JP2020152250A - ハイブリッド車両およびハイブリッド車両の制御方法 - Google Patents

ハイブリッド車両およびハイブリッド車両の制御方法 Download PDF

Info

Publication number
JP2020152250A
JP2020152250A JP2019053049A JP2019053049A JP2020152250A JP 2020152250 A JP2020152250 A JP 2020152250A JP 2019053049 A JP2019053049 A JP 2019053049A JP 2019053049 A JP2019053049 A JP 2019053049A JP 2020152250 A JP2020152250 A JP 2020152250A
Authority
JP
Japan
Prior art keywords
engine
torque
power
ecu
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019053049A
Other languages
English (en)
Other versions
JP7163838B2 (ja
Inventor
幸一 米澤
Koichi Yonezawa
幸一 米澤
聡 吉嵜
Satoshi Yoshizaki
聡 吉嵜
治 前田
Osamu Maeda
治 前田
大吾 安藤
Daigo Ando
大吾 安藤
良和 浅見
Yoshikazu Asami
良和 浅見
憲治 板垣
Kenji Itagaki
憲治 板垣
俊介 尾山
Shunsuke Oyama
俊介 尾山
浩一郎 牟田
Koichiro Muta
浩一郎 牟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019053049A priority Critical patent/JP7163838B2/ja
Priority to US16/809,672 priority patent/US20200298854A1/en
Priority to CN202010194986.6A priority patent/CN111720221B/zh
Publication of JP2020152250A publication Critical patent/JP2020152250A/ja
Application granted granted Critical
Publication of JP7163838B2 publication Critical patent/JP7163838B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0633Turbocharger state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/43Engines
    • B60Y2400/435Supercharger or turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】過給機の過給状態に応じてエンジントルクを精度高く推定する。【解決手段】HV−ECUは、時定数の前回値を用いて推定エンジントルクを算出するステップ(S100)と、過給域であると判定される場合(S202にてYES)、過給域に対応する第1の値を時定数として設定するステップ(S204)と、過給域でないと判定される場合(S202にてNO)、非過給域に対応する第2の値を時定数として設定するステップ(S206)と、フィードフォワード項Tgffを算出するステップ(S208)と、フィードバック項Tgfbを算出するステップ(S210)と、第1MGのトルク指令値を算出するステップ(S212)と、第1MGトルク指令を出力するステップ(S214)とを含む、処理を実行する。【選択図】図8

