JP7131301B2 - 電極触媒層及び固体高分子形燃料電池 - Google Patents

電極触媒層及び固体高分子形燃料電池 Download PDF

Info

Publication number
JP7131301B2
JP7131301B2 JP2018204000A JP2018204000A JP7131301B2 JP 7131301 B2 JP7131301 B2 JP 7131301B2 JP 2018204000 A JP2018204000 A JP 2018204000A JP 2018204000 A JP2018204000 A JP 2018204000A JP 7131301 B2 JP7131301 B2 JP 7131301B2
Authority
JP
Japan
Prior art keywords
mass
catalyst layer
electrode catalyst
polymer electrolyte
carbon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018204000A
Other languages
English (en)
Other versions
JP2019207860A (ja
Inventor
克行 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Publication of JP2019207860A publication Critical patent/JP2019207860A/ja
Priority to JP2022134304A priority Critical patent/JP7294513B2/ja
Application granted granted Critical
Publication of JP7131301B2 publication Critical patent/JP7131301B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Description

本発明は、固体高分子形燃料電池用の膜電極接合体を構成する電極触媒層及びそれを備えた固体高分子形燃料電池に関する。
近年、環境問題やエネルギー問題の有効な解決策として、燃料電池が注目を浴びている。燃料電池は、水素などの燃料を酸素などの酸化剤を用いて酸化し、これに伴う化学エネルギーを電気エネルギーに変換する。
燃料電池は、電解質の種類によって、アルカリ形、リン酸形、高分子形、溶融炭酸塩形、固体酸化物形などに分類される。固体高分子形燃料電池(PEFC)は、低温作動、高出力密度であり、小型化・軽量化が可能であることから、携帯用電源、家庭用電源、車載用動力源としての応用が期待されている。
固体高分子形燃料電池(PEFC)は、電解質膜である高分子電解質膜を、燃料極(アノード)と空気極(カソード)からなる一対の電極で挟んだ膜電極接合体を備え、燃料極側に水素を含む燃料ガスを、空気極側に酸素を含む酸化剤ガスを供給することで、下記の電気化学反応により発電する。
アノード:H → 2H+ 2e ・・・(1)
カソード:1/2O + 2H+ 2e → HO ・・・(2)
アノード及びカソードは、それぞれ電極触媒層とガス拡散層の積層構造からなる。アノード側電極触媒層に供給された燃料ガスは、電極触媒によりプロトンと電子となる(反応1)。プロトンは、アノード側電極触媒層内の高分子電解質、高分子電解質膜を通り、カソードに移動する。電子は、外部回路を通り、カソードに移動する。カソード側の電極触媒層では、プロトンと電子と外部から供給された酸化剤ガスが反応して水を生成する(反応2)。このように、電子が外部回路を通ることにより発電する。
現在、燃料電池の低コスト化に向けて、高出力特性を示す燃料電池が望まれている。しかし、燃料電池は、高出力運転においては多くの生成水が発生するため、電極触媒層やガス拡散層に水が溢れ、ガスの供給が妨げられるフラッディングが生じる。フラッディングが発生した場合には、燃料電池の出力が著しく低下する課題がある。
上記課題に対し、特許文献1、2では、異なる粒子径のカーボン又はカーボン繊維を含む触媒層が提案されている。
特開平10-241703号公報 特許第5537178号公報
特許文献1、2では、異なるカーボン材料を含むことにより電極触媒層内に空孔が生じ、排水性やガス拡散性の向上が期待できると記載されている。しかし、カーボン材料の大きさ、形状や含有量についての記載はあるが、触媒層の構造についての記載がなく、その効果については具体的には検証されてはいない。
発明は、このような事情に鑑みてなされたものであって、排水性やガス拡散性が向上でき、高出力が可能な固体高分子形燃料電池用の電極触媒層及びそれを備えた固体高分子形燃料電池を提供することを目的とする。
上記課題を解決するために、本発明の一態様は、高分子電解質膜に接合される電極触媒層であって、触媒、炭素粒子、高分子電解質及び繊維状物質を有し、密度が400mg/cm以上1000mg/cm以下あり、前記高分子電解質の質量が前記炭素粒子と前記繊維状物質の合算質量に対して10質量%以上200質量%以下の範囲内であることを特徴とする。
本発明の一態様によれば、排水性やガス拡散性が向上でき、高出力が可能な固体高分子形燃料電池用触媒層及びそれを備えた固体高分子形燃料電池を提供することができる。
本発明の実施の形態に係る電極触媒層の構成例を示す分解断面図である。 本発明の実施の形態に係る膜電極接合体の構成例を示す断面図である。 膜電極接合体を装着した固体高分子形燃料電池の単セルの構成例を示す分解断面図である。
以下、本発明の実施形態について図面を参照しつつ説明する。
なお、本発明は、以下に記載する各実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれものである。
(電極触媒層)
図1に示すように、本発明の実施の形態(以下、本実施形態)に係る固体高分子形燃料電池用の電極触媒層2、3は、触媒13、触媒13を担持する炭素粒子14、高分子電解質15及び繊維状物質16を含む。そして、上記のいずれの構成要素も存在しない部分が空孔となっている。
