JP7131273B2 - 量子カスケードレーザ - Google Patents

量子カスケードレーザ Download PDF

Info

Publication number
JP7131273B2
JP7131273B2 JP2018190154A JP2018190154A JP7131273B2 JP 7131273 B2 JP7131273 B2 JP 7131273B2 JP 2018190154 A JP2018190154 A JP 2018190154A JP 2018190154 A JP2018190154 A JP 2018190154A JP 7131273 B2 JP7131273 B2 JP 7131273B2
Authority
JP
Japan
Prior art keywords
insulating film
quantum cascade
metal film
semiconductor
facet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018190154A
Other languages
English (en)
Other versions
JP2020061408A (ja
Inventor
順一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018190154A priority Critical patent/JP7131273B2/ja
Priority to US16/584,973 priority patent/US11121525B2/en
Priority to CN201910933613.3A priority patent/CN111009821A/zh
Publication of JP2020061408A publication Critical patent/JP2020061408A/ja
Application granted granted Critical
Publication of JP7131273B2 publication Critical patent/JP7131273B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、量子カスケードレーザに関する。
非特許文献1は、中赤外光を発生できる量子カスケードレーザを開示する。
Applied. Physics Letters, vol.89, 251119, 2006.
量子カスケードレーザは、出射端面及び反射端面を含み、また反射端面に大きな反射率を与えるために反射膜を有する。反射膜は、以下のように作製される。アノード電極及びカソード電極を形成して完成された基板生産物から、レーザバーを作製する。レーザバーは、半導体レーザのための複数の区画の一次元配列を含み、また出射端面及び反射端面のためのそれぞれの端面を有する。反射膜の構成原子を含むフラックスをレーザバーの一端面に供給して、反射膜を形成する。具体的には、量子カスケードレーザには、反射端面上に金属膜を与えて、より高い反射率を得る。
レーザバーの端面への堆積により反射膜を形成するプロセスでは、レーザバーの端面から逸れたフラックスは、レーザバーの上面及び下面に堆積物を形成する。この作製方法は、レーザバーの上面及び下面上の堆積物厚の制御を難しくする。量子カスケードレーザに求まられることは、堆積物厚の制御における困難を解消することにある。
本発明の一側面は、レーザバーへの堆積を用いて反射金属膜を形成することを回避できると共に該金属膜を反射端面上に配置できる構造を有する量子カスケードレーザを提供することを目的とする。