Description

本開示は、過給機を備えたエンジンと電動機とを駆動源として搭載したハイブリッド車両の制御に関する。
従来より、発電機とエンジンとを搭載し、エンジンの動力を用いて発電機を動作させて車両に搭載される蓄電装置を充電したり、エンジンの動力によって車両を走行させたりするハイブリッド車両が公知である。このようなハイブリッド車両に搭載されるエンジンとしては、ターボチャージャ等の過給機を備えたものがある。
たとえば、特開2015−58924号公報(特許文献1)には、過給機を備えたエンジンと電動機と発電機とを搭載したハイブリッド車両が開示される。
特開2015−58924号公報
上述したハイブリッド車両において、エンジンの回転速度を発電機において発生するトルクによって制御する場合に、エンジントルクを推定することが求められる場合がある。このような場合には、たとえば、エンジンに対する出力指令に対して一次遅れなどの応答遅れを考慮することによってエンジントルクが推定される。しかしながら、過給機を有するエンジンにおいては、過給機により過給される過給域と、非過給域とでエンジントルクの応答性が異なるため、両方の領域で同様に応答遅れを考慮するとエンジントルクを精度高く推定できない場合がある。
本開示は、上述した課題を解決するためになされたものであって、その目的は、過給機の過給状態に応じてエンジントルクを精度高く推定するハイブリッド車両およびハイブリッド車両の制御方法を提供することである。
本開示のある局面に係るハイブリッド車両は、過給機を有するエンジンと、エンジンの動力を用いて発電可能なモータジェネレータと、エンジンから出力される動力をモータジェネレータに伝達される動力と駆動輪に伝達される動力とに分割する動力分割装置と、エンジンの出力指令に対する応答性を考慮して推定されたエンジントルクを用いて、エンジンの回転速度を目標値にするためのモータジェネレータのトルク制御を実行する制御装置とを備える。制御装置は、応答性を決定する時定数を過給機による過給域と非過給域とで変更する。
このようにすると、過給域と非過給域とで応答性を決定する時定数が変更されるため、過給機の過給状態に応じて適切な時定数を設定することができる。そのため、過給域と非過給域との各々においてエンジントルクを精度高く推定することができる。これにより、モータジェネレータのトルク制御の精度を向上させることができる。
ある実施の形態において、制御装置は、過給域である場合の値が非過給域である場合の値よりも大きくなるように時定数を変更する。
このようにすると、過給域と非過給域との各々において適切な時定数を設定することができる。そのため、過給域と非過給域との各々においてエンジントルクを精度高く推定することができる。
さらにある実施の形態において、ハイブリッド車両は、大気圧を検出する検出装置をさらに備える。制御装置は、エンジントルクがしきい値を超えると過給域であると判定する。制御装置は、エンジントルクがしきい値よりも低いと非過給域であると判定する。制御装置は、大気圧が低い場合の値が大気圧が高い場合の値よりも小さくなるようにしきい値を設定する。
このようにすると、大気圧の変化によってエンジントルクの応答性が変化する場合においても過給機の過給状態に応じて時定数の変更を行うことができるため、過給域と非過給域との各々においてエンジントルクを精度高く推定することができる。
本開示の他の局面に係るハイブリッド車両の制御方法は、過給機を有するエンジンと、エンジンの動力を用いて発電可能なモータジェネレータと、エンジンから出力される動力をモータジェネレータに伝達される動力と駆動輪に伝達される動力とに分割する動力分割装置とを備えるハイブリッド車両の制御方法である。この制御方法は、エンジンの出力指令に対する応答性を考慮して推定されたエンジントルクを用いて、エンジンの回転速度を目標値にするためのモータジェネレータのトルク制御を実行するステップと、応答性を決定する時定数を過給機による過給域と非過給域とで変更するステップとを含む。
本開示によると、過給機の過給状態に応じてエンジントルクを精度高く推定するハイブリッド車両およびハイブリッド車両の制御方法を提供することができる。
ハイブリッド車両の駆動システムの構成の一例を示す図である。 ターボチャージャを有するエンジンの構成の一例を示す図である。 制御部の構成の一例を示すブロック図である。 ハイブリッド車両の協調制御の処理の一例を示すフローチャートである。 予め定められた動作線上における動作点の設定を説明するための図である。 第1MGのトルク指令値の設定方法を説明するためのブロック線図である。 推定エンジントルクの算出方法について説明するための図である。 HV−ECUで実行される第1MGトルク指令の出力処理の一例を示すフローチャートである。 HV−ECUの動作の一例を説明するための図である。 変形例におけるHV−ECUで実行される第1MGトルク指令の出力処理の一例を示すフローチャートである。 変形例におけるHV−ECUの動作の一例を説明するための図である。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<ハイブリッド車両の駆動システムについて>
図1は、ハイブリッド車両(以下、単に車両と記載する)10の駆動システムの構成の一例を示す図である。図1に示すように車両10は、制御部11と、走行用の動力源となる、エンジン13と、第1モータジェネレータ(以下、第1MGと記載する)14と、第2モータジェネレータ(以下、第2MGと記載する)15とを駆動システムとして備えている。エンジン13は、過給機の一例であるターボチャージャ47を含む。第1MG14および第2MG15は、いずれも駆動電力が供給されることによりトルクを出力するモータとしての機能と、トルクが与えられることにより発電電力を発生する発電機としての機能とを備える。第1MG14および第2MG15としては、交流回転電機が用いられる。交流回転電機は、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機を含む。
第1MG14および第2MG15は、いずれもPCU(Power Control Unit)81を介してバッテリ18に電気的に接続されている。PCU81は、第1MG14と電力を授受する第1インバータ16と、第2MG15と電力を授受する第2インバータ17と、バッテリ18と、第1インバータ16および第2インバータ17との間で電力を授受するコンバータ83とを含む。
コンバータ83は、たとえば、バッテリ18の電力を昇圧して第1インバータ16または第2インバータ17に供給可能に構成される。あるいは、コンバータ83は、第1インバータ16または第2インバータ17から供給される電力を降圧してバッテリ18に供給可能に構成される。
第1インバータ16は、コンバータ83からの直流電力を交流電力に変換して第1MG14に供給可能に構成される。あるいは、第1インバータ16は、第1MG14からの交流電力を直流電力に変換してコンバータ83に供給可能に構成される。
第2インバータ17は、コンバータ83からの直流電力を交流電力に変換して第2MG15に供給可能に構成される。あるいは、第2インバータ17は、第2MG15からの交流電力を直流電力に変換してコンバータ83に供給可能に構成される。
すなわち、PCU81は、第1MG14あるいは第2MG15において発電された電力を用いてバッテリ18を充電したり、バッテリ18の電力を用いて第1MG14あるいは第2MG15を駆動したりする。
バッテリ18は、たとえば、リチウムイオン二次電池あるいはニッケル水素二次電池等を含む。リチウムイオン二次電池は、リチウムを電荷担体とする二次電池であり、電解質が液体の一般的なリチウムイオン二次電池のほか、固体の電解質を用いたいわゆる全固体電池も含み得る。なお、バッテリ18は、少なくとも再充電可能に構成された蓄電装置であればよく、たとえば、二次電池に代えて電気二重層キャパシタ等を用いてもよい。
エンジン13および第1MG14は、遊星歯車機構20に連結されている。遊星歯車機構20は、エンジン13が出力する駆動トルクを第1MG14と出力ギヤ21とに分割して伝達するものであり、本開示の実施形態における動力分割装置の一例である。遊星歯車機構20は、シングルピニオン型の遊星歯車機構を有し、エンジン13の出力軸22と同一の軸線Cnt上に配置されている。
遊星歯車機構20は、サンギヤSと、サンギヤSと同軸に配置されたリングギヤRと、サンギヤSおよびリングギヤRに噛み合うピニオンギヤPと、ピニオンギヤPを自転および公転可能に保持するキャリアCとを有する。出力軸22は、キャリアCに連結されている。第1MG14のロータ軸23は、サンギヤSに連結されている。リングギヤRは、出力ギヤ21に連結されている。出力ギヤ21は、駆動輪24に駆動トルクを伝達するための出力部の一例である。
遊星歯車機構20は、エンジン13が出力する駆動トルクが伝達されるキャリアCが入力要素に、また、出力ギヤ21に駆動トルクを出力するリングギヤRが出力要素に、そしてロータ軸23が連結されるサンギヤSが反力要素になる。つまり、遊星歯車機構20は、エンジン13が出力した動力を第1MG14側と出力ギヤ21側とに分割する。第1MG14は、エンジン回転速度に応じたトルクを出力するように制御される。
