JP7143811B2 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
JP7143811B2
JP7143811B2 JP2019087619A JP2019087619A JP7143811B2 JP 7143811 B2 JP7143811 B2 JP 7143811B2 JP 2019087619 A JP2019087619 A JP 2019087619A JP 2019087619 A JP2019087619 A JP 2019087619A JP 7143811 B2 JP7143811 B2 JP 7143811B2
Authority
JP
Japan
Prior art keywords
engine
wgv
vehicle
control information
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019087619A
Other languages
English (en)
Other versions
JP2020183716A (ja
Inventor
憲治 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019087619A priority Critical patent/JP7143811B2/ja
Priority to CN202010365074.0A priority patent/CN111907526B/zh
Publication of JP2020183716A publication Critical patent/JP2020183716A/ja
Application granted granted Critical
Publication of JP7143811B2 publication Critical patent/JP7143811B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本開示は、車両に関し、特に、車両におけるエンジン制御に関する。
特開2015-58924号公報(特許文献1)には、ターボ式過給機を備えるハイブリッド車両が開示されている。
特開2015-58924号公報
エンジンを所望の条件で動かすために、推奨されるエンジン動作点(以下、「推奨動作点」とも称する)を示す制御情報を用いてエンジン制御を行なうことがある。たとえば、燃料消費率(以下、「燃費」とも称する)を改善するために、制御情報として最適燃費線を用いてエンジン制御を行なうことが知られている。最適燃費線によって示されるエンジン動作点は、推奨動作点の一例に相当する。
従来のエンジン制御では、エンジンが正常に動くことを前提にして作成された1本の最適燃費線が使用される。このため、エンジンが正常に動いていないときには、エンジン動作点が最適燃費線上に制御されても最適燃費(すなわち、所望の条件)にならないことがある。こうしたエンジン制御では、過給機に異常が生じてエンジンが正常に動かなくなると、燃費が悪化しやすくなる。
本開示は、上記課題を解決するためになされたものであり、その目的は、過給機に異常が生じ、過給制御を正常に行なうことができなくなった場合であっても、エンジンを所望の条件で動かすことができる車両を提供することである。
本開示に係る車両は、走行駆動力を発生するエンジンと、エンジンを制御する制御装置とを備える。エンジンは、燃焼を行なうエンジン本体と、エンジン本体に接続された吸気通路及び排気通路と、過給機と、排気通路に接続されたバイパス通路と、バイパス通路に設けられたウェイストゲートバルブ(以下、「WGV」とも称する)とを含む。過給機は、吸気通路に設けられたコンプレッサと、排気通路に設けられたタービンとを備える。バイパス通路は、タービンを迂回して排気を流すように構成される。
上記の制御装置は、エンジンから出力されるエンジンパワーごとにエンジンの目標回転速度とエンジンの目標トルクとを定める制御情報に従ってエンジンを制御するように構成される。また、制御装置は、上記の制御情報として、第1制御情報と、第1制御情報とは異なる第2制御情報とを選択可能に構成される。さらに、制御装置は、WGVが固着していない場合には、第1制御情報に従ってエンジンを制御し、WGVが開いた状態で固着している場合には、第2制御情報に従ってエンジンを制御するように構成される。
なお、WGVの開いた状態は、全閉状態ではない状態(すなわち、全閉状態よりも開度が大きい状態)を意味する。WGVの全閉状態は、バイパス通路における排気の流通をWGVが遮断する状態を意味する。
上記の車両では、制御装置が複数種の制御情報(すなわち、第1制御情報及び第2制御情報)から1つの制御情報を選択可能に構成される。第1制御情報は、WGVが固着していない場合(すなわち、過給制御が正常に行なわれる場合)に使用される制御情報であるため、第1制御情報には、WGVが固着していない場合におけるエンジンの推奨動作点が定められる。一方、第2制御情報は、WGVが開いた状態で固着している場合(すなわち、過給制御を正常に行なうことができなくなった場合)に使用される制御情報であるため、第2制御情報には、WGVが開いた状態で固着している場合におけるエンジンの推奨動作点が定められる。このように、正常時の制御情報(すなわち、第1制御情報)とは別に第2制御情報を用意し、状況に応じて第1制御情報と第2制御情報とを使い分けることで、WGVが開いた状態で固着して過給制御を正常に行なうことができなくなった場合であってもエンジンを所望の条件で動かすことが可能になる。
第1制御情報は、WGVが固着していない場合の最適燃費線(以下、「第1最適燃費線」とも称する)であってもよい。第2制御情報は、WGVが開いた状態で固着している場合の最適燃費線(以下、「第2最適燃費線」とも称する)であってもよい。
上記の構成によれば、WGVが固着していない場合にも、WGVが開いた状態で固着している場合にも、最適燃費に近づくようにエンジンが動作する。WGVが固着していない場合には、制御装置が第1最適燃費線に従ってエンジンを制御することで、過給実行時及び過給停止時の各々においてエンジンが燃費の良い動作をする。また、WGVが開いた状態で固着している場合にも、制御装置が第2最適燃費線に従ってエンジンを制御することで、エンジンが燃費の良い動作をする。
上記の制御装置は、WGVが開いた状態で固着している場合には、車両を退避走行させるように構成されてもよい。WGVが開いた状態で固着している場合に、制御装置が第2最適燃費線に従ってエンジンを制御することで、退避走行中の燃費を向上させることが可能になる。また、退避走行中の燃費が向上することで、退避走行可能な距離を延ばすことができる。
なお、退避走行は、車両の走行中に異常が生じた場合に車両を安全な場所まで移動させるための走行である。たとえば、退避走行によって車両を道路脇に退避させてもよい。
上記の車両は、WGVを駆動するWGVアクチュエータをさらに備えてもよい。上記の制御装置は、エンジンの目標トルクが閾値(以下、「閾値Th」とも称する)を超えているときには、WGVを第1開度に閉じるようにWGVアクチュエータに指令(以下、「閉指令」とも称する)を出し、エンジンの目標トルクが閾値Thを下回るときには、WGVを第1開度よりも大きい第2開度に開くようにWGVアクチュエータに指令(以下、「開指令」とも称する)を出すように構成されてもよい。
上記の構成では、WGVが固着していない場合には、トルクの大小によって過給の実行/停止を切り替えることができる。すなわち、WGVを第1開度に閉じたときに過給が実行され、WGVを第2開度に開いたときに過給が停止する。
上記の制御装置は、運転者のアクセル操作量に基づいて目標トルクを決定し、エンジンのトルクを目標トルクに制御するように構成されてもよい。たとえば、運転者のアクセル操作量が大きくなるほどエンジンの目標トルクが大きくなってもよい。
上記の第1開度は全閉開度であってもよい。上記の第2開度は全開開度であってもよい。上記の第2制御情報は、WGVが全開開度で固着している場合の最適燃費線であってもよい。
上記の構成では、第1開度が全閉開度であることで、過給によって大きなエンジンパワーが得られやすくなる。第2開度が全開開度であることで、過給による燃費悪化を抑制しやすくなる。また、上記の制御装置は、エンジンの目標トルクが閾値Thを下回ると、WGVを全開開度に開くため、WGVが開いた状態で固着している場合には、WGVが全開開度になっている可能性が高い。WGVが全開開度で固着している場合に、制御装置が上記の第2制御情報に従ってエンジンを制御することで、エンジンが最適燃費で動作するようになる。なお、WGVの全開開度はWGVの最大開度(すなわち、WGVが最も開いた開度)を意味する。
上記の車両は、エンジンの過給圧を検出する過給圧センサと、エンジンの吸気流量を検出するエアフローメータとの少なくとも一方をさらに備えてもよい。上記の制御装置は、WGVアクチュエータに閉指令を出したときの過給圧及び吸気流量の少なくとも一方の挙動を用いて、WGVが開いた状態で固着しているか否かを判断するように構成されてもよい。