本発明の一側面に係る量子カスケードレーザは、第1端面を含む第1領域、第2端面を含む第2領域、エピ面、及び基板面を有するレーザ構造体と、前記レーザ構造体の前記第2端面及び前記エピ面上に設けられた絶縁膜と、前記レーザ構造体の前記エピ面及び前記絶縁膜上に設けられ、前記絶縁膜の開口を介して前記エピ面に接触を成す電極と、前記レーザ構造体の前記第2端面及び前記エピ面上に設けられ、前記電極及び前記基板面から離れた金属膜と、を備え、前記絶縁膜は、前記金属膜と前記第2端面及び前記エピ面との間に設けられ、前記エピ面は前記基板面の反対側にあり、前記第1領域及び第2領域は、第1軸の方向に配置され、前記第2領域は、前記第1軸の方向に延在するコア層を有する半導体メサを含み、前記第2端面は前記第1領域と前記第2領域との境界に位置し、前記第2端面は前記半導体メサを終端させ、前記第1領域は、前記第1軸の方向に延在する接続面を含み、前記接続面は、前記第2端面を前記第1端面に接続する。
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
以上説明したように、本発明の一側面によれば。レーザバーへの堆積を用いて反射金属膜を形成することを回避できると共に該金属膜を反射端面上に配置できる構造を有する量子カスケードレーザを提供できる。
図1は、本実施形態に係る量子カスケードレーザを模式的に示す平面図である。 図2は、図1に示されたII-II線に沿って取られた断面を示す図面である。 図3の(a)部、(b)部、(c)部及び(d)部は、それぞれ、図1に示されたIIIa-IIIa線、IIIb-IIIb線、IIIc-IIIc線、及びIIId-IIId線に沿って取られた断面を示す図面である。 図4の(a)部、(b)部、(c)部、及び(d)部は、それぞれ、図1に示されたIVa-IVa線、IVb-IVb線、IVc-IVc線及びIVd-IVd線に沿って取られた断面を示す図面である。 図5の(a)部及び(b)部は、それぞれ、図1に示されたVa-Va線及びVb-Vb線にそって取られた断面を示す図面である。 図6は、本実施形態に係る量子カスケードレーザ装置を概略的に示す図面である。 図7は、本実施形態に係る量子カスケードレーザを作製する方法における主要な工程を示す図面である。 図8は、本実施形態に係る量子カスケードレーザを作製する方法における主要な工程を示す図面である。 図9は、本実施形態に係る量子カスケードレーザを作製する方法における主要な工程を示す図面である。 図10は、本実施形態に係る量子カスケードレーザを作製する方法における主要な工程を示す図面である。
いくつかの具体例を説明する。
具体例に係る量子カスケードレーザは、(a)第1端面を含む第1領域、第2端面を含む第2領域、エピ面、及び基板面を有するレーザ構造体と、(b)前記レーザ構造体の前記第2端面及び前記エピ面上に設けられた絶縁膜と、(c)前記レーザ構造体の前記エピ面及び前記絶縁膜上に設けられ、前記絶縁膜の開口を介して前記エピ面に接触を成す電極と、(d)前記レーザ構造体の前記第2端面及び前記エピ面上に設けられ、前記電極及び前記基板面から離れた金属膜と、を備え、前記絶縁膜は、前記金属膜と前記第2端面及び前記エピ面との間に設けられ、前記エピ面は前記基板面の反対側にあり、前記第1領域及び第2領域は、第1軸の方向に配置され、前記第2領域は、前記第1軸の方向に延在するコア層を有する半導体メサを含み、前記第2端面は前記第1領域と前記第2領域との境界に位置し、前記第2端面は前記半導体メサを終端させ、前記第1領域は、前記第1軸の方向に延在する接続面を含み、前記接続面は、前記第2端面を前記第1端面に接続する。
量子カスケードレーザによれば、接続面が、第2端面を第1端面に接続するように設けられて、第1軸の方向に、第2端面を第1端面から隔置する。この隔置により、金属膜を、第1端面上に設けることなく、第2端面上に設けて、半導体メサの終端に高反射率を提供できる。
また、第2端面は、第1領域と第2領域との境界に位置して、エピ面を接続面に繋ぐ。第2端面及び接続面は凹部を形成し、この凹部によれば、第1端面及び第2端面を互いに離して配置できると共に半導体メサを第1端面から離れた位置で終端できる。
量子カスケードレーザによれば、半導体メサを終端させる第2端面はその表面への金属膜形成により高反射化されるとともに、半導体メサからの熱の放出に、金属膜による伝搬経路を提供できる。