カウンタシャフト25は、軸線Cntと平行に配置されている。カウンタシャフト25は、出力ギヤ21に噛み合っているドリブンギヤ26に取り付けられている。また、カウンタシャフト25には、ドライブギヤ27が取り付けられており、このドライブギヤ27が終減速機であるデファレンシャルギヤ28におけるリングギヤ29に噛み合っている。さらに、ドリブンギヤ26には、第2MG15におけるロータ軸30に取り付けられたドライブギヤ31が噛み合っている。したがって、第2MG15が出力した駆動トルクが出力ギヤ21から出力された駆動トルクにドリブンギヤ26の部分で加えられる。このようにして合成された駆動トルクは、デファレンシャルギヤ28から左右に延びたドライブシャフト32,33を介して駆動輪24に伝達される。駆動輪24に駆動トルクが伝達されることにより、車両10に駆動力が発生する。
出力軸22と同軸には、機械式のオイルポンプ(以下、MOP(Mechanical Oil Pomp)と記載する)36が設けられている。MOP36は、たとえば、遊星歯車機構20、第1MG14、第2MG15およびデファレンシャルギヤ28に冷却機能を有する潤滑油を送る。また、車両10は、電動オイルポンプ(以下、EOP(Electric Oil Pomp)と記載する)38をさらに備える。EOP38は、エンジン13の運転が停止する際にバッテリ18から供給される電力を使用して駆動して、MOP36と同じまたは同様に、遊星歯車機構20、第1MG14、第2MG15およびデファレンシャルギヤ28に潤滑油を送る。
<エンジンの構成について>
図2は、ターボチャージャ47を有するエンジン13の構成の一例を示す図である。エンジン13は、たとえば、直列4気筒型の火花点火型の内燃機関である。図2に示すようにエンジン13は、たとえば、4つの気筒40a,40b,40c,40dが一方向に並べられて形成されるエンジン本体40を含む。
気筒40a,40b,40c,40dには、エンジン本体40に形成される吸気ポートの一方端および排気ポートの一方端がそれぞれ接続されている。吸気ポートの一方端は、気筒40a,40b,40c,40dの各々に2つずつ設けられた吸気バルブ43にて開閉され、また排気ポートの一方端は、気筒40a,40b,40c,40dの各々に2つずつ設けられた排気バルブ44にて開閉される。気筒40a,40b,40c,40dの各々の吸気ポートの他方端は、インテークマニホールド46に接続されている。気筒40a,40b,40c,40dの各々の排気ポートの他方端は、エキゾーストマニホールド52に接続されている。
本実施の形態においてエンジン13は、たとえば、直噴エンジンであって、各気筒の頂部に設けられる燃料噴射装置(図示せず)によって燃料が気筒40a,40b,40c,40dの各々の内部に噴射される。気筒40a,40b,40c,40d内における燃料と吸気との混合気は、気筒40a,40b,40c,40dの各々に設けられた点火プラグ45にて着火される。
なお、図2においては、気筒40aに設けられた吸気バルブ43、排気バルブ44および点火プラグ45を示しており、他の気筒40b,40c,40dに設けられた吸気バルブ43、排気バルブ44および点火プラグ45については省略している。
エンジン13には、排気エネルギを利用して吸入空気を過給するターボチャージャ47が設けられている。ターボチャージャ47は、コンプレッサ48と、タービン53とを含む。
インテークマニホールド46には、吸気通路41の一方端が接続されている。吸気通路41の他方端は吸気口に接続されている。吸気通路41の所定の位置には、コンプレッサ48が設けられている。吸気通路41の他方端(吸気口)とコンプレッサ48との間には、吸気通路41内を流れる空気の流量に応じた信号を制御部11に出力するエアフローメータ50が設けられている。コンプレッサ48よりも下流側に設けられた吸気通路41には、コンプレッサ48で加圧された吸気を冷却するためのインタークーラ51が配設されている。インタークーラ51と吸気通路41の一方端との間には、吸気通路41内を流れる吸気の流量を調整できる吸気絞り弁(スロットル弁)49が設けられている。
エキゾーストマニホールド52には、排気通路42の一方端が接続されている。排気通路42の他方端はマフラー(図示せず)に接続されている。排気通路42の所定の位置には、タービン53が設けられている。また、排気通路42には、タービン53より上流の排気をタービン53よりも下流にバイパスするバイパス通路54と、バイパス通路に設けられ、タービン53に導かれる排気の流量を調整可能なウェイストゲートバルブ55とが設けられている。そのため、ウェイストゲートバルブ55の開度を制御することによりタービン53に流入する排気流量、つまり吸入空気の過給圧が調整される。タービン53またはウェイストゲートバルブ55を通る排気は、排気通路42の所定の位置に設けられるスタートアップコンバータ56および後処理装置57により浄化されてから大気に放出される。後処理装置57は、たとえば、三元触媒を含む。
エンジン13には、吸気通路41に排気を流入させるためのEGR(Exhaust Gas Recirculation)装置58が設けられている。EGR装置58は、EGR通路59、EGR弁60、およびEGRクーラ61を備える。EGR通路59は、排気通路42から排気の一部をEGRガスとして取り出して吸気通路41に導く。EGR弁60は、EGR通路59を流れるEGRガスの流量を調整する。EGRクーラ61は、EGR通路59を流れるEGRガスを冷却する。EGR通路59は、スタートアップコンバータ56と後処理装置57との間の排気通路42の部分と、コンプレッサ48とエアフローメータ50との間の吸気通路41の部分との間を接続している。
<制御部の構成について>
図3は、制御部11の構成の一例を示すブロック図である。図3に示すように、制御部11は、HV(Hybrid Vehicle)−ECU(Electronic Control Unit)62と、MG−ECU63と、エンジンECU64とを備える。
HV−ECU62は、エンジン13、第1MG14および第2MG15を協調制御するための制御装置である。MG−ECU63は、PCU81の動作を制御するための制御装置である。エンジンECU64は、エンジン13の動作を制御するための制御装置である。
HV−ECU62、MG−ECU63およびエンジンECU64は、いずれも接続された各種センサや他のECUとの信号の授受をする入出力装置、各種の制御プログラムやマップなどの記憶に供される記憶装置(ROM(Read Only Memory)、RAM(Random Access Memory)などを含む)、制御プログラムを実行する中央処理装置(CPU(Central Processing Unit))、および計時するためのカウンタなどを備えて構成されている。
なお、図3では、HV−ECU62、MG−ECU63およびエンジンECU64を分けた構成を一例として説明しているが、これらを集約した1つのECUによって構成されてもよい。
HV−ECU62には、車速センサ66と、アクセル開度センサ67と、第1MG回転速度センサ68と、第2MG回転速度センサ69と、エンジン回転速度センサ70と、タービン回転速度センサ71と、過給圧センサ72と、バッテリ監視ユニット73と、第1MG温度センサ74と、第2MG温度センサ75と、第1INV温度センサ76と、第2INV温度センサ77と、触媒温度センサ78と、タービン温度センサ79と、大気圧センサ90と、エアフローメータ50とがそれぞれ接続されている。
車速センサ66は、車両10の速度(車速)を検出する。アクセル開度センサ67は、アクセルペダルの踏み込み量(アクセル開度)を検出する。第1MG回転速度センサ68は、第1MG14の回転速度を検出する。第2MG回転速度センサ69は、第2MG15の回転速度を検出する。エンジン回転速度センサ70は、エンジン13の出力軸22の回転速度(エンジン回転速度)を検出する。タービン回転速度センサ71は、ターボチャージャ47のタービン53の回転速度を検出する。過給圧センサ72は、エンジン13の過給圧を検出する。第1MG温度センサ74は、第1MG14の内部温度、たとえば、コイルや磁石に関連する温度を検出する。第2MG温度センサ75は、第2MG15の内部温度、たとえば、コイルや磁石に関連する温度を検出する。第1INV温度センサ76は、第1インバータ16の温度、たとえば、スイッチング素子に関連する温度を検出する。第2INV温度センサ77は、第2インバータ17の温度、たとえば、スイッチング素子に関連する温度を検出する。触媒温度センサ78は、後処理装置57の温度を検出する。タービン温度センサ79は、タービン53の温度を検出する。大気圧センサ90は、大気圧を検出する。上述の各種センサは、検出結果を示す信号をHV−ECU62に出力する。
バッテリ監視ユニット73は、バッテリ18の満充電容量に対する残存充電量の比率である充電率(SOC:State of Charge)を取得し、取得したSOCを示す信号をHV−ECU62に出力する。
バッテリ監視ユニット73は、たとえば、バッテリ18の電流、電圧および温度を検出するセンサを含む。バッテリ監視ユニット73は、検出されたバッテリ18の電流、電圧および温度を用いてSOCを算出することによってSOCを取得する。
