JP7135830B2 - 光モジュールの製造方法 - Google Patents

光モジュールの製造方法 Download PDF

Info

Publication number
JP7135830B2
JP7135830B2 JP2018238826A JP2018238826A JP7135830B2 JP 7135830 B2 JP7135830 B2 JP 7135830B2 JP 2018238826 A JP2018238826 A JP 2018238826A JP 2018238826 A JP2018238826 A JP 2018238826A JP 7135830 B2 JP7135830 B2 JP 7135830B2
Authority
JP
Japan
Prior art keywords
optical
lens
alignment mark
optical element
element mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018238826A
Other languages
English (en)
Other versions
JP2020101636A (ja
Inventor
幹也 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2018238826A priority Critical patent/JP7135830B2/ja
Publication of JP2020101636A publication Critical patent/JP2020101636A/ja
Application granted granted Critical
Publication of JP7135830B2 publication Critical patent/JP7135830B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光モジュールの製造方法に関するものである。
光導波路、レンズ、および光素子の各部品を備える光モジュールでは、部品同士の組立精度が部品間の結合損失に影響を及ぼす。このため、光モジュール全体における損失を低減するためには、部品同士の組立精度を高める必要がある。
特許文献1には、電気配線と光配線とが混在する光電気複合配線板の製造方法として、電気配線のランドと導波路の位置を計測する位置計測工程と、導波路のコアに反射ミラーを形成するとともに、導波路のクラッドに結合レンズを形成する光学素子形成工程と、を有する方法が開示されている。そして、光学素子形成工程においては、位置計測工程で得た計測結果に基づいて、反射ミラーおよび結合レンズの形成位置制御および形状制御を行うことが開示されている。
特開2004-205661号公報
しかしながら、特許文献1に記載の方法では、反射ミラーおよび結合レンズを加工する前の光導波路と、電気配線と、を備えた基板素材を用意する必要がある。そして、この基板素材に対して、加工を施すことにより、反射ミラーおよび結合レンズを形成する必要がある。このため、光導波路が多チャンネルである場合、多数の反射ミラーや結合レンズをレーザー加工によって個別に形成する必要があり、生産効率の低下を招く。換言すれば、反射ミラーや結合レンズをあらかじめ形成した後、部品同士を接着するという製造プロセスを採用することができないため、チャンネル数が増えれば増えるほど、生産効率が低下する。したがって、特許文献1に記載の方法は、光電気複合配線板の量産に向かないという課題がある。
本発明の目的は、部品間の結合損失が小さい光モジュールを効率よく製造可能な光モジュールの製造方法を提供することにある。
このような目的は、下記(1)~(4)の本発明により達成される。
(1) 線状に延在するコア部と前記コア部の光路を変換する光路変換部と第1アライメントマークとを備える光導波路、レンズと第2アライメントマークとを備えるレンズ部品、および、光素子と基板とを備える光素子搭載基板を、この順で積層してなる光モジュールの製造方法であって、
前記第1アライメントマークに対する前記光路変換部の設計位置からのずれ量である光路変換部ずれ量と、前記第2アライメントマークに対する前記レンズの設計位置からのずれ量であるレンズずれ量とに基づいて、前記光導波路に対して前記レンズ部品を位置合わせする際の第1目標位置を設定する第1目標位置設定工程と、
前記レンズ部品を前記第1目標位置に合わせるように前記光導波路と前記レンズ部品とを接着し、レンズ付き光導波路を得る第1接着工程と、
前記レンズ付き光導波路において、前記第1アライメントマークの位置および前記第2アライメントマークの位置に基づいて、前記第1目標位置に対する前記レンズ部品のオフセット量であるレンズ部品オフセット量を求めるオフセット量計測工程と、
前記レンズ部品オフセット量、および、前記第1目標位置に対する前記光素子搭載基板のオフセット量である光素子搭載基板オフセット量と、前記光モジュールの結合損失と、の相関関係に基づき、前記レンズ付き光導波路に対して前記光素子搭載基板を位置合わせする際の第2目標位置を設定する第2目標位置設定工程と、
前記光素子搭載基板を第2目標位置に合わせるように前記レンズ付き光導波路と前記光素子搭載基板とを接着し、前記光モジュールを得る第2接着工程と、
を有することを特徴とする光モジュールの製造方法。
(2) 前記レンズ付き光導波路において、前記レンズ部品越しに前記第1アライメントマークが視認可能になっている請求項1に記載の光モジュールの製造方法。
(3) 前記第2接着工程において、前記光素子の受発光部と、前記レンズ付き光導波路の前記レンズまたは前記第2アライメントマークと、を確認しつつ、前記光素子搭載基板が前記第2目標位置に合うように、前記レンズ付き光導波路と前記光素子搭載基板との位置関係を調整する請求項1または2に記載の光モジュールの製造方法。
(4) 前記相関関係は、前記レンズ部品オフセット量および前記光素子搭載基板オフセット量と、それらを入力し光線追跡法による計算で求められた前記結合損失と、に基づくものである請求項1ないし3のいずれか1項に記載の光モジュールの製造方法。
本発明によれば、部品間の結合損失が小さい光モジュールを効率よく製造することができる。
光モジュールの一例を示す断面図である。 図1に示す光モジュールの平面図である。 図2に示す光導波路の部分拡大斜視図である。 実施形態に係る光モジュールの製造方法を示す工程図である。 図2に示す光モジュールの分解図であって、図4に示す光モジュールの製造方法により互いに位置合わせされる光導波路、レンズ部品および光素子搭載基板を示す平面図である。 図5の部分拡大図である。 図4に示す光モジュールの製造方法の概略を示す断面図である。 図4に示す光モジュールの製造方法の概略を示す断面図である。 図6に示す平面図に基づいて光モジュールの製造方法の詳細を説明するための平面図である。 図6に示す平面図に基づいて光モジュールの製造方法の詳細を説明するための平面図である。 図6に示す平面図に基づいて光モジュールの製造方法の詳細を説明するための平面図である。 図6に示す平面図に基づいて光モジュールの製造方法の詳細を説明するための平面図である。 図6に示す平面図に基づいて光モジュールの製造方法の詳細を説明するための平面図である。 ミラー(光路変換部)を基準にしたとき、レンズ部品および光素子搭載基板がオフセットされたときの結合損失の変化量の分布を示した図である。 ミラー(光路変換部)を基準にしたとき、レンズ部品および光素子搭載基板がオフセットされたときの結合損失の変化量の分布を示した図である。
