ポリブチレンテレフタレートフィルム又はポリテトラフルオロエチレンフィルムにより形成されていない層については、例えば、ポリプロピレン、ポリエチレン等のポリオレフィンや、酸変性ポリプロピレン、酸変性ポリエチレンなどの酸変性ポリオレフィンなどにより形成された層であってもよい。ただし、ポリオレフィンや酸変性ポリオレフィンは、ポリブチレンテレフタレート又はポリテトラフルオロエチレンフィルムと比較すると、高温環境下における耐久性が低いため、熱融着性樹脂層4は、ポリブチレンテレフタレートフィルム又はポリテトラフルオロエチレンフィルムのみによって構成されていることが好ましい。
なお、熱融着させた熱融着性樹脂層4同士の剥離を容易にする場合には、例えばスチレンなどのビニルポリマーをポリレフィン中に微細に分散させた樹脂を熱融着性樹脂層4の形成に使用したり、熱融着性樹脂層4に粘着性を付与したりすればよい。このようにすれば、全固体電池素子から工程フィルム10を剥離する際に、ハサミやカッターなどで工程フィルム10を裁断する必要がなく、容易に剥離工程を行うことが可能となる。
高温高圧環境での加圧への耐久性とヒートシールによる熱融着性を高める観点から、熱融着性樹脂層4の融点は、好ましくは140~240℃程度、より好ましくは140~230℃程度である。なお、融点は、示差走査熱量計(DSC)を用いて測定される融解ピーク温度である。
熱融着性樹脂層4は、必要に応じて水分吸着材料を含んでいてもよい。水分吸着材料としては、特に制限されず、公知の水分吸着材料を用いることができる。水分吸着材料は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
水分吸着材料としては、特に制限されないが、好ましくは酸化カルシウム、無水硫酸マグネシウム、酸化マグネシウム、塩化カルシウム、ゼオライト、合成ゼオライト、酸化アルミニウム、シリカゲル、アルミナゲル、シリカアルミナゲル、及び、焼ミョウバンからなる群から選ばれる1種または2種以上を含有する材料などが挙げられる。中でも、酸化カルシウムと無水硫酸マグネシウムが特に好ましい。
熱融着性樹脂層4に水分吸着材料を配合する場合、その含有率としては、例えば0.1~50質量%とすればよい。
また、熱融着性樹脂層4は、必要に応じて硫化水素吸収材料を含んでいてもよい。硫化水素吸収材料としては、特に制限されず、公知の硫化水素吸収材料を用いることができる。硫化水素吸収材料は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。また、熱融着性樹脂層4は、必要に応じて水分吸着材料と硫化水素吸収材料の両方を含んでいてもよい。
硫化水素吸収材料としては、特に制限されないが、金属酸化物、および/または、金属あるいは金属イオンが担持あるいは混入された無機物であり、金属酸化物として好ましくはCuO、ZnO、AgOからなる群から選ばれる1種または2種以上からなる材料、金属あるいは金属イオンが担持あるいは混入された無機物における金属種が、Ca、Mg、Na、Cu、Zn、Ag、Pt、Au、Fe、Al、Niからなる群から選ばれる1種または2種以上を含む材料、SiO2/Al23モル比が1/1~2000/1の疎水性ゼオライト、ベントナイト、セピオライトからなる群から選ばれる1種または2種以上からなる材料などが挙げられる。また、硫化水素吸収材料は、最大粒子径が20μm以下であり、数平均粒子径が0.1μm以上、15μm以下である。
熱融着性樹脂層4に硫化水素吸収材料を配合する場合、その含有率としては、例えば0.3~30質量%とすればよい。
熱融着性樹脂層4に水分吸着材料や硫化水素吸収材料が含まれる場合、ヒートシール性を阻害しないために、熱融着性樹脂層4の基材層1側に含ませることが好ましい。例えば、熱融着性樹脂層4が2層以上により構成されている場合、最も内側層には水分吸着材料や硫化水素吸収材料を含ませずに、基材層1側の層に含ませることが好ましい。
熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、工程フィルムの成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、工程フィルムの成形性を高める観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。
熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。
また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して全固体電池素子を被覆する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。
[接着層5]
工程フィルム10において、接着層5は、水蒸気バリア層3(水蒸気バリア層保護膜3aを有する場合には水蒸気バリア層保護膜3a)と熱融着性樹脂層4を強固に接着させるために、これらの間に設けられる層である。
接着層5は、水蒸気バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。
工程フィルムの耐熱性や耐内容物性などの耐久性や、厚みを薄くしつつ成形性を担保する観点からは、接着層5は硬化剤を含む樹脂組成物の硬化物であることが好ましい。
硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。
イソシアネート基を有する化合物としては、特に制限されないが、水蒸気バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビウレット体、イソシアヌレート体などが挙げられる。
接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、水蒸気バリア層3と接着層5との密着性を効果的に高めることができる。
オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。
接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、水蒸気バリア層3と接着層5との密着性を効果的に高めることができる。
エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、本開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ビスフェノールF型グリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、水蒸気バリア層3と接着層5との密着性を効果的に高めることができる。
ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。
接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などの水蒸気バリア層の腐食を誘発する成分が存在する雰囲気における、水蒸気バリア層3と接着層5との密着性を効果的に高めることができる。
また、高温高圧環境への耐久性の観点から、接着層5は、ポリエステル及びポリカーボネートの少なくとも一方と、脂環式イソシアネート化合物及び芳香族イソシアネート化合物の少なくとも一方とを含む樹脂組成物の硬化物によって形成されることも好ましい。
ポリエステルは、ポリエステルポリオールであることが好ましい。ポリエステルポリオールは、ポリマー主鎖にエステル結合を有し、かつ末端または側鎖に水酸基を複数有するものであれば特に制限されない。また、ポリカーボネートは、ポリカーボネートポリオールであることが好ましい。ポリエステルポリオールは、ポリマー主鎖にカーボーネート結合を有し、かつ末端または側鎖に水酸基を複数有するものであれば特に制限されない。接着層5を形成する樹脂組成物に含まれるポリエステル及びポリカーボネートは、それぞれ、1種類であってもよいし、2種類以上であってもよい。