具体例に係る量子カスケードレーザでは、前記レーザ構造体は、埋込体及び基板を含み、前記第2端面は、前記基板内に底を有し、前記基板は前記埋込体を搭載し、前記埋込体は、前記第2領域において前記半導体メサを埋め込む電流ブロック部を有する。
量子カスケードレーザによれば、基板内に底を有する第2端面及び埋込体は、半導体メサのメサ端面に金属膜を形成することを容易にする、また、埋込体に電流ブロック部を提供して、電流ブロック部は第2領域において半導体メサからの熱の放散を容易にする。
具体例に係る量子カスケードレーザでは、前記接続面は、前記レーザ構造体の一側面から他側面まで延在し、前記絶縁膜及び前記金属膜は、前記接続面上に設けられる。
量子カスケードレーザによれば、第2端面がレーザ構造体の一側面から他側面に延在することを可能にする。半導体メサのメサ端面及びその周辺のエリアを第2端面に提供でき、接続面、メサ端面及びその周辺エリア上に金属膜及び絶縁膜が設けられる。金属膜は、半導体メサの端面から接続面を介して基板への熱伝搬の経路を提供できる。
具体例に係る量子カスケードレーザでは、前記レーザ構造体は、前記埋込体の前記電流ブロック部から延出する第1延在部及び第2延在部を前記第1領域に有し、前記金属膜は、前記第1延在部及び前記第2延在部上に設けられる。
量子カスケードレーザによれば、第1延在部及び第2延在部が電流ブロック部から延出して、絶縁膜及び金属膜が第2端面及び接続面並びに第1延在部及び第2延在部に連続して設けられる。また、第1延在部及び第2延在部は、半導体メサの側面から電流ブロック部を介して基板への熱伝搬の経路を提供できる。
具体例に係る量子カスケードレーザでは、前記第1延在部及び前記第2延在部は、それぞれ、前記第1軸の方向に延在する第1側面及び第2側面を有し、前記第1側面及び前記第2側面は前記第1端面に接続され、前記接続面は、前記第1側面及び前記第2側面を互いに接続し、前記第2端面は、前記第1側面及び前記第2側面を互いに接続し、前記絶縁膜及び前記金属膜は、前記接続面、前記第1側面及び前記第2側面上に設けられる。
量子カスケードレーザによれば、接続面、第1側面及び第2側面は、第1端面を第2端面に接続すると共に、第1端面を第2端面から離す。金属膜は、半導体メサのメサ端面から接続面を延在して基板への熱伝搬の経路を提供できる。
具体例に係る量子カスケードレーザでは、前記絶縁膜は、前記接続面上に設けられ、前記絶縁膜は、前記第1端面の上端から離れており、前記金属膜は、前記接続面上に設けられ、前記金属膜は、前記第1端面の上端から離れ、前記第1端面は、前記基板面を前記接続面に接続する。
量子カスケードレーザによれば、金属膜及び絶縁膜は、量子カスケードレーザの半導体チップを作製する際に生産物に加えられる力を直接に受けない。
具体例に係る量子カスケードレーザでは、前記絶縁膜は、前記接続面上に設けられ、前記絶縁膜は、前記第1端面の上端に到達し、前記金属膜は、前記接続面上に設けられ、前記第1端面は、前記基板面を前記接続面に接続する。
量子カスケードレーザによれば、絶縁膜が半導体を被覆することを可能にする。
具体例に係る量子カスケードレーザでは、前記金属膜は、前記第1端面の上端に到達しない。
量子カスケードレーザによれば、金属膜は、量子カスケードレーザの半導体チップを作製する際に生産物に加えられる力を直接に受けない。
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、量子カスケードレーザ、及び量子カスケードレーザを作製する方法に係る実施形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1は、本実施形態に係る量子カスケードレーザを模式的に示す平面図である。図2は、図1に示されたII-II線に沿って取られた断面を示す図面である。量子カスケードレーザ11は、レーザ構造体13、絶縁膜15、第1電極17、及び金属膜19を備える。レーザ構造体13は、第1端面13a及び第2端面13bを有する。レーザ構造体13は、第1端面13aを含む第1領域13cと、第2端面13bを含む第2領域13dとを含む。第1領域13c及び第2領域13dは、第1軸Ax1の方向に配列される。レーザ構造体13は、エピ面13e及び基板面13fを有しており、エピ面13eは基板面13fの反対側にある。