以下、本発明の光モジュールの製造方法について添付図面に示す好適実施形態に基づいて詳細に説明する。
<光モジュール>
まず、実施形態に係る光モジュールの製造方法により製造される光モジュールの一例について説明する。
図1は、光モジュールの一例を示す断面図である。図2は、図1に示す光モジュールの平面図である。なお、各図において互いに直交する3つの軸を、X軸、Y軸およびZ軸とする。また、Z軸方向のうち、プラス側を「上」、マイナス側を「下」ともいう。
図1および図2に示す光モジュール100は、光導波路1と、電気基板2と、光導波路1と光学的に接続されている光素子3と、制御素子4と、レンズ部品5と、を有している。このような光モジュール100では、例えば発光素子である光素子3で出射した光を光導波路1に導入すると、図示しないレセプタクルを介して光ファイバーに送出することができる。また、光素子3が受光素子である場合には、光ファイバーから出射した光を、光導波路1を介して光素子3で受光することができる。これにより、光ファイバーと光モジュール100との間で光通信を行うことができる。
このうち、図1および図2に示す電気基板2は、絶縁基板21と、絶縁基板21の上面に設けられた導電層22および接点23と、を備えている。
また、図1に示す電気基板2の上面には、光素子3および制御素子4が搭載されている。これらの素子と導電層22との間は、図示しないボンディングワイヤーを介して電気的に接続されている。なお、この接続構造は、ボンディングワイヤーに限定されず、その他の構造、例えばフリップチップボンディング等で代替されてもよい。
光素子3が発光素子である場合、光素子3としては、例えば、面発光レーザー(VCSEL)、発光ダイオード(LED)、有機EL素子等が挙げられる。
また、光素子3が受光素子である場合、光素子3としては、例えば、フォトダイオード(PD、APD)、フォトトランジスター等が挙げられる。
また、制御素子4としては、例えば、ドライバーIC、トランスインピーダンスアンプ(TIA)、リミッティングアンプ(LA)、またはこれらの素子を複合したコンビネーションIC等が挙げられる。
なお、電気基板2には、上述した素子以外に、CPU(中央演算処理装置)、MPU(マイクロプロセッサーユニット)、LSI、IC、RAM、ROM、コンデンサー、コイル、抵抗、ダイオード等が搭載されていてもよい。
図1および図2に示す光導波路1は、シート状をなしており、内部に形成されたコア部14が導光路になっている。
また、光導波路1の右端には、MT型光コネクター62が装着されている。このMT型光コネクター62は、図示しないレセプタクルに対してその一端側から挿入されている。
また、光導波路1には、光路変換部16が形成されている。この光路変換部16を介して図1の左右方向に延在する光路が、図1の上下方向に延在する光路に変換される。この光路により、光導波路1と光素子3との間が光学的に接続されている。
レンズ部品5は、光導波路1と電気基板2との間に設けられている。図1に示すレンズ部品5は、基部51と、基部51の縁から下方に向かって立設された壁部52と、を備えている。そして、壁部52の下面が電気基板2の上面に接合され、基部51の上面に光導波路1が接合されている。これにより、基部51、壁部52および電気基板2で取り囲まれた空洞53が形成される。また、この空洞53には、前述した光素子3および制御素子4が収まっている。これにより、光素子3および制御素子4を外部環境や異物付着等から保護することができる。
レンズ部品5は、光透過性を有しており、光路を通過させることができる。また、基部51にはレンズ54が形成されている。このレンズ54は、例えば凸レンズであり、光路を伝搬する光を集束させることができる。
なお、レンズ部品5には、レンズ54の他に、回折格子、偏光子、プリズム、フィルター等が設けられていてもよい。
この他、光モジュール100は、上記部品を収納する筐体、レセプタクル等を備えていてもよい。
(光導波路)
次に、光導波路1について説明する。
図3は、図2に示す光導波路の部分拡大斜視図である。
本実施形態に係る光導波路1は、図3の下側から、下側保護層17、クラッド層11、コア層13、クラッド層12、および上側保護層18がこの順で積層されてなる積層体101を備えている。また、コア層13中には、図2の上下方向に延在する長尺状(線状)のコア部14と、コア層13の厚さ方向から見てコア部14の側面に隣接して設けられた側面クラッド部15と、が形成されている。
一方、図2および図3に示す光導波路1は、前述したように、光路を変換する光路変換部16を備えている。この光路変換部16は、積層体101の上面に開口し、コア層13を貫通する凹部160の内面の一部である。すなわち、光路変換部16は、空洞である凹部160とコア部14との界面の一部である。このため、光路変換部16では、屈折率差に基づくフレネル反射によって光路を変換することができる。
以下、光導波路1の各部についてさらに詳述する。
-コア層-
図3に示すコア部14は、その側面が、側面クラッド部15およびクラッド層11、12で囲まれている。そして、コア部14の屈折率は、側面クラッド部15やクラッド層11、12の屈折率よりも高くなっている。これにより、コア部14に光を閉じ込めて伝搬させることができる。
コア層13において、光路に直交する面内における屈折率分布は、いかなる分布であってもよく、例えば屈折率が不連続的に変化したいわゆるステップインデックス(SI)型の分布であってもよく、屈折率が連続的に変化したいわゆるグレーデッドインデックス(GI)型の分布であってもよい。
また、コア部14の光路に直交する面による断面形状は、特に限定されず、真円、楕円形、長円形等の円形、三角形、四角形、五角形、六角形等の多角形、その他の異形状であってもよい。
また、コア層13の平均厚さは、特に限定されないが、1~200μm程度であるのが好ましく、5~100μm程度であるのがより好ましく、10~70μm程度であるのがさらに好ましい。これにより、光導波路1の伝送効率の低下を抑えつつ光導波路1の薄型化を図ることができる。
