JP7136348B2 - 光パルス試験方法及び光パルス試験装置 - Google Patents

光パルス試験方法及び光パルス試験装置 Download PDF

Info

Publication number
JP7136348B2
JP7136348B2 JP2021525446A JP2021525446A JP7136348B2 JP 7136348 B2 JP7136348 B2 JP 7136348B2 JP 2021525446 A JP2021525446 A JP 2021525446A JP 2021525446 A JP2021525446 A JP 2021525446A JP 7136348 B2 JP7136348 B2 JP 7136348B2
Authority
JP
Japan
Prior art keywords
mode
optical fiber
test
connection point
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021525446A
Other languages
English (en)
Other versions
JPWO2020250310A1 (ja
Inventor
篤志 中村
圭司 岡本
博之 押田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2020250310A1 publication Critical patent/JPWO2020250310A1/ja
Application granted granted Critical
Publication of JP7136348B2 publication Critical patent/JP7136348B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3145Details of the optoelectronics or data analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3154Details of the opto-mechanical connection, e.g. connector or repeater

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

本開示は、数モード光ファイバの試験方法およびその試験装置に関する。
動画やゲームに代表される大容量コンテンツの増加やスマートフォンの普及に伴い、光ファイバネットワークにおけるトラフィック量は年々増加している。一方で、現在伝送媒体として用いられているシングルモードファイバには、伝送容量の限界が近づいている。将来的なトラフィック増大に対応するための一つの技術として、数モードファイバを用いたモード多重伝送が注目されている。
光ファイバの試験方法としては、光時間領域反射測定法(Optical Time Domain Reflectometry、以下OTDRと称する)が著名である。OTDRは、パルス化された試験光を被試験光ファイバ(Fiber Under Test、以下FUTと称する)に入射し、光ファイバ内を伝搬する試験光パルスに由来するレイリー散乱光の後方散乱光やフレネル反射光の強度とラウンドトリップ時間に基づき分布データ(OTDR波形)を取得する方法および装置である。この技術は、光ファイバの光学特性を試験するために用いることができる。非特許文献1および非特許文献2では、モード合分波器を用いたOTDRを用いて、数モードファイバの特性を試験する方法が開示されている。
A. Nakamura et.al.,"High-sensitivity detection of fiber bends: 1-μm-band mode-detection OTDR," J.Lightw.Technol.,vol.33,no.23,pp.4862-4869,2015. A.Nakamura et.al.,"Effective mode field diameter for LP11 mode and its measurement technique," IEEE Photon. Technol. Lett., vol. 28, no. 22, pp. 2553-2556, 2016. M.Yoshida et.al.,"Mode coupling measurement at a splice point between few-mode fibers using a synchronous multi-channel OTDR," OFC2016,Th1J.4, 2016. A.Nakamura et.al.,"A method for estimating loss and crosstalk at a splice point in two-mode fibers from OTDR waveforms," EXAT2019,P-01,2019.
しかし、非特許文献1および非特許文献2に記載の試験方法では、FUTにモード間クロストークが発生する軸ずれ接続点が存在する場合、そのクロストーク値が当該接続点より遠端(試験光パルスの入射端と反対側)の損失測定結果に影響を及ぼし、遠端の損失測定精度が劣化するという問題があった。
本発明は、上記事情を鑑みてなされたものであり、モード間クロストークが発生する軸ずれ接続点より遠端に存在する損失を、当該地点のクロストーク値に依存することなく測定可能な光パルス試験方法および光パルス試験装置を提供することを目的とする。
上記目的を達成するために、本発明に係る光パルス試験方法および光パルス試験装置は、近端の接続点におけるモード結合を表す行列(損失およびクロストーク)を算出し、算出したモード結合を表す行列を用いた数値処理によりクロストークの影響を除去したOTDR波形を得ることとした。
具体的には、本発明に係る光パルス試験方法は、
接続点を有する被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを基本モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第1測定手順と、
前記被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを第一高次モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第2測定手順と、