絶縁膜15は、レーザ構造体13の第2端面13b及びエピ面13e上に設けられる。絶縁膜15は、金属膜19と第2端面13b及びエピ面13eとの間に設けられる。第1電極17は、レーザ構造体13のエピ面13e及び絶縁膜15上に設けられ、絶縁膜15のコンタクト開口15aを介してエピ面13eに接触を成す。金属膜19は、レーザ構造体13上に、具体的には、第2端面13b及びエピ面13e上に設けられ、第1電極17及び基板面13fから離れる。絶縁膜15はレーザ構造体13を金属膜19から隔てる。
第2端面13bは、第1領域13cと第2領域13dとの境界に位置する。第1領域13cは、第1軸Ax1の方向に延在する接続面25を含み、本実施例では、接続面25は、第2端面13bを第1端面13aに接続する。
レーザ構造体13、具体的には、第2領域13dは、半導体メサ23を含み、第2端面13bは、半導体メサ23を終端させて、メサ端面23aを形成する。半導体メサ23は、第1軸Ax1の方向に延在するコア層24aを有する。
量子カスケードレーザ11によれば、接続面25が、第2端面13bを第1端面13aに接続するように設けられて、第1軸Ax1の方向に、第2端面13bを第1端面13aから隔置する。この隔置により、金属膜19は、第1端面13a上に設けられることなく第2端面13b上に設けられて、半導体メサ23の終端に高反射率を提供できる。
半導体メサ23を終端させる第2端面13bは、半導体メサ23からの熱に金属膜19による伝搬経路を提供できる。
第2端面13bは、第1領域13cと第2領域13dとの境界に位置して、エピ面13eを接続面25に繋ぐ。第2端面13b及び接続面25は凹部27を形成し、この凹部27によれば、第1端面13a及び第2端面13bを互いに離して配置できると共に半導体メサ23を第1端面13aから離れた位置で終端できる。
図1の(a)部、及び図2の(a)部に示されるように、レーザ構造体13は、第3端面13jを含む。第3端面13jは、第1端面13a及び第2端面13bの反対側にあり、第1端面13a、第2端面13b、及び第3端面13jは、この順に第1軸Ax1の方向に配列される。レーザ構造体13は、埋込体31及び基板33を含み、第3端面13jは、半導体メサ23、埋込体31及び基板33を終端させる。量子カスケードレーザ11は第3端面13jにおいて光を出射する。
絶縁膜15は、凹部27における半導体表面、具体的には、半導体メサ23のメサ端面23a、埋込体31の端面31a、及び近端面31bを覆う。
図1の(b)部に示されるように、第1端面13a及び第2端面13bは、量子カスケードレーザ11の一側面13hから他側面13iまで延在している。第2端面13bは、半導体メサ23及び埋込体31を終端させる。基板33は、第1端面13aで終端する。第2端面13bは、半導体メサ23のメサ端面23a及び埋込体31の端面31aを含む。絶縁膜15は、半導体メサ23のメサ端面23a及び埋込体31の端面31aに接触を成す。
図1の(c)部及び(d)部に示されるように、埋込体31は、半導体メサ23のメサ端面23aの両側に隣接するそれぞれの近端面31b、及び近端面31bの両側において外側に位置するそれぞれの遠端面31cを有する。近端面31b及び遠端面31cは、埋込体31を終端させる。絶縁膜15は、凹部27における半導体表面、具体的には、半導体メサ23のメサ端面23a、及び埋込体31の近端面31bを覆う。
図1の(c)部に示されるように、埋込体31の遠端面31cは、半導体メサ23のメサ端面23aのそれぞれの側に隣接する。第2端面13bは、半導体メサ23のメサ端面23a並びに埋込体31の近端面31b及び遠端面31cを含む。絶縁膜15は、半導体メサ23のメサ端面23a及び埋込体31の近端面31bに接触を成す。金属膜19は、遠端面31c並びに絶縁膜15の上面及び側縁を覆う。本実施例では、金属膜19は、絶縁膜15及び埋込体31の遠端面31cに接触を成して、絶縁膜15がメサ端面23aと金属膜19との間に設けられる。