コア層13の構成材料(主材料)としては、例えば、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ系樹脂やオキセタン系樹脂のような環状エーテル系樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、ポリシラン、ポリシラザン、シリコーン系樹脂、フッ素系樹脂、ポリウレタン、ポリオレフィン系樹脂、ポリブタジエン、ポリイソプレン、ポリクロロプレン、PETやPBTのようなポリエステル、ポリエチレンサクシネート、ポリサルフォン、ポリエーテル、また、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂のような各種樹脂材料等が挙げられる。なお、樹脂材料には、異なる組成のものを組み合わせた複合材料も用いられる。
-クラッド層-
クラッド層11、12の平均厚さは、それぞれ1~200μm程度であるのが好ましく、3~100μm程度であるのがより好ましく、5~60μm程度であるのがさらに好ましい。これにより、光導波路1が必要以上に厚膜化するのを防止しつつ、クラッド層11、12としての機能が確保される。
また、クラッド層11、12の構成材料としては、例えば、前述したコア層13の構成材料と同様の材料を用いることができるが、特に(メタ)アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂、フッ素系樹脂、およびポリオレフィン系樹脂からなる群から選択される少なくとも1種であるのが好ましく、(メタ)アクリル系樹脂またはエポキシ系樹脂がより好ましい。
なお、クラッド層11、12は、必要に応じて設けられればよく、省略されてもよい。このとき、例えばコア層13が外気(空気)に曝されていれば、その外気がクラッド層11、12として機能する。
-保護層-
図3に示す光導波路1は、下側保護層17および上側保護層18は、コア層13やクラッド層11、12を保護し、外部環境等に起因したコア部14の伝送効率の低下を抑制することができる。
下側保護層17および上側保護層18の構成材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリイミド、ポリアミド等の各種樹脂を含む材料が挙げられる。
下側保護層17および上側保護層18の平均厚さは、特に限定されないが、5~500μm程度であるのが好ましく、10~400μm程度であるのがより好ましい。
また、下側保護層17および上側保護層18は、互いに同じ構成であっても互いに異なる構成であってもよい。
なお、下側保護層17および上側保護層18は、それぞれ必要に応じて設けられればよく、少なくとも一方が省略されていてもよい。
-凹部-
凹部160は、コア部14の延在方向のいずれの位置に設けられていてもよいが、図3ではコア部14の端部に設けられている。そして、凹部160の内面に設けられた光路変換部16は、コア部14の光路に対して傾斜する面である。この光路変換部16の傾斜角度に応じて、光路の変換角度を調整することができる。
図3に示す凹部160は、コア層13の面内においてコア部14の延在方向と直交する方向から見たとき、下方に頂点を持つ三角形に準じた形状をなしている。そして、光路変換部16は、図3に示すように、クラッド層11からコア層13およびクラッド層12を経て上側保護層18に至るまでの間に連続して形成された平坦面である。なお、凹部160の形状は、図3に示す形状に限定されず、いかなる形状であってもよい。
また、光路変換部16の傾斜角度は、特に限定されないが、図1に示す光導波路1の下面を基準面としたとき、基準面と光路変換部16とがなす角度の鋭角側は、30~60°程度であるのが好ましく、40~50°程度であるのがより好ましい。傾斜角度を前記範囲内に設定することにより、光路変換部16においてコア部14の光路を効率よく変換し、光路変換に伴う損失を抑制することができる。
なお、凹部160の最深部の位置、すなわち三角形の頂点の位置は、特に限定されないが、コア層13よりもクラッド層11側であるのが好ましい。
また、本実施形態に係るコア層13には、凹部160に対応する位置に設けられ、コア部14よりも幅が広い拡幅部141が形成されている。すなわち、図3に示すように、コア層13を平面視したとき、拡幅部141は、凹部160を内包するような長方形をなしている。この拡幅部141の屈折率は、コア部14と同様、側面クラッド部15やクラッド層11、12の屈折率よりも高くなっている。このような拡幅部141を設けることにより、光路変換部16のうち、コア層13の断面に露出する材料は、コア部14を構成する材料、すなわち、側面クラッド部15やクラッド層11、12よりも屈折率の高い材料となる。このため、光路変換部16における屈折率差をより大きくすることができ、反射率を高めるとともに、反射損失を低減することができる。
なお、本実施形態では、凹部160内を空気が占めているが、その代わりにコア部14よりも低屈折率の材料で占められていてもよい。
また、凹部160に代えて、コア層13の厚さ方向に光路を曲げる湾曲導波路が設けられていてもよい。また、拡幅部141は、省略されてもよい。
<光モジュールの製造方法>
次に、実施形態に係る光モジュールの製造方法について説明する。
図4は、実施形態に係る光モジュールの製造方法を示す工程図である。図5は、図2に示す光モジュールの分解図であって、図4に示す光モジュールの製造方法により互いに位置合わせされる光導波路、レンズ部品および光素子搭載基板を示す平面図である。図6は、図5の部分拡大図である。図7および図8は、それぞれ図4に示す光モジュールの製造方法の概略を示す断面図である。図9ないし図13は、それぞれ図6に示す平面図に基づいて光モジュールの製造方法の詳細を説明するための平面図である。
本実施形態に係る光モジュールの製造方法は、光導波路1と、レンズ部品5と、光素子3および電気基板2を備える光素子搭載基板25と、をこの順で積層してなる光モジュール100の製造方法である。この製造方法は、図4に示すように、第1ずれ量計測工程と、第2ずれ量計測工程と、第1目標位置設定工程と、第1接着工程と、オフセット量計測工程と、第2目標位置設定工程と、第2接着工程と、を有する。以下、各工程について順次説明する。
[1]第1ずれ量計測工程S01
図1に示す光導波路1は、前述した積層体101と光路変換部16とを備えている。また、図5に示す光導波路1は、第1アライメントマーク171を備えている。第1アライメントマーク171は、容易に視認可能なマークであって、画像認識等により、光導波路1の位置を正確に検出することを可能にする。そして、第1アライメントマーク171は、図6に示すように、例えば光路変換部16の近傍に設けられ、光路変換部16との間に既知の位置関係を有している。つまり、第1アライメントマーク171の位置を検出することができれば、この既知の位置関係に基づいて、光路変換部16の位置を容易に導出することができる。これにより、光路変換部16の視認性が低く、その位置を正確に検出することが難しい場合でも、第1アライメントマーク171に基づいて、光路変換部16の位置を容易に把握することが可能になる。