前記第1測定手順で測定した後方散乱光強度および前記第2測定手順で測定した後方散乱光強度の一方または双方から前記被試験光ファイバの前記接続点における基本モード群同士の結合効率、基本モードと第一高次モード群間の結合効率、及び第一高次モード群同士の結合効率を算出し、前記結合効率を要素とする、前記被試験光ファイバの前記接続点におけるモード結合行列を取得する行列算出手順と、
前記行列算出手順で取得した前記モード結合行列を用いて前記第1測定手順および前記第2測定手順で測定した後方散乱光強度を補正する後方散乱光強度補正手順と、
前記後方散乱光強度補正手順で取得した補正後の後方散乱光強度から、前記被試験光ファイバの前記接続点より他端側の損失を算出する損失算出手順と、
を行うことを特徴とする。
また、本発明に係る光パルス試験装置は、
接続点を有する被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを基本モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第1測定手段と、
前記被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを第一高次モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第2測定手段と、
前記第1測定手段が測定した後方散乱光強度および前記第2測定手段が測定した後方散乱光強度の一方または双方から前記被試験光ファイバの前記接続点における基本モード群同士の結合効率、基本モードと第一高次モード群間の結合効率、及び第一高次モード群同士の結合効率を算出し、前記結合効率を要素とする、前記被試験光ファイバの前記接続点におけるモード結合行列を取得する行列算出手段と、
前記行列算出手段が取得した前記モード結合行列を用いて前記第1測定手段および前記第2測定手段が測定した後方散乱光強度を補正する後方散乱光強度補正手段と、
前記後方散乱光強度補正手段が取得した補正後の後方散乱光強度から、前記被試験光ファイバの前記接続点より他端側の損失を算出する損失算出手段と、
を備えることを特徴とする。
本発明に係る光パルス試験方法および光パルス試験装置は、接続点におけるモード結合行列を事前に取得しておき、測定対象地点の後方散乱光強度に対して行列演算を行い、当該測定対象地点より試験光パルス入射側にある接続点の影響を当該後方散乱光強度から除外する。従って、本発明は、モード間クロストークが発生する軸ずれ接続点より遠端に存在する損失を、当該地点のクロストーク値に依存することなく測定可能な光パルス試験方法および光パルス試験装置を提供することができる。
本発明に係る光パルス試験方法及び光パルス試験装置は、前記後方散乱光強度補正手順で式(C1)を用いて後方散乱光強度を補正することを特徴とする。
Figure 0007136348000001
ただし、zは前記被試験光ファイバの前記一端からの距離、
は前記被試験光ファイバに存在する1つ目の前記接続点の前記一端からの距離、
は前記被試験光ファイバに存在する2つ目の前記接続点の前記一端からの距離(z<z)、
corrected(z)は補正後の後方散乱光強度の行列、
bs(z)は前記第1測定手順及び前記第2測定手順で測定した後方散乱光強度を要素とする行列、
inは前記試験光パルスの行列、
は前記1つ目の前記接続点における前記モード結合行列
である。
本発明は、モード間クロストークが発生する軸ずれ接続点が存在するFUTにおいても、当該接続点より遠端の損失を精度よく測定可能な試験方法および試験装置を提供することができる。
本発明に係る光パルス試験方法を説明する図である。 本発明に係る光パルス試験装置を説明する図である。 被試験光ファイバを説明する図である。 後方散乱波形の一例を説明する図である。 後方散乱波形の一例を説明する図である。 第一接続点の軸ずれ量と第二接続点から得られる損失の関係を説明する図である。 補正した後方散乱波形の一例を説明する図である。 補正した後方散乱波形の一例を説明する図である。 補正した第二接続点の損失を表す図である。 基本モードおよび第一高次モードの光強度分布とxy座標の関係を示す図である。 本発明に係る光パルス試験装置の演算処理部を説明する図である。
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は以下の実施形態に制限されるものではない。なお、本明細書および図面において、符号が同じ構成要素は相互に同一のものを示すものとする。
(実施形態1)
図1は、本実施形態の光パルス試験方法を説明する工程図である。本光パルス試験方法は、
接続点を有する被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを基本モードで入射し(ステップS01a)、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する(ステップS01b)第1測定手順S01と、
前記被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを第一高次モードで入射し(ステップS02a)、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する(ステップS02b)第2測定手順S02と、
前記第1測定手順S01で測定した後方散乱光強度および前記第2測定手順S02で測定した後方散乱光強度の一方または双方から前記被試験光ファイバの前記接続点における基本モード群同士の結合効率、基本モードと第一高次モード群間の結合効率、及び第一高次モード群同士の結合効率を算出し、前記結合効率を要素とする、前記被試験光ファイバの前記接続点におけるモード結合行列を取得する行列算出手順S03と、
前記行列算出手順S03で取得した前記モード結合行列を用いて前記第1測定手順S01および前記第2測定手順S02で測定した後方散乱光強度を補正する後方散乱光強度補正手順S04と、
前記後方散乱光強度補正手順S04で取得した補正後の後方散乱光強度から、前記被試験光ファイバの前記接続点より他端側の損失を算出する損失算出手順S05と、
を行うことを特徴とする。
第1測定手順S01では、
被試験光ファイバを基本モードと第一高次モードで伝搬可能な波長の試験光パルスを生成する生成ステップと、
前記生成ステップで生成した前記試験光パルスを基本モードで前記被試験光ファイバの一端に入射する入射ステップと、