なお、SOCの算出方法としては、たとえば、電流値積算(クーロンカウント)による手法、または、開放電圧(OCV:Open Circuit Voltage)の推定による手法など、種々の公知の手法を採用できる。
<車両の走行制御について>
以上のような構成を有する車両10は、エンジン13および第2MG15を動力源としたハイブリッド(HV)走行モードやエンジン13を停止状態にするとともに第2MG15をバッテリ18に蓄積した電力で駆動して走行する電気(EV)走行モードなどの走行モードに設定または切り替えが可能である。各モードの設定や切り替えは、HV−ECU62により実行される。HV−ECU62は、設定または切り替えられた走行モードに基づいてエンジン13、第1MG14および第2MG15を制御する。
EV走行モードは、たとえば、低車速かつ要求駆動力が小さい低負荷の運転領域の際に選択されるモードであり、エンジン13の運転を停止して第2MG15が駆動力を出力する走行モードである。
HV走行モードは、高車速かつ要求駆動力が大きい高負荷の運転領域の際に選択されるモードであり、エンジン13の駆動トルクと第2MG15の駆動トルクとを合算したトルクを出力する走行モードである。
HV走行モードでは、エンジン13から出力された駆動トルクを駆動輪24に伝達する際に、第1MG14により反力を遊星歯車機構20に作用させる。そのため、サンギヤSが反力要素として機能する。つまり、エンジントルクを駆動輪24に作用させるために、エンジントルクに対する反力トルクを第1MG14に出力させるように制御する。この場合には、第1MG14を発電機として機能させる回生制御を実行することができる。
なお、HV−ECU62は、さらに、走行モードを含む運転状態に基づく制御信号C3をEOP38に送信してEOP38の駆動を制御する。また、HV−ECU62は、たとえば、設定された動作点に対応するエンジントルクがしきい値を超える場合に過給圧上昇をエンジンECU64に要求する。本実施の形態において、しきい値は、エンジン回転速度の変化に関係なく一定の値である場合を一例として説明するが、しきい値は、エンジン回転速度に応じて変化するように設定されてもよい。たとえば、エンジン回転速度が高回転速度域においては、低回転速度域よりも値が小さくなるようにしきい値が設定されてもよい。
以下に、車両10の運転時におけるエンジン13、第1MG14および第2MG15の協調制御について図4を参照しつつ説明する。図4は、ハイブリッド車両の協調制御の処理の一例を示すフローチャートである。
ステップ(以下、ステップをSと記載する)100にて、HV−ECU62は、要求システムパワーを算出する。
具体的には、HV−ECU62は、アクセルペダルの踏み込み量によって決まるアクセル開度などに基づいて要求駆動力を算出する。HV−ECU62は、算出された要求駆動力と車速などに基づいて車両10の要求走行パワーを算出する。HV−ECU62は、要求走行パワーにバッテリ18の充放電要求パワーを加算した値を要求システムパワーとして算出する。なお、バッテリ18の充放電要求パワーは、たとえば、バッテリ18のSOCおよび予め定められた制御中心との差に応じて設定される。
S102にて、HV−ECU62は、算出された要求システムパワーに応じてエンジン13の作動要求があるか否かを判定する。HV−ECU62は、たとえば、要求システムパワーがしきい値を超える場合にはエンジン13の作動要求があると判定する。
なお、HV−ECU62は、エンジン13の作動要求がある場合には、HV走行モードを走行モードとして設定する。HV−ECU62は、エンジン13の作動要求がない場合には、EV走行モードを走行モードとして設定する。
エンジン13の作動要求があると判定される場合(S102にてYES)、処理はS104に移される。もしそうでないと(S102にてNO)、処理はS112に移される。
S104にて、HV−ECU62は、エンジン13に対する要求パワー(以下、要求エンジンパワーと記載する)を算出する。HV−ECU62は、たとえば、要求システムパワーを要求エンジンパワーとして算出する。なお、HV−ECU62は、たとえば、要求システムパワーが要求エンジンパワーの上限値を超える場合には、要求エンジンパワーの上限値を要求エンジンパワーとして算出する。
S106にて、HV−ECU62は、算出された要求エンジンパワーをエンジン運転状態指令としてエンジンECU64に出力する。
エンジンECU64は、HV−ECU62から入力されたエンジン運転状態指令に基づく制御信号C2を送信して、吸気絞り弁49、点火プラグ45、ウェイストゲートバルブ55およびEGR弁60など、エンジン13の各部に対して各種の制御を行う。
S108にてHV−ECU62は、算出された要求エンジンパワーを用いてエンジン回転速度とエンジントルクとによって規定される座標系に設定された予め定められた動作線上にエンジン13の動作点を設定する。
具体的には、HV−ECU62は、たとえば、当該座標系において要求エンジンパワーと等出力の等パワー線と、予め定められた動作線との交点をエンジン13の動作点として設定する。
予め定められた動作線は、当該座標系における、エンジン回転速度の変化に対するエンジントルクの変化軌跡を示し、たとえば、燃費効率のよいエンジントルクの変化軌跡が実験等によって適合されて設定される。
図5は、予め定められた動作線上における動作点の設定を説明するための図である。図5の縦軸は、エンジントルクを示す。図5の横軸は、エンジン回転速度を示す。図5のLN1(実線)は、予め定められた動作線を示す。図5のLN2(破線)は、S104にて算出された要求エンジンパワーの等パワー線を示す。
この場合、HV−ECU62は、予め定められた動作線(図5のLN1)と、要求エンジンパワーの等パワー線(図5のLN2)との交点Aを動作点として設定する。すなわち、エンジントルクとエンジン回転速度との座標平面において、エンジン回転速度がNe(0)となり、エンジントルクがTq(0)となる交点Aが動作点として設定される。
S110にて、HV−ECU62は、設定された動作点に対応するエンジン回転速度を目標エンジン回転速度として設定する。図5に示す例においては、動作点として設定された交点Aに対応するエンジン回転速度Ne(0)が目標エンジン回転速度として設定される。
S112にて、HV−ECU62は、第1MGトルク指令を出力する。具体的には、HV−ECU62は、現在のエンジン回転速度を設定された目標エンジン回転速度にするための第1MG14のトルク指令値を設定する。HV−ECU62は、たとえば、現在のエンジン回転速度を維持するための第1MG14の第1トルクと、現在のエンジン回転速度を目標エンジン回転速度に変化させるための第1MG14の第2トルクとの和を第1MG14のトルク指令値として設定する。より具体的にはHV−ECU62は、たとえば、エンジントルクの推定値(以下、推定エンジントルクと記載する)に基づくフィードフォワード制御によって算出される第1トルクと、現在のエンジン回転速度と目標エンジン回転速度との差分に基づくフィードバック制御によって算出される第2トルクとの和を第1MG14のトルク指令値として設定する。HV−ECU62は、設定された第1MG14のトルク指令値を第1MGトルク指令としてMG−ECU63に出力する。なお、第1MG14のトルク指令値の設定方法の詳細については後述する。なお、HV−ECU62は、S102にてエンジン13の作動要求がないと判定される場合(S102にてNO)、エンジン13が停止状態である場合に対応した第1MGトルク指令を出力する。
S114にて、HV−ECU62は、第2MGトルク指令を出力する。具体的には、HV−ECU62は、設定された第1MG14のトルク指令値と遊星歯車機構20の各回転要素のギヤ比とからエンジントルクの駆動輪24への伝達分を算出し、要求駆動力を満足するように第2MG15のトルク指令値を設定する。HV−ECU62は、設定された第2MG15のトルク指令値を第2MGトルク指令としてMG−ECU63に出力する。
MG−ECU63は、HV−ECU62から入力された第1MGトルク指令および第2MGトルク指令に基づき、第1MG14および第2MG15に発生させるトルクに対応した電流値およびその周波数を算出し、算出した電流値およびその周波数を含む制御信号C1をPCU81に出力する。このようにして、第1MG14のトルク制御と、第2MG15のトルク制御とが実行される。
<第1MG14のトルク指令値の設定について>
図6は、第1MG14のトルク指令値の設定方法を説明するためのブロック線図である。HV−ECU62は、図6に示すように、第1MG14のトルク制御におけるフィードフォワード項Tgff(上述の第1トルクに相当)とフィードバック項Tgfb(上述の第2トルクに相当)との和を第1MG14のトルク指令値として設定する。
HV−ECU62は、たとえば、推定エンジントルクを算出し、算出された推定エンジントルクを第1MG14の出力軸に作用するトルクに換算し、換算されたトルクを相殺するトルクをフィードフォワード項Tgffとして算出する。