第1アライメントマーク171は、図6に示すように、側面クラッド部15に対応する領域に設けられ、光導波路1の上面側から視認可能である。このような第1アライメントマーク171としては、例えば、積層体101と色や透明度が異なる領域、積層体101に形成された凹みや突起、側面クラッド部15より屈折率が高い領域であって周囲とは見え方が異なる領域等が挙げられる。また、光導波路1の外縁を第1アライメントマーク171として用いるようにしてもよい。
また、第1アライメントマーク171の形状は、特に限定されないが、例えば、真円、楕円、長円、円環のような円形、正方形、長方形、菱形、六角形のような多角形、その他の異形状等が挙げられる。特に、カメラ等の撮像素子に第1アライメントマーク171を識別させる場合、識別率の観点から、図6に示すような円形が好ましく用いられる。
さらに、光導波路1は、複数の第1アライメントマーク171を備えているのが好ましい。これにより、複数の第1アライメントマーク171を同時に視認することにより、光導波路1の傾きについても容易に検出することができる。
ところで、第1アライメントマーク171は、前述したように、光路変換部16との間で既知の位置関係を有している。この位置関係の精度が高くなければ、第1アライメントマーク171の位置を正確に検出することができても、光路変換部16の位置を正確に検出することにはならない。しかしながら、現実には、第1アライメントマーク171と光路変換部16との間には、製造誤差に伴う設計位置からのずれが発生している。そこで、本工程では、この設計位置からのずれ量を計測する。説明の便宜のため、第1アライメントマーク171を基準にしたとき、図9に示すように、光路変換部16の設計位置からのX軸方向におけるずれ量を「光路変換部X軸ずれ量SMX」とし、光路変換部16の設計位置からのY軸方向におけるずれ量を「光路変換部Y軸ずれ量SMY」とする。また、これらを合わせて「光路変換部ずれ量」という。本工程では、第1アライメントマーク171から光路変換部16までの距離の設計値と実際値とを比較することによって、光路変換部ずれ量を算出する。
図9の例では、第1アライメントマーク171を基準にしたとき、光路変換部16の設計位置161を破線で示し、光路変換部16の実際位置162を実線で示している。そして、X軸方向における設計位置161と実際位置162とのずれ量が「光路変換部X軸ずれ量SMX」であり、Y軸方向における設計位置161と実際位置162とのずれ量が「光路変換部Y軸ずれ量SMY」である。なお、図9では、一例として、実際位置162が設計位置161よりも+X方向および+Y方向にずれている。
なお、本工程は、必要に応じて設けられればよく、例えばあらかじめ光路変換部ずれ量が把握できている場合には、省略されてもよい。また、複数の光路変換部16が設けられている場合には、各光路変換部16についてのずれ量を計測した後、平均値またはその他の演算によって算出された代表値を求め、その値を光路変換部ずれ量として採用するようにすればよい。
[2]第2ずれ量計測工程S02
図1に示すレンズ部品5は、前述した基部51と壁部52とレンズ54とを備えている。また、図5に示すレンズ部品5は、第2アライメントマーク551を備えている。第2アライメントマーク551は、容易に視認可能なマークであって、画像認識等により、レンズ部品5の位置を正確に検出することを可能にする。そして、第2アライメントマーク551は、図6に示すように、例えばレンズ54の近傍に設けられ、レンズ54との間に既知の位置関係を有している。つまり、第2アライメントマーク551の位置を検出することができれば、この既知の位置関係に基づいて、レンズ54の位置を容易に導出することができる。これにより、レンズ54の視認性が低く、その位置を正確に検出することが難しい場合でも、第2アライメントマーク551に基づいて、レンズ54の位置を容易に把握することができる。
第2アライメントマーク551は、図6に示すように、基部51に設けられ、レンズ部品5の上面側から視認可能である。このような第2アライメントマーク551としては、例えば、基部51と色や透明度が異なる領域、基部51に形成された凹みや突起等が挙げられる。また、基部51の外縁を第2アライメントマーク551として用いるようにしてもよい。
また、第2アライメントマーク551の形状は、特に限定されないが、例えば、真円、楕円、長円、円環のような円形、正方形、長方形、菱形、六角形のような多角形、その他の異形状等が挙げられる。特に、カメラ等の撮像素子に第2アライメントマーク551を識別させる場合、識別率の観点から、図6に示すような円形が好ましく用いられる。
さらに、レンズ部品5は、複数の第2アライメントマーク551を備えているのが好ましい。これにより、複数の第2アライメントマーク551を同時に視認することにより、レンズ部品5の傾きについても容易に検出することができる。
なお、図6では、第2アライメントマーク551同士の中間点を「レンズ部品原点552」とする。このレンズ部品原点552は、部品上において目視可能な状態で設けられる点であってもよいが、第2アライメントマーク551やその他の基準点から特定される仮想の点であってもよい。
ところで、第2アライメントマーク551も、前述したように、レンズ54との間で既知の位置関係を有している。この位置関係の精度が高くなければ、第2アライメントマーク551の位置を正確に検出することができても、レンズ54の位置を正確に検出することにはならない。しかしながら、現実には、第2アライメントマーク551とレンズ54との間には、製造誤差に伴う設計位置からのずれが発生している。そこで、本工程では、この設計位置からのずれ量を計測する。説明の便宜のため、第2アライメントマーク551を基準にしたとき、図10に示すように、レンズ54の設計位置からのX軸方向におけるずれ量を「レンズX軸ずれ量SRX」とし、レンズ54の設計位置からのY軸方向におけるずれ量を「レンズY軸ずれ量SRY」とする。また、これらを合わせて「レンズずれ量」という。本工程では、第2アライメントマーク551からレンズ54までの距離の設計値と実際値とを比較することによって、レンズずれ量を算出する。
図10の例では、第2アライメントマーク551を基準にしたとき、レンズ54の設計位置541を破線で示し、レンズ54の実際位置542を実線で示している。そして、X軸方向における設計位置541と実際位置542とのずれ量が「レンズX軸ずれ量SRX」であり、Y軸方向における設計位置541と実際位置542とのずれ量が「レンズY軸ずれ量SRY」である。なお、図10では、一例として、実際位置542が設計位置541よりも-X方向および-Y方向にずれている。
なお、本工程は、必要に応じて設けられればよく、例えばあらかじめレンズずれ量が把握できている場合には、省略されてもよい。また、複数のレンズ54が設けられている場合には、各レンズ54についてのずれ量を計測した後、平均値またはその他の演算によって算出された代表値を求め、その値をレンズずれ量として採用するようにすればよい。
[3]第1目標位置設定工程S03