前記入射ステップで前記被試験光ファイバの一端に入射した前記試験光パルスの戻り光を基本モードおよび第一高次モードに分離するモード分波ステップと、
前記モード分波ステップで分離した前記戻り光のモード成分それぞれを光電変換し、前記被試験光ファイバ一端からの距離に対する前記戻り光のモード成分それぞれの強度分布を取得する光強度取得ステップと、
を行う。
つまり、第1測定手順S01は、非特許文献1および非特許文献2に示されるような後方散乱光測定技術を用いて、基本モードの試験光パルスで、被試験光ファイバの一端から基本モードおよび第一高次モードの後方散乱光強度分布を測定する。
第2測定手順S02では、
被試験光ファイバを基本モードと第一高次モードで伝搬可能な波長の試験光パルスを生成する生成ステップと、
前記生成ステップで生成した前記試験光パルスを第一高次モードで前記被試験光ファイバの一端に入射する入射ステップと、
前記入射ステップで前記被試験光ファイバの一端に入射した前記試験光パルスの戻り光を基本モードおよび第一高次モードに分離するモード分波ステップと、
前記モード分波ステップで分離した前記戻り光のモード成分それぞれを光電変換し、前記被試験光ファイバ一端からの距離に対する前記戻り光のモード成分それぞれの強度分布を取得する光強度取得ステップと、
を行う。
つまり、第2測定手順S02は、非特許文献1および非特許文献2に示されるような後方散乱光測定技術を用いて、第一高次モードの試験光パルスで、被試験光ファイバの一端から基本モードおよび第一高次モードの後方散乱光強度分布を測定する。
行列算出手順S03では、
前記第1測定手順S01および前記第2測定手順S02の少なくとも一方で測定した後方散乱光強度から前記被試験光ファイバの前記接続点におけるモード毎の結合効率を算出し、前記接続点におけるモード結合を表す行列を取得する。つまり、行列算出手順S03は、非特許文献3および非特許文献4に示されるような方法を用いて、後方散乱光強度から前記接続点におけるモード毎の結合効率を算出し、モード結合を表す行列(モード結合行列)を取得する。モード結合行列については後述する。
後方散乱光強度補正手順S04では、
前記行列算出手順S03で取得したモード結合行列を用いた数値処理により、前記第1測定手順S01および前記第2測定手順S02で測定した後方散乱光強度から前記接続点におけるクロストークの影響を除去するための補正を行う。補正の詳細は後述する。
損失算出手順S05では、
前記後方散乱光強度補正手順S04で取得した補正後の後方散乱光強度から前記接続点以降の損失を算出する。
図2は、本実施形態の光パルス試験装置101の構成例を説明する図である。光パルス試験装置101は、
接続点を有する被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを基本モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第1測定手段と、
前記被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを第一高次モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第2測定手段と、
前記第1測定手段が測定した後方散乱光強度および前記第2測定手段が測定した後方散乱光強度の一方または双方から前記被試験光ファイバの前記接続点における基本モード群同士の結合効率、基本モードと第一高次モード群間の結合効率、及び第一高次モード群同士の結合効率を算出し、前記結合効率を要素とする、前記被試験光ファイバの前記接続点におけるモード結合行列を取得する行列算出手段と、
前記行列算出手段で取得した前記モード結合行列を用いて前記第1測定手段および前記第2測定手段で測定した後方散乱光強度を補正する後方散乱光強度補正手段と、
前記後方散乱光強度補正手段で取得した補正後の後方散乱光強度から、前記被試験光ファイバの前記接続点より他端側の損失を算出する損失算出手段と、
を備える。
前記第1測定手段および前記第2測定手段は、
被試験光ファイバ10を基本モードおよび第一高次モードで伝搬可能な波長の試験光パルスを生成する生成部Aと、
生成部Aが生成した試験光パルスを基本モードまたは第一高次モードのいずれか一方で被試験光ファイバ10に入射し、かつ前記試験光パルスからの戻り光を基本モードおよび第一高次モードに分離するモード合分波部Bと、
モード合分波部Bが分離した前記戻り光のモード成分それぞれを光電変換する受光部Cと、
演算処理部Dのうち、デジタルデータに変換された受光部Cの出力信号に基づいて、前記試験光パルスを基本モードで被試験光ファイバ10の一端に入射したときの被試験光ファイバ10の一端からの距離に対する前記戻り光のモード成分それぞれの強度分布を取得する信号処理部19と、
を有する。
前記行列算出手段は、
演算処理部Dのうち、前記戻り光のモード成分それぞれの強度分布から接続点におけるモード間結合効率を算出し、モード結合行列を取得する行列算出部20を有する。
前記後方散乱光強度補正手段は、
演算処理部Dのうち、前記行列算出部20で取得したモード結合行列を用いた数値処理により前記信号処理部19で取得した前記戻り光のモード成分それぞれの強度分布から前記接続点で生じたクロストークの影響を除去するための補正を行う後方散乱光強度補正部21を有する。
前記損失算出手段は、
前記後方散乱光強度補正部21で取得した後方散乱光強度から損失を算出する損失算出部22を有する。
生成部Aは、光源11、パルス発生器12および光強度変調器13を有する。光源11は被試験光ファイバ10を基本モードおよび第一高次モードで伝搬可能な波長の連続光を出力可能であり、出力される連続光はパルス発生器12の信号に従って光強度変調器13でパルス化され、試験光パルスとなる。光強度変調器13は、例えば音響光学素子をパルス駆動するようにした音響光学スイッチを備える、音響光学変調器である。なお、パルス発生器12は、演算処理部Dに対して、後方散乱光強度分布の測定を開始するタイミングを決めるためのトリガ信号を出力するようにしてもよい。
モード合分波部Bは、光サーキュレータ14およびモード合分波器15を有する。光強度変調器13で生成された試験光パルスは、光サーキュレータ14を介してモード合分波器15に入射される。モード合分波器15は、例えば非特許文献1に記載されるような平面光波回路で構成された方向性結合器を備える、モード合分波器である。試験光パルスは、モード合分波器15から基本モードまたは第一高次モードのいずれか一方として被試験光ファイバ10の一端に入射される。このとき、基本モードと第一高次モードの一方を選択するために、光スイッチを用いてもよい。