WGVの開度が大きくなるほど、エンジンの吸気流量が減り、エンジンの過給圧が低下する。このため、制御装置は、WGVアクチュエータに指示を出したときに過給圧及び吸気流量の少なくとも一方がどのように変わったかを確認することによって、WGVが指示どおりに動いたか否かを診断することができる。上記の構成によれば、制御装置がセンサの検出値を用いてWGVの固着診断の結果を得ることができる。
なお、上記の過給圧センサ及びエアフローメータの各々としては、たとえば、車両のエンジン制御で使用されているセンサを使用することができる。ただしこれに限られず、上記の過給圧センサ及びエアフローメータの各々は、診断で使用するデータを高い感度で取得できる位置に設けられた診断用のセンサであってもよい。
上記のWGVアクチュエータは、負圧を利用してWGVを駆動するように構成されてもよい。負圧式のWGVは、電動式のWGVと比べて、前述の固着が生じやすい傾向がある。上記のWGVアクチュエータは、負圧を発生する負圧ポンプを含んで構成されてもよい。負圧ポンプは、エンジンによって駆動される機械式ポンプであってもよいし、電動ポンプであってもよい。
上記の車両は、無段変速機構をさらに備えてもよい。無段変速機構は、第1回転要素及び第2回転要素を有し、第2回転要素の回転速度に対する第1回転要素の回転速度の比率を連続的に変更可能に構成される。無段変速機構の第1回転要素はエンジンにより駆動され、無段変速機構の第2回転要素から出力される動力は車両の駆動輪に伝達されるように構成されてもよい。こうした構成では、上記比率(ひいては、エンジンと駆動輪との間の変速比)を連続的に変更できるため、エンジンの回転速度を高い自由度で制御することが可能になる。このため、上記構成によれば、制御情報が示す推奨動作点にエンジン動作点を制御しやすくなる。
上記の無段変速機構は、上述した第1回転要素及び第2回転要素に加えて第3回転要素を有するプラネタリギヤを含んでもよい。上記の車両は、プラネタリギヤの第3回転要素に機械的に接続される第1モータジェネレータと、駆動輪に機械的に接続される第2モータジェネレータとをさらに備えてもよい。こうした構成では、第2モータジェネレータによって駆動輪のトルクを調整できるため、エンジンのトルクを高い自由度で制御することが可能になる。このため、上記構成によれば、制御情報が示す推奨動作点にエンジン動作点を制御しやすくなる。また、第1モータジェネレータ及び第2モータジェネレータによって発電を行なうことも可能になる。
本開示によれば、過給機に異常が生じ、過給制御を正常に行なうことができなくなった場合であっても、エンジンを所望の条件で動かすことができる車両を提供することが可能になる。
本開示の実施の形態に係る車両の駆動装置を示す図である。 本開示の実施の形態に係る車両のエンジンを示す図である。 本開示の実施の形態に係る車両の制御システムを示す図である。 本開示の実施の形態に係る車両において、HV走行中におけるプラネタリギヤの各回転要素(サンギヤ、キャリヤ、リングギヤ)の回転速度の関係の一例を示す共線図である。 本開示の実施の形態に係る車両において、EV走行中におけるプラネタリギヤの各回転要素(サンギヤ、キャリヤ、リングギヤ)の回転速度の関係の一例を示す共線図である。 本開示の実施の形態に係る車両において、停車中におけるプラネタリギヤの各回転要素(サンギヤ、キャリヤ、リングギヤ)の回転速度の関係の一例を示す共線図である。 本開示の実施の形態に係る車両の制御装置の構成要素を機能別に示す機能ブロック図である。 本開示の実施の形態に係るエンジンの過給制御の処理手順を示すフローチャートである。 本開示の実施の形態に係る車両のエンジン制御で使用される第1制御情報及び第2制御情報を説明するための図である。 本開示の実施の形態に係る車両の制御装置によって実行されるWGV開固着診断の処理手順を示すフローチャートである。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。図中、同一又は相当部分には同一符号を付してその説明は繰り返さない。以下では、電子制御ユニット(Electronic Control Unit)を「ECU」とも称する。また、ハイブリッド車両(Hybrid Vehicle)を「HV」、電気自動車(Electric Vehicle)を「EV」とも称する。
図1は、この実施の形態に係る車両の駆動装置を示す図である。この実施の形態では、前輪駆動の4輪自動車(より特定的には、ハイブリッド車両)を想定しているが、車輪の数及び駆動方式は適宜変更可能である。たとえば、駆動方式は4輪駆動であってもよい。
図1を参照して、車両の駆動装置10は、エンジン13及びMG(Motor Generator)14,15を走行用の動力源として備える。MG14及び15の各々は、駆動電力が供給されることによりトルクを出力するモータとしての機能と、トルクが与えられることにより発電電力を発生する発電機としての機能との両方を兼ね備えるモータジェネレータである。MG14及び15の各々としては、交流モータ(たとえば、永久磁石式同期モータ又は誘導モータ)が用いられる。MG14は、第1インバータ16を含む電気回路を介してバッテリ18に電気的に接続されている。MG15は、第2インバータ17を含む電気回路を介してバッテリ18に電気的に接続されている。第1インバータ16及び第2インバータ17は、後述するPCU19(図3参照)に含まれる。MG14、15はそれぞれロータ軸23、30を有する。ロータ軸23、30はそれぞれMG14、15の回転軸に相当する。この実施の形態に係るMG14、MG15はそれぞれ、本開示に係る「第1モータジェネレータ(MG1)」、「第2モータジェネレータ(MG2)」の一例に相当する。
バッテリ18は、たとえば二次電池を含んで構成される。二次電池としては、たとえばリチウムイオン電池を採用できる。バッテリ18は、電気的に接続された複数の二次電池(たとえば、リチウムイオン電池)から構成される組電池を含んでいてもよい。なお、バッテリ18を構成する二次電池は、リチウムイオン電池に限られず、他の二次電池(たとえば、ニッケル水素電池)であってもよい。バッテリ18として、電解液式二次電池を採用してもよいし、全固体式二次電池を採用してもよい。バッテリ18としては、任意の蓄電装置を採用可能であり、大容量のキャパシタなども採用可能である。
駆動装置10は、遊星歯車機構20を含む。エンジン13及びMG14は、遊星歯車機構20に連結されている。遊星歯車機構20は、シングルピニオン型のプラネタリギヤであり、エンジン13の出力軸22と同一の軸線Cnt上に配置されている。
遊星歯車機構20は、サンギヤSと、サンギヤSと同軸に配置されたリングギヤRと、サンギヤS及びリングギヤRに噛み合うピニオンギヤPと、ピニオンギヤPを自転及び公転可能に保持するキャリヤCとを有する。エンジン13及びMG14の各々は遊星歯車機構20を介して駆動輪24に機械的に連結される。エンジン13の出力軸22は、キャリヤCに連結されている。MG14のロータ軸23は、サンギヤSに連結されている。リングギヤRは、出力ギヤ21に連結されている。
遊星歯車機構20は、3つの回転要素、すなわち入力要素、出力要素、及び反力要素を有する。遊星歯車機構20においては、キャリヤCが入力要素に、リングギヤRが出力要素に、サンギヤSが反力要素になる。この実施の形態に係るキャリヤC、リングギヤR、サンギヤSはそれぞれ、本開示に係る「第1回転要素」、「第2回転要素」、「第3回転要素」の一例に相当する。
キャリヤCには、エンジン13が出力するトルクが入力される。遊星歯車機構20は、エンジン13が出力軸22に出力するトルクをサンギヤS(ひいては、MG14)とリングギヤR(ひいては、出力ギヤ21)とに分割して伝達するように構成される。リングギヤRは出力ギヤ21へトルクを出力し、サンギヤSには、MG14による反力トルクが作用する。遊星歯車機構20(プラネタリギヤ)から出力される動力(すなわち、出力ギヤ21に出力される動力)は、以下に説明するドリブンギヤ26、カウンタシャフト25、ドライブギヤ27、デファレンシャルギヤ28、及びドライブシャフト32,33を介して、駆動輪24に伝達される。
駆動装置10は、カウンタシャフト25、ドリブンギヤ26、ドライブギヤ27、デファレンシャルギヤ28、ドライブギヤ31、及びドライブシャフト32,33をさらに備える。デファレンシャルギヤ28は、終減速機に相当し、リングギヤ29を含んで構成される。
遊星歯車機構20及びMG15は、遊星歯車機構20から出力される動力とMG15から出力される動力とが合わさって駆動輪24に伝達されるように構成される。具体的には、遊星歯車機構20のリングギヤRに連結された出力ギヤ21は、ドリブンギヤ26に噛み合っている。また、MG15のロータ軸30に取り付けられたドライブギヤ31も、ドリブンギヤ26に噛み合っている。カウンタシャフト25は、ドリブンギヤ26に取り付けられ、軸線Cntと平行に配置されている。ドライブギヤ27は、カウンタシャフト25に取り付けられ、デファレンシャルギヤ28のリングギヤ29に噛み合っている。ドリブンギヤ26は、MG15がロータ軸30に出力したトルクと、リングギヤRから出力ギヤ21に出力されたトルクとを合成するように作用する。このように合成された駆動トルクは、デファレンシャルギヤ28から左右に延びたドライブシャフト32,33を介して駆動輪24に伝達される。