脂環式イソシアネート化合物は、脂環構造とイソシアネート基を有する化合物であれば特に制限されない。脂環式イソシアネート化合物は、2以上のイソシアネート基を有することが好ましい。脂環式イソシアネート化合物の具体例としては、イソホロンジイソシア
ネート(IPDI)など、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。接着層5を形成する樹脂組成物に含まれる脂環式イソシアネート化合物は、1種類であってもよいし、2種類以上であってもよい。
また、芳香族イソシアネート化合物は、芳香環とイソシアネート基を有する化合物であれば特に制限されない。芳香族イソシアネート化合物は、2以上のイソシアネート基を有することが好ましい。芳香族イソシアネート化合物の具体例としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。接着層5を形成する樹脂組成物に含まれる芳香族イソシアネート化合物は、1種類であってもよいし、2種類以上であってもよい。
接着層5を形成する樹脂組成物が、脂環式イソシアネート化合物及び芳香族イソシアネート化合物の少なくとも一方を含む場合、例えば、脂環式イソシアネート化合物が含まれ、芳香族イソシアネート化合物が含まれなくてもよいし、例えば、芳香族イソシアネート化合物が含まれ、脂環式イソシアネート化合物が含まれなくてもよいし、例えば、脂環式イソシアネート化合物及び芳香族イソシアネート化合物の両者が含まれていてもよい。
接着層5における、脂環式イソシアネート化合物及び芳香族イソシアネート化合物の含有量としては、それぞれ、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。また、接着層5が脂環式イソシアネート化合物及び芳香族イソシアネート化合物の両者を含む場合には、これらの合計含有量が接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。
接着層5の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下が挙げられ、また、好ましくは、約0.1μm以上、約0.5μm以上が挙げられ、当該厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。
[緩衝層6]
工程フィルム10は、全固体電池素子の加圧による圧力を均一に分散する緩衝機能を備えさせるために、緩衝層6を含んでいてもよい。緩衝層6は、工程フィルム10の熱融着性樹脂層4よりも外側に位置すればよく、好ましくは基材層1の外側に位置する。なお、基材層1が緩衝層6を構成するようにしてもよい。基材層1が緩衝層6を構成するためには、緩衝層6を構成する後述の材料を基材層1の材料として用いる。このようにすれば、基材層1とは別に緩衝層6を設けることなく、工程フィルム10に緩衝機能を備えさせることができる。
緩衝層6を構成する材料としては、高圧プレスに対してクッションとして機能し得る(圧力を分散し得る)ものであれば特に制限されず、好ましくはゴム、不織布、発泡シートなどが挙げられる。ゴムとしては、弾性を備えていれば、特に制限されないが、例えば、天然ゴム、フッ素ゴム、シリコンゴムなどが挙げられる。ゴム硬度としては、20~90程度が好ましい。不織布を構成する素材としては、特に制限されず、好ましくは、後述の基材層1で例示した樹脂と同じ樹脂が例示される。全固体電池は、高温環境での使用が想定されるため、不織布は耐熱性に優れる材料によって構成されていることが好ましい。
全固体電池素子の加圧による圧力を均一に分散する観点から、緩衝層6の目付けとしては、好ましくは約20g/m2以上、より好ましくは約30g/m2以上、さらに好ましくは100g/m2以上が挙げられ、また、好ましくは約300g/m2以下、より好ましくは約200g/m2以下が挙げられ、好ましい範囲としては、20~300g/m2程度、20~200g/m2程度、30~300g/m2程度、30~200g/m2程度、100~300g/m2程度、100~200g/m2程度が挙げられ、これらの中でも100~300g/m2程度、100~200g/m2程度が特に好ましい。
全固体電池素子の加圧による圧力を均一に分散する観点から、緩衝層6を構成している繊維の繊維径としては、好ましくは約5μm以上、より好ましくは約15μm以上が挙げられ、また、好ましくは60μm以下、より好ましくは約40μm以下が挙げられ、好ましい範囲としては、5~60μm程度、5~40μm程度、15~60μm程度、15~40μm程度が挙げられ、特に好ましくは5~40μm程度である。
緩衝層6の厚みは、好ましくは、約100μm以上、約200μm以上、約1000μm以上、また、約5000μm以下、約3000μm以下であり、好ましい範囲としては100~5000μm程度、100~3000μm程度、200~5000μm程度、200~3000μm程度、1000~5000μm程度、1000~3000μm程度が挙げられ、これらの中でも1000~3000μmが特に好ましい。
なお、前記の通り、緩衝層6は、基材層1と接着させて工程フィルム10の一部としてもよいし、工程フィルム10とは別部材として、全固体電池素子の加圧の際に、工程フィルム10と共に用いてもよい。
工程フィルム10の製造方法については、工程フィルム10が備える各層を積層させた積層体が得られる限り、特に制限されず、外側から、少なくとも、基材層1及び熱融着性樹脂層4がこの順となるように積層する工程を備える方法が挙げられる。基材層1と熱融着性樹脂層4の積層は、接着剤層2を用いた接着や、サーマルラミネート法、溶融押出などによって行うことができる。
また、例えば工程フィルム10が水蒸気バリア層3を有する場合であれば、工程フィルム10の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、水蒸気バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は水蒸気バリア層3に、接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該水蒸気バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。
次いで、積層体Aの水蒸気バリア層3上に、熱融着性樹脂層4を積層させる。水蒸気バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aの水蒸気バリア層3上に、熱融着性樹脂層4を構成する樹脂成分をグラビアコート法、ロールコート法などの方法により塗布すればよい。また、水蒸気バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aの水蒸気バリア層3上に、接着層5及び熱融着性樹脂層4を共押出しすることにより積層する方法(共押出しラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aの水蒸気バリア層3上にサーマルラミネート法により積層する方法、(3)積層体Aの水蒸気バリア層3上に、接着層5を形成させるための接着剤を押出し法や溶液コーティングし、高温で乾燥さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4をサーマルラミネート法により積層する方法、(4)積層体Aの水蒸気バリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)などが挙げられる。