基本モードまたは第一高次モードで入射された試験光パルスが被試験光ファイバ10を伝搬する際、レイリー散乱によって試験光パルスの一部は逆方向に伝搬する基本モードおよび第一高次モードに結合し、それぞれ基本モードおよび第一高次モードの後方散乱光となる。この後方散乱光は、戻り光としてモード合分波器15に再入射される。このとき戻り光の基本モードと第一高次モードのモード成分はモード合分波器15で分離される。
受光部Cは、2つの光受信器(16、17)を有する。モード合分波器15でモード毎に分離された戻り光のうち、入射したモードと同一モード成分は光サーキュレータ14を経由して光受信器16に、入射したモードと異なるモード成分は光受信器17に入射され、光電変換される。
演算処理部Dは、A/D(アナログ/デジタル)変換器18、信号処理部19、行列算出部20、後方散乱光強度補正部21、損失算出部22を有する。光受信器16および17からの電気信号は、A/D変換器18でデジタルデータに変換される。前記デジタルデータは信号処理部19に入力される。
信号処理部19は、戻り光の基本モードと第一高次モード成分に対する強度分布を取得する。さらに、行列算出部20は、接続点におけるモード間結合効率を算出しモード結合を表す行列を取得する。そして、後方散乱光強度補正部21は、接続点で生じたクロストークの影響を除去するための数値処理を行い、補正した後方散乱光強度を取得する演算処理を行う。損失算出部22は、補正後の後方散乱光強度から損失を算出する演算処理を行う。
以下、接続点で生じたクロストークの影響を除去するための数値処理を行い、補正した後方散乱光強度を取得する演算処理について説明する。
図3に示すような接続点を2か所有する被試験光ファイバを考える。試験装置側から見て近端側の位置zの接続点を第一接続点、遠端側の位置zの接続点を第二接続点とする。それぞれの接続点におけるモード結合を表すモード間結合行列をTおよびTとし、以下の式で定義する。
Figure 0007136348000002
ここで、ηijおよびkijはそれぞれ、第一接続点および第二接続点におけるモードiとモードj間の結合効率を表す。下付き文字iおよびj(i、j=1、2)は伝搬モードを意味し、“1”は基本モード(LP01モード)、“2”は第一高次モード(LP11モード)を表す。具体的には、η11が基本モード群同士の結合効率、η12とη21が基本モードと第一高次モード群間の結合効率、η22が第一高次モード群同士の結合効率である。kijについても同様である。また、被試験光ファイバにおける伝送損失を表す行列をL(z)、後方散乱過程におけるモード間の捕獲率の行列をB(z)とし、以下の式で定義する。
Figure 0007136348000003
ここで、αは光ファイバ中の損失係数を表す。Iは2行2列の単位行列である。また、bij(z)は、位置zでモードiの試験光がレイリー散乱されたときに、逆方向に伝搬するモードjに結合するときの捕獲率を表す。
第1測定手順S01で、試験光パルスを基本モードで入射する場合を考える。入射する試験光パルスの行列をPin(S01)とし、以下のように定義する。
Figure 0007136348000004
このとき、後方散乱光における基本モード成分および第一高次モード成分の強度をそれぞれ行列Pbs1(z)およびPbs2(z)とすると、以下の式で表すことができる。
Figure 0007136348000005
次に、第2測定手順S02で、試験光パルスを第一高次モードで入射する場合を考える。入射する試験光パルスの行列をPin(S02)とし、以下のように定義する。
Figure 0007136348000006
このとき、後方散乱光における基本モード成分および第一高次モード成分の強度をそれぞれ行列Pbs3(z)およびPbs4(z)とすると、以下の式で表すことができる。
Figure 0007136348000007
式(55)~式(58)は、以下のようにまとめることができる。
Figure 0007136348000008
ここで、行列Pinは以下の式で表される。
Figure 0007136348000009
なお、上記では入射する試験光パルスの行列Pin(S01)およびPin(S02)を、式(55)および式(57)としたが、これを異なる値としてもよい。ただし、Pinが逆行列を持つ値とする必要がある。
式(59)より、z≧zにおける後方散乱光強度は、第一接続点におけるモード結合を表す式(51)の行列Tの値に影響を受けることがわかる。
そこで、式(59)の両辺に対して、z<z1の範囲の式において右から行列Pin -1を掛け、さらにz≧zの範囲の式において左から行列T -1を、右から行列Pin -1×T -1を掛けると、第一接続点で生じたクロストークの影響を除去した補正波形の行列Pcorrected(z)を得ることができる。補正波形行列Pcorrected(z)は、以下の式で表すことができる。
Figure 0007136348000010
ここで、行列T -1は後述する手法で求めることができる。
したがって、式(61)の補正波形におけるz=z前後の値から、第二接続点における損失を得ることができる。
なお、上記では補正波形を得る際の行列演算を、z<z1の範囲とz≧zの範囲で分けたが、第二接続点の損失を正確に得るという観点では、すべてのzの領域に対して左から行列T -1を、右から行列Pin -1×T -1を掛けるという処理でもよい。このとき、補正波形行列Pcorrected(z)は、以下の式で表すことができる。
Figure 0007136348000011
つまり、測定対象地点の前後において、当該地点より手前の接続点の影響を除外するための行列演算を行えばよい。
[モード結合行列の取得方法]
式(51)と式(52)に示したモード結合行列を取得する方法を説明する。
光ファイバにおける基本モードおよび直交する2つの第一高次モードの電界分布を以下のガウス関数およびエルミートガウス関数で近似する。
Figure 0007136348000012
なお、Eは基本モード(LP01モード)の電界分布、EおよびEはそれぞれ、直交する2つの第一高次モード(LP11aおよびLP11bモード)の電界分布、wは基本モードおよび第一高次モードのモードフィールド径、xおよびyは光ファイバ断面における中心を原点とする座標である。図10は、各モードの光強度分布とxy座標の関係を示す図である。
2本の同種光ファイバを接続した被試験光ファイバのモード間結合効率ηmnは次式で表される。