駆動装置10は、機械式のオイルポンプ36と電動オイルポンプ38とをさらに備える。オイルポンプ36は、出力軸22と同軸に設けられている。オイルポンプ36は、エンジン13によって駆動される。オイルポンプ36は、エンジン13が作動しているときに、遊星歯車機構20、MG14、MG15、及びデファレンシャルギヤ28に潤滑油を送る。電動オイルポンプ38は、バッテリ18又は図示しない他の車載バッテリ(たとえば、補機バッテリ)から供給される電力によって駆動され、後述するHVECU62(図3参照)によって制御される。電動オイルポンプ38は、エンジン13が停止しているときに、遊星歯車機構20、MG14、MG15、及びデファレンシャルギヤ28に潤滑油を送る。オイルポンプ36及び電動オイルポンプ38の各々によって送られる潤滑油は、冷却機能を有する。
図2は、エンジン13の構成を示す図である。図2を参照して、エンジン13は、たとえば直列4気筒型の火花点火式内燃機関である。エンジン13は、4つの気筒40a,40b,40c,40dを含むエンジン本体13aを備える。エンジン本体13aにおいては、4つの気筒40a,40b,40c,40dが一方向に並べられている。以下、区別して説明する場合を除いて、気筒40a,40b,40c,40dの各々を「気筒40」と記載する。
エンジン本体13aの各気筒40には吸気通路41及び排気通路42が接続されている。吸気通路41は、各気筒40に2つずつ設けられた吸気バルブ43により開閉され、排気通路42は、各気筒40に2つずつ設けられた排気バルブ44により開閉される。吸気通路41を通じてエンジン本体13aに供給される空気に燃料(たとえば、ガソリン)を加えることにより空気と燃料との混合気が生成される。燃料は、たとえば気筒40毎に設けられたインジェクタ46により気筒40内で噴射され、気筒40内で混合気が生成される。そして、気筒40毎に設けられた点火プラグ45が気筒40内で混合気に点火する。こうして、各気筒40で燃焼が行なわれる。各気筒40で混合気を燃焼させたときに生じる燃焼エネルギーは、各気筒40内のピストン(図示せず)により運動エネルギーに変換されて出力軸22(図1)に出力される。なお、燃料供給方式は、上記筒内噴射に限られず、ポート噴射であってもよいし、筒内噴射とポート噴射との併用であってもよい。
エンジン13は、排気エネルギーを利用して吸入空気を過給するターボ式の過給機47を備える。過給機47は、コンプレッサ48、タービン53、及びシャフト53aを備えるターボチャージャである。コンプレッサ48とタービン53とは、互いにシャフト53aを介して連結されて一体的に回転するように構成される。エンジン本体13aから排出される排気の流れを受けて回転するタービン53の回転力はシャフト53aを介してコンプレッサ48に伝達される。コンプレッサ48が回転することによって、エンジン本体13aへ向かう吸気が圧縮され、圧縮された空気がエンジン本体13aに供給される。過給機47は、排気エネルギーを利用してタービン53及びコンプレッサ48を回転させることによって、吸入空気の過給(すなわち、エンジン本体13aに吸入される空気の密度を高めること)を行なうように構成される。
コンプレッサ48は、吸気通路41に配置されている。吸気通路41においてコンプレッサ48よりも上流側の位置には、エアフローメータ50が設けられている。エアフローメータ50は、吸気通路41内を流れる空気の流量に応じた信号を出力するように構成される。吸気通路41においてコンプレッサ48よりも下流側の位置には、インタークーラ51が設けられている。インタークーラ51は、コンプレッサ48により圧縮された吸気を冷却するように構成される。吸気通路41においてインタークーラ51よりも下流側の位置には、スロットル弁(吸気絞り弁)49が設けられている。スロットル弁49は、吸気通路41内を流れる吸気の流量を調整可能に構成される。この実施の形態では、全閉から全開までの範囲で連続的に開度を変更可能なバルブを、スロットル弁49として採用する。スロットル弁49の開度は、後述するHVECU62(図3参照)によって制御される。吸気通路41に流入する空気は、エアフローメータ50、コンプレッサ48、インタークーラ51、及びスロットル弁49を、この順に通ってエンジン本体13aの各気筒40に供給される。
タービン53は、排気通路42に配置されている。また、排気通路42におけるタービン53よりも下流側には、スタート触媒コンバータ56及び後処理装置57が設けられている。さらに、排気通路42には、以下に説明するWGV装置500が設けられている。
WGV装置500は、エンジン本体13aから排出される排気をタービン53を迂回して流すとともに、迂回させる排気の量を調整可能に構成される。WGV装置500は、バイパス通路510と、ウェイストゲートバルブ(WGV)520と、WGVアクチュエータ530とを備える。
バイパス通路510は、排気通路42に接続され、タービン53を迂回して排気を流すように構成される。バイパス通路510は、排気通路42におけるタービン53よりも上流の部位(たとえば、エンジン本体13aとタービン53との間)から分岐し、排気通路42におけるタービン53よりも下流の部位(たとえば、タービン53とスタート触媒コンバータ56との間)に合流する。
WGV520は、バイパス通路510に配置され、エンジン本体13aからバイパス通路510に導かれる排気の流量を調整可能に構成される。エンジン本体13aからバイパス通路510に導かれる排気の流量が増えるほど、エンジン本体13aからタービン53に導かれる排気の流量が少なくなる。WGV520の開度によって、タービン53に流入する排気流量(ひいては、過給圧)が変わる。WGV520が閉じるほど(すなわち、全閉状態に近づくほど)、タービン53に流入する排気流量が多くなり、吸入空気の圧力(すなわち、過給圧)が高くなる。
WGV520は、WGVアクチュエータ530によって駆動される負圧式のバルブである。WGVアクチュエータ530は、負圧駆動式のダイアフラム531と、負圧ポンプ533とを備える。ダイアフラム531はWGV520に連結され、ダイアフラム531に導入された負圧によってWGV520が駆動される。この実施の形態では、WGV520がノーマルクローズのバルブであり、ダイアフラム531に作用する負圧が大きくなるほどWGV520の開度が大きくなる。
負圧ポンプ533は配管を介してダイアフラム531に接続されている。この実施の形態では、負圧ポンプ533として、負圧を発生する電動ポンプを採用する。負圧ポンプ533が作動すると、ダイアフラム531に負圧が作用し、WGV520が開く。負圧ポンプ533が停止すると、ダイアフラム531に負圧が作用しなくなり、WGV520が閉じる。負圧ポンプ533は、ダイアフラム531に作用する負圧の大きさを調整可能に構成される。負圧ポンプ533は、後述するHVECU62(図3参照)によって制御される。HVECU62は、負圧ポンプ533の駆動量を制御することによって、ダイアフラム531に作用する負圧の大きさを調整することができる。
エンジン本体13aから排出される排気はタービン53及びWGV520のいずれかを通り、スタート触媒コンバータ56及び後処理装置57により有害物質が除去されてから大気に放出される。後処理装置57は、たとえば三元触媒を含む。
エンジン13には、吸気通路41に排気を流入させるEGR(Exhaust Gas Recirculation)装置58が設けられている。EGR装置58は、EGR通路59、EGR弁60、及びEGRクーラ61を備える。EGR通路59は、排気通路42におけるスタート触媒コンバータ56と後処理装置57との間の部位と、吸気通路41におけるコンプレッサ48とエアフローメータ50との間の部位とを接続することによって、排気通路42から排気の一部をEGRガスとして取り出して吸気通路41に導くように構成される。EGR通路59には、EGR弁60及びEGRクーラ61が設けられている。EGR弁60は、EGR通路59を流れるEGRガスの流量を調整可能に構成される。EGRクーラ61は、EGR通路59を流れるEGRガスを冷却するように構成される。
図3は、この実施の形態に係る車両の制御システムを示す図である。図1及び図2とともに図3を参照して、車両の制御システムは、HVECU62、MGECU63、及びエンジンECU64を備える。HVECU62には、前述したエアフローメータ50のほか、アクセルセンサ66、車速センサ67、MG1回転速度センサ68、MG2回転速度センサ69、エンジン回転速度センサ70、タービン回転速度センサ71、過給圧センサ72、SOCセンサ73、MG1温度センサ74、MG2温度センサ75、INV1温度センサ76、INV2温度センサ77、触媒温度センサ78、及び過給機温度センサ79が接続されている。