次に、光路変換部ずれ量とレンズずれ量とに基づいて、図11に示すように、光導波路1に対してレンズ部品5を位置合わせする際の第1目標位置G1を設定する。この第1目標位置G1は、例えば光導波路1上に設定され、光導波路1に対してレンズ部品5を位置合わせする際に、レンズ部品原点552が重なるべき点である。なお、この位置合わせは、相対的なものであり、光導波路1を載置した状態でレンズ部品5を移動させつつ位置合わせしてもよく、反対に、レンズ部品5を載置した状態で光導波路1を移動させつつ位置合わせするようにしてもよく、双方を移動させつつ位置合わせするようにしてもよい。
第1目標位置G1は、前述したSMX、SMY、SRX、SRYに基づいて設定する。図9における実際位置162は設計位置161よりも+X方向および+Y方向にずれている一方、図10における実際位置542は設計位置541よりも-X方向および-Y方向にずれているため、図9および図10では、設計値からずれる方向が互いに反対になっている。
そこで、まず、光路変換部ずれ量もレンズずれ量もゼロであった場合に、レンズ部品原点552が重なるべきであった点を「ずれ補正前原点O」とする。そうすると、ずれ補正前原点Oから第1目標位置G1までのX軸方向における距離は、図11に示すようにSMX+SRXで求められる。同様に、ずれ補正前原点Oから第1目標位置G1までのY軸方向における距離も、図11に示すようにSMY+SRYで求められる。
以上のようにして第1目標位置G1を設定することができる。なお、第1目標位置G1およびずれ補正前原点Oは、それぞれ視認可能な点である必要はなく、例えば第1アライメントマーク171を基準にした座標系における座標として、画像認識用の画像上で設定されればよい。
[4]第1接着工程S04
次に、図12に示すように、光導波路1に対してレンズ部品5を位置合わせしながら、図7に示すように光導波路1とレンズ部品5とを接着する。これにより、レンズ付き光導波路10を得る。
本工程における位置合わせは、前述した第1目標位置G1に対してレンズ部品原点552を重ねるように行う。なお、実際の作業効率の観点、および、画像認識における認識率の観点からすると、第1アライメントマーク171および第2アライメントマーク551の相対位置に基づいて位置合わせをするのが好ましい。すなわち、第1アライメントマーク171と第2アライメントマーク551とを画像認識しながら、双方の位置関係が目的とする位置関係になるようにレンズ部品5の位置を合わせるようにすればよい。
また、画像認識による位置合わせを効率よく行うためには、レンズ付き光導波路10の状態において、レンズ部品5越しに第1アライメントマーク171が視認可能になっているか、または、光導波路1越しに第2アライメントマーク551が視認可能になっているのが好ましい。すなわち、レンズ部品5は、少なくとも第1アライメントマーク171が位置する可能性が高い部分について、透明もしくは半透明になっているか、または貫通孔が設けられているのが好ましい。あるいは、光導波路1は、少なくとも第2アライメントマーク551が位置する可能性が高い部分について、透明もしくは半透明になっているか、または貫通孔が設けられているのが好ましい。これにより、レンズ付き光導波路10の状態にあっても、第1アライメントマーク171または第2アライメントマーク551を確実に視認することができるので、画像認識において、光導波路1に対するレンズ部品5の位置合わせを容易に行うことができる。さらに、後述するオフセット量計測工程S05において、レンズ部品オフセット量をより正確に計測することができる。
以上のような位置合わせの結果、第1目標位置G1とレンズ部品原点552とが完全に一致した状態で接着することができればよいが、実際には、位置合わせの誤差が発生することが避けられず、第1目標位置G1に対してレンズ部品原点552がわずかにオフセット(相対移動)された状態で接着されることが多い。
[5]オフセット量計測工程S05
第1接着工程で接着されてなるレンズ付き光導波路10では、前述したオフセットに伴って生じるオフセット量を計測する。このとき、X軸方向における第1目標位置G1からのオフセット量を「レンズ部品X軸オフセット量ORX」とし、Y軸方向における第1目標位置G1からのオフセット量を「レンズ部品Y軸オフセット量ORY」とする。また、これらを合わせて「レンズ部品オフセット量」という。
レンズ部品オフセット量の計測は、例えば第1アライメントマーク171を基準にした座標系において、第1目標位置G1の座標と、レンズ部品原点552の座標と、の差に基づいて行うことができる。
このレンズ部品オフセット量は、光導波路1の光路変換部16とレンズ部品5のレンズ54との間で光軸ずれを生じさせる原因となる。このため、本来であればゼロであることが望ましいところ、前述したような位置合わせの誤差に伴って発生する。そこで、本実施形態では、次工程以降を行うことによって、位置合わせの誤差に伴う影響を最小限に留めるようにする。
[6]第2目標位置設定工程S06
第1接着工程S04で作製したレンズ付き光導波路10は、前述したように、位置合わせの誤差、すなわちレンズ部品オフセット量を含んでいる。そこで、本工程では、前工程で求めたレンズ部品オフセット量に基づき、次工程で行うレンズ付き光導波路10と光素子搭載基板25との位置合わせをより正確に行うための第2目標位置G2を設定する。
後述する第2接着工程では、レンズ付き光導波路10と光素子搭載基板25とを接着するが、その際、光導波路1の光入出射面から光を入射し、光路変換部16での反射光を受光素子である光素子3で受光したとき、輝度が最も高くなるように位置合わせをする方法(アクティブ実装)が用いられることがある。しかしながら、このアクティブ実装では、位置合わせをするための装置構成が複雑になるとともに、作業に手間と時間を要するという課題がある。
そこで、実際に光を入射することなく、前述したような事前の情報に基づいて設定した目標位置(第2目標位置G2)を目指して位置合わせをする方法(パッシブ実装)であれば、上記課題を解決することができる。つまり、パッシブ実装によれば、作業の手間と時間を軽減することができる。
その一方、第2目標位置G2を設定するためには、前述したレンズ部品オフセット量に加え、後述する第2接着工程でも発生する光素子搭載基板25のオフセット量を加味して、光の伝搬経路、すなわち光跡を予測する必要がある。そして、予測の結果、レンズ付き光導波路10に対して光素子搭載基板25を位置合わせする際、光結合効率を高め得る位置に第2目標位置G2を設定すればよい。
したがって、本工程を行うにあたっては、レンズ部品オフセット量および光素子搭載基板オフセット量が互いに独立して変化するとき、光路変換部16と光素子3との間の光結合損失がどのように変化するかという相関関係をあらかじめ取得しておく必要がある。
この相関関係は、どのようにして取得されたものであってもよく、例えば実際にモデルを作製し、実測することによって求められたものであってもよいが、光線追跡法のようなシミュレーション技術を用いて計算で求められた相関関係であるのが好ましい。これにより、緻密な相関関係が得られる。その結果、光結合効率を特に高め得る第2目標位置G2を設定することができるので、最終的に部品間の結合損失が特に小さく抑えられた光モジュール100を製造することが可能になる。