また、本実施形態に係る電極触媒層2、3は、密度が400mg/cm以上1000mg/cm以下の範囲内に設定されており、好ましくは、500mg/cm以上900mg/cm以下の範囲内であり、より好ましくは、600mg/cm以上900mg/cm以下の範囲内である。繊維状物質16を含むことにより、形成時にクラックが発生せず、また電極触媒層2、3内の空孔を増加させることが可能となる。密度が400mg/cmより小さいと、電極触媒層2、3が脆く、運転時に空孔が潰れ、排水性が低下することがある。また、密度が1000mg/cmより大きいと、空孔が少なく、排水性が低下することがある。
また、電極触媒層2、3は、単層、多層でもよく、密度は均一、不均一、異なっていてもよい。電極触媒層2、3の密度は、高分子電解質膜1側が大きく、その反対側が小さいと、排水性が向上し、より好ましい。
繊維状物質16の繊維径と炭素粒子14の粒子径の比(繊維状物質16/炭素粒子14)は、0.01以上10以下の範囲内であることが好ましく、より好ましくは、0.1以上8以下の範囲内である。上記範囲内であれば、電極触媒層2、3内に空孔が形成されやすく、排水性が向上しやすい。繊維状物質16の繊維径および炭素粒子14の粒子径は、光学顕微鏡、走査電子顕微鏡(SEM)、透過電子顕微鏡(TEM)等により観察し、繊維状物質16の繊維径および炭素粒子14の粒子径を計測し、その平均値をとることにより算出できる。
高分子電解質15としては、イオン伝導性を有するものであればよいが、電極触媒層2、3と高分子電解質膜の密着性を考えると、高分子電解質膜と同質の材料を選択することが好ましい。高分子電解質15には、例えばフッ素系樹脂や炭化水素系樹脂が使用可能である。例えば、フッ素系樹脂としては、Nafion(デュポン社製、登録商標)、炭化水素系樹脂としては、エンジニアリングプラスチック、又はその共重合体にスルホン酸基を導入したものなどが挙げられる。高分子電解質15の含有量としては、炭素粒子14と繊維状物質16の合算質量に対して10質量%以上200質量%以下の範囲内が好ましい。更に好ましくは、30質量%以上150質量%以下の範囲内である。高分子電解質15の含有量が10質量%より小さいと、プロトン伝導性が低下し、発電性能が低下することがある。また、高分子電解質15の含有量が200質量%より大きいと、フラッディングが起こり、発電性能が低下することがある。
触媒13としては、例えば、白金族元素、金属又はこれらの合金、又は酸化物、複酸化物などが使用できる。白金族元素としては、例えば、白金やパラジウム、ルテニウム、イリジウム、ロジウム、オスミウムがある。金属としては、例えば、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどが例示できる。その中でも、触媒13としては白金や白金合金が好ましい。また、これらの触媒13の粒径は、大きすぎると触媒13の活性が低下し、小さすぎると触媒13の安定性が低下することがある。そのため、0.5nm以上20nm以下の範囲内が好ましい。更に好ましくは、1nm以上5nm以下の範囲内である。
炭素粒子14としては、微粒子状で導電性を有し、触媒13におかされないものであればどのようなものでも構わない。炭素粒子14の粒径が小さすぎると電子伝導パスが形成されにくくなることがある。一方、炭素粒子14の粒径が大きすぎると電極触媒層2、3が厚くなり抵抗が増加することで、出力特性が低下することがある。そのため炭素粒子14の粒径は、10nm以上1000nm以下の範囲内が好ましい。更に好ましくは、10nm以上100nm以下の範囲内である。
炭素粒子14には、触媒13が担持されていることが好ましい。高表面積の炭素粒子14に触媒13を担持することで、高密度で触媒13が担持でき、触媒活性を向上させることができる。具体的には、炭素粒子14と触媒13との合算質量を100質量%とするとき、触媒13の質量は5質量%以上80質量%以下の範囲内が好ましい。更に好ましくは、10質量%以上60質量%以下の範囲内である。触媒13の質量が80質量%より大きいと、触媒同士の距離が近いため、運転中に触媒同士が凝集・粗大化し、触媒活性が低下しやすい。触媒13の質量が5質量%より小さいと、触媒13を炭素粒子14の表面に均一に担持することができず、触媒13の偏在や凝集・粗大化が起こり、触媒活性が低下しやすい。
繊維状物質16としては、例えば、電子伝導性繊維およびプロトン伝導性繊維が使用できる。繊維状物質16は、以下に示す繊維のうち一種のみを単独で使用してもよいが、二種以上を併用してもよく、電子伝導性繊維とプロトン伝導性繊維を併せて用いてもよい。
本実施形態に係る電子伝導性繊維としては、例えば、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン、導電性高分子ナノファイバーなどが例示できる。特に、導電性や分散性の点でカーボンナノファイバーが好ましい。また、触媒能のある電子伝導性繊維を用いることで、貴金属からなる触媒の使用量を低減できるのでより好ましい。本実施形態に係る固体高分子形燃料電池用触媒層が固体高分子形燃料電池の空気極として用いられる場合には、電子伝導性繊維として、例えば、カーボンナノファイバーから作製したカーボンアロイ触媒が例示できる。また、酸素還元電極用の電極活物質を繊維状に加工したものであってもよく、例えば、Ta、Nb、Ti、Zrから選択される、少なくとも一つの遷移金属元素を含む物質を使用してもよい。これらの遷移金属元素の炭窒化物の部分酸化物、または、これらの遷移金属元素の導電性酸化物や導電性酸窒化物が例示できる。
本実施形態に係るプロトン伝導性繊維としては、プロトン伝導性を有する高分子電解質を繊維状に加工したものであればよく、例えば、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えば、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などを用いることができる。炭化水素系高分子電解質としては、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質を用いることができる。中でも、高分子電解質としてデュポン社製Nafion(登録商標)系材料を好適に用いることができる。炭化水素系高分子電解質としては、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質を用いることができる。