アクセルセンサ66は、アクセル操作量(たとえば、図示しないアクセルペダルの踏込み量)に応じた信号をHVECU62に出力する。アクセル操作量は、運転者が車両に要求する加速量(以下、「要求加速量」とも称する)を示すパラメータである。アクセル操作量が大きいほど運転者の要求加速量は大きい。車速センサ67は、車速(すなわち、車両の走行速度)に応じた信号をHVECU62に出力する。MG1回転速度センサ68は、MG14の回転速度に応じた信号をHVECU62に出力する。MG2回転速度センサ69は、MG15の回転速度に応じた信号をHVECU62に出力する。エンジン回転速度センサ70は、エンジン13の出力軸22の回転速度に応じた信号をHVECU62に出力する。タービン回転速度センサ71は、過給機47のタービン53の回転速度に応じた信号をHVECU62に出力する。過給圧センサ72は、エンジン13の過給圧に応じた信号をHVECU62に出力する。過給圧センサ72は、たとえば図2に示すように、吸気通路41の吸気マニホールドに設けられ、吸気マニホールド内の圧力を検出するように構成される。
SOCセンサ73は、バッテリ18の満充電量(すなわち、蓄電容量)に対する残存充電量の比率であるSOC(State of Charge)に応じた信号をHVECU62に出力する。MG1温度センサ74は、MG14の温度に応じた信号をHVECU62に出力する。MG2温度センサ75は、MG15の温度に応じた信号をHVECU62に出力する。INV1温度センサ76は、第1インバータ16の温度に応じた信号をHVECU62に出力する。INV2温度センサ77は、第2インバータ17の温度に応じた信号をHVECU62に出力する。触媒温度センサ78は、後処理装置57の温度に応じた信号をHVECU62に出力する。過給機温度センサ79は、過給機47における所定部位の温度(たとえば、タービン53の温度)に応じた信号をHVECU62に出力する。
HVECU62は、プロセッサ62a、RAM(Random Access Memory)62b、及び記憶装置62c、さらには図示しない入出力ポート及びタイマを含んで構成される。プロセッサ62aとしては、たとえばCPU(Central Processing Unit)を採用できる。RAM62bは、プロセッサ62aによって処理されるデータを一時的に記憶する作業用メモリとして機能する。記憶装置62cは、格納された情報を保存可能に構成される。記憶装置62cは、たとえば、ROM(Read Only Memory)及び書き換え可能な不揮発性メモリを含む。記憶装置62cには、プログラムのほか、プログラムで使用される情報(たとえば、マップ、数式、及び各種パラメータ)が記憶されている。記憶装置62cに記憶されているプログラムをプロセッサ62aが実行することで、車両の各種制御が実行される。なお、他のECU(たとえば、MGECU63及びエンジンECU64)も、HVECU62と同様のハードウェア構成を有する。この実施の形態では、HVECU62、MGECU63、及びエンジンECU64が分かれているが、これらの機能を1つのECUが具備してもよい。
HVECU62は、エンジン13を制御するための指令をエンジンECU64に出力するように構成される。エンジンECU64は、HVECU62からの指令に従って、スロットル弁49、点火プラグ45、インジェクタ46、WGVアクチュエータ530、及びEGR弁60を制御するように構成される。HVECU62はエンジンECU64を通じてエンジン制御を行なうことができる。
HVECU62は、MG14及びMG15の各々を制御するための指令をMGECU63に出力するように構成される。車両はPCU(Power Control Unit)19をさらに備える。MGECU63は、PCU19を通じてMG14及びMG15を制御するように構成される。MGECU63は、HVECU62からの指令に従って、MG14及びMG15の各々の目標トルクに対応した電流信号(たとえば、電流の大きさ及び周波数を示す信号)を生成し、生成した電流信号をPCU19に出力するように構成される。HVECU62はMGECU63を通じてモータ制御を行なうことができる。
PCU19は、第1インバータ16、第2インバータ17、及びコンバータ65を備える。MG14及びMG15の各々は、PCU19に電気的に接続される。第1インバータ16及びコンバータ65は、バッテリ18とMG14との間で電力変換を行なうように構成される。第2インバータ17及びコンバータ65は、バッテリ18とMG15との間で電力変換を行なうように構成される。PCU19は、バッテリ18に蓄積された電力をMG14及びMG15の各々に供給するとともに、MG14及びMG15の各々により発電された電力をバッテリ18に供給するように構成される。PCU19は、MG14,15の状態を別々に制御可能に構成され、たとえば、MG14を回生状態(すなわち、発電状態)にしつつ、MG15を力行状態にすることができる。PCU19は、MG14及びMG15の一方で発電された電力を他方に供給可能に構成される。MG14及びMG15は相互に電力の授受が可能に構成される。
車両は、HV走行とEV走行とを行なうように構成される。HV走行は、エンジン13で走行駆動力を発生させながらエンジン13及びMG15によって行なわれる走行である。EV走行は、エンジン13が停止した状態でMG15によって行なわれる走行である。エンジン13が停止した状態では、エンジン本体13aにおける燃焼が行なわれなくなる。エンジン本体13aにおける燃焼が停止すると、エンジン13で燃焼エネルギー(ひいては、車両の走行駆動力)が発生しなくなる。HVECU62は状況に応じてEV走行及びHV走行を切り替えるように構成される。また、図1に示した遊星歯車機構20は無段変速機構として機能し得る。遊星歯車機構20は、出力要素(リングギヤR)の回転速度に対する入力要素(キャリヤC)の回転速度の比率を連続的に変更可能に構成される。HVECU62がMG14の回転速度を制御することによってエンジン13の回転速度を調整することができる。HVECU62は、MG14に流す電流の大きさ及び周波数に応じてMG14の回転速度を任意に制御することができる。
図4は、HV走行中における遊星歯車機構20のサンギヤS、キャリヤC、及びリングギヤRの各々の回転速度の関係の一例を示す共線図である。図4を参照して、HV走行の一例では、エンジン13から出力されたトルク(すなわち、キャリヤCに入力されたトルク)を駆動輪24に伝達する際に、MG14により反力を遊星歯車機構20のサンギヤSに作用させる。そのため、サンギヤSが反力要素として機能する。HV走行では、加速要求に基づく目標エンジントルクに応じたトルクを駆動輪24に作用させるために、目標エンジントルクに対する反力トルクをMG14に出力させる。この反力トルクを利用してMG14に回生発電を実行させることができる。
図5は、EV走行中における遊星歯車機構20のサンギヤS、キャリヤC、及びリングギヤRの各々の回転速度の関係の一例を示す共線図である。図5を参照して、EV走行では、エンジン13を停止してMG15により走行駆動力を発生させる。EV走行中は、HVECU62が点火プラグ45及びインジェクタ46を制御して、エンジン13で燃焼が行なわれないようにする。EV走行は、エンジン13が回転していない状態で行なわれるため、図5に示すように、キャリヤCの回転速度は0になる。
図6は、停車中における遊星歯車機構20のサンギヤS、キャリヤC、及びリングギヤRの各々の回転速度の関係の一例を示す共線図である。図6を参照して、HVECU62がエンジン13及びMG14,15を制御して、サンギヤS、キャリヤC、及びリングギヤRの各々の回転速度を0にすることで、車両の走行が停止し、車両が停車状態になる。
ところで、エンジンの燃費を改善する手法として、最適燃費線を用いてエンジン制御を行なうことが知られている。公知のエンジン制御では、エンジンが正常に動くことを前提にして作成された1本の最適燃費線が使用されている。このため、エンジンが正常に動いていないときには、エンジン動作点が最適燃費線上に制御されても最適燃費(すなわち、所望の条件)にならないことがある。こうしたエンジン制御では、過給機に異常が生じ、エンジンが正常に動かなくなると、燃費が悪化しやすくなる。たとえば、過給機のWGVが全開開度で固着し、過給を実行できなくなると、エンジンの燃費が悪化する。
これに対し、この実施の形態に係る車両は、以下に説明する構成を有することにより、過給機47に異常が生じ、過給制御を正常に行なうことができなくなった場合であっても、エンジン13を所望の条件で動かすことができる。
この実施の形態に係る車両のHVECU62は、WGV520が固着していない場合には、第1制御情報に従ってエンジン13を制御し、WGV520が開いた状態で固着している場合には、第2制御情報に従ってエンジン13を制御するように構成される。なお、この実施の形態に係る車両で使用される制御情報(すなわち、第1制御情報及び第2制御情報)は、エンジン13から出力されるエンジンパワーごとにエンジン13の目標回転速度(以下、「目標エンジン回転速度」とも称する)とエンジン13の目標トルク(以下、「目標エンジントルク」とも称する)とを定める情報である。この実施の形態において、第1制御情報は、WGV520が固着していない場合の最適燃費線であり、第2制御情報は、WGV520が全開開度で固着している場合の最適燃費線である。この実施の形態に係るHVECU62は、本開示に係る「制御装置」の一例に相当する。