HV−ECU62は、たとえば、要求エンジンパワーと、S110にて設定された目標エンジン回転速度と、エンジントルクの応答遅れを考慮して推定エンジントルクを算出する。推定エンジントルクの算出方法については後述する。
さらに、HV−ECU62は、たとえば、第1MG14の目標回転速度と、第1MG14の回転速度との偏差を算出し、算出された偏差を用いて(たとえば、PI制御により)フィードバック項Tgfbを算出する。
なお、HV−ECU62は、第2MG15の回転速度や車速と、目標エンジン回転速度(キャリアCの回転速度)と、遊星歯車機構20の各回転要素間のギヤ比とから第1MG14の目標回転速度を算出する。
<推定エンジントルクの算出について>
HV−ECU62は、要求エンジンパワーを目標エンジン回転速度で除算して算出されるエンジントルクに対して、一定の無駄時間と1次遅れの時定数とよって表現される応答遅れを考慮することによって推定エンジントルクを算出する。
図7は、推定エンジントルクの算出方法について説明するための図である。図7の縦軸は、エンジンパワーとエンジントルクとを示す。図7の横軸は、時間を示す。図7のLN1(実線)は、要求エンジンパワーの変化を示す。図7のLN2(実線)は、応答遅れを考慮しない場合のエンジントルクの変化を示す。図7のLN3(破線)は、応答遅れを考慮する場合の推定エンジントルクの変化を示す。
図7のLN1に示すように、たとえば、要求エンジンパワーが一定の状態である場合を想定する。また、エンジン回転速度も一定の状態であるものとするとエンジントルクも一定の状態になる。
時間t(0)にて、要求エンジンパワーが所定量だけステップ的に増加してPe(0)になるとすると、応答遅れを考慮しない場合には、エンジントルクは、図7のLN2に示すように、時間t(0)にて、要求エンジンパワーPe(0)をエンジン回転速度で除算した値Te(0)になる。
しかしながら、実際のエンジントルクの変化は、要求エンジンパワーの上昇に対して遅れて上昇する変化になる。そのため、HV−ECU62は、図7のLN3に示すように、要求エンジンパワーの変化に対して一定の無駄時間と1次遅れの時定数とによって表現される応答遅れを考慮して推定エンジントルクを算出する。
図7に示す例においては、HV−ECU62は、要求エンジンパワーの上昇が開始する時間t(0)から一定の無駄時間が経過した時間t(1)からエンジントルクの上昇が開始するものとし、設定された時定数で変化するものとして現在の時点における推定エンジントルクを算出する。このようにエンジントルクの応答遅れを考慮することによってエンジントルクを精度高く推定することができる。
以上のように構成されるターボチャージャ47を有する車両10においては、第1MG14のトルク制御を実行する場合に、上述のフィードフォワード項Tgffを算出するために推定エンジントルクを算出することが求められる。このような場合には、上述したようにエンジントルクの応答遅れを考慮することによってエンジントルクを精度推定することができる。
しかしながら、ターボチャージャ47を有するエンジン13においては、ターボチャージャ47により過給される過給域と非過給域とでエンジントルクの応答性が異なるため、両方の領域で同様に応答遅れを考慮するとエンジントルクを精度高く推定できない場合がある。
そこで、本実施の形態においては、HV−ECU62は、出力指令である要求エンジンパワーに対する応答性を決定する時定数をターボチャージャ47による過給域と非過給域とで変更するものとする。より具体的には、HV−ECU62は、過給域である場合の値が非過給域である場合の値よりも大きくなるように時定数を変更する。
このようにすると、過給域と非過給域との各々において適切な時定数を設定することができる。そのため、過給域と非過給域との各々においてエンジントルクを精度高く推定することができる。
<HV−ECU62で実行される処理について>
以下、図8を参照して、HV−ECU62で実行される第1MGトルク指令の出力処理について説明する。図8は、HV−ECU62で実行される第1MGトルク指令の出力処理の一例を示すフローチャートである。
S200にて、HV−ECU62は、前回の計算で設定された時定数(以下、時定数の前回値と記載する)を用いて推定エンジントルクを算出する。算出方法については、上述したとおりであるため、その詳細な説明は繰り返さない。
S202にて、HV−ECU62は、過給域であるか否かを判定する。HV−ECU62は、たとえば、算出された推定エンジントルクがしきい値よりも大きい場合には、過給域であると判定してもよい。しきい値は、過給域であるか、非過給域(自然吸気域)であるかを判定するための値であって、たとえば、実験等によって適合される。しきい値は、予め定められた値であってもよいし、たとえば、エンジン回転速度に応じて設定される値であってもよい。しきい値は、たとえば、エンジン回転速度が高い場合の値がエンジン回転速度が低い場合の値よりも小さくなるように設定されてもよい。過給域であると判定される場合(S202にてYES)、処理はS204に移される。
S204にて、HV−ECU62は、過給域に対応する第1の値を時定数として設定する。なお、過給域に対応する時定数を示す第1の値は、たとえば、実験等によって適合される予め定められた値である。一方、過給域でない(すなわち、非過給域である)と判定される場合(S202にてNO)、処理はS206に移される。
S206にて、HV−ECU62は、非過給に対応する第2の値を時定数として設定する。なお、非過給域に対応する時定数を示す第2の値は、たとえば、実験等によって適合される予め定められた値であって、第1の値よりも小さい値である。
S208にて、HV−ECU62は、フィードフォワード項Tgffを算出する。すなわち、HV−ECU62は、設定された時定数を用いて推定エンジントルクを算出し、算出された推定エンジントルクを第1MG14の回転軸に作用するトルクに換算し、換算されたトルクと相殺する第1トルクをフィードフォワード項Tgffとして算出する。なお、設定された時定数が時定数の前回値と同じ値である場合には、S200にて算出された推定エンジントルクを用いてフィードフォワード項Tgffを算出してもよい。
S210にて、HV−ECU62は、フィードバック項Tgfbを算出する。なお、フィードバック項Tgfbの算出方法については上述したとおりであるため、その詳細な説明は繰り返さない。
S212にて、HV−ECU62は、第1MG14のトルク指令値を算出する。HV−ECU62は、フィードフォワード項Tgffとフィードバック項Tgfbとの和を第1MG14のトルク指令値として算出する。
S214にて、HV−ECU62は、算出された第1MG14のトルク指令値を第1MGトルク指令としてMG−ECU63に出力する。
<HV−ECU62の動作の一例について>
以上のような構造およびフローチャートに基づく本実施の形態に係るHV−ECU62の動作について図9を参照しつつ説明する。図9は、HV−ECU62の動作の一例を説明するための図である。図9の縦軸は、エンジントルクを示す。図9の横軸は、時間を示す。図9のLN4は、推定エンジントルクの変化を示す。なお、要求エンジンパワーは、説明の便宜上、図7のLN1に示す要求エンジンパワーの変化と同様に、時間t(0)の時点で所定量だけステップ的に増加し、Pe(0)となり、その後、一定の状態が継続する場合を想定する。
要求システムパワーが算出され(S100)、算出された要求システムパワーがしきい値を超えることによってエンジン13の作動要求があると判定される場合に(S102にてYES)、要求エンジンパワーが算出されるとともに(S104)、算出された要求エンジンパワーがエンジン運転状態指令としてエンジンECU64に出力される(S106)。そして、予め定められた動作点と要求エンジンパワーの等パワー線との交点が予め定められた動作線上の動作点として設定され(S108)、設定された動作点に対応するエンジン回転速度が目標エンジン回転速度として設定される(S110)。
要求システムパワーと目標エンジン回転速度と時定数の前回値とを用いて推定エンジントルクが算出され(S200)、算出された推定エンジントルクがしきい値Te(1)以下である場合には、非過給域であると判定され(S202にてNO)、非過給域に対応する第2の値が時定数として設定される(S206)。
たとえば、時間t(0)にて所定量だけ要求エンジンパワーが増加した場合には、図9のLN4に示すように、時間t(0)から無駄時間が経過した後の時間t(1)に上昇が開始するように推定エンジントルクが算出される。推定エンジントルクがしきい値Te(1)を超える時間t(2)までの間においては、推定エンジントルクは、第2の値を時定数とした1次遅れの変化態様で上昇する。
時間t(2)にて、推定エンジントルクがしきい値Te(1)を超える場合には、過給域であると判定され(S202にてYES)、過給域に対応する第1の値が時定数として設定される(S204)。
そのため、時間t(2)以降において、要求エンジンパワーがPe(0)の状態が継続する場合には、図9のLN4に示すように、推定エンジントルクは、第1の値を時定数とした1次遅れの変化態様で上昇する。
なお、推定エンジントルクが算出されると、算出された推定エンジントルクを用いてフィードフォワード項Tgffが算出されるとともに(S208)、第1MG14の目標回転速度と第1MG回転速度との差分を用いてフィードバック項Tgfbが算出される(S210)。