光線追跡法では、レンズ部品オフセット量および光素子搭載基板オフセット量を入力し、レンズ54を介した光路変換部16と光素子3との間の結合損失を計算し、出力することができる。このため、レンズ部品オフセット量および光素子搭載基板オフセット量をそれぞれ変化させたときの結合損失を予測することで、前述した緻密な相関関係を作成することができる。
図14および図15は、それぞれ光路変換部16を基準にしたとき、レンズ部品5および光素子搭載基板25がオフセットされたときの結合損失の変化量の分布を示した図である。このうち、図14は、レンズ部品5および光素子搭載基板25がそれぞれX軸方向にオフセットされたときの結合損失の変化量の分布を示しており、図15は、レンズ部品5および光素子搭載基板25がそれぞれY軸方向にオフセットされたときの結合損失の変化量の分布を示している。なお、図14では、Y軸方向のオフセット量をゼロとし、図15では、X軸方向のオフセット量をゼロとしている。
図14および図15では、それぞれ0.5dBごとに結合損失の大きさを表す等高線が引かれている。各数値の等高線は、2本で一対をなしている。例えば0.5dBの2本の等高線は、それらに挟まれた領域が、0.5dB以下の結合損失となる領域であることを示している。また、1.0dBの2本の等高線は、それらに挟まれた領域が、1.0dB以下の結合損失となる領域であることを示している。なお、1.0dBの2本の等高線に挟まれた領域の一部は、0.5dBの2本の等高線に挟まれた領域と共通になるが、そうすると、共通でない領域は、結合損失が0.5dB超1.0dB以下の領域ということになる。
図14および図15に示すような相関関係と、オフセット量計測工程S05で取得したレンズ部品オフセット量と、に基づくことで、結合損失を最小化することが可能な光素子搭載基板オフセット量の設定値を求めることができる。すなわち、X軸方向における第1目標位置G1からのオフセット量である「光素子搭載基板X軸オフセット量OSX」、および、Y軸方向における第1目標位置G1からのオフセット量である「光素子搭載基板Y軸オフセット量OSY」を求めることができる。なお、これらを合わせて「光素子搭載基板オフセット量」という。そして、このようにして求めた光素子搭載基板オフセット量に基づき、第2目標位置G2を設定することができる。
なお、図14および図15に示す相関関係では、光路変換部16を基準にしたとき、例えばレンズ部品5が+X方向にオフセットされたとき、光素子搭載基板25も+X方向にオフセットさせ、かつ、オフセット量をレンズ部品5よりも大きくする方が好ましいことが読み取れる。同様に、例えばレンズ部品5が+Y方向にオフセットされたとき、光素子搭載基板25も+Y方向にオフセットさせ、かつ、オフセット量をレンズ部品5よりも大きくする方が好ましいことが読み取れる。
この場合、どの程度オフセット量を大きくするかについては、レンズ54の倍率等、レンズ54の光学設計、部品間距離等に応じて若干変化するものの、一例としてX軸方向およびY軸方向のそれぞれについて1.1倍以上2.0倍以下であるのが好ましく、1.3倍以上1.8倍以下であるのがより好ましい。このようにして、オフセット量に差を設けることにより、結合損失を特に最小化することができ、効率の高い光モジュール100を実現することができる。
[7]第2接着工程S07
次に、図13に示すように、レンズ付き光導波路10に対して光素子搭載基板25を位置合わせしながら、図8に示すようにレンズ付き光導波路10と光素子搭載基板25とを接着する。これにより、光モジュール100を得る。
図6に示す光素子搭載基板25は、前述した電気基板2と光素子3とを備えている。また、図5に示す光素子搭載基板25は、第3アライメントマーク251を備えている。第3アライメントマーク251は、容易に視認可能なマークであって、画像認識等により、光素子搭載基板25の位置を正確に検出することを可能にする。そして、第3アライメントマーク251は、図6に示すように、例えば光素子3の近傍に設けられ、光素子3との間に既知の位置関係を有している。つまり、第3アライメントマーク251の位置を検出することができれば、この既知の位置関係に基づいて、光素子3の位置を容易に導出することができる。これにより、光素子3の視認性が低く、その位置を正確に検出することが難しい場合でも、第3アライメントマーク251に基づいて、光素子3の位置を容易に把握することが可能になる。
第3アライメントマーク251は、図5に示すように、電気基板2に設けられ、光素子搭載基板25の上面側から視認可能である。このような第3アライメントマーク251としては、例えば、電気基板2と色や透明度が異なる領域、電気基板2に形成された凹みや突起等が挙げられる。また、光素子搭載基板25の外縁、光素子3の外縁や受発光部を第3アライメントマーク251として用いるようにしてもよい。
また、第3アライメントマーク251の形状は、特に限定されないが、例えば、真円、楕円、長円、円環のような円形、正方形、長方形、菱形、六角形のような多角形、その他の異形状等が挙げられる。特に、カメラ等の撮像素子に第3アライメントマーク251を識別させる場合、識別率の観点から、図6に示すような円形が好ましく用いられる。
さらに、光素子搭載基板25は、複数の第3アライメントマーク251を備えているのが好ましい。これにより、複数の第3アライメントマーク251を同時に視認することにより、光素子搭載基板25の傾きについても容易に検出することができる。
なお、図5では、第3アライメントマーク251同士の中間点を「光素子搭載基板原点252」とする。この光素子搭載基板原点252は、部品上において目視可能な状態で設けられる点であってもよいが、第3アライメントマーク251やその他の基準点から特定される仮想の点であってもよい。
本工程における位置合わせは、前述した第2目標位置G2に対して光素子搭載基板原点252を重ねるように行う。その結果、光モジュール100が得られる。
このようにして得られた光モジュール100は、光路変換部ずれ量およびレンズずれ量という部品製造時の製造誤差、ならびに、レンズ部品オフセット量という組立時の製造誤差を、最終組み立て時にできるだけ吸収し、最終的に残る誤差の影響を最小限に留めることができる。つまり、第2目標位置設定工程S06において、前述した製造誤差を吸収可能な第2目標位置G2を設定することによって、その後の第2接着工程S07において製造誤差が発生したとしても、最終的に得られる光モジュール100に発生する結合損失を最小限に留めることが可能になる。したがって、本実施形態によれば、部品間の結合損失が小さい光モジュール100を効率よく製造することができる。
なお、実際の作業効率の観点、および、画像認識における認識率の観点からすると、第1アライメントマーク171または第2アライメントマーク551と、第3アライメントマーク251との相対位置に基づいて位置合わせをするのが好ましい。すなわち、第1アライメントマーク171と第2アライメントマーク551とを画像認識しながら、双方の位置関係が目的とする位置関係になるように光素子搭載基板25の位置を合わせるようにすればよい。