図7は、HVECU62の構成要素を機能別に示す機能ブロック図である。図7を参照して、HVECU62は、通常走行制御部621と、WGV診断部622と、退避走行制御部623とを含む。第1制御情報及び第2制御情報は、記憶装置62cに予め記憶されている。HVECU62における上記各部は、たとえば、図3に示したプロセッサ62aと、プロセッサ62aにより実行されるプログラムとによって具現化される。ただしこれに限られず、これら各部は、専用のハードウェア(電子回路)によって具現化されてもよい。
車両は、ユーザからの入力を受け付ける入力装置101をさらに備える。入力装置101は、ユーザによって操作され、ユーザの操作に対応する信号をHVECU62へ出力する。たとえば、ユーザは、入力装置101を通じて、所定の指示又は要求をHVECU62に入力したり、パラメータの値をHVECU62に設定したりすることができる。通信方式は有線でも無線でもよい。入力装置101としては、たとえば運転席周辺(たとえば、ステアリングホイール又はインストルメントパネル)に設けられた各種スイッチ(押しボタンスイッチ、スライドスイッチ等)を採用できる。ただしこれに限られず、各種ポインティングデバイス(マウス、タッチパッド等)、キーボード、タッチパネルなども、入力装置101として採用可能である。入力装置101は、携帯機器(たとえば、スマートフォン)の操作部であってもよいし、カーナビゲーションシステムの操作部であってもよい。
車両は、報知装置102をさらに備える。報知装置102は、HVECU62から要求があったときに、ユーザ(たとえば、運転者)へ所定の報知処理を行なうように構成される。報知装置102の例としては、表示装置(たとえば、メータパネル又はヘッドアップディスプレイ)、スピーカー、ランプが挙げられる。報知装置102は、携帯機器(たとえば、スマートフォン)の表示部であってもよいし、カーナビゲーションシステムの表示部であってもよい。
通常走行制御部621は、WGV520が固着していない場合に車両の走行制御を行なうように構成される。通常走行制御部621は、状況に応じてEV走行/HV走行を切り替えるように構成される。たとえば、通常走行制御部621は、低速かつ低負荷の走行条件ではEV走行を行ない、高速かつ高負荷の走行条件ではHV走行を行なう。通常走行制御部621は、たとえばアクセル操作量と車速とに基づいて要求駆動力を求める。要求駆動力が大きいほど走行負荷が大きいと判断される。
HV走行では、通常走行制御部621が、要求駆動力に基づいて要求エンジンパワー(すなわち、エンジン13に要求されるパワー)を求める。通常走行制御部621は、記憶装置62c内の第1制御情報(たとえば、後述する図9に示す線L31)を参照して、要求エンジンパワーをエンジン13に出力させるための目標動作点を取得する。目標動作点は、エンジントルクとエンジン回転速度との座標平面(以下、「Te-Ne座標平面」とも称する)上において、目標エンジントルクと目標エンジン回転速度とによって規定されるエンジン動作点である。目標動作点が定まれば、目標エンジントルクと目標エンジン回転速度が定まる。
通常走行制御部621は、図1に示した駆動輪24に要求駆動力が出力されるようにエンジン13、MG14、及びMG15を協調制御する。EV走行では、MG15が出力するトルクが走行駆動力となる。HV走行では、エンジン13が出力するトルクとMG15が出力するトルクとを合算したトルクが、走行駆動力となる。HV走行では、通常走行制御部621が、上述のように要求エンジンパワーを決定し、記憶装置62c内の第1制御情報に従ってエンジン13を制御する。エンジン13の動作点は、上述の目標動作点に制御される。また、通常走行制御部621は、エンジン13が作動しているときに、以下に説明する過給制御を実行する。
図8は、この実施の形態に係る過給制御の処理手順を示すフローチャートである。このフローチャートに示される処理は、エンジン13が作動しており、かつ、WGV520が固着していない場合(すなわち、図7に示すWGV診断部622によってWGV520が固着していないと判断されている期間)にメインルーチン(図示せず)から呼び出されて繰り返し実行される。
図2及び図7とともに図8を参照して、ステップ(以下、単に「S」とも表記する)11では、目標エンジントルクが所定の閾値Th以上であるか否かが、通常走行制御部621によって判断される。
目標エンジントルクが閾値Th以上である場合(S11にてYES)には、S12において、通常走行制御部621がエンジンECU64に過給の実行(すなわち、WGV520を第1開度に閉じること)を要求する。エンジンECU64は、通常走行制御部621の要求に従い、WGV520を第1開度に閉じるようにWGVアクチュエータ530に閉指令を出す。この実施の形態では、第1開度を全閉開度とする。エンジンECU64は、通常走行制御部621から過給の実行を要求されると、WGVアクチュエータ530の負圧ポンプ533に停止指令(すなわち、閉指令)を出す。負圧ポンプ533が停止すると、ダイアフラム531に負圧が作用しなくなる。WGV520が正常に動作する状態であれば、ダイアフラム531に負圧が作用しなくなることによってWGV520が閉じて過給が実行される。なお、WGVアクチュエータ530がWGV520を閉じるときに、全開開度から全閉開度までWGV520を徐々に閉じるようにしてもよい。
他方、目標エンジントルクが閾値Th未満である場合(S11にてNO)には、S13において、通常走行制御部621がエンジンECU64に過給の停止(すなわち、WGV520を第2開度に開くこと)を要求する。エンジンECU64は、通常走行制御部621の要求に従い、WGV520を第1開度よりも大きい第2開度に開くようにWGVアクチュエータ530に開指令を出す。この実施の形態では、第2開度を全開開度とする。エンジンECU64は、通常走行制御部621から過給の停止を要求されると、WGVアクチュエータ530の負圧ポンプ533に作動指令(すなわち、開指令)を出す。負圧ポンプ533が作動すると、負圧ポンプ533が発生する負圧がダイアフラム531に作用する。WGV520が正常に動作する状態であれば、ダイアフラム531に負圧が作用することによってWGV520が開いて過給が停止する。なお、WGVアクチュエータ530がWGV520を開くときに、全閉開度から全開開度までWGV520を徐々に開くようにしてもよい。
上記S12及びS13のいずれかが実行されると、処理がメインルーチンへと戻される。上記のように、図8の処理では、目標エンジントルクが閾値Thを超えると、通常走行制御部621がエンジンECU64に過給の実行を要求し、目標エンジントルクが閾値Thを下回ると、通常走行制御部621がエンジンECU64に過給の停止を要求する。エンジンECU64は、通常走行制御部621からの要求に従い、WGVアクチュエータ530によってWGV520を開閉する。
なお、上記図8の処理は適宜変更可能である。たとえば、目標エンジントルクが閾値Thに一致する場合に、処理がS12ではなくS13に進むようにしてもよい。閾値Thは、固定値であってもよいし、エンジン13の状態(たとえば、エンジン回転速度)に応じて可変であってもよい。WGV520の開閉(ひいては、過給の実行/停止)が頻繁に行なわれることを抑制するために、閾値Thにヒステリシスを持たせる(すなわち、過給実行時の閾値Thと過給停止時の閾値Thとを異ならせる)ようにしてもよい。
第1開度及び第2開度の各々は、第2開度が第1開度よりも大きい範囲で任意に設定できる。第1開度及び第2開度の各々は、固定値であってもよいし、状況に応じて可変であってもよい。HVECU62は、目標エンジントルクが小さくなるにつれてWGV520の開度が次第に大きくなるようにWGV520を制御してもよい。HVECU62は、目標エンジントルクが大きくなるにつれてWGV520の開度が次第に小さくなるようにWGV520を制御してもよい。
再び図7を参照して、WGV診断部622は、通常走行制御部621がエンジンECU64に過給の実行を要求したとき(ひいては、エンジンECU64がWGVアクチュエータ530に閉指令を出したとき)に指示どおりにWGV520が動いたか否かに基づいて、WGV520が開いた状態で固着しているか否かを判断するように構成される。通常走行制御部621は、エンジンECU64に過給の実行を要求するとき(図8のS12)に、WGVアクチュエータ530に閉指令が出される旨を示す信号(以下、「閉指令あり信号」とも称する)をWGV診断部622へ送信する。WGV診断部622は、閉指令あり信号を受信したときに、WGV520が開いた状態で固着しているか否かの診断を実行する。