工程フィルム10に緩衝層6を設ける場合であれば、例えば、基材層1の外側などに、緩衝層6を積層する。緩衝層6の積層には、接着剤などを用いることができる。なお、前記の通り、基材層1が緩衝層6を構成するようにしてもよく、この場合、基材層1を構成する材料として緩衝層6を構成する材料を用いる。
上記のようにして、必要に応じて設けられる緩衝層6/基材層1(緩衝層6を構成していてもよい)/必要に応じて設けられる接着剤層2/必要に応じて設けられる水蒸気バリア層保護膜3b/必要に応じて設けられる水蒸気バリア層3/必要に応じて設けられる水蒸気バリア層保護膜3a/必要に応じて設けられる接着層5/熱融着性樹脂層4をこの順に備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、熱ロール接触式、熱風式、近赤外線式又は遠赤外線式などの加熱処理に供してもよい。このような加熱処理の条件としては、例えば150~250℃程度で1~5分間程度が挙げられる。
工程フィルム10を構成する各層には、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性などを向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施していてもよい。例えば、基材層1の少なくとも一方の表面にコロナ処理を施すことにより、製膜性、積層化加工、最終製品2次加工適性などを向上又は安定化させ得る。
3.全固体電池素子
本開示の工程フィルム10(以下、「工程フィルム10」と表記することがある)が適用される全固体電池素子については、特に制限されない。すなわち、全固体電池の電池素子であれば特に制限されず、公知の全固体電池に使用されているものであってもよい。
図1から図3は、本開示の工程フィルムを用いて全固体電池素子が被覆された様子を示す模式図である。これらの模式図に示すように、正極活物質層31と、負極活物質層21と、正極活物質層31と負極活物質層21との間に積層された固体電解質層40とを含む単電池50を少なくとも含む全固体電池素子が、本開示の工程フィルム10によって被覆される。より具体的には、正極活物質層31は正極集電体32の上に積層されて正極層30を構成しており、負極活物質層21は負極集電体22の上に積層されて負極層20を構成している。正極集電体32及び負極集電体22は、それぞれ、外部に露出した端子60に接合されて、外部環境と電気的に接続されている。正極層30と負極層20との間には、固体電解質層40が積層されており、正極層30、負極層20、及び固体電解質層40が単電池50を構成している。全固体電池素子は、単電池50を1つのみ含むものであってもよいし、複数の単電池50を含んでいてもよい。図1には、2つの単電池50を含む全固体電池素子を図示しており、図2には、3つの単電池50が積層されて全固体電池素子を構成している態様を図示している。
全固体電池素子を工程フィルム10で被覆し、工程フィルム10の周縁部の熱融着性樹脂層4同士の少なくとも一部をヒートシールして、この状態で加圧に供する。このとき、端子60が全て工程フィルム10の周縁部の内側になるようにして、全固体電池素子を工程フィルム10で被覆してもよい(図9参照)し、端子60を周縁部の外側に突出させた状態で、全固体電池素子を工程フィルム10で被覆してもよい(図10,11参照)。工程フィルム10の周縁部の熱融着性樹脂層4同士の全周をヒートシールすれば、全固体電池素子が密封される(図9,10参照)。なお、本開示の工程フィルム10により形成された包装体中に全固体電池素子を収容する場合、本開示の工程フィルム10の熱融着性樹脂部分が内側(電池素子と接する面)になるようにして、包装体を形成する。
図9~10は、工程フィルム10を成形せずに用い、工程フィルム10で全固体電池素子を被覆した状態を示す模式的平面図である。図9~図11に示すように、端子60と、工程フィルム10を剥離した後に全固体電池素子を封止する全固体電池用包装材料との密着性を高めるために、端子60には接着性フィルム61を配置することが好ましい。図9は、全固体電池素子の端子60及び接着性フィルム61が全て工程フィルム10によって形成された包装体中に封止された様子を示している。図9では、工程フィルム10の周縁部のヒートシールによって形成された熱融着部Sの内側に端子60全体が密封されている。また、図10,11では、全固体電池素子の端子60の先端部が包装体から突出した状態で、端子60の上から工程フィルム10がヒートシールされている。図10においては、接着性フィルム61は工程フィルム10の周縁部の熱融着部Sの内側に存在しており、接着性フィルム61がヒートシールされずに包装体が密封されている。なお、接着性フィルム61は工程フィルム10の周縁部の熱融着部Sの外側に存在させてもよい。一方、図11においては、工程フィルム10の周縁部に接着性フィルム61が位置しているが、接着性フィルム61を避けるようにして工程フィルム10の周縁部に熱融着部Sを設けた様子を示している。図11の態様では、包装体は密封されない。包装体中への水分の浸入をより好適に抑制する観点からは、図9に示すように、全固体電池素子の端子60及び接着性フィルム61を全て工程フィルム10によって形成された包装体中に封止することが好ましい。また、図10のように、端子60の上に熱融着部Sを形成すると、端子60と全固体電池用包装材料との密着性は低いことから、加圧後の剥離のきっかけとして剥離を容易にすることができる。工程フィルム10を全固体電池素子から剥離する際には、図9~11の模式図に示すように、全固体電池素子を傷つけないようにして、例えば熱融着部Sの内側の一点破線のラインSに沿って工程フィルム10を裁断すればよい。
前記の通り、本開示の工程フィルム10が適用される全固体電池素子については、特に制限されない。以下、本開示の工程フィルム10が適用される全固体電池素子を構成する部材の材料等について例示する。
前記の通り、全固体電池素子においては、少なくとも、正極層30、負極層20、及び固体電解質層40が単電池50を構成している。正極層30は、正極集電体32の上に正極活物質層31が積層された構造を備えている。負極層20は、負極集電体22の上に負極活物質層21が積層された構造を備えている。そして、正極集電体32及び負極集電体22は、それぞれ、外部に露出した端子60に接合されて、外部環境と電気的に接続されている。
[正極活物質層31]
正極活物質層31は、少なくとも正極活物質を含有する層である。正極活物質層31は、正極活物質に加えて、必要に応じて、固体電解質材料、導電化材、結着材などをさらに含んでいてもよい。
正極活物質としては、特に制限されず、酸化物活物質、硫化物活物質などが挙げられる。全固体電池が、全固体リチウム電池である場合、正極活物質として用いられる酸化物活物質としては、例えば、LiCoO2、LiMnO2、LiNiO2、LiVO2、LiNi1/3Co1/3Mn1/32等の岩塩層状型活物質、LiMn24、Li(Ni0.5Mn1.5)O4等のスピネル型活物質、LiFePO4、LiMnPO4等のオリビン型活物質、Li2FeSiO4、Li2MnSiO4等のSi含有活物質等が挙げられる。また、全固体リチウム電池の正極活物質として用いられる硫化物活物質としては、例えば、銅シュブレル、硫化鉄、硫化コバルト、硫化ニッケル等が挙げられる。
正極活物質の形状は、特に制限されないが、例えば、粒子形状が挙げられる。正極活物質の平均粒径(D50)は、例えば、0.1~50μm程度であることが好ましい。また、正極活物質層31における正極活物質の含有量は、好ましくは10~99質量%程度、より好ましくは20~90質量%程度が挙げられる。
正極活物質層31は、さらに固体電解質材料を含有することが好ましい。これにより、正極活物質層31中のイオン伝導性を向上させることができる。正極活物質層31に含有させる固体電解質材料については、後述する固体電解質層40で例示した固体電解質材料と同様である。正極活物質層における固体電解質材料の含有量は、好ましくは1~90質量%程度、より好ましくは10~80質量%程度が挙げられる。