算出されたフィードフォワード項Tgffとフィードバック項Tgfbとの和が第1MG14のトルク指令値として算出され(S212)、MG−ECU63に対して第1MGトルク指令が出力されるとともに(S112,S214)、第2MGトルク指令が出力される(S114)。
<作用効果について>
以上のようにして、本実施の形態に係るハイブリッド車両によると、過給域である場合の時定数が非過給域である場合の時定数よりも大きくなるように設定されるため、過給域と非過給域との各々において適切な時定数を設定することができる。そのため、過給域と非過給域との各々においてエンジントルクを精度高く推定することができる。これにより、第1MG14のトルク制御の精度を向上させることができる。したがって、過給機の過給状態に応じてエンジントルクを精度高く推定するハイブリッド車両およびハイブリッド車両の制御方法を提供することができる。
<変形例について>
以下、変形例について記載する。
上述の実施の形態では、吸気絞り弁49は、インタークーラ51とインテークマニホールド46との間に設けられるものとして説明したが、たとえば、コンプレッサ48とエアフローメータ50との間の吸気通路41に設けられてもよい。
さらに上述の実施の形態では、ターボチャージャを過給機の一例として説明したが、特にターボチャージャに限定されるものではなく、たとえば、スーパーチャージャ等であってもよい。
さらに上述の実施の形態では、ウェイストゲートバルブ55の開度を調整することによって過給圧を調整するものとして説明したが、たとえば、コンプレッサ48とタービン53とを連結するシャフトにモータジェネレータが設けられ、モータジェネレータによってタービン回転速度を制御することによって過給圧を調整してもよいし、あるいは、タービン53のタービンブレードの外周に配置される複数のベーンにおける隣接するベーン間の隙間(ベーン開度)を調整することによって過給圧を調整してもよい。
さらに上述の実施の形態では、エンジン回転速度を維持する場合(すなわち、現在のエンジン回転速度を目標値とする場合)の第1MG14のトルクをフィードフォワード項Tgffとして算出するものとして説明したが、目標値は、現在のエンジン回転速度に限定されるものではなく、現在のエンジン回転速度と目標エンジン回転速度との間のいずれかの値を目標値としてもよい。
さらに上述の実施の形態では、時定数の前回値を用いて算出された推定エンジントルクがしきい値よりも大きいか否かによって過給域であるか非過給域であるかを判定するものとして説明したが、過給圧センサ72によって検出される過給圧がしきい値よりも大きいときに過給域であると判定し、検出される過給圧がしきい値以下であるときに非過給域であると判定してもよい。
さらに上述の実施の形態では、推定エンジントルクがしきい値よりも大きいか否かによって過給域であるか非過給域であるかを判定するものとして説明したが、たとえば、高地で走行する場合など、大気圧によって過給状態と発生するエンジントルクとの関係が変化する場合があるため、大気圧に応じてしきい値を設定してもよい。
以下、図10を用いてこの変形例においてHV−ECU62で実行される処理について説明する。図10は、変形例におけるHV−ECU62で実行される第1MGトルク指令の出力処理の一例を示すフローチャートである。
なお、図10のフローチャートの処理は、図8のフローチャートと比較して、S200の処理の後であって、かつ、S202の処理の前にS300の処理が実行される点が異なる。それ以外の処理については、図8のフローチャートに記載の処理と同様である。そのため、その詳細な説明は繰り返さない。
S300にて、HV−ECU62は、大気圧センサ90によって検出される大気圧を用いてしきい値を設定する。HV−ECU62は、たとえば、大気圧センサ90によって検出される大気圧と所定のマップとを用いてしきい値を設定してもよい。所定のマップは、大気圧としきい値との関係を示すマップであって、実験等によって大気圧を変化させたときの過給域と非過給域との境界値をしきい値として設定する。所定のマップは、たとえば、大気圧が低い場合の値が大気圧が高い場合の値よりも小さくなるようにしきい値が設定されるように作成される。
以下、図11を用いてこの変形例におけるHV−ECU62の動作について説明する。図11は、変形例におけるHV−ECU62の動作の一例を説明するための図である。図11の縦軸は、エンジントルクを示す。図11の横軸は、時間を示す。図11のLN5は、推定エンジントルクの変化を示す。なお、要求エンジンパワーは、説明の便宜上、図7のLN1に示す要求エンジンパワーの変化と同様に、時間t(0)の時点で所定量だけステップ的に増加し、Pe(0)となり、その後、一定の状態が継続する場合を想定する。また、図11に示す例においては、図9で示す例と比較して、車両10が高地(大気圧が低い状況下)で走行している場合を想定する。
要求システムパワーに応じて目標エンジン回転速度が設定されると(S110)、要求システムパワーと目標エンジン回転速度と時定数の前回値とを用いて推定エンジントルクが算出される(S200)。さらに大気圧センサ90によって検出される大気圧を用いてしきい値Te(2)(<Te(1))が設定される(S300)。
算出された推定エンジントルクがしきい値Te(2)以下である場合には、非過給域であると判定され(S202にてNO)、非過給域に対応する第2の値が時定数として設定される(S206)。
たとえば、時間t(0)にて所定量だけ要求エンジンパワーが増加した場合には、図11のLN5に示すように、時間t(0)から無駄時間が経過した後の時間t(1)に上昇が開始するように推定エンジントルクが算出される。推定エンジントルクがしきい値Te(2)を超える時間t(3)までの間においては、推定エンジントルクは、第2の値を時定数とした1次遅れの変化態様で上昇する。
時間t(3)にて、推定エンジントルクがしきい値Te(2)を超える場合には、過給域であると判定され(S202にてYES)、過給域に対応する第1の値が時定数として設定される(S204)。
そのため、時間t(3)以降において、要求エンジンパワーがPe(0)の状態が継続する場合には、図11のLN5に示すように、推定エンジントルクは、第1の値を時定数とした1次遅れの変化態様で上昇する。
なお、推定エンジントルクが算出されると、算出された推定エンジントルクを用いてフィードフォワード項Tgffが算出されるとともに(S208)、第1MG14の目標回転速度と第1MG回転速度との差分を用いてフィードバック項Tgfbが算出される(S210)。
算出されたフィードフォワード項Tgffとフィードバック項Tgfbとの和が第1MG14のトルク指令値として算出され(S212)、MG−ECU63に対して第1MGトルク指令が出力される(S214)。
このようにすると、大気圧の変化によってエンジントルクの応答性が変化する場合においてもターボチャージャ47の過給状態に応じて時定数の変更を行うことができる。そのため、過給域と非過給域との各々においてエンジントルクを精度高く推定することができる。なお、過給域であるか否かを判定するためのしきい値は上述したような大気圧の変化に応じて設定されるものに限定されるものではなく、たとえば、EGR弁の開度や吸気バルブや排気バルブの開閉タイミングやリフト量などの動作状態に応じて設定されてもよい。
なお、上記した変形例は、その全部または一部を適宜組み合わせて実施してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 車両、11 制御部、13 エンジン、14 第1MG、15 第2MG、16 第1インバータ、17 第2インバータ、18 バッテリ、20 遊星歯車機構、21 出力ギヤ、22 出力軸、23,30 ロータ軸、24 駆動輪、25 カウンタシャフト、26 ドリブンギヤ、27,31 ドライブギヤ、28 デファレンシャルギヤ、29 リングギヤ、32,33 ドライブシャフト、36 MOP、38 EOP、40 エンジン本体、40a,40b,40c,40d 気筒、41 吸気通路、42 排気通路、43 吸気バルブ、44 排気バルブ、45 点火プラグ、46 インテークマニホールド、47 ターボチャージャ、48 コンプレッサ、49 吸気絞り弁、50 エアフローメータ、51 インタークーラ、52 エキゾーストマニホールド、53 タービン、54 バイパス通路、55 ウェイストゲートバルブ、56 スタートアップコンバータ、57 後処理装置、58 EGR装置、59 EGR通路、60 EGR弁、61 EGRクーラ、62 HV−ECU、63 MG−ECU、64 エンジンECU、66 車速センサ、67 アクセル開度センサ、68 第1MG回転速度センサ、69 第2MG回転速度センサ、70 エンジン回転速度センサ、71 タービン回転速度センサ、72 過給圧センサ、73 バッテリ監視ユニット、74 第1MG温度センサ、75 第2MG温度センサ、76 第1INV温度センサ、77 第2INV温度センサ、78 触媒温度センサ、79 タービン温度センサ、81 PCU、83 コンバータ、90 大気圧センサ。