ここで、第3アライメントマーク251は、光素子3とは異なるマークを別途設けるのではなく、光素子3の受発光部そのものであってもよい。すなわち、本工程において、光素子3の受発光部と、レンズ付き光導波路10のレンズ54または第2アライメントマーク551と、を確認しつつ、光素子搭載基板25の光素子搭載基板原点252が第2目標位置G2に合うように、レンズ付き光導波路10と光素子搭載基板25との位置関係を調整するのが好ましい。光素子3の受発光部は、視認性が高い場合が多いため、第3アライメントマーク251としてこの受発光部を用いることにより、第3アライメントマーク251として受発光部以外の部位を用いる場合に比べて、位置合わせの誤差をより小さくすることができる。つまり、受発光部は、位置合わせすべき対象物そのものであるため、それとは別の部位を第3アライメントマーク251として設定した場合に比べて、誤差を小さくすることが可能である。このため、最終的に部品間の結合損失がより小さい光モジュール100を製造することができる。
また、画像認識による位置合わせを精度よく効率的に行うためには、レンズ付き光導波路10と光素子搭載基板25とを重ねた状態において、レンズ付き光導波路10越しに第3アライメントマーク251が視認可能になっているか、または、光素子搭載基板25越しに第1アライメントマーク171または第2アライメントマーク551のいずれかが視認可能になっているのが好ましい。すなわち、レンズ付き光導波路10は、少なくとも第3アライメントマーク251が位置する可能性が高い部分について、透明もしくは半透明になっているか、または貫通孔が設けられているのが好ましい。あるいは、光素子搭載基板25は、少なくとも第1アライメントマーク171または第2アライメントマーク551のいずれかが位置する可能性が高い部分について、透明もしくは半透明になっているか、または貫通孔が設けられているのが好ましい。これにより、第1アライメントマーク171、第2アライメントマーク551または第3アライメントマーク251のいずれかを確実に視認することができるので、画像認識において、レンズ付き光導波路10に対する光素子搭載基板25の位置合わせを容易に行うことができる。
以上、本発明の光モジュールの製造方法を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
例えば、前記実施形態には、任意の目的の工程が付加されていてもよい。
また、前述した、ずれ補正前原点、第1目標位置および第2目標位置は、それぞれ、部品上において目視可能な状態で設けられる必要はなく、アライメントマークやその他の基準点から特定される仮想の点であればよい。
1 光導波路
2 電気基板
3 光素子
4 制御素子
5 レンズ部品
10 レンズ付き光導波路
11 クラッド層
12 クラッド層
13 コア層
14 コア部
15 側面クラッド部
16 光路変換部
17 下側保護層
18 上側保護層
21 絶縁基板
22 導電層
23 接点
25 光素子搭載基板
51 基部
52 壁部
53 空洞
54 レンズ
62 MT型光コネクター
100 光モジュール
101 積層体
141 拡幅部
160 凹部
161 設計位置
162 実際位置
171 第1アライメントマーク
251 第3アライメントマーク
252 光素子搭載基板原点
541 設計位置
542 実際位置
551 第2アライメントマーク
552 レンズ部品原点
G1 第1目標位置
G2 第2目標位置
O ずれ補正前原点
ORX レンズ部品X軸オフセット量
ORY レンズ部品Y軸オフセット量
OSX 光素子搭載基板X軸オフセット量
OSY 光素子搭載基板Y軸オフセット量
S01 第1ずれ量計測工程
S02 第2ずれ量計測工程
S03 第1目標位置設定工程
S04 第1接着工程
S05 オフセット量計測工程
S06 第2目標位置設定工程
S07 第2接着工程
SMX 光路変換部X軸ずれ量
SMY 光路変換部Y軸ずれ量
SRX レンズX軸ずれ量
SRY レンズY軸ずれ量

Claims (4)

  1. 線状に延在するコア部と前記コア部の光路を変換する光路変換部と第1アライメントマークとを備える光導波路、レンズと第2アライメントマークとを備えるレンズ部品、および、光素子と基板とを備える光素子搭載基板を、この順で積層してなる光モジュールの製造方法であって、
    前記第1アライメントマークに対する前記光路変換部の設計位置からのずれ量である光路変換部ずれ量と、前記第2アライメントマークに対する前記レンズの設計位置からのずれ量であるレンズずれ量とに基づいて、前記光導波路に対して前記レンズ部品を位置合わせする際の第1目標位置を設定する第1目標位置設定工程と、
    前記レンズ部品を前記第1目標位置に合わせるように前記光導波路と前記レンズ部品とを接着し、レンズ付き光導波路を得る第1接着工程と、
    前記レンズ付き光導波路において、前記第1アライメントマークの位置および前記第2アライメントマークの位置に基づいて、前記第1目標位置に対する前記レンズ部品のオフセット量であるレンズ部品オフセット量を求めるオフセット量計測工程と、
    前記レンズ部品オフセット量、および、前記第1目標位置に対する前記光素子搭載基板のオフセット量である光素子搭載基板オフセット量と、前記光モジュールの結合損失と、の相関関係に基づき、前記レンズ付き光導波路に対して前記光素子搭載基板を位置合わせする際の第2目標位置を設定する第2目標位置設定工程と、
    前記光素子搭載基板を第2目標位置に合わせるように前記レンズ付き光導波路と前記光素子搭載基板とを接着し、前記光モジュールを得る第2接着工程と、
    を有することを特徴とする光モジュールの製造方法。
  2. 前記レンズ付き光導波路において、前記レンズ部品越しに前記第1アライメントマークが視認可能になっている請求項1に記載の光モジュールの製造方法。
  3. 前記第2接着工程において、前記光素子の受発光部と、前記レンズ付き光導波路の前記レンズまたは前記第2アライメントマークと、を確認しつつ、前記光素子搭載基板が前記第2目標位置に合うように、前記レンズ付き光導波路と前記光素子搭載基板との位置関係を調整する請求項1または2に記載の光モジュールの製造方法。
  4. 前記相関関係は、前記レンズ部品オフセット量および前記光素子搭載基板オフセット量と、それらを入力し光線追跡法による計算で求められた前記結合損失と、に基づくものである請求項1ないし3のいずれか1項に記載の光モジュールの製造方法。