正極活物質層31は、さらに導電化材を含有していても良い。導電化材の添加により、正極活物質層の電子伝導性を向上させることができる。導電化材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、正極活物質層は、さらに結着材を含有していても良い。結着材としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素含有結着材等を挙げることができる。
正極活物質層31の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは0.1~1000μm程度が挙げられる。
[正極集電体32]
正極集電体32を構成する材料としては、例えばステンレス鋼(SUS)、アルミニウム、ニッケル、鉄、チタン、カーボンなどが挙げられる。
正極集電体32の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは10~1000μm程度が挙げられる。
[負極活物質層21]
負極活物質層21は、少なくとも負極活物質を含有する層である。負極活物質層21は、負極活物質に加えて、必要に応じて、固体電解質材料、導電化材、結着材などを含んでいてもよい。
負極活物質としては、特に制限されず、例えば、カーボン活物質、金属活物質、酸化物活物質等が挙げられる。カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)等の黒鉛、ハードカーボンおよびソフトカーボン等の非晶質炭素等が挙げられる。金属活物質としては、例えばIn、Al、SiおよびSn等が挙げられる。酸化物活物質としては、例えばNb25、Li4Ti512、SiO等が挙げられる。
負極活物質の形状は、特に制限されないが、例えば、粒子形状、膜形状などが挙げられる。負極活物質の平均粒径(D50)は、好ましくは0.1~50μm程度である。また、負極活物質層21における負極活物質の含有量は、例えば10~99質量%程度、より好ましくは20~90質量%程度が挙げられる。
負極活物質層21は、さらに固体電解質材料を含有することが好ましい。これにより、負極活物質層21中のイオン伝導性を向上させることができる。なお、負極活物質層21に含有させる固体電解質材料については、後述の固体電解質層40で例示する固体電解質材料と同様である。負極活物質層21における固体電解質材料の含有量は、好ましくは1~90質量%程度、より好ましくは10~80質量%程度が挙げられる。
負極活物質層21は、さらに導電化材を含有していても良い。また、負極活物質層21は、さらに結着材を含有していても良い。導電化材および結着材については、前述の正極活物質層31について例示したものと同様である。
負極活物質層21の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは0.1~1000μm程度が挙げられる。
[負極集電体22]
負極集電体22を構成する材料としては、例えばステンレス鋼(SUS)、銅、ニッケル、カーボン等が挙げられる。
負極集電体22の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは10~1000μm程度が挙げられる。
[固体電解質層40]
固体電解質層40は、固体電解質材料を含有する層である。固体電解質材料としては、例えば、硫化物固体電解質材料および酸化物固体電解質材料が挙げられる。
硫化物固体電解質材料は、酸化物固体電解質材料に比べて、イオン伝導性が高いものが多い点で好ましく、酸化物固体電解質材料は、硫化物固体電解質材料に比べて、化学的安定性が高い点で好ましい。
酸化物固体電解質材料の具体例としては、例えば、NASICON型構造を有する化合物等が挙げられる。NASICON型構造を有する化合物の一例としては、一般式Li1+xAlxGe2-x(PO43(0≦x≦2)で表される化合物が挙げられる。中でも、上記化合物は、Li1.5Al0.5Ge1.5(PO43であることが好ましい。また、NASICON型構造を有する化合物の他の例としては、一般式Li1+xAlxTi2-x(PO43(0≦x≦2)で表される化合物を挙げることができる。中でも、上記化合物は、Li1.5Al0.5Ti1.5(PO43であることが好ましい。また、全固体リチウム二次電池に用いられる酸化物固体電解質材料の他の例としては、LiLaTiO(例えば、Li0.34La0.51TiO3)、LiPON(例えば、Li2.9PO3.30.46)、LiLaZrO(例えば、Li7La3Zr212)等を挙げることができる。
硫化物固体電解質材料の具体例としては、例えば、Li2S-P25、Li2S-P25-LiI、Li2S-P25-Li2O、Li2S-P25-Li2O-LiI、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B23-LiI、Li2S-SiS2-P25-LiI、Li2S-B23、Li6PS5Cl、Li7311、Li2SP25-ZmSn(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか。)、Li2S-GeS2、Li2S-SiS2-Li3PO4、Li2S-SiS2-LixMOy(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか。)等を挙げることができる。なお、上記「Li2S-P25」の記載は、Li2SおよびP25を含む原料組成物を用いてなる硫化物固体電解質材料を意味し、他の記載についても同様である。また、硫化物固体電解質材料は、硫化物ガラスであってもよく、結晶化硫化物ガラスであっても良い。
固体電解質層40における固体電解質材料の含有量は、特に制限されないが、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上が挙げられる。固体電解質層は、結着材を含有していても良く、固体電解質材料のみから構成されていてもよい。
固体電解質層40の厚さは、全固体電池のサイズ等に応じて適宜設定されるが、好ましくは0.1~1000μm程度、より好ましくは0.1~300μm程度が挙げられる。
加圧工程において、全固体電池素子に加えられる圧力としては、固体電解質と負極活物質層との間(さらには固体電解質と正極活物質層との間)の剥離を好適に抑制する観点から、好ましくは約1MPa以上、より好ましくは10MPa以上、さらに好ましくは50MPa以上、さらに好ましくは約100MPa以上が挙げられ、また、好ましくは約500MPa以下、より好ましくは約300MPa以下、さらに好ましくは100MPa以下が挙げられ、好ましい範囲としては、1~500MPa程度、1~300MPa程度、1~100MPa程度、10~500MPa程度、10~300MPa程度、50~500MPa程度、50~300MPa程度、50~100MPa程度、100~500MPa程度、100~300MPa程度が挙げられる。加圧する方法としては、(ホット)ロールプレス、上下から金属板での(ホット)高圧プレスなど、加圧装置を利用した方法が採用される。
また、同様の観点から、全固体電池素子を加圧する際の温度としては、好ましくは20℃以上、より好ましくは40℃以上、また、好ましくは200℃以下、より好ましくは150℃以下が挙げられ、好ましい範囲としては、20~150℃程度が挙げられる。
本開示の工程フィルムで被覆した全固体電池素子の形状は、特に制限されないが、例えば図3の模式図に示すように、平面視矩形状であることが好ましい。さらに、平面視矩形状の全固体電池素子の第1辺の長さと、当該第1辺と垂直方向の第2辺の長さとの比(第1辺の長さ:第2辺の長さ)は、1:1から1:5程度であることが好ましい。なお、第1辺に対する第2辺の長さが長くなりすぎると、工程フィルム10を成形して後述する成形部Mを形成する際に、第2辺が金型に固定され難くなり、成形部Mの第2辺に沿った稜線部(後述する第1湾曲部)のR値が大きくなり過ぎる傾向がある。