この実施の形態では、WGV診断部622が、過給圧(たとえば、過給圧センサ72の検出値)の挙動に基づいて、指示どおりにWGV520が動いたか否かを判断する。たとえば、通常走行制御部621がエンジンECU64に過給の実行を要求したにもかかわらず過給圧が上昇しなければ、WGV診断部622は、指示どおりにWGV520が動いていない(すなわち、WGV520が開いた状態で固着している)と判断する。以下、WGV520が開いた状態での固着を、「開固着」とも称する。
WGV診断部622は、WGV520の開固着が生じていると判断した場合に、異常が生じた旨を報知装置102を通じて車両の運転者へ報知するとともに、異常が生じた旨を記憶装置62cに記録するように構成される。
この実施の形態では、WGV診断部622が、上記のようにWGV520の開固着の診断を行ない、開固着が生じていない場合には、WGV520は固着していないと判断する。ただしこれに限られず、WGV診断部622は、開固着に加えて、WGV520が閉じた状態での固着(以下、「閉固着」とも称する)を診断するように構成されてもよい。WGV診断部622は、たとえば、通常走行制御部621がエンジンECU64に過給の停止を要求したとき(ひいては、エンジンECU64がWGVアクチュエータ530に開指令を出したとき)に指示どおりにWGV520が動いたか否かに基づいて、WGV520が閉じた状態で固着しているか否かを判断してもよい。そして、WGV診断部622は、開固着及び閉固着のいずれも生じていない場合に、WGV520は固着していないと判断するように構成されてもよい。
なお、WGV診断部622は、上記過給圧に代えて又は加えて、吸気流量(たとえば、エアフローメータ50の検出値)の挙動に基づいて、指示どおりにWGV520が動いたか否かを判断するように構成されてもよい。
WGV診断部622は、WGV520の開固着が発生した場合に、エンジン制御で使用する制御情報を第1制御情報から第2制御情報に切り替える。より具体的には、WGV診断部622は、開固着が発生したときに、異常が生じた旨を示す信号(以下、「制御切替信号」とも称する)を通常走行制御部621に送信する。通常走行制御部621は、制御切替信号を受信すると、退避走行制御部623に退避走行制御の実行を指示する。これにより、エンジン13の制御が、通常走行制御部621によるエンジン制御(すなわち、第1制御情報に従うエンジン制御)から退避走行制御部623によるエンジン制御(すなわち、第2制御情報に従うエンジン制御)に切り替わる。その結果、エンジン制御で使用される制御情報が第1制御情報から第2制御情報に切り替わる。
退避走行制御部623は、通常走行制御部621から退避走行制御の実行を指示されると、記憶装置62c内の第2制御情報(たとえば、後述する図9に示す線L32)に従ってエンジン13を制御することにより車両の退避走行を行なう。
図9は、この実施の形態に係る車両のエンジン制御で使用される第1制御情報及び第2制御情報を説明するための図である。図9に示すTe-Ne座標平面上には、線L31,L32及びL41,L42が描かれている。線L41及び線L42の各々は、要求エンジンパワーに対応する等パワーラインである。線L41は、小さい要求エンジンパワーに対応する等パワーラインを示し、線L42は、大きい要求エンジンパワーに対応する等パワーラインを示す。なお、エンジンパワーはエンジン回転速度とエンジントルクとの積に相当する。
図9を参照して、線L31は、この実施の形態に係る第1制御情報(すなわち、WGV520が固着していない場合の最適燃費線)に相当するラインである。過給実行中(すなわち、WGV520が閉じているとき)には、前述した閾値Th(図示せず)よりも少し大きいトルクでエンジン13の熱効率が最適になる傾向がある。エンジン13の熱効率が良くなるほど燃費が向上する。HVECU62が線L31に従ってエンジン13を制御する場合には、線L31に従って目標動作点が決定される。たとえば、要求エンジンパワーに対応する等パワーラインが線L41になる場合には、線L31と線L41との交点E1が目標動作点になる。要求エンジンパワーに対応する等パワーラインが線L42になる場合には、線L31と線L42との交点E2が目標動作点になる。
線L32は、この実施の形態に係る第2制御情報(すなわち、WGV520が全開開度で固着している場合の最適燃費線)に相当するラインである。WGV520が全開開度で固着すると、過給を実行することができなくなる。この場合、エンジントルクは主にスロットル弁49等によって調整され、線L31が示す目標動作点までエンジントルクを上昇させることができなくなったり、線L31が示す目標動作点までエンジントルクを上昇させると燃費が悪化するようになったりする。このため、WGV520が全開開度で固着している場合の最適燃費線は、WGV520が固着していない場合の最適燃費線と比べてトルクが小さくなる傾向がある。線L31と線L32とを比較すると、目標エンジン回転速度ごとの目標エンジントルクは、線L31よりも線L32のほうが小さくなっている。すなわち、目標エンジン回転速度が同じ場合、線L31よりも線L32のほうが目標エンジントルクが小さくなる。
HVECU62が線L32に従ってエンジン13を制御する場合には、線L32に従って目標動作点が決定される。たとえば、要求エンジンパワーに対応する等パワーラインが線L41になる場合には、線L32と線L41との交点E3が目標動作点になる。要求エンジンパワーに対応する等パワーラインが線L42になる場合には、線L32と線L42との交点E4が目標動作点になる。
この実施の形態では、最適燃費線上のエンジン動作点を推奨動作点とするが、推奨動作点は適宜変更可能である。たとえば、入力装置101が、ユーザから走行モードの入力を受け付けるように構成されてもよい。そして、ユーザが入力装置101を通じてエコモード及びパワーモードのいずれかの走行モードを選べるようにしてもよい。エコモードは、出力パワーよりも燃費を優先してエンジン13を動作させる走行モードである。パワーモードは、燃費よりも出力パワーを優先してエンジン13を動作させる走行モードである。ユーザによってエコモードが選択された場合には、第1制御情報として前述の最適燃費線が設定される一方、ユーザによってパワーモードが選択された場合には、第1制御情報として、前述の最適燃費線よりも大きなトルクをエンジン13に出力させるパワーラインが設定されるようにしてもよい。また、第2制御情報としても、前述の最適燃費線以外の制御情報(たとえば、パワーライン)を設定可能にしてもよい。
図10は、HVECU62によって実行されるWGV開固着診断の処理手順を示すフローチャートである。このフローチャートに示される処理は、車両のHV走行中に実行される。
図7とともに図10を参照して、S21では、WGV診断部622が、前述の閉指令あり信号を受信したか否かを判断する。通常走行制御部621は、図8のS12においてエンジンECU64に過給の実行を要求するときに、閉指令あり信号をWGV診断部622へ送信する。すなわち、WGV診断部622が閉指令あり信号を受信したことは、WGVアクチュエータ530に閉指令が出されていることを意味する。WGV診断部622が閉指令あり信号を受信しない場合(S21にてNO)には、処理はS22以降に進まず、S21が繰り返し実行される。
WGV診断部622が閉指令あり信号を受信した場合(S21にてYES)には、WGV診断部622が、S22において、WGV520の開固着が生じているか否かの診断を実行する。たとえば、WGV診断部622は、過給圧センサ72の検出値をモニタリングして過給圧が正常に上昇しているか否かを判断する。診断が終わると、WGV診断部622は、S23において、診断結果が開固着有りか否かを判断する。診断結果が開固着無しである場合(S23にてNO)には、処理がS21へと戻される。
他方、診断結果が開固着有りである場合(S23にてYES)には、S24において、エンジン制御で使用される制御情報が第1制御情報から第2制御情報に切り替わる。具体的には、WGV診断部622が、前述の制御切替信号を通常走行制御部621に送信する。さらに、WGV診断部622は、異常が生じた旨を報知装置102を通じて車両の運転者へ報知するとともに、異常が生じた旨を記憶装置62cに記録する。WGV診断部622は、たとえばWGV診断のMIL(Malfunction Indicator Light)を点灯させることにより、WGV装置500に異常が生じた旨をユーザへ報知してもよい。
WGV診断部622から送信された制御切替信号を通常走行制御部621が受信すると、通常走行制御部621から退避走行制御部623に退避走行制御の実行が指示される。これにより、エンジン13の制御が、通常走行制御部621によるエンジン制御から退避走行制御部623によるエンジン制御に切り替わる。その結果、エンジン制御で使用される制御情報が第1制御情報から第2制御情報に切り替わる。
S25では、退避走行制御部623が、記憶装置62c内の第2制御情報に従ってエンジン13を制御しながら、HV走行によって安全な場所(たとえば、道路脇)に車両を退避させる。退避走行制御部623は、S26において、車両が停止したか否かを判断し、車両が停止するまで(すなわち、S26にてNOと判断されている間)退避走行制御(S25)を継続する。そして、車両が停止すると(S26にてYES)、図10の一連の処理が終了する。