Claims (4)

  1. 過給機を有するエンジンと、
    前記エンジンの動力を用いて発電可能なモータジェネレータと、
    前記エンジンから出力される動力を前記モータジェネレータに伝達される動力と駆動輪に伝達される動力とに分割する動力分割装置と、
    前記エンジンの出力指令に対する応答性を考慮して推定されたエンジントルクを用いて、前記エンジンの回転速度を目標値にするための前記モータジェネレータのトルク制御を実行する制御装置とを備え、
    前記制御装置は、前記応答性を決定する時定数を前記過給機による過給域と非過給域とで変更する、ハイブリッド車両。
  2. 前記制御装置は、前記過給域である場合の値が前記非過給域である場合の値よりも大きくなるように前記時定数を変更する、請求項1に記載のハイブリッド車両。
  3. 前記ハイブリッド車両は、大気圧を検出する検出装置をさらに備え、
    前記制御装置は、
    前記エンジントルクがしきい値を超えると前記過給域であると判定し、
    前記エンジントルクが前記しきい値よりも低いと前記非過給域であると判定し、
    前記大気圧が低い場合の値が前記大気圧が高い場合の値よりも小さくなるように前記しきい値を設定する、請求項1または2に記載のハイブリッド車両。
  4. 過給機を有するエンジンと、前記エンジンの動力を用いて発電可能なモータジェネレータと、前記エンジンから出力される動力を前記モータジェネレータに伝達される動力と駆動輪に伝達される動力とに分割する動力分割装置とを備えるハイブリッド車両の制御方法であって、
    前記エンジンの出力指令に対する応答性を考慮して推定されたエンジントルクを用いて、前記エンジンの回転速度を目標値にするための前記モータジェネレータのトルク制御を実行するステップと、
    前記応答性を決定する時定数を前記過給機による過給域と非過給域とで変更するステップとを含む、ハイブリッド車両の制御方法。
JP2019053049A 2019-03-20 2019-03-20 ハイブリッド車両およびハイブリッド車両の制御方法 Active JP7163838B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019053049A JP7163838B2 (ja) 2019-03-20 2019-03-20 ハイブリッド車両およびハイブリッド車両の制御方法
US16/809,672 US20200298854A1 (en) 2019-03-20 2020-03-05 Hybrid vehicle and method for controlling hybrid vehicle
CN202010194986.6A CN111720221B (zh) 2019-03-20 2020-03-19 混合动力车辆和控制混合动力车辆的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019053049A JP7163838B2 (ja) 2019-03-20 2019-03-20 ハイブリッド車両およびハイブリッド車両の制御方法