Figure 0007136348000013
およびEはそれぞれ、接続部に入力されるモードの電界分布および接続部から出力されるモードの電界分布を表す。つまり、ηmnは、接続部においてmのモードからnのモードへ結合する効率を表す。また、dは接続点における軸ずれ量を、θはx軸と軸ずれ方向のなす角度を表す。式(1)~(4)より、次式が得られる。
Figure 0007136348000014
ここで、直交する2つの第一高次モードは、伝搬中に強く結合するため、実際の測定で区別することは難しい。そこで、直交する2つの第一高次モードをまとめて一つの第一高次モード群として考える。このとき、式(5)~(10)は次式のように表すことができる。
Figure 0007136348000015
η01-01は数F1から数F10で説明した基本モード同士の結合効率η11とk11である。η01-11およびη11-01は数F1から数F10で説明した基本モードと第一高次モード郡間の結合効率η12とk12及びη21とk21である。η11-11は数F1から数F10で説明した第一高次モード郡同士の結合効率η22とk22である。これにより、軸ずれ方向を表す角度θを消去することができる。
一方、被試験光ファイバに基本モードで試験光パルスを入射したときに、基本モード成分および第一高次モード成分の後方散乱光強度における接続点の透過率は、以下の式で得られる。
Figure 0007136348000016
およびLはそれぞれ、基本モード成分および第一高次モード成分の後方散乱光強度における接続点の透過率である。
式(11)~(15)より、以下の式が得られる。
Figure 0007136348000017
式(16)は、(d/w)が√3-1のとき重解となり、他の条件で二つの解が存在する。通常、接続点で生じうる軸ずれ量が2μm以下であり、さらに試験波長における光ファイバのモードフィールド径は4.68μm以上であることを考慮とすると、式(16)の解は以下の通りとなる。
Figure 0007136348000018
したがって、測定した透過率LおよびLから、式(17)を用いて(d/w)を算出し、それを式(11)~(13)に代入することでモード間結合効率(η11、η21、η12、η22、k11、k21、k12、k22)を算出でき、式(51)と式(52)に示したモード結合行列を取得することができる。つまり、図1の行列算出手順S03では、第1測定手順S01又は第2測定手順S02で取得した後方散乱光強度から第一接続点(z=z)における透過率LとL、及び第二接続点(z=z)における透過率LとLを測定し、モード結合行列T及びTを取得する。行列T -1はモード結合行列Tの逆行列である。
なお、上記手法で算出したモード間結合効率を対数変換することでモード依存損失およびモード間クロストークも算出することができる。
[実施例]
参考のために、上述した内容について数値計算を行った結果を以下に示す。被試験光ファイバとして、500m地点および1000m地点に軸ずれ接続点1および軸ずれ接続点2を有する全長1500mの光ファイバを考える。軸ずれ接続点1におけるモード間結合効率を以下のように定義する。
Figure 0007136348000019
ここで、dは接続点1における軸ずれ量、wは被試験光ファイバのモードフィールド半径である。同様に、軸ずれ接続点2におけるモード間結合効率を以下のように定義する。
Figure 0007136348000020
は接続点2における軸ずれ量である。
また、本数値計算では各種パラメータを、α=0.1842×10-3(≒0.8 dB/km)、bij=0.0011、w=4.1×10-6、とする。
図4は、d=0、d=1.5×10-6とした場合の後方散乱光波形の計算結果の一例を示すもので、横軸は距離を、縦軸は光強度をそれぞれ示している。実線は式(56)におけるPbs1(z)を、点線は式(56)および式(58)におけるPbs2(z)およびPbs3(z)を、破線は式(58)におけるPbs4(z)を対数表示した結果を表す。ここで、実線、点線および破線の第二接続点(1000m地点)における損失はそれぞれ、約0.04dB、0.29dB、0.54dBである。
図5は、d=2.0×10-6、d=1.5×10-6とした場合の後方散乱光波形の計算結果の一例を示すもので、横軸は距離を、縦軸は光強度をそれぞれ示している。実線、点線および破線は、図4と同様の意味である。実線、点線および破線の第二接続点(約1000m地点)における損失はそれぞれ、約0.13dB、0.27dB、0.42dBであり、第二接続点の軸ずれ量を同一としたにもかかわらず図4の結果と異なる。
図6は、d=1.5×10-6とした場合の第二接続点における損失値を示したもので、横軸は第一接続点の軸ずれ量である。軸ずれ量が大きくなると、後方散乱光強度Pbs1(z)は増加、後方散乱光強度Pbs2(z)およびPbs3(z)は微減、後方散乱光強度Pbs4(z)は減少することがわかる。
図7および図8は、図5の波形に、式(11)および式(12)の処理を施した場合の波形である。図7の波形では、第一接続点(500m地点)におけるモード間結合が補正され、図4と同様の波形が得られ、後方散乱光強度(Pbs1(z)~Pbs4(z))の第二接続点(1000m地点)における損失はそれぞれ、約0.04dB、0.29dB、0.54dBであった。また、図8の第一接続点における損失は、図4の波形と同一ではないが、後方散乱光強度(Pbs1(z)~Pbs4(z))の第二接続点(1000m地点)における損失はそれぞれ、約0.04dB、0.29dB、0.54dBであり、図4の結果と一致した。
図9は、式(11)および式(12)の処理を施した場合に得られる補正波形から第二接続点における損失値を算出した結果であり、横軸は第一接続点の軸ずれ量である。第一接続点における軸ずれ量の値に係らず、正しい損失値を得ることができることがわかる。
(実施形態2)
演算処理部Dはコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
図11は、システム100のブロック図を示している。システム100は、ネットワーク135へと接続されたコンピュータ105を含む。