繊維状物質16の繊維径としては、0.5nm以上500nm以下の範囲が好ましく、10nm以上300nm以下の範囲がより好ましい。上記範囲にすることにより、電極触媒層2、3内の空孔を増加させることができ、高出力化が可能になる。
繊維状物質16の繊維長としては1μm以上200μm以下の範囲内が好ましく、1μm以上50μm以下の範囲内がより好ましい。上記範囲にすることにより、電極触媒層2、3の強度を高めることができ、形成時にクラックが生じることを抑制できる。また、電極触媒層2、3内の空孔を増加させることができ、高出力化が可能になる。繊維状物質16の繊維長は、光学顕微鏡、走査電子顕微鏡(SEM)、透過電子顕微鏡(TEM)等により観察し、繊維状物質16の繊維長を計測し、その平均値をとることにより算出できる。
繊維状物質16の含有量は、炭素粒子14の質量に対して10質量%以上250質量%以下の範囲内が好ましく、10質量%以上200質量%以下の範囲内がより好ましい。炭素粒子14の質量に対して10質量%より小さいと、ガス拡散性や排水性が低下することがある。炭素粒子14の質量に対して250質量%より大きいと、触媒13を担持させるための導電体(炭素粒子14および導電性繊維)の比表面積が減少し、触媒13を高密化できず、触媒活性が低下することがある。
電極触媒層2、3の厚さは、5μm以上30μm以下の範囲内が好ましく、5μm以上20μm以下がより好ましい。電極触媒層2、3の厚さが5μmより小さいと、電極触媒層内2、3において、発電による生成水濃度が高くなり易く、フラッディングが生じ易く、発電性能が低下することがあるため、好ましくない。電極触媒層2、3の厚さが30μmより大きいと、電極触媒層2、3の抵抗が大きくなり、出力が低下することがある。
また、アノード側電極触媒層3とカソード側電極触媒層2の厚みは、同じでもよく、異なっていてもよい。カソード側電極触媒層2の厚みをアノード側電極触媒層3の厚みより厚くすることで、より排水性を高めることができる。カソード側電極触媒層2が厚いと、発電により生成した水を系外に排水しやすい。また、アノードには乾燥した燃料が用いられるため、アノード側電極触媒層3が薄いと、アノード側電極触媒層3が乾燥しやすい。そのため、カソード側の生成水が高分子電解質膜1を通してアノード側に移動する。その結果、カソード側電極触媒層2内の水分量が適度に保たれ、排水性を高めることができる。
(膜電極接合体)
本実施形態に係る固体高分子形燃料電池用の膜電極接合体12は、例えば図2に示すよう断面図のような構造体となっている。この膜電極接合体12は、高分子電解質膜1と、高分子電解質膜1の一方の面に形成されたカソード側電極触媒層2と、高分子電解質膜1の他方の面に形成されたアノード側電極触媒層3と、を備えた構造となっている。本実施形態に係る電極触媒層は、カソード側電極触媒層2及びアノード側電極触媒層3の一方若しくは両方に該当する。
(固体高分子形燃料電池)
本実施形態に係る固体高分子形燃料電池は、図3に示すように、膜電極接合体12のカソード側電極触媒層2及びアノード側電極触媒層3と対向して、空気極側ガス拡散層4及び燃料極側ガス拡散層5がそれぞれ配置されている。これにより、カソード側電極触媒層2と空気極側ガス拡散層4とから空気極6が構成されると共に、アノード側電極触媒層3と燃料極側ガス拡散層5とで燃料極7が構成される。そして、空気極6及び燃料極7を一組のセパレータ10により挟持することで、単セルの固体高分子形燃料電池11が構成される。一組のセパレータ10は、導電性でかつガス不透過性の材料からなり、空気極側ガス拡散層4又は燃料極側ガス拡散層5に面して配置された反応ガス流通用のガス流路8と、ガス流路8と相対する主面に配置された冷却水流通用の冷却水流路9とを備える。
この固体高分子形燃料電池11は、一方のセパレータ10のガス流路8を通って空気や酸素などの酸化剤が空気極6に供給され、他方のセパレータ10のガス流路8を通って水素を含む燃料ガス若しくは有機物燃料が燃料極7に供給されることによって、発電するようになっている。
(電極触媒層の製造方法)
電極触媒層2、3は、触媒層用スラリーを作製し、作製した触媒層用スラリーを基材などに塗工・乾燥することで製造できる。
触媒層用スラリーは、触媒13、炭素粒子14、高分子電解質15、繊維状物質16及び溶媒を含む。溶媒としては、特に限定しないが、高分子電解質15を分散又は溶解できるものがよい。一般的に用いられる溶媒としては、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコールなどのアルコール類、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイゾブチルケトン、メチルアミルケトン、ペンタノン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトンなどのケトン類、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテルなどのエーテル類、イソプロピルアミン、ブチルアミン、イソブチルアミン、シクロヘキシルアミン、ジエチルアミン、アニリンなどのアミン類、蟻酸プロピル、蟻酸イソブチル、蟻酸アミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチルなどのエステル類、その他酢酸、プロピオン酸、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどが挙げられる。また、グリコール、グリコールエーテル系溶媒としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジアセトンアルコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノールなどが挙げられる。
触媒層用スラリーの塗工方法としては、例えば、ドクターブレード法、ダイコーティング法、ディッピング法、スクリーン印刷法、ラミネータロールコーティング法、スプレー法などが挙げられるが、特に限定しない。