図1から図3の模式図に示されるように、全固体電池素子は、工程フィルム10が熱融着性樹脂層4側から水蒸気バリア層3側に突出するように形成された、平面視矩形状の成形部Mに収容されていることが好ましい。図1には、成形部Mが全固体電池素子の一方側に形成された図を示している。また、図2には、成形部Mが全固体電池素子の両方側に形成された図を示している。
4.全固体電池の製造方法
本開示の全固体電池の製造方法は、前述した本開示の工程フィルム10を利用することを特徴としており、具体的には、以下の工程を備えている。
全固体電池素子を工程フィルムで被覆した状態で、前記全固体電池素子を加圧する工程
前記工程フィルムを前記全固体電池素子から剥離する工程
前記全固体電池素子を包装材料で封止する工程
前記のとおり、本開示の工程フィルム10は、少なくとも、外側から、基材層及び熱融着性樹脂層を備える積層体から構成されている。本開示の工程フィルム10の詳細については、前述の通りである。
全固体電池素子を工程フィルムで被覆した状態で、前記全固体電池素子を加圧する工程は、全固体電池素子の固体電解質と、負極活物質層や正極活物質層との間の剥離を抑制するための工程である。本開示の全固体電池の製造方法においては、当該工程を備えることにより、全固体電池素子の加圧によって発生する脱落物が電極や加圧装置などに付着することが抑制される。
本開示の工程フィルム10による全固体電池素子の被覆は、具体的には、工程フィルム10の内側に全固体電池素子を配置した状態で、工程フィルム10の周縁部の熱融着性樹脂層同士をヒートシールすることによって、工程フィルム10で全固体電池素子が被覆される。ヒートシール条件としては、熱融着性樹脂層同士が熱融着されれば特に制限されず、例えば温度160~240℃程度、面圧0.1~2MPa程度、0.5~10秒間程度とすればよい。
なお、工程フィルム10中に全固体電池素子を収容する場合、工程フィルム10の熱融着性樹脂部分が内側(全固体電池素子と接する面)になるようにして、包装体を形成する。2枚の工程フィルム10の熱融着性樹脂層同士を対向させて重ね合わせ、重ねられた工程フィルムの周縁部を熱融着して包装体を形成してもよく、また、1枚の工程フィルム10を折り返して重ね合わせ、周縁部を熱融着して包装体を形成してもよい。折り返して重ね合わせる場合は、折り返した辺以外の辺を熱融着して三方シールにより包装体を形成してもよいし、フランジ部が形成できるように折り返して四方シールしてもよい。また、工程フィルム10には、全固体電池素子を収容するための凹部が、深絞り成形または張出成形によって形成されてもよい。一方の工程フィルム10には凹部を設けて他方の工程フィルム10には凹部を設けなくてもよいし、他方の工程フィルム10にも凹部を設けてもよい。工程フィルム10は成形せずに全固体電池素子の被覆に用いてもよい。
次に、全固体電池素子を工程フィルムで被覆した状態で、全固体電池素子を加圧する工程を行う。前記の通り、このとき、端子60が全て工程フィルム10の周縁部の内側になるようにして、全固体電池素子を工程フィルム10で被覆してもよい(図9参照)し、端子60を周縁部の外側に突出させた状態で、全固体電池素子を工程フィルム10で被覆してもよい(図10,11参照)。工程フィルム10の周縁部の熱融着性樹脂層4同士の全周をヒートシールすれば、全固体電池素子が密封される(図9,10参照)。全固体電池素子を加圧する際の圧力及び温度などの条件は、前記の加圧工程に記載の通りである。
図9~11は、工程フィルム10を成形せずに用い、工程フィルム10で全固体電池素子を被覆した状態を示す模式的平面図である。図9~図11に示すように、端子60と、工程フィルム10を剥離した後に全固体電池素子を封止する全固体電池用包装材料との密着性を高めるために、端子60には接着性フィルム61を配置することが好ましい。図9は、全固体電池素子の端子60及び接着性フィルム61が全て工程フィルム10によって形成された包装体中に封止された様子を示している。図9では、工程フィルム10の周縁部のヒートシールによって形成された熱融着部Sの内側に、端子60全体が密封されている。また、図10,11では、全固体電池素子の端子60の先端部が包装体から突出した状態で、端子60の上から工程フィルム10がヒートシールされている。図10においては、接着性フィルム61は工程フィルム10の周縁部の熱融着部Sの内側に存在しており、接着性フィルム61がヒートシールされずに包装体が密封されている。一方、図11においては、工程フィルム10の周縁部に接着性フィルム61が位置しているが、接着性フィルム61を避けるようにして工程フィルム10の周縁部に熱融着部Sを設けた様子を示している。図11の態様では、包装体は密封されない。包装体中への水分の浸入をより好適に抑制する観点からは、図9に示すように、全固体電池素子の端子60及び接着性フィルム61を全て工程フィルム10によって形成された包装体中に封止することが好ましい。また、図10及び図11のように、端子60の上に熱融着部Sを形成すると、端子60と工程フィルム10との密着性は低いことから、加圧後の剥離のきっかけとして剥離を容易にすることができる。
前記工程フィルムを前記全固体電池素子から剥離する工程を行う。工程フィルム10を全固体電池素子から剥離する際には、図9~11の模式図に示すように、全固体電池素子を傷つけないようにして、例えば熱融着部Sの内側の一点破線のラインCに沿って工程フィルム10を裁断すればよい。前記の通り、加熱後の工程フィルム10の剥離性を容易にする観点から、水蒸気バリア層3の厚みは、約20μm以下、約10μm以下、5~20μm程度、5~10μm程度であることが特に好ましい。
以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。
<工程フィルムの製造>
[実施例1]
基材層としてポリエチレンテレフタレート(PET)フィルム(厚さ12μm、融点260℃)、熱融着性樹脂層として水分吸着材料を含む未延伸ポリプロピレン(CPP、融点160℃)フィルム(厚さ60μm)を用意した。未延伸ポリプロピレン(CPP)フィルムには、水分吸着材料として酸化カルシウムが30質量%配合されている。次に、ポリエチレンテレフタレート(PET)フィルムと未延伸ポリプロピレン(水分吸着材料を含むCPP)フィルムとを2液硬化型ウレタン接着剤を用い、ドライラミネート法により接着し、次に、得られた積層体をエージングし、加熱することにより、基材層(PET)/接着層(DL)/熱融着性樹脂層(水分吸着材料を含むCPP)が順に積層された工程フィルムを得た。
[実施例2]
基材層としてポリエチレンテレフタレート(PET)フィルム(厚さ12μm、融点260℃)、熱融着性樹脂層として未延伸ポリプロピレンフィルム(厚さ60μm、融点160℃)を用意した。水蒸気バリア層としてアルミニウム合金箔(JIS H4160:1994 A8021H-O、厚さ7μmのALM)を用意した。2液硬化型ウレタン接着剤を用い、ドライラミネート法により、基材層と水蒸気バリア層とを接着し、基材層/接着剤層/水蒸気バリア層の積層体を作製した。次に、2液硬化型ウレタン接着剤を用い、ドライラミネート法により、得られた積層体の水蒸気バリア層側と、熱融着性樹脂層とを接着し、水蒸気バリア層の上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、基材層(PET)/接着剤層(DL)/水蒸気バリア層(ALM)/接着層(DL)/熱融着性樹脂層(CPP)がこの順に積層された積層体からなる工程フィルムを得た。
[実施例3]