Publications (2)

Publication Number Publication Date
JP2020152250A true JP2020152250A (ja) 2020-09-24
JP7163838B2 JP7163838B2 (ja) 2022-11-01

Family

ID=72515421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019053049A Active JP7163838B2 (ja) 2019-03-20 2019-03-20 ハイブリッド車両およびハイブリッド車両の制御方法

Country Status (3)

Country Link
US (1) US20200298854A1 (ja)
JP (1) JP7163838B2 (ja)
CN (1) CN111720221B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113733932B (zh) * 2021-09-26 2023-04-28 一汽解放青岛汽车有限公司 混合动力模式切换扭矩控制方法、混合动力系统及汽车

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137350A (ja) * 2007-12-04 2009-06-25 Toyota Motor Corp 車両の動力出力装置およびその制御方法
WO2013098943A1 (ja) * 2011-12-27 2013-07-04 トヨタ自動車株式会社 ハイブリッド自動車

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2594445B1 (en) * 2011-11-16 2017-03-08 Aisin Ai Co., Ltd. Gear shift control device for hybrid vehicle drive system
US9020670B2 (en) * 2011-12-21 2015-04-28 Ford Global Technologies, Llc Hybrid electric vehicle and method for smooth engine operation with fixed throttle position
WO2013128649A1 (ja) * 2012-03-02 2013-09-06 トヨタ自動車株式会社 車両用駆動装置の制御装置
AU2014241859B2 (en) * 2013-03-14 2016-04-21 Allison Transmission, Inc. System and method for compensation of turbo lag in hybrid vehicles
US9126591B2 (en) * 2013-10-18 2015-09-08 Ford Global Technologies, Llc Hybrid vehicle powertrain management system and method
US9340199B1 (en) * 2014-12-10 2016-05-17 Ford Global Technologies, Llc Method of braking in hybrid vehicle
US9796372B2 (en) * 2015-10-28 2017-10-24 GM Global Technology Operations LLC Powertrain and control method with selective pursuit of optimal torque targets
JP6380446B2 (ja) * 2016-03-30 2018-08-29 トヨタ自動車株式会社 車両の制御装置
US10378470B2 (en) * 2017-06-12 2019-08-13 Ford Global Technologies, Llc Method and system for diagnosing boost pressure control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137350A (ja) * 2007-12-04 2009-06-25 Toyota Motor Corp 車両の動力出力装置およびその制御方法
WO2013098943A1 (ja) * 2011-12-27 2013-07-04 トヨタ自動車株式会社 ハイブリッド自動車

Also Published As

Publication number Publication date
CN111720221A (zh) 2020-09-29
CN111720221B (zh) 2022-09-02
US20200298854A1 (en) 2020-09-24
JP7163838B2 (ja) 2022-11-01

Similar Documents

Publication Publication Date Title
JP7183924B2 (ja) ハイブリッド車両
US11371451B2 (en) Indicator control system and vehicle
CN111794853B (zh) 混合动力车辆
US11577596B2 (en) Hybrid vehicle and method of engine control of hybrid vehicle
JP7163838B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP7088088B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
CN111942359B (zh) 混合动力车辆
JP7196715B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP7180482B2 (ja) ハイブリッド車両
JP7103290B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP2020185960A (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP2020192839A (ja) 車両
JP7192634B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP7207059B2 (ja) ハイブリッド車両
JP7215328B2 (ja) ハイブリッド車両
JP2020183717A (ja) 車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R151 Written notification of patent or utility model registration

Ref document number: 7163838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151