触媒層用スラリーの乾燥方法としては、例えば、温風乾燥、IR乾燥などが挙げられる。乾燥温度は、40℃以上200℃以下の範囲内、好ましくは40℃以上120℃以下の範囲内である。乾燥時間は、0.5分以上1時間以下の範囲内、好ましくは1以上30分以下の範囲内である。
ここで、電極触媒層2、3は、密度が400mg/cm以上1000mg/cm以下の範囲内に設定するには、繊維状物質16の添加量や繊維長、乾燥のための加熱温度、温度勾配、電極触媒層が乾燥されるまでに付与される膜厚方向の加圧などの条件を調整することで実現することが可能である。
(膜電極接合体の製造方法)
膜電極接合体12の製造方法としては、例えば、転写基材又はガス拡散層4、5に電極触媒層2、3を形成した後、高分子電解質膜1に熱圧着で電極触媒層2、3を形成する方法や高分子電解質膜1に直接電極触媒層2、3を形成する方法が挙げられる。高分子電解質膜1に直接電極触媒層2、3を形成する方法は、高分子電解質膜1と電極触媒層2、3との密着性が高く、電極触媒層2、3が潰れる恐れが低いため、好ましい。
以上説明したように、本実施形態に係る電極触媒層2、3は、触媒13、炭素粒子14、高分子電解質15及び繊維状物質16を含み、密度が400mg/cm以上、1000mg/cm以下の範囲内である。また、高分子電解質15の質量が炭素粒子14と繊維状物質16の合算質量に対して20質量%以上200質量%以下の範囲内となっている。
この構成によれば、排水性やガス拡散性が向上でき、高出力が可能な固体高分子形燃料電池用の電極触媒層を提供することができる。
そして、本実施形態に係る電極触媒層2、3は、例えば、固体高分子形燃料電池に適用することが極めて好適である。
なお、本実施形態では触媒13を炭素粒子14に担持させた場合について説明したが、触媒13を繊維状物質16に担持させてもよく、さらに炭素粒子14および繊維状物質16のいずれにも担持させてもよい。繊維状物質16で形成された空隙は発電による生成水の排出経路とすることができる。ここで、繊維状物質16に触媒13を担持させた場合は、生成水の排出経路内で電極反応も起こる。一方で、触媒13を炭素粒子14に担持させることで、炭素粒子14と触媒13とガスとに起因する三相界面による反応点と、繊維状物質16により形成された空間による生成水の排出経路とを区別でき、触媒電極層の排水性を向上することができるため好ましい。
次に、本発明に基づく第1実施例及び第2実施例について説明する。
[密度の算出]
密度は、電極触媒層2、3の質量と厚さから求めた。電極触媒層2、3の質量は、触媒層用スラリー塗工量から求めた質量又は乾燥質量を用いた。電極触媒層2、3の質量を塗工量から求める場合は、予め触媒層用スラリーの固形分(質量%)を求めておき、所定の塗工量と固形分質量から求めた。また、電極触媒層2、3の質量を乾燥質量から求める場合は、電極触媒層2、3を所定の大きさに加工し、その質量を計量し求めた。電極触媒層2、3の厚さは、走査電子顕微鏡(倍率:2000倍)で断面を観察し、電極触媒層2、3の厚さを計測し、その平均値を求めた。
[繊維状物質の繊維径および炭素粒子の粒子径の算出]
繊維状物質の繊維径および炭素粒子の粒子径の算出は、走査電子顕微鏡(倍率:30000倍)で断面を観察し、繊維状物質16の繊維径および炭素粒子14の粒子径を計測し、その平均値(10箇所)を求めた。
[発電特性の評価]
電極触媒層2、3の外側にガス拡散層(SIGRACET(登録商標) 35BC、SGL社製)を配置して、市販のJARI標準セルを用いて発電特性の評価を行った。セル温度は、80℃として、アノードに水素(100%RH)、カソードに空気(100%RH)を供給した。
<第1実施例>
[実施例1-1]
電極触媒層の厚さおよび密度が表1に記載の値になるように電極触媒層を形成した。
まず、白金担持カーボン(TEC10E50E、田中貴金属社製)を容器にとり、水を加えて混合後、1-プロパノール、電解質(Nafion(登録商標)分散液、和光純薬工業)と繊維状物質としてカーボンナノファイバー(昭和電工社製、商品名「VGCF」、繊維径約150nm、繊維長約10μm)を加えて撹拌して、触媒層用スラリーを得た。なお、高分子電解質の質量は炭素粒子と繊維状物質の合算質量に対して75質量%、繊維状物質の質量は炭素粒子の質量に対して100質量%となるように加えた。
得られた触媒層用スラリーを高分子電解質膜(デュポン社製、Nafion212)にダイコーティング法で塗工し、80℃の炉内で乾燥することで実施例1-1の電極触媒層を有した膜電極接合体を得た。
[実施例1-2]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して100質量%となるように加えた以外は、実施例1-1と同様の手順で実施例1-2の電極触媒層を有した膜電極接合体を得た。
[実施例1-3]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して15質量%となるように加えた以外は、実施例1-1と同様の手順で実施例1-3の電極触媒層を有した膜電極接合体を得た。
[実施例1-4]
繊維状物質としてカーボンナノチューブ(繊維径約1nm、繊維長約1μm)を用いた以外は、実施例1-1と同様の手順で実施例1-4の電極触媒層を有した膜電極接合体を得た。
[実施例1-5]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して42質量%、繊維状物質の質量を炭素粒子の質量に対して260質量%となるように加えた以外は、実施例1-1と同様の手順で実施例1-5の電極触媒層を有した膜電極接合体を得た。
[実施例1-6]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して54質量%、繊維状物質の質量を炭素粒子の質量に対して180質量%となるように加えた以外は、実施例1-1と同様の手順で実施例1-6の電極触媒層を有した膜電極接合体を得た。
[実施例1-7]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して100質量%、繊維状物質の質量を炭素粒子の質量に対して50質量%となるように加えた以外は、実施例1-1と同様の手順で実施例1-7の電極触媒層を有した膜電極接合体を得た。