基材層としてバリア性を持たせるために表面に透明なガスバリア層(SiOx薄膜 厚み20nm)を形成したポリエチレンテレフタレート(PET)フィルム(厚さ12μm、融点160℃)と延伸ナイロン(ONy)フィルム(厚さ15μm、融点255℃)とをシリカ薄膜が延伸ナイロン側と対向するように設置し、2液硬化型ウレタン接着剤(硬化後の厚み3μm)で接着された積層フィルムを用意した。また、熱融着性樹脂層として未延伸ポリプロピレンフィルム(厚さ40μm)を用意した。次に、基材層の延伸ナイロンフィルム側と未延伸ポリプロピレンフィルムとを2液硬化型ウレタン接着剤(硬化後の厚み3μm)で接着して、基材層(PET/透明バリア(シリカ薄膜)/ONy)/接着層(DL)/熱融着性樹脂層(CPP)が順に積層された工程フィルムを得た。
[実施例4]
基材層としてポリエチレンテレフタレート(PET)フィルム(厚さ12μm、融点260℃)、熱融着性樹脂層として未延伸ポリプロピレン(CPP)フィルム(厚さ60μm、融点160℃)を用意した。次に、ポリエチレンテレフタレート(PET)フィルムと未延伸ポリプロピレン(CPP)フィルムとを2液硬化型ウレタン接着剤(硬化後の厚み3μm)で接着して、基材層(PET)/接着層(DL)/熱融着性樹脂層(CPP)が順に積層された工程フィルムを得た。
[実施例5]
基材層としてポリエチレンテレフタレート(PET)フィルム(厚さ12μm、融点260℃)、熱融着性樹脂層として水分吸着材料を含む未延伸ポリプロピレンフィルム(厚さ60μm、融点160℃、水分吸着材料(酸化カルシウム)を30質量%含むCPP)を用意した。水蒸気バリア層としてアルミニウム合金箔(JIS H4160:1994 A8021H-O、厚さ7μmのALM)を用意した。2液硬化型ウレタン接着剤を用い、ドライラミネート法により、基材層と水蒸気バリア層とを接着し、基材層/接着剤層/水蒸気バリア層の積層体を作製した。次に、2液硬化型ウレタン接着剤を用い、ドライラミネート法により、得られた積層体の水蒸気バリア層側と、熱融着性樹脂層とを接着し、水蒸気バリア層の上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、基材層(PET)/接着剤層(DL)/水蒸気バリア層(ALM)/接着層(DL)/熱融着性樹脂層(水分吸着材料を含むCPP)がこの順に積層された積層体からなる工程フィルムを得た。
[実施例6]
基材層としてポリエチレンテレフタレート(PET)フィルム(厚さ12μm、融点260℃)、熱融着性樹脂層として未延伸ポリプロピレンフィルム(厚さ40μm、融点160℃)を用意した。水蒸気バリア層としてアルミニウム合金箔(JIS H4160:1994 A8021H-O、厚さ40μmのALM)を用意した。2液硬化型ウレタン接着剤を用い、ドライラミネート法により、基材層と水蒸気バリア層とを接着し、基材層/接着剤層/水蒸気バリア層の積層体を作製した。次に、2液硬化型ウレタン接着剤を用い、ドライラミネート法により、得られた積層体の水蒸気バリア層側と、熱融着性樹脂層とを接着し、水蒸気バリア層の上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、基材層(PET)/接着剤層(DL)/水蒸気バリア層(ALM)/接着層(DL)/熱融着性樹脂層(CPP)がこの順に積層された積層体からなる工程フィルムを得た。
[比較例1]
ポリエチレンテレフタレート(PET)フィルム(厚さ12μm、融点260℃)を工程フィルムとした。
<耐圧試験>
図12の模式図に示すように、2枚のステンレス鋼板70(それぞれ、長さ50mm×幅70mm×厚さ10mmの矩形状)の間に、実施例及び比較例で用意した各工程フィルム10(長さ30mm×幅30mmの矩形状)1枚と、不織布71(長さ30mm×幅30mm×厚み2mmの矩形状)1枚と、全固体電池素子に見立てたステンレス鋼板72(長さ25mm×幅25mm×厚さ5mmの矩形状)1枚を挟み、25℃環境において、100MPaの圧力で300分間加圧し、圧力が保持される様にボルトで固定した。この時、2枚のステンレス鋼板70,全固体電池素子に見立てたステンレス鋼板72、不織布71、及び工程フィルム10の中心、長さ方向、幅方向が一致するようにした。また、不織布71は、工程フィルム10の基材層側に配置した。また、実施例の工程フィルムについては、熱融着性樹脂層が厚さ5mmのステンレス鋼板72側になるようにした。加圧後の工程フィルムの中心の位置で厚み方向に裁断し、得られた断面をレーザー顕微鏡VK-9500(KEYENCE製)で観察して、以下の基準で耐圧性を評価した。結果を表1に示す。
A:工程フィルムのどの層にも破れなどの破損が観察されない
C:工程フィルムのいずれかの層に破れなどの破損が観察される
<耐熱圧試験>
前記の耐圧試験を150℃環境で行ったこと以外は、前記の耐圧試験と同様にして耐熱圧試験を行った。評価基準は以下の通りである。結果を表1に示す。
A:工程フィルムのどの層にも破れなどの破損が観察されない
C:工程フィルムのいずれかの層に破れなどの破損が観察される
<水蒸気透過量>
実施例及び比較例で用意した各工程フィルムについて、それぞれ、JIS K7129:2008の規定(附属書B)に準拠(試験サンプルのサイズ、測定時間などの測定条件は当該規定と共通)し、モコン社のMOCON PERMATRAN-W 3/33を用い、40℃100%RHの条件で水蒸気透過量(cc/m2/day)を測定した。吸収材料を含有した工程部材は、含有していない同材料・同厚みの材料にて設定した時間と同時間での測定を実施した。結果を表1に示す。
<吸水性>
実施例及び比較例で用意した各工程フィルム(長さ120mm×幅120mmの矩形状)2枚の間に、PETフィルム(長さ80mm×幅80mm×厚み0.15mmの矩形状)を配置した。このとき、実施例の工程フィルムについては、熱融着性樹脂層同士が対向するようにした。また、工程フィルムとPETフィルムは予め露点マイナス30度のドライルーム内に48時間放置して乾燥させた。次に、工程フィルムの周縁を10mm幅でヒートシールし、ヒートシールされていない部分の面積(平面視)が10000mm2となるようにしてPETフィルムを封止して試験サンプルとした。なお、比較例1の工程フィルムについては、PETフィルムをヒートシールできないため、2枚の工程フィルムでPETフィルムを挟んだ状態で試験サンプルとした。次に、各試験サンプルを25℃、55%RHの環境に48時間静置した。試験サンプル内のPETフィルムを取り出し、試験後におけるPETフィルム中の水分量をCA-200 (卓上型 電量法水分計)及びVA-236S (自動水分気化装置)、メーカー:三菱アナリテック)で確認し、試験前のPETフィルムの水分量と比較して吸水性を評価した。評価基準は以下の通りである。なお、評価前のPETフィルムの水分量は150ppm程度であった。結果を表1に示す。
A:試験後にPETフィルム中の水分量が20ppm以上減少している
B:試験後にPETフィルム中の水分量の増減の範囲が20ppm未満である
C:試験後にPETフィルム中の水分量が20ppm以上100ppm以下の範囲で増加している
D:試験後にPETフィルム中の水分量が100ppm超増加している
<全固体電池素子の加圧による、電極への脱落物の付着等>