ネットワーク135は、データ通信ネットワークである。ネットワーク135は、プライベートネットワーク又はパブリックネットワークであってよく、(a)例えば或る部屋をカバーするパーソナル・エリア・ネットワーク、(b)例えば或る建物をカバーするローカル・エリア・ネットワーク、(c)例えば或るキャンパスをカバーするキャンパス・エリア・ネットワーク、(d)例えば或る都市をカバーするメトロポリタン・エリア・ネットワーク、(e)例えば都市、地方、又は国家の境界をまたいでつながる領域をカバーするワイド・エリア・ネットワーク、又は(f)インターネット、のいずれか又はすべてを含むことができる。通信は、ネットワーク135を介して電子信号及び光信号によって行われる。
コンピュータ105は、プロセッサ110、及びプロセッサ110に接続されたメモリ115を含む。コンピュータ105が、本明細書においてはスタンドアロンのデバイスとして表されているが、そのように限定されるわけではなく、むしろ分散処理システムにおいて図示されていない他のデバイスへと接続されてよい。
プロセッサ110は、命令に応答し且つ命令を実行する論理回路で構成される電子デバイスである。
メモリ115は、コンピュータプログラムがエンコードされた有形のコンピュータにとって読み取り可能な記憶媒体である。この点に関し、メモリ115は、プロセッサ110の動作を制御するためにプロセッサ110によって読み取り可能及び実行可能なデータ及び命令、すなわちプログラムコードを記憶する。メモリ115を、ランダムアクセスメモリ(RAM)、ハードドライブ、読み出し専用メモリ(ROM)、又はこれらの組み合わせにて実現することができる。メモリ115の構成要素の1つは、プログラムモジュール120である。
プログラムモジュール120は、本明細書に記載のプロセスを実行するようにプロセッサ110を制御するための命令を含む。本明細書において、動作がコンピュータ105或いは方法又はプロセス若しくはその下位プロセスによって実行されると説明されるが、それらの動作は、実際にはプロセッサ110によって実行される。
用語「モジュール」は、本明細書において、スタンドアロンの構成要素又は複数の下位の構成要素からなる統合された構成のいずれかとして具現化され得る機能的動作を指して使用される。したがって、プログラムモジュール120は、単一のモジュールとして、或いは互いに協調して動作する複数のモジュールとして実現され得る。さらに、プログラムモジュール120は、本明細書において、メモリ115にインストールされ、したがってソフトウェアにて実現されるものとして説明されるが、ハードウェア(例えば、電子回路)、ファームウェア、ソフトウェア、又はこれらの組み合わせのいずれかにて実現することが可能である。
プログラムモジュール120は、すでにメモリ115へとロードされているものとして示されているが、メモリ115へと後にロードされるように記憶装置140上に位置するように構成されてもよい。記憶装置140は、プログラムモジュール120を記憶する有形のコンピュータにとって読み取り可能な記憶媒体である。記憶装置140の例として、コンパクトディスク、磁気テープ、読み出し専用メモリ、光記憶媒体、ハードドライブ又は複数の並列なハードドライブで構成されるメモリユニット、並びにユニバーサル・シリアル・バス(USB)フラッシュドライブが挙げられる。あるいは、記憶装置140は、ランダムアクセスメモリ、或いは図示されていない遠隔のストレージシステムに位置し、且つネットワーク135を介してコンピュータ105へと接続される他の種類の電子記憶デバイスであってよい。
システム100は、本明細書においてまとめてデータソース150と称され、且つネットワーク135へと通信可能に接続されるデータソース150A及びデータソース150Bを更に含む。実際には、データソース150は、任意の数のデータソース、すなわち1つ以上のデータソースを含むことができる。データソース150は、体系化されていないデータを含み、ソーシャルメディアを含むことができる。
システム100は、ユーザ101によって操作され、且つネットワーク135を介してコンピュータ105へと接続されるユーザデバイス130を更に含む。ユーザデバイス130として、ユーザ101が情報及びコマンドの選択をプロセッサ110へと伝えることを可能にするためのキーボード又は音声認識サブシステムなどの入力デバイスが挙げられる。ユーザデバイス130は、表示装置又はプリンタ或いは音声合成装置などの出力デバイスを更に含む。マウス、トラックボール、又はタッチ感応式画面などのカーソル制御部が、さらなる情報及びコマンドの選択をプロセッサ110へと伝えるために表示装置上でカーソルを操作することをユーザ101にとって可能にする。
プロセッサ110は、プログラムモジュール120の実行の結果122をユーザデバイス130へと出力する。あるいは、プロセッサ110は、出力を例えばデータベース又はメモリなどの記憶装置125へともたらすことができ、或いはネットワーク135を介して図示されていない遠隔のデバイスへともたらすことができる。
例えば、図1のフローチャートを行うプログラムをプログラムモジュール120としてもよい。システム100を演算処理部Dとして動作させることができる。
用語「・・・を備える」又は「・・・を備えている」は、そこで述べられている特徴、完全体、工程、又は構成要素が存在することを指定しているが、1つ以上の他の特徴、完全体、工程、又は構成要素、或いはそれらのグループの存在を排除してはいないと、解釈されるべきである。用語「a」及び「an」は、不定冠詞であり、したがって、それを複数有する実施形態を排除するものではない。
(他の実施形態)
なお、この発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。要するにこの発明は、上位実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。例えば、上記実施例では、3本の光ファイバを直列に接続したものを被試験光ファイバとして説明したが、4本以上の直列に接続したものを被試験光ファイバとしても試験可能である。
また、上記実施形態に開示されている複数の構成要素を適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。
10:被試験光ファイバ
11:光源
12:パルス発生器
13:光強度変調器
14:光サーキュレータ
15:モード合分波器
16、17:光受信器
18:A/D変換器
19:信号処理部
20:行列算出部
21:後方散乱光強度補正部
22:損失算出部
50:光パルス試験装置
100:システム
101:ユーザ
105:コンピュータ
110:プロセッサ
115:メモリ
120:プログラムモジュール
122:結果
125:記憶装置
130:ユーザデバイス
135:ネットワーク
140:記憶装置
150:データソース