[実施例1-8]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して130質量%、繊維状物質の質量を炭素粒子の質量に対して15質量%となるように加えた以外は、実施例1-1と同様の手順で実施例1-8の電極触媒層を有した膜電極接合体を得た。
[実施例1-9]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して139質量%、繊維状物質の質量を炭素粒子の質量に対して8質量%となるように加えた以外は、実施例1-1と同様の手順で実施例1-9の電極触媒層を有した膜電極接合体を得た。
[実施例1-10]
白金担持カーボンとしてTEC10E70TPM(田中貴金属社製)を用いた以外は、実施例1-1と同様の手順で実施例1-10の電極触媒層を有した膜電極接合体を得た。
[実施例1-11]
白金担持カーボンとしてTEC10E60TPM(田中貴金属社製)を用いた以外は、実施例1-1と同様の手順で実施例1-11の電極触媒層を有した膜電極接合体を得た。
[実施例1-12]
白金担持カーボンとしてTEC10E40E(田中貴金属社製)を用いた以外は、実施例1-1と同様の手順で実施例1-12の電極触媒層を有した膜電極接合体を得た。
[実施例1-13]
触媒層用スラリーを100℃で乾燥した以外は、実施例1-10と同様の手順で実施例1-13の電極触媒層を有した膜電極接合体を得た。
[実施例1-14]
触媒層用スラリーを100℃で乾燥した以外は、実施例1-11と同様の手順で実施例1-14の電極触媒層を有した膜電極接合体を得た。
[実施例1-15]
PET基材に塗工し、熱圧着により電解質膜に転写した以外は、実施例1-1と同様の手順で実施例1-15の電極触媒層を有した膜電極接合体を得た。
[実施例1-16]
PET基材に塗工し、熱圧着により電解質膜に転写した以外は、実施例1-2と同様の手順で実施例1-16の電極触媒層を有した膜電極接合体を得た。
[実施例1-17]
白金担持カーボンとしてTEC10E70TPM(田中貴金属社製)を用いて、電極触媒層の厚みが5μm以下となるように塗工量を調整した以外は、実施例1-8と同様の手順で実施例1-17の電極触媒層を有した膜電極接合体を得た。
[実施例1-18]
塗工量を半分にした以外は、実施例1-1と同様の手順で実施例1-18の電極触媒層を有した膜電極接合体を得た。
[比較例1-1]
熱圧着する圧力を2倍にした以外は、実施例1-15と同様の手順で比較例1-1の電極触媒層を有した膜電極接合体を得た。
[比較例1-2]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して204質量%、繊維状物質の質量を炭素粒子の質量に対して8質量%となるように加えた以外は、実施例1-1と同様の手順で比較例1-2の電極触媒層を有した膜電極接合体を得た。
[比較例1-3]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して7質量%、繊維状物質の質量を炭素粒子の質量に対して180質量%となるように加えた以外は、実施例1-1と同様の手順で比較例1-3の電極触媒層を有した膜電極接合体を得た。
[比較例1-4]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して150質量%、繊維状物質の質量を炭素粒子の質量に対して0質量%となるように加えた以外は、実施例1-1と同様の手順で比較例1-4の電極触媒層を有した膜電極接合体を得た。なお、電極触媒層にはクラックが発生した。
[比較結果]
実施例1-1~1-18の膜電極接合体及び比較例1-1~1-4の膜電極接合体を備えた固体高分子形燃料電池の、電極触媒層の組成、電極触媒層の厚み、電極触媒層の密度、発電性能を表1に示す。
発電性能については、電流密度が1.0A/cmのときの電圧が0.55V以上である場合を「△」、0.58V以上である場合を「○」、0.61V以上である場合を「◎」、0.55V未満である場合を「×」とした。発電性能は高出力であるほど好ましいが、0.55V以上あることで使用上問題ない膜電極接合体を得られたと判断した。
Figure 0007131301000001
表1の結果より、本実施形態によれば、触媒13、炭素粒子14、高分子電解質15及び繊維状物質16を有し、密度が400mg/cm以上1000mg/cm以下であり、高分子電解質15の質量が炭素粒子14と繊維状物質16の合算質量に対して10質量%以上200質量%以下の範囲内である電極触媒層2、3を使用することで、発電性能に優れた固体高分子形燃料電池用の膜電極接合体12を提供できる。
<第2実施例>
[実施例2-1]
電極触媒層の厚さおよび密度が表2に記載の値になるように電極触媒層を形成した。
まず、白金担持カーボン(TEC10E50E、田中貴金属社製)を容器にとり、水を加えて混合後、1-プロパノール、電解質(Nafion(登録商標)分散液、和光純薬工業)と繊維状物質としてカーボンナノファイバー(昭和電工社製、商品名「VGCF」、繊維径約150nm、繊維長約10μm)を加えて撹拌して、触媒層用スラリーを得た。なお、高分子電解質の質量は炭素粒子と繊維状物質の合算質量に対して75質量%、繊維状物質の質量は炭素粒子の質量に対して100質量%となるように加えた。
得られた触媒層用スラリーを高分子電解質膜(デュポン社製、Nafion212)にダイコーティング法で塗工し、80℃の炉内で乾燥することで実施例2-1の電極触媒層を有した膜電極接合体を得た。
[実施例2-2]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して100質量%となるように加えた以外は、実施例2-1と同様の手順で実施例2-2の電極触媒層を有した膜電極接合体を得た。
[実施例2-3]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して15質量%となるように加えた以外は、実施例2-1と同様の手順で実施例2-3の電極触媒層を有した膜電極接合体を得た。
[実施例2-4]
繊維状物質としてカーボンナノチューブ(繊維径約1nm、繊維長約1μm)を用いた以外は、実施例2-1と同様の手順で実施例2-4の電極触媒層を有した膜電極接合体を得た。