全固体電池の固体電解質層を構成する固体電解質ペレット(組成はLi2S:P25=75:25(質量比)、長さ20mm×幅20mm×厚み1mmの矩形)を1枚用意した。図13の模式図に示すように、固体電解質ペレットには、模擬電極として、上下に長さ35mm×幅21mm×厚み0.02mmのSUS箔を取り付けた。また、実施例及び比較例で用意した各工程フィルム(長さ45mm×幅45mm)を2枚ずつ用意した。2枚の工程フィルムの熱融着性樹脂層同士が対向するようにして、SUS箔/固体電解質ペレット/SUS箔を上下から挟み込み、工程フィルムの周縁部を熱融着させることにより、真空環境において、固体電解質ペレットを封止した。このとき、固体電解質ペレットに取り付けられた電極が、工程フィルムの周縁部から外側に突出するようにした。次に、25℃環境において、ロールプレスを行う加圧装置(SA-602小型卓上ロールプレス)を用いて、工程フィルムで封止した固体電解質ペレットを10t/cm2の圧力で速度1m/minの速度で2度加圧した。圧力を解除し、固体電解質ペレットの脱落物が、電極表面に付着または付着物により凹みが発生しているか否かを確認した。評価基準は以下の通りである。結果を表1に示す。なお、比較例1の工程フィルムは、PETフィルムであるため、熱融着することができない。このため、2枚の工程フィルムで固体電解質ペレットを挟み込んだ状態で、加圧を行った。また、参考のため、工程フィルムを用いずに全固体電池素子の加圧を行ったが、電極に固体電解質の脱落物が付着していたとともに、電極表面の付着物が再加圧時に電極に押しし付けられたことにより生じた凹みも見られた。
A:電極表面に付着または付着物により凹みが発生していない
C:電極表面に付着または付着物により凹みが発生している
<全固体電池素子の加圧による、加圧装置への脱落物の付着>
全固体電池の固体電解質層を構成する固体電解質ペレット(組成はLi2S:P25=75:25(質量比)、長さ20mm×幅20mm×厚み1mmの矩形)を1枚用意した。図13の模式図に示すように、固体電解質ペレット81には、模擬電極として、上下に長さ35mm×幅21mm×厚み0.02mmのSUS箔80を取り付けた。また、実施例及び比較例で用意した各工程フィルム10(長さ45mm×幅45mm)を2枚ずつ用意した。2枚の工程フィルム10の熱融着性樹脂層同士が対向するようにして、SUS箔/固体電解質ペレット/SUS箔を上下から挟み込み、工程フィルムの周縁部を熱融着させることにより、真空環境において、固体電解質ペレットを封止した。このとき、固体電解質ペレットに取り付けられた電極が工程フィルムの周縁部から外側に突出するようにした。次に、25℃環境において、ロールプレスを行う加圧装置(SA-602小型卓上ロールプレス)を用いて、工程フィルムで封止した固体電解質ペレットを10t/cm2の圧力で速度1m/minの速度で2度加圧した。圧力を解除し、固体電解質ペレットの脱落物が、加圧装置に付着しているか否かを確認した。評価基準は以下の通りである。結果を表1に示す。なお、比較例1の工程フィルムは、PETフィルムであるため、熱融着することができない。このため、2枚の工程フィルムで固体電解質ペレットを挟み込んだ状態で、加圧を行った。また、参考のため、工程フィルムを用いずに全固体電池素子の加圧を行ったが、加圧装置に固体電解質の脱落物が付着していた。
A:加圧装置に固体電解質の脱落物が付着していない
C:加圧装置に固体電解質の脱落物が付着している
<工程フィルムの加圧後の剥離容易性>
2枚のステンレス鋼板(それぞれ、長さ50mm×幅70mm×厚さ10mmの矩形状)の間に、不織布(長さ30mm×幅30mm×厚み2mmの矩形状)1枚と,実施例及び比較例で用意した各工程フィルム(長さ30mm×幅30mmの矩形状)1枚と、全固体電池素子に見立てた1枚のステンレス鋼板(長さ20mm×幅20mm×厚さ5mmの矩形状)を挟み、100MPaの圧力で300分間加圧した。この時、ステンレス鋼板と工程フィルムの中心、長さ方向、幅方向が一致するようにした。また、不織布は、工程フィルム10の基材層側に配置した。また、実施例の工程フィルムについては、熱融着性樹脂層が厚さ5mmのステンレス鋼板側になるようにした。次に、工程フィルムを厚さ5mmのステンレス鋼板から剥離し、剥離容易性を以下の基準で評価した。結果を表1に示す。
A:ステンレス鋼板の角部に工程フィルムが大きく食い込むことなく、容易に剥離できる
C:ステンレス鋼板の角部に工程フィルムが大きく食い込み、容易に剥離できない
Figure 0007151942000001
以上の通り、本開示は、下記に掲げる態様の発明を提供する。
項1. 全固体電池の製造において、全固体電池素子を加圧する工程に用いられる工程フィルムであって、
前記工程フィルムは、前記工程フィルムで前記全固体電池素子を被覆した状態で前記全固体電池素子を加圧し、その後に前記全固体電池素子から剥離される用途に用いられ、
前記工程フィルムは、少なくとも、外側から、基材層及び熱融着性樹脂層を備える積層体から構成されている、工程フィルム。
項2. 前記熱融着性樹脂層の融点が、140℃以上240℃以下である、項1に記載の工程フィルム。
項3. 前記熱融着性樹脂層が、ポリオレフィン骨格を有する、項1又は2に記載の工程フィルム。
項4. 前記基材層の融点が、200℃以上である、項1~3のいずれか1項に記載の工程フィルム。
項5. 緩衝層を含む、項1~4のいずれか1項に記載の工程フィルム。
項6. 水蒸気バリア層を含む、項1~5のいずれか1項に記載の工程フィルム。
項7. 40℃、100%RHの環境に48時間静置した場合の水蒸気透過量が、10cc/m2/day以下である、項1~6のいずれか1項に記載の工程フィルム。
項8. 前記熱融着性樹脂層が、水分吸着材料を含む、項1~7のいずれか1項に記載の工程フィルム。
項9. 前記熱融着性樹脂層が、硫化水素吸収材料を含む、項1~8のいずれか1項に記載の工程フィルム。
項10. 全固体電池の製造方法であって、
全固体電池素子を工程フィルムで被覆した状態で、前記全固体電池素子を加圧する工程と、
前記工程フィルムを前記全固体電池素子から剥離する工程と、
前記全固体電池素子を包装材料で封止する工程と、
を備え、
前記工程フィルムは、少なくとも、外側から、基材層及び熱融着性樹脂層を備える積層体から構成されている、全固体電池の製造方法。
1 基材層
2 接着剤層
3 水蒸気バリア層
4 熱融着性樹脂層
5 接着層
6 緩衝層
10 工程フィルム
20 負極層
21 負極活物質層
22 負極集電体
30 正極層
31 正極活物質層
32 正極集電体
40 固体電解質層
50 単電池
60 端子
61 接着性フィルム

Claims (10)

  1. 全固体電池の製造において、全固体電池素子を加圧する工程に用いられる工程フィルム(但し、発電要素と、前記発電要素の集電を行う正極集電体および負極集電体とを有する電池素子を封止するための全固体電池の外装体を除く。)であって、
    前記工程フィルムは、前記工程フィルムで前記全固体電池素子を被覆した状態で前記全固体電池素子を加圧し、その後に前記全固体電池素子から剥離される用途に用いられ、
    前記工程フィルムは、少なくとも、外側から、基材層及び熱融着性樹脂層を備える積層体から構成されている、工程フィルム。
  2. 前記熱融着性樹脂層の融点が、140℃以上240℃以下である、請求項1に記載の工程フィルム。
  3. 前記熱融着性樹脂層が、ポリオレフィン骨格を有する、請求項1又は2に記載の工程フィルム。
  4. 前記基材層の融点が、200℃以上である、請求項1~3のいずれか1項に記載の工程フィルム。
  5. 緩衝層を含む、請求項1~4のいずれか1項に記載の工程フィルム。
  6. 水蒸気バリア層を含む、請求項1~5のいずれか1項に記載の工程フィルム。
  7. 40℃、100%RHの環境に48時間静置した場合の水蒸気透過量が、10cc/m2/day以下である、請求項1~6のいずれか1項に記載の工程フィルム。
  8. 前記熱融着性樹脂層が、水分吸着材料を含む、請求項1~7のいずれか1項に記載の工程フィルム。
  9. 前記熱融着性樹脂層が、硫化水素吸収材料を含む、請求項1~8のいずれか1項に記載の工程フィルム。
  10. 全固体電池の製造方法であって、
    全固体電池素子を工程フィルム(但し、発電要素と、前記発電要素の集電を行う正極集電体および負極集電体とを有する電池素子を封止するための全固体電池の外装体を除く。)で被覆した状態で、前記全固体電池素子を加圧する工程と、