Claims (4)

  1. 接続点を有する被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを基本モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第1測定手順と、
    前記被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを第一高次モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第2測定手順と、
    前記第1測定手順で測定した後方散乱光強度および前記第2測定手順で測定した後方散乱光強度の一方または双方から前記被試験光ファイバの前記接続点における基本モード群同士の結合効率、基本モードと第一高次モード群間の結合効率、及び第一高次モード群同士の結合効率を算出し、前記結合効率を要素とする、前記被試験光ファイバの前記接続点におけるモード結合行列を取得する行列算出手順と、
    前記行列算出手順で取得した前記モード結合行列を用いて前記第1測定手順および前記第2測定手順で測定した後方散乱光強度を補正する後方散乱光強度補正手順と、
    前記後方散乱光強度補正手順で取得した補正後の後方散乱光強度から、前記被試験光ファイバの前記接続点より他端側の損失を算出する損失算出手順と、
    を行うことを特徴とする光パルス試験方法。
  2. 前記後方散乱光強度補正手順で式(C1)を用いて後方散乱光強度を補正することを特徴とする請求項1に記載の光パルス試験方法。
    Figure 0007136348000021
    ただし、zは前記被試験光ファイバの前記一端からの距離、
    は前記被試験光ファイバに存在する1つ目の前記接続点の前記一端からの距離、
    は前記被試験光ファイバに存在する2つ目の前記接続点の前記一端からの距離(z<z)、
    corrected(z)は補正後の後方散乱光強度の行列、
    bs(z)は前記第1測定手順及び前記第2測定手順で測定した後方散乱光強度を要素とする行列、
    inは前記試験光パルスの行列、
    は前記1つ目の前記接続点における前記モード結合行列
    である。
  3. 接続点を有する被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを基本モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第1測定手段と、
    前記被試験光ファイバの一端から基本モードと第一高次モードで伝搬可能な波長の試験光パルスを第一高次モードで入射し、前記試験光パルスの戻り光の基本モード成分および第一高次モード成分それぞれの前記一端からの距離に関する強度分布を測定する第2測定手段と、
    前記第1測定手段が測定した後方散乱光強度および前記第2測定手段が測定した後方散乱光強度の一方または双方から前記被試験光ファイバの前記接続点における基本モード群同士の結合効率、基本モードと第一高次モード群間の結合効率、及び第一高次モード群同士の結合効率を算出し、前記結合効率を要素とする、前記被試験光ファイバの前記接続点におけるモード結合行列を取得する行列算出手段と、
    前記行列算出手段が取得した前記モード結合行列を用いて前記第1測定手段および前記第2測定手段が測定した後方散乱光強度を補正する後方散乱光強度補正手段と、
    前記後方散乱光強度補正手段が取得した補正後の後方散乱光強度から、前記被試験光ファイバの前記接続点より他端側の損失を算出する損失算出手段と、
    を備えることを特徴とする光パルス試験装置。
  4. 前記後方散乱光強度補正手段は、式(C1)を用いて後方散乱光強度を補正することを特徴とする請求項3に記載の光パルス試験装置。
    Figure 0007136348000022
    ただし、zは前記被試験光ファイバの前記一端からの距離、
    は前記被試験光ファイバに存在する1つ目の前記接続点の前記一端からの距離、
    は前記被試験光ファイバに存在する2つ目の前記接続点の前記一端からの距離(z<z)、
    corrected(z)は補正後の後方散乱光強度の行列、
    bs(z)は前記第1測定手段及び前記第2測定手段が測定した後方散乱光強度を要素とする行列、
    inは前記試験光パルスの行列、
    は前記1つ目の前記接続点における前記モード結合行列
    である。
JP2021525446A 2019-06-11 2019-06-11 光パルス試験方法及び光パルス試験装置 Active JP7136348B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023148 WO2020250310A1 (ja) 2019-06-11 2019-06-11 光パルス試験方法及び光パルス試験装置