以上説明したように、この実施の形態に係る車両では、HVECU62が複数種の制御情報(すなわち、第1制御情報及び第2制御情報)から1つの制御情報を選択可能に構成される。第1制御情報は、WGVが固着していない場合(すなわち、過給制御が正常に行なわれる場合)に使用される制御情報であり、第1制御情報には、WGV520が固着していない場合におけるエンジン13の推奨動作点が定められる。一方、第2制御情報は、WGV520が開いた状態で固着している場合(すなわち、過給制御を正常に行なうことができなくなった場合)に使用される制御情報であり、第2制御情報には、WGV520が開いた状態で固着している場合におけるエンジン13の推奨動作点が定められる。このように、正常時の制御情報(すなわち、第1制御情報)とは別に第2制御情報を用意し、状況に応じて第1制御情報と第2制御情報とを使い分けることで、WGV520が開いた状態で固着して過給制御を正常に行なうことができなくなった場合であってもエンジン13を所望の条件で動かすことが可能になる。
HVECU62は、WGV520が開いた状態で固着している場合(図10のS23にてYES)には、第2最適燃費線に従ってエンジン13を制御することにより車両の退避走行を行なう。このため、退避走行中の燃費を向上させることが可能になる。また、退避走行中の燃費が向上することで、退避走行可能な距離を延ばすことができる。
上記実施の形態では、WGV診断によって開固着が発見されたときに、HVECU62が、異常が生じた旨の報知と、異常が生じた旨の記録との両方を実行するが、HVECU62は、報知及び記録の一方のみを実行してもよいし、報知及び記録を実行しなくてもよい。
上記実施の形態に係るWGV診断で使用されるエアフローメータ50及び過給圧センサ72の各々は、車両のエンジン制御で使用されているセンサであるが、これらとは別に診断用のセンサを設けてもよい。診断で用いるデータ(たとえば、過給圧及び吸気流量の少なくとも一方)を取得するために設けられた診断用のセンサを、上記エアフローメータ50及び過給圧センサ72の代わりにWGV診断で使用してもよい。
エンジン13の構成は、図2に示した構成に限られず、適宜変更可能である。たとえば、吸気通路41におけるスロットル弁49の位置は、エアフローメータ50とコンプレッサ48との間であってもよい。また、気筒レイアウトも直列型に限られず、V型又は水平型であってもよい。気筒の数及びバルブの数も任意に変更できる。
上記実施の形態では、閾値Thを境に過給の実行/停止を切り替えるような2値的な制御を行なっているが、HVECU62は、WGV520の開度を全閉から全開までの範囲で連続的に制御することによって過給圧を所望の大きさに調整するように構成されてもよい。
負圧ポンプ533は、エンジン13によって駆動される機械式ポンプであってもよい。負圧ポンプ533とダイアフラム531とをつなぐ配管に負圧調整弁及び大気開放弁を設けてもよい。WGV520は、ノーマルオープンのバルブであってもよい。さらに、WGV520の駆動方式は、負圧式に限られず任意であり、電動式であってもよい。
上記実施の形態では、第1開度を全閉開度、第2開度を全開開度としたが、第1開度及び第2開度の各々は任意に設定できる。たとえば、第1開度を、全閉開度よりも大きく、かつ、50%よりも小さい開度にし、第2開度を、50%よりも大きく、かつ、全開開度よりも小さい開度にしてもよい。
上記実施の形態では、エンジン13としてガソリンエンジンを採用している。しかしこれに限られず、エンジン13としては、任意の内燃機関を採用可能であり、ディーゼルエンジンなども採用可能である。また、上記実施の形態では、上述の態様でエンジンを制御する制御装置をハイブリッド車両に適用した例を示したが、内燃機関のみを走行用の動力源とする自動車(すなわち、コンベ車)に上記の制御装置を適用してもよい。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
10 駆動装置、13 エンジン、13a エンジン本体、14,15 MG、16 第1インバータ、17 第2インバータ、18 バッテリ、19 PCU、20 遊星歯車機構、21 出力ギヤ、22 出力軸、23,30 ロータ軸、24 駆動輪、25 カウンタシャフト、26 ドリブンギヤ、27,31 ドライブギヤ、28 デファレンシャルギヤ、29 リングギヤ、32,33 ドライブシャフト、36 オイルポンプ、38 電動オイルポンプ、40,40a,40b,40c,40d 気筒、41 吸気通路、42 排気通路、43 吸気バルブ、44 排気バルブ、45 点火プラグ、46 インジェクタ、47 過給機、48 コンプレッサ、49 スロットル弁、50 エアフローメータ、51 インタークーラ、53 タービン、53a シャフト、56 スタート触媒コンバータ、57 後処理装置、58 EGR装置、59 EGR通路、60 EGR弁、61 EGRクーラ、62 HVECU、62a プロセッサ、62b RAM、62c 記憶装置、63 MGECU、64 エンジンECU、65 コンバータ、66 アクセルセンサ、67 車速センサ、68 MG1回転速度センサ、69 MG2回転速度センサ、70 エンジン回転速度センサ、71 タービン回転速度センサ、72 過給圧センサ、73 SOCセンサ、74 MG1温度センサ、75 MG2温度センサ、76 INV1温度センサ、77 INV2温度センサ、78 触媒温度センサ、79 過給機温度センサ、101 入力装置、102 報知装置、500 WGV装置、510 バイパス通路、520 ウェイストゲートバルブ、530 WGVアクチュエータ、531 ダイアフラム、533 負圧ポンプ、621 通常走行制御部、622 WGV診断部、623 退避走行制御部、C キャリヤ、P ピニオンギヤ、R リングギヤ、S サンギヤ。

Claims (9)

  1. 駆動輪と、
    第1回転要素、第2回転要素、及び第3回転要素を有するプラネタリギヤと、
    前記第1回転要素を駆動するように走行駆動力を発生するエンジンと、
    前記第3回転要素に機械的に接続された第1モータジェネレータと、
    前記駆動輪を駆動する第2モータジェネレータと、
    前記エンジンから出力されるエンジンパワーごとに前記エンジンの目標回転速度と前記エンジンの目標トルクとを定める制御情報に従って前記エンジンを制御する制御装置とを備え、
    前記プラネタリギヤは、前記エンジンが出力するトルクを前記第2回転要素と前記第3回転要素とに分割して伝達するように構成され、
    前記プラネタリギヤ及び前記第2モータジェネレータは、前記第2回転要素から出力される動力と前記第2モータジェネレータから出力される動力とが合わさって前記駆動輪に伝達されるように構成され、
    前記エンジンは、燃焼を行なうエンジン本体と、前記エンジン本体に接続された吸気通路及び排気通路と、過給機と、前記排気通路に接続されたバイパス通路と、前記バイパス通路に設けられたウェイストゲートバルブとを含み、
    前記過給機は、前記吸気通路に設けられたコンプレッサと、前記排気通路に設けられたタービンとを備え、
    前記バイパス通路は、前記タービンを迂回して排気を流すように構成され、
    前記制御装置は、前記制御情報として、第1制御情報と、前記第1制御情報とは異なる第2制御情報とを選択可能に構成され、
    前記制御装置は、前記ウェイストゲートバルブが固着していない場合には、前記第1制御情報に従って前記エンジンを制御し、前記ウェイストゲートバルブが開いた状態で固着している場合には、前記第2制御情報に従って前記エンジンを制御するように構成され、
    前記第1制御情報は、前記ウェイストゲートバルブが固着していない場合の最適燃費線であり、
    前記第2制御情報は、前記ウェイストゲートバルブが開いた状態で固着している場合の最適燃費線である、車両。
  2. 前記制御装置は、前記ウェイストゲートバルブが開いた状態で固着している場合には、当該車両を退避走行させるように構成される、請求項に記載の車両。
  3. 前記制御装置は、
    前記ウェイストゲートバルブが固着していない場合に当該車両の走行制御を行なう通常走行制御部と、
    前記通常走行制御部から退避走行制御の実行を指示されると、前記第2制御情報に従って前記エンジンを制御することにより当該車両の退避走行を行なう退避走行制御部と、
    前記ウェイストゲートバルブが開いた状態で固着しているか否かを判断するWGV診断部と、
    を含み、
    前記通常走行制御部は、前記WGV診断部によって前記ウェイストゲートバルブが開いた状態で固着していると判断された場合に、前記退避走行制御部に前記退避走行制御の実行を指示する、請求項に記載の車両。
  4. 前記通常走行制御部は、状況に応じてEV走行とHV走行とを切り替えるように構成され、
    前記退避走行制御部は、前記第2制御情報に従って前記エンジンを制御しながらHV走行によって当該車両を退避させるように構成され、