    前記工程フィルムを前記全固体電池素子から剥離する工程と、
    前記全固体電池素子を包装材料で封止する工程と、
    を備え、
    前記工程フィルムは、少なくとも、外側から、基材層及び熱融着性樹脂層を備える積層体から構成されている、全固体電池の製造方法。
JP2022532607A 2020-12-02 2021-12-02 全固体電池の製造に用いられる工程フィルム、及び全固体電池の製造方法 Active JP7151942B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020200574 2020-12-02
JP2020200574 2020-12-02
PCT/JP2021/044365 WO2022118938A1 (ja) 2020-12-02 2021-12-02 全固体電池の製造に用いられる工程フィルム、及び全固体電池の製造方法

Publications (3)

Publication Number Publication Date
JPWO2022118938A1 JPWO2022118938A1 (ja) 2022-06-09
JP7151942B1 true JP7151942B1 (ja) 2022-10-12
JPWO2022118938A5 JPWO2022118938A5 (ja) 2022-11-16

Family

ID=81853377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022532607A Active JP7151942B1 (ja) 2020-12-02 2021-12-02 全固体電池の製造に用いられる工程フィルム、及び全固体電池の製造方法

Country Status (6)

Country Link
US (1) US20240006691A1 (ja)
EP (1) EP4257358A1 (ja)
JP (1) JP7151942B1 (ja)
KR (1) KR20230115999A (ja)
CN (1) CN116547150A (ja)
WO (1) WO2022118938A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153458A1 (ja) * 2019-01-23 2020-07-30 大日本印刷株式会社 全固体電池用外装材、その製造方法、及び全固体電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164723A1 (ja) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 全固体電池の製造方法
JP2018181473A (ja) * 2017-04-05 2018-11-15 トヨタ自動車株式会社 全固体電池の製造方法
WO2020153456A1 (ja) * 2019-01-23 2020-07-30 大日本印刷株式会社 全固体電池用外装材、その製造方法、及び全固体電池
WO2020153458A1 (ja) * 2019-01-23 2020-07-30 大日本印刷株式会社 全固体電池用外装材、その製造方法、及び全固体電池
WO2020153457A1 (ja) * 2019-01-23 2020-07-30 大日本印刷株式会社 全固体電池及びその製造方法
JP2020187855A (ja) * 2019-05-10 2020-11-19 共同印刷株式会社 硫化物系全固体電池用ラミネートシート及びそれを用いたラミネートパック

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103288A (ja) 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 全固体電池
JP5636965B2 (ja) 2011-01-05 2014-12-10 トヨタ自動車株式会社 リチウムイオン二次電池用電極体の製造方法、及びリチウムイオン二次電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164723A1 (ja) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 全固体電池の製造方法
JP2018181473A (ja) * 2017-04-05 2018-11-15 トヨタ自動車株式会社 全固体電池の製造方法
WO2020153456A1 (ja) * 2019-01-23 2020-07-30 大日本印刷株式会社 全固体電池用外装材、その製造方法、及び全固体電池
WO2020153458A1 (ja) * 2019-01-23 2020-07-30 大日本印刷株式会社 全固体電池用外装材、その製造方法、及び全固体電池
WO2020153457A1 (ja) * 2019-01-23 2020-07-30 大日本印刷株式会社 全固体電池及びその製造方法
JP2020187855A (ja) * 2019-05-10 2020-11-19 共同印刷株式会社 硫化物系全固体電池用ラミネートシート及びそれを用いたラミネートパック

Also Published As

Publication number Publication date
WO2022118938A1 (ja) 2022-06-09
EP4257358A1 (en) 2023-10-11
CN116547150A (zh) 2023-08-04
US20240006691A1 (en) 2024-01-04
KR20230115999A (ko) 2023-08-03
JPWO2022118938A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
JP6747636B1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP6844762B2 (ja) 全固体電池用外装材、全固体電池及びその製造方法
JP7443989B2 (ja) 全固体電池及びその製造方法
JP6777276B1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP7151942B1 (ja) 全固体電池の製造に用いられる工程フィルム、及び全固体電池の製造方法
WO2020184693A1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP7056810B1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP7018166B1 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP7020598B2 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP7111264B2 (ja) 全固体電池用外装材、その製造方法、及び全固体電池
JP7225760B2 (ja) 蓄電デバイスの製造方法及び蓄電デバイスの品質管理方法
WO2022014718A1 (ja) 全固体電池の金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた全固体電池、及び全固体電池の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220531

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7151942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150