JP2018238826A 2018-12-20 2018-12-20 光モジュールの製造方法 Active JP7135830B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018238826A JP7135830B2 (ja) 2018-12-20 2018-12-20 光モジュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238826A JP7135830B2 (ja) 2018-12-20 2018-12-20 光モジュールの製造方法

Publications (2)

Publication Number Publication Date
JP2020101636A JP2020101636A (ja) 2020-07-02
JP7135830B2 true JP7135830B2 (ja) 2022-09-13

Family

ID=71141244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238826A Active JP7135830B2 (ja) 2018-12-20 2018-12-20 光モジュールの製造方法

Country Status (1)

Country Link
JP (1) JP7135830B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231041A (ja) 1999-02-10 2000-08-22 Nec Corp 光半導体素子と光伝送路の結合構造及びその結合方法
JP2008158001A (ja) 2006-12-20 2008-07-10 Sony Corp 光結合器
US20080285920A1 (en) 2007-04-10 2008-11-20 International Business Machines Corporation Coupling element alignment using waveguide fiducials
JP2016145907A (ja) 2015-02-06 2016-08-12 富士通コンポーネント株式会社 光導波路モジュール
JP2017050470A (ja) 2015-09-03 2017-03-09 富士通コンポーネント株式会社 素子実装装置及び素子実装方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711691B1 (ko) * 2013-01-02 2017-03-02 한국전자통신연구원 하이브리드 광결합 모듈 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231041A (ja) 1999-02-10 2000-08-22 Nec Corp 光半導体素子と光伝送路の結合構造及びその結合方法
JP2008158001A (ja) 2006-12-20 2008-07-10 Sony Corp 光結合器
US20080285920A1 (en) 2007-04-10 2008-11-20 International Business Machines Corporation Coupling element alignment using waveguide fiducials
JP2016145907A (ja) 2015-02-06 2016-08-12 富士通コンポーネント株式会社 光導波路モジュール
JP2017050470A (ja) 2015-09-03 2017-03-09 富士通コンポーネント株式会社 素子実装装置及び素子実装方法

Also Published As

Publication number Publication date
JP2020101636A (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
KR102116151B1 (ko) 광 섬유의 입력/출력 결합을 위해 구조화된 반사면을 구비하는 결합 디바이스
US7614802B2 (en) Optically coupled device and optical module including optically coupled device
CN100507625C (zh) 光连接器组件,耦合装置以及对准这种耦合装置与波导结构的方法
TWI589941B (zh) 光傳送模組及光傳送模組之製造方法
US8554030B2 (en) Optically coupled device and optical module including optically coupled device
KR102438309B1 (ko) 광 도파로용 커넥터 부재 및 이를 이용한 광 커넥터 키트와, 이에 의해 얻어지는 광 배선
WO2013053708A1 (en) Optical connector with alignment element, optical unit and assembly method
US20170307833A1 (en) Opto-electric hybrid board, and production method therefor
US10042134B2 (en) Optical module
US10288807B2 (en) Optical waveguide having core partially formed in S-shape, and position sensor and optical circuit board including the same
JP7135830B2 (ja) 光モジュールの製造方法
US20140086532A1 (en) Optical Coupling Device, Optical Communication System and Method of Manufacture
CN103984067B (zh) 实现多通道光分束的光器件
WO2018042984A1 (ja) 光接続構造
JP2017203793A (ja) 電気光変換モジュール
JP2021113844A (ja) 光配線部品の製造方法
CN107430246B (zh) 光传输模块
WO2022071108A1 (ja) 光電気混載基板、光素子実装光電気混載基板およびその光素子実装光電気混載基板の製造方法
KR20190088474A (ko) 광 전기 혼재 기판
KR101432402B1 (ko) 광도파로 디바이스
JP7192270B2 (ja) 光導波路、光モジュールおよび電子機器
JP7192269B2 (ja) 光導波路、光モジュールおよび電子機器
JP2020056894A (ja) 光路変換部品、光路変換部品付き光導波路、光モジュールおよび電子機器
JP2022050209A (ja) 光モジュール及び光コネクタケーブル
JP2020160307A (ja) 光導波路、光モジュールおよび電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7135830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151