[実施例2-5]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して42質量%、繊維状物質の質量を炭素粒子の質量に対して260質量%となるように加えた以外は、実施例2-1と同様の手順で実施例2-5の電極触媒層を有した膜電極接合体を得た。
[実施例2-6]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して54質量%、繊維状物質の質量を炭素粒子の質量に対して180質量%となるように加えた以外は、実施例2-1と同様の手順で実施例2-6の電極触媒層を有した膜電極接合体を得た。
[実施例2-7]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して100質量%、繊維状物質の質量を炭素粒子の質量に対して50質量%となるように加えた以外は、実施例2-1と同様の手順で実施例2-7の電極触媒層を有した膜電極接合体を得た。
[実施例2-8]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して130質量%、繊維状物質の質量を炭素粒子の質量に対して15質量%となるように加えた以外は、実施例2-1と同様の手順で実施例2-8の電極触媒層を有した膜電極接合体を得た。
[実施例2-9]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して139質量%、繊維状物質の質量を炭素粒子の質量に対して8質量%となるように加えた以外は、実施例2-1と同様の手順で実施例2-9の電極触媒層を有した膜電極接合体を得た。
[実施例2-10]
白金担持カーボンとしてTEC10E70TPM(田中貴金属社製)を用いた以外は、実施例2-1と同様の手順で実施例2-10の電極触媒層を有した膜電極接合体を得た。
[実施例2-11]
白金担持カーボンとしてTEC10E60TPM(田中貴金属社製)を用いた以外は、実施例2-1と同様の手順で実施例2-11の電極触媒層を有した膜電極接合体を得た。
[実施例2-12]
白金担持カーボンとしてTEC10E40E(田中貴金属社製)を用いた以外は、実施例2-1と同様の手順で実施例2-12の電極触媒層を有した膜電極接合体を得た。
[実施例2-13]
触媒層用スラリーを100℃で乾燥した以外は、実施例2-10と同様の手順で実施例2-13の電極触媒層を有した膜電極接合体を得た。
[実施例2-14]
触媒層用スラリーを100℃で乾燥した以外は、実施例2-11と同様の手順で実施例2-14の電極触媒層を有した膜電極接合体を得た。
[実施例2-15]
PET基材に塗工し、熱圧着により電解質膜に転写した以外は、実施例2-1と同様の手順で実施例2-15の電極触媒層を有した膜電極接合体を得た。
[実施例2-16]
PET基材に塗工し、熱圧着により電解質膜に転写した以外は、実施例2-2と同様の手順で実施例2-16の電極触媒層を有した膜電極接合体を得た。
[実施例2-17]
白金担持カーボンとしてTEC10E70TPM(田中貴金属社製)を用いて、電極触媒層の厚みが5μm以下となるように塗工量を調整した以外は、実施例2-8と同様の手順で実施例2-17の電極触媒層を有した膜電極接合体を得た。
[実施例2-18]
塗工量を半分にした以外は、実施例2-1と同様の手順で実施例2-18の電極触媒層を有した膜電極接合体を得た。
[実施例2-19]
白金担持カーボンとして、炭素粒子(粒子径約120nm)を用いた以外は、実施例2-4と同様の手順で実施例2-19の電極触媒層を有した膜電極接合体を得た。
[比較例2-1]
熱圧着する圧力を2倍にした以外は、実施例2-15と同様の手順で比較例2-1の電極触媒層を有した膜電極接合体を得た。
[比較例2-2]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して204質量%、繊維状物質の質量を炭素粒子の質量に対して8質量%となるように加えた以外は、実施例2-1と同様の手順で比較例2-2の電極触媒層を有した膜電極接合体を得た。
[比較例2-3]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して7質量%、繊維状物質の質量を炭素粒子の質量に対して180質量%となるように加えた以外は、実施例2-1と同様の手順で比較例2-3の電極触媒層を有した膜電極接合体を得た。
[比較例2-4]
高分子電解質の質量を炭素粒子と繊維状物質の合算質量に対して150質量%、繊維状物質の質量を炭素粒子の質量に対して0質量%となるように加えた以外は、実施例2-1と同様の手順で比較例2-4の電極触媒層を有した膜電極接合体を得た。なお、電極触媒層にはクラックが発生した。
[比較結果]
実施例2-1~2-19の膜電極接合体及び比較例2-1~2-4の膜電極接合体を備えた固体高分子形燃料電池の、電極触媒層の組成、電極触媒層の厚み、電極触媒層の密度、発電性能を表2に示す。
発電性能については、電流密度が1.0A/cmのときの電圧が0.55V以上である場合を「△」、0.58V以上である場合を「○」、0.61V以上である場合を「◎」、0.55V未満である場合を「×」とした。発電性能は高出力であるほど好ましいが、0.55V以上あることで使用上問題ない膜電極接合体を得られたと判断した。
Figure 0007131301000002
表2の結果より、本実施形態によれば、触媒13、炭素粒子14、高分子電解質15及び繊維状物質16を有し、密度が400mg/cm以上1000mg/cm以下であり、高分子電解質15の質量が炭素粒子14と繊維状物質16の合算質量に対して10質量%以上200質量%以下の範囲内である電極触媒層2、3を使用することで、発電性能に優れた固体高分子形燃料電池用の膜電極接合体12を提供できる。
また、繊維状物質16の繊維径と炭素粒子14の粒子径との比(繊維状物質16/炭素粒子14)を0.01以上10以下の範囲内とした電極触媒層2、3であれば、さらに発電性能に優れた固体高分子形燃料電池用の膜電極接合体12を提供できる。
1 高分子電解質膜
2 カソード側電極触媒層
3 アノード側電極触媒層
4 空気極側ガス拡散層
5 燃料極側ガス拡散層
6 空気極
7 燃料極
8 ガス流路
9 冷却水流路
10 セパレータ
11 固体高分子形燃料電池
12 膜電極接合体
13 触媒
14 炭素粒子
15 高分子電解質
16 繊維状物質