    前記EV走行は、前記第2モータジェネレータが出力するトルクが当該車両の走行駆動力となる走行であり、
    前記HV走行は、前記エンジンが出力するトルクと前記第2モータジェネレータが出力するトルクとを合算したトルクが当該車両の走行駆動力となる走行である、請求項に記載の車両。
  5. 前記通常走行制御部は、
    当該車両のアクセル操作量と車速とに基づいて要求駆動力を求めることと、
    前記要求駆動力に基づいて要求エンジンパワーを求めることと、
    前記第1制御情報に基づいて、前記要求エンジンパワーを前記エンジンに出力させるための目標エンジン回転速度及び目標エンジントルクを取得することと、
    前記駆動輪に前記要求駆動力が出力されるように前記エンジン、前記第1モータジェネレータ、及び前記第2モータジェネレータを協調制御することと、
    を実行するように構成される、請求項3又は4に記載の車両。
  6. 前記ウェイストゲートバルブを駆動するWGVアクチュエータをさらに備え、
    前記通常走行制御部は、前記エンジンが作動しているときに過給制御を実行するように構成され、
    前記通常走行制御部は、前記過給制御において、前記目標エンジントルクが閾値を超えているときには、前記ウェイストゲートバルブを第1開度に閉じるように前記WGVアクチュエータに閉指令を出し、前記目標エンジントルクが前記閾値を下回るときには、前記ウェイストゲートバルブを前記第1開度よりも大きい第2開度に開くように前記WGVアクチュエータに開指令を出すように構成される、請求項に記載の車両。
  7. 前記第1開度は全閉開度であり、前記第2開度は全開開度であり、
    前記第2制御情報は、前記ウェイストゲートバルブが全開開度で固着している場合の最適燃費線である、請求項に記載の車両。
  8. 前記エンジンの過給圧を検出する過給圧センサと、前記エンジンの吸気流量を検出するエアフローメータとの少なくとも一方をさらに備え、
    前記WGV診断部は、前記通常走行制御部が前記WGVアクチュエータに前記閉指令を出したときの前記過給圧及び前記吸気流量の少なくとも一方の挙動を用いて、前記ウェイストゲートバルブが開いた状態で固着しているか否かを判断するように構成される、請求項6又は7に記載の車両。
  9. 前記WGVアクチュエータは、負圧を利用して前記ウェイストゲートバルブを駆動するように構成される、請求項6~8のいずれか1項に記載の車両。
JP2019087619A 2019-05-07 2019-05-07 車両 Active JP7143811B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019087619A JP7143811B2 (ja) 2019-05-07 2019-05-07 車両
CN202010365074.0A CN111907526B (zh) 2019-05-07 2020-04-30 车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019087619A JP7143811B2 (ja) 2019-05-07 2019-05-07 車両

Publications (2)

Publication Number Publication Date
JP2020183716A JP2020183716A (ja) 2020-11-12
JP7143811B2 true JP7143811B2 (ja) 2022-09-29

Family

ID=73044859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019087619A Active JP7143811B2 (ja) 2019-05-07 2019-05-07 車両

Country Status (2)

Country Link
JP (1) JP7143811B2 (ja)
CN (1) CN111907526B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978447B (zh) * 2021-10-27 2024-01-09 岚图汽车科技有限公司 一种扭矩控制方法及相关设备
WO2023195110A1 (ja) * 2022-04-06 2023-10-12 日産自動車株式会社 シリーズハイブリッド車両制御方法及びシリーズハイブリッド車両

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328766A (ja) 2002-05-10 2003-11-19 Fuji Heavy Ind Ltd ターボ過給機付エンジン
JP2016016695A (ja) 2014-07-04 2016-02-01 トヨタ自動車株式会社 車両の制御装置
JP2016020633A (ja) 2014-07-11 2016-02-04 トヨタ自動車株式会社 過給システムおよび過給システムの診断方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237090B2 (ja) * 1994-09-14 2001-12-10 本田技研工業株式会社 内燃エンジンの制御装置
WO2011077517A1 (ja) * 2009-12-22 2011-06-30 トヨタ自動車株式会社 内燃機関の制御装置
US9206734B2 (en) * 2010-03-17 2015-12-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328766A (ja) 2002-05-10 2003-11-19 Fuji Heavy Ind Ltd ターボ過給機付エンジン
JP2016016695A (ja) 2014-07-04 2016-02-01 トヨタ自動車株式会社 車両の制御装置
JP2016020633A (ja) 2014-07-11 2016-02-04 トヨタ自動車株式会社 過給システムおよび過給システムの診断方法

Also Published As

Publication number Publication date
JP2020183716A (ja) 2020-11-12
CN111907526B (zh) 2024-03-26
CN111907526A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN111997772B (zh) 混合动力车辆及其异常诊断方法
JP2020164007A (ja) ハイブリッド車両
JP7143811B2 (ja) 車両
US11514730B2 (en) Hybrid vehicle and method of diagnosing abnormal condition of hybrid vehicle
US11577596B2 (en) Hybrid vehicle and method of engine control of hybrid vehicle
US11371451B2 (en) Indicator control system and vehicle
JP7143799B2 (ja) ハイブリッド車両、及びハイブリッド車両の制動方法
JP7196738B2 (ja) ハイブリッド車両
JP7243420B2 (ja) 車両
JP7088088B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP7188274B2 (ja) ハイブリッド車両
JP7180482B2 (ja) ハイブリッド車両
JP7183928B2 (ja) 車両
JP7196715B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP2020185960A (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP2020192839A (ja) 車両
JP2020152250A (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP7103290B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP7215328B2 (ja) ハイブリッド車両
JP2020175711A (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP2020165377A (ja) ハイブリッド車両およびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R151 Written notification of patent or utility model registration

Ref document number: 7143811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151