Publications (2)

Publication Number Publication Date
JPWO2020250310A1 JPWO2020250310A1 (ja) 2020-12-17
JP7136348B2 true JP7136348B2 (ja) 2022-09-13

Family

ID=73781677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021525446A Active JP7136348B2 (ja) 2019-06-11 2019-06-11 光パルス試験方法及び光パルス試験装置

Country Status (3)

Country Link
US (1) US11828676B2 (ja)
JP (1) JP7136348B2 (ja)
WO (1) WO2020250310A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081471B2 (ja) * 2018-12-17 2022-06-07 日本電信電話株式会社 光パルス試験方法および光パルス試験装置
CN113740639B (zh) * 2021-08-12 2022-12-09 西安交通大学 一种基于长线串扰的线缆束电磁脉冲敏感度测试系统及方法
CN113824519B (zh) * 2021-08-13 2024-04-16 温州大学 一种少模光纤链路故障检测灵敏度优化方法及装置
JPWO2023053250A1 (ja) * 2021-09-29 2023-04-06

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097015A1 (en) 2007-10-15 2009-04-16 Schlumberger Technology Corporation Measuring a characteristic of a multimode optical fiber

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393563B2 (ja) * 2014-09-03 2018-09-19 株式会社フジクラ 光ファイバの評価方法及び評価装置
FR3025676B1 (fr) * 2014-09-08 2016-12-23 Telecom Paris Tech Methode de selection de modes/cœurs pour transmission sur fibres optiques de type multi-mode/ multi-cœur
JP6338153B2 (ja) * 2015-06-08 2018-06-06 日本電信電話株式会社 モード結合比率分布測定方法及びモード結合比率分布測定装置
JP6706186B2 (ja) * 2016-10-14 2020-06-03 日本電信電話株式会社 2モード光ファイバ特性解析方法および2モード光ファイバ特性解析装置
JP6673812B2 (ja) * 2016-12-14 2020-03-25 日本電信電話株式会社 モードフィールド径測定方法
US10345192B2 (en) * 2017-03-14 2019-07-09 Nokia Of America Corporation Single-end optical fiber transfer matrix measurement using spatial pilot
JP7070695B2 (ja) * 2018-10-12 2022-05-18 日本電信電話株式会社 光ファイバ試験方法及び光ファイバ試験装置
JP7081471B2 (ja) * 2018-12-17 2022-06-07 日本電信電話株式会社 光パルス試験方法および光パルス試験装置
JP7103268B2 (ja) * 2019-02-22 2022-07-20 日本電信電話株式会社 解析装置および解析方法
WO2021070319A1 (ja) * 2019-10-10 2021-04-15 日本電信電話株式会社 光ファイバ試験方法および光ファイバ試験装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097015A1 (en) 2007-10-15 2009-04-16 Schlumberger Technology Corporation Measuring a characteristic of a multimode optical fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARUYAMA et al.,Relationship Between Mode Coupling and Fiber Characteristics in Few-Mode Fibers Analyzed Using Impul,JOURNAL OF LIGHTWAVE TECHNOLOGY,2017年,Vol.35,No.4,p.650-657

Also Published As

Publication number Publication date
JPWO2020250310A1 (ja) 2020-12-17
US11828676B2 (en) 2023-11-28
WO2020250310A1 (ja) 2020-12-17
US20220244137A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP7136348B2 (ja) 光パルス試験方法及び光パルス試験装置
JP7322960B2 (ja) 光ファイバ試験方法および光ファイバ試験装置
JP6338153B2 (ja) モード結合比率分布測定方法及びモード結合比率分布測定装置
JP7070695B2 (ja) 光ファイバ試験方法及び光ファイバ試験装置
JP6769944B2 (ja) モード遅延時間差分布試験方法および試験装置
JP6706186B2 (ja) 2モード光ファイバ特性解析方法および2モード光ファイバ特性解析装置
JP7270913B2 (ja) 光ファイバのモード群遅延特性評価方法および評価装置
JP2009080048A (ja) 光ファイバの後方ブリルアン散乱光測定方法及び装置
JP2018136126A (ja) モード結合比率分布測定装置及びモード結合比率分布測定方法
JP6748027B2 (ja) 光パルス試験装置及び光パルス試験方法
JP7081471B2 (ja) 光パルス試験方法および光パルス試験装置
Rademacher et al. Time-dependent inter-core crosstalk between multiple cores of a homogeneous multi-core fiber
JP2017072495A (ja) 試験光合分波器及び光線路試験システム
JP7006537B2 (ja) ラマン利得効率分布試験方法およびラマン利得効率分布試験装置
JP2016099166A (ja) 光ファイバ特性解析装置および光ファイバ特性解析方法
US20230288287A1 (en) Power coupling coefficient measuring method and power coupling coefficient measuring device
JP7380892B2 (ja) 数モードファイバ試験方法及び数モードファイバ試験装置
Takahashi et al. Distributed measurement of single-way inter-modal crosstalk in spliced FMFs based on BOTDA
JP5992482B2 (ja) 芯線検査装置および芯線検査方法
JP7375820B2 (ja) 光ファイバ試験方法、光ファイバ試験装置、およびプログラム
JP7405318B1 (ja) 光学特性測定システム及び光学特性測定方法
JP6353429B2 (ja) 光線路損失解析方法及び光線路損失解析装置
JP2023094677A (ja) 空間モード分散測定装置および測定方法
JP5957533B2 (ja) 測定装置及び測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7136348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150