Claims (11)

  1. 高分子電解質膜に接合される電極触媒層であって、
    触媒、炭素粒子、高分子電解質及び繊維状物質を有し、
    密度が400mg/cm以上1000mg/cm以下の範囲内であり、
    前記高分子電解質の質量が前記炭素粒子と前記繊維状物質の合算質量に対して10質量%以上200質量%以下の範囲内であることを特徴とする電極触媒層。
  2. 前記繊維状物質の繊維径と前記炭素粒子の粒子径との比(繊維状物質/炭素粒子)が0.01以上10以下の範囲内であることを特徴とする請求項1に記載の電極触媒層。
  3. 前記繊維状物質の質量が前記炭素粒子の質量に対して10質量%以上250質量%以下の範囲内であることを特徴とする請求項1又は請求項2に記載の電極触媒層。
  4. 前記繊維状物質の平均繊維径が0.5nm以上500nm以下の範囲内であることを特徴とする請求項1から請求項3のいずれか1項に記載の電極触媒層。
  5. 前記繊維状物質の平均繊維長が1μm以上200μm以下の範囲内であることを特徴とする請求項1から請求項4のいずれか1項に記載の電極触媒層。
  6. 前記密度が500mg/cm以上900mg/cm以下の範囲内であることを特徴とする請求項1から請求項5のいずれか1項に記載の電極触媒層。
  7. 前記炭素粒子が前記触媒を担持して触媒担持粒子となっていることを特徴とする請求項1から請求項6のいずれか1項に記載の電極触媒層。
  8. 前記繊維状物質は、カーボンナノチューブ又はカーボンナノファイバーであることを特徴とする請求項1から請求項7のいずれか1項に記載の電極触媒層。
  9. 前記電極触媒層の厚さが5μm以上30μm以下の範囲内であることを特徴とする請求項1から請求項8のいずれか1項に記載の電極触媒層。
  10. 前記電極触媒層は、カソード側に配置されるカソード側電極触媒層及びアノード側に配置されるアノード側電極触媒層の少なくとも一方であり、
    前記カソード側電極触媒層の厚さが、前記アノード側電極触媒層の厚さより厚いことを特徴とする請求項1から請求項9のいずれか1項に記載の電極触媒層。
  11. 請求項1から請求項9のいずれか1項に記載の電極触媒層を備えたことを特徴とする固体高分子形燃料電池。
JP2018204000A 2018-05-29 2018-10-30 電極触媒層及び固体高分子形燃料電池 Active JP7131301B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022134304A JP7294513B2 (ja) 2018-05-29 2022-08-25 電極触媒層及び固体高分子形燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018102420 2018-05-29
JP2018102420 2018-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022134304A Division JP7294513B2 (ja) 2018-05-29 2022-08-25 電極触媒層及び固体高分子形燃料電池

Publications (2)

Publication Number Publication Date
JP2019207860A JP2019207860A (ja) 2019-12-05
JP7131301B2 true JP7131301B2 (ja) 2022-09-06

Family

ID=68768615

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018204000A Active JP7131301B2 (ja) 2018-05-29 2018-10-30 電極触媒層及び固体高分子形燃料電池
JP2022134304A Active JP7294513B2 (ja) 2018-05-29 2022-08-25 電極触媒層及び固体高分子形燃料電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022134304A Active JP7294513B2 (ja) 2018-05-29 2022-08-25 電極触媒層及び固体高分子形燃料電池

Country Status (1)

Country Link
JP (2) JP7131301B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220414A (ja) 2006-02-15 2007-08-30 Toyota Central Res & Dev Lab Inc 触媒層及び固体高分子型燃料電池
JP2008251179A (ja) 2007-03-29 2008-10-16 Dainippon Printing Co Ltd 固体高分子型燃料電池用電極
JP2010146965A (ja) 2008-12-22 2010-07-01 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池用触媒層形成用塗工液、および固体高分子形燃料電池用膜電極接合体の製造方法
JP2011119217A (ja) 2009-11-30 2011-06-16 Hyundai Motor Co Ltd 高分子電解質燃料電池用電極及びこれを利用した膜・電極接合体の製造方法
WO2018047830A1 (ja) 2016-09-09 2018-03-15 パナソニックIpマネジメント株式会社 燃料電池用触媒層、膜電極接合体および燃料電池
JP2019083167A (ja) 2017-10-31 2019-05-30 凸版印刷株式会社 電極触媒層

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220414A (ja) 2006-02-15 2007-08-30 Toyota Central Res & Dev Lab Inc 触媒層及び固体高分子型燃料電池
JP2008251179A (ja) 2007-03-29 2008-10-16 Dainippon Printing Co Ltd 固体高分子型燃料電池用電極
JP2010146965A (ja) 2008-12-22 2010-07-01 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池用触媒層形成用塗工液、および固体高分子形燃料電池用膜電極接合体の製造方法
JP2011119217A (ja) 2009-11-30 2011-06-16 Hyundai Motor Co Ltd 高分子電解質燃料電池用電極及びこれを利用した膜・電極接合体の製造方法
WO2018047830A1 (ja) 2016-09-09 2018-03-15 パナソニックIpマネジメント株式会社 燃料電池用触媒層、膜電極接合体および燃料電池
JP2019083167A (ja) 2017-10-31 2019-05-30 凸版印刷株式会社 電極触媒層

Also Published As

Publication number Publication date
JP2019207860A (ja) 2019-12-05
JP2022162113A (ja) 2022-10-21
JP7294513B2 (ja) 2023-06-20

Similar Documents

Publication Publication Date Title
JP6332541B1 (ja) 電極触媒層
EP3694037A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer-type fuel cell
JP7310800B2 (ja) 膜電極接合体、および、固体高分子形燃料電池
US11545674B2 (en) Electrode catalyst layer and polymer electrolyte fuel cell
JP7294513B2 (ja) 電極触媒層及び固体高分子形燃料電池
JP6950617B2 (ja) 電極触媒層
JP7067136B2 (ja) 触媒層、膜電極接合体、固体高分子形燃料電池
JP7187798B2 (ja) 固体高分子形燃料電池用触媒層および膜電極接合体
JP7140256B2 (ja) 電極触媒層
JP7243030B2 (ja) 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP7315079B2 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP7552761B2 (ja) 燃料電池用膜電極接合体及び固体高分子形燃料電池
JP7567310B2 (ja) 電極触媒層、膜電極接合体および固体高分子形燃料電池
JP2019139952A (ja) 膜電極接合体およびこれを備えた固体高分子形燃料電池
JP2013206676A (ja) 膜電極接合体の製造方法及び膜電極接合体
CN111226335B (zh) 电极催化剂层、膜-电极接合体以及电极催化剂层的制造方法
WO2020196419A1 (ja) 固体高分子形燃料電池用触媒層、膜電極接合体、及び固体高分子形燃料電池
JP5228339B2 (ja) 燃料電池用電極触媒層、それを用いて成るmea(電解質膜電極接合体)および固体高分子型燃料電池
JP2023176353A (ja) 電極触媒層
JP2024079112A (ja) 電極触媒層
JP2024063350A (ja) 電極触媒層及び膜電極接合体
JP2022095263A (ja) 固体高分子形燃料電池用触媒インク、固体高分子形燃料電池用触媒層、および固体高分子形燃料電池用膜―電極接合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7131301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150