図1の(d)部に示されるように、埋込体31の遠端面31cは、第1軸Ax1の方向に埋込体31の近端面31bから離れている。第2端面13bは、半導体メサ23のメサ端面23a並びに埋込体31の近端面31bを含み、第1端面13aは遠端面31cを含む。絶縁膜15は、半導体メサ23のメサ端面23a及び埋込体31の近端面31bに接触を成す。金属膜19は、絶縁膜15に接触を成して、レーザ構造体13の半導体から離される。
図2の(a)部に示されるように、量子カスケードレーザ11は、第2電極21を更に備え、第2電極21は、レーザ構造体13の基板面13f上に設けられる。
第2端面13bは、接続面25からエピ面13eまでの距離により規定される反射面の高さHREFを有しており、この反射面の高さHREFは、例えば5~10マイクロメートルである。半導体メサ23は、半導体メサ23の底23gからエピ面13eまでの距離により規定される高さHMESを有しており、この高さHMESは、例えば5~10マイクロメートルである。本実施例では、接続面25と基板面13fとの距離H1Sは、半導体メサ23の底23gと基板面13fとの距離H2Sに等しい又はより小さい。
図2の(b)部、(c)部、及び(d)部に示されるように、第1端面13aは、基板面13fを接続面25に接続する。絶縁膜15及び金属膜19は、接続面25上に設けられる。絶縁膜15が接続面25に接触を成す。絶縁膜15は、第2端面13b及び接続面25上の金属膜19を半導体から絶縁する。また、第1電極17及び金属膜19は、エピ面13e上に設けられ、絶縁膜15上において隔置される。
第2端面13bには基板33内に位置する底13gを提供する。本実施例では、底13gは、基板33の主面33aを基準にして、半導体メサ23の底23gより深い。この深い第2端面13bは、半導体メサ23及び基板33の両方に拡がって半導体メサ23及び基板33を伝搬して第2端面13bに到達する光を反射することができる。
半導体メサ23は、コア層24aに加えて、上部クラッド層24b、下部クラッド領域24c、及び回折格子層24dを含み、必要な場合には、コンタクト層24eを含むことができる。下部クラッド領域24cは、基板33の半導体支持体の上部を含むことができる。必要な場合には、半導体支持体の上部に加えて、下部クラッド層24fを含むことができ、下部クラッド層24fは、例えば上部クラッド層24bと同じ材料から成ることができる。
図2の(b)部に示されるように、絶縁膜15は、第1端面13aの上端に到達すると共に、金属膜19は、第1端面13aの上端に到達するようにしてもよい。
図2の(c)部に示されるように、絶縁膜15は、第1端面13aの上端に到達する。量子カスケードレーザ11によれば、絶縁膜15が接続面25を被覆することを可能にする。金属膜19は、接続面25上に設けられ、本実施例では、第1端面13aの上端から離れている。量子カスケードレーザ11によれば、金属膜19は、量子カスケードレーザ11の半導体チップを作製する際に生産物に加えられる力を直接に受けない。
図2の(d)部に示されるように、絶縁膜15及び金属膜19は、第1端面13aの上端から離れている。量子カスケードレーザ11によれば、絶縁膜15及び金属膜19は、量子カスケードレーザ11の半導体チップを作製する際に生産物に加えられる力を直接に受けない。
図3の(a)部、(b)部、(c)部及び(d)部は、それぞれ、図1に示されたIIIa-IIIa線、IIIb-IIIb線、IIIc-IIIc線、及びIIId-IIId線に沿って取られた断面を示す図面である。
図4の(a)部、(b)部、(c)部及び(d)部は、それぞれ、図1に示されたIVa-IVa線、IVb-IVb線、IVc-IVc線及びIVd-IVd線に沿って取られた断面を示す図面である。
図3の(a)部、(b)部、(c)部及び(d)部並びに図4の(a)部、(c)部及び(d)部に示されるように、埋込体31及び基板33は、第1軸Ax1に交差する第2軸Ax2の方向に配列される。基板33は埋込体31を搭載する。埋込体31は、第2領域13dにおいて半導体メサ23を埋め込む電流ブロック部35を有する。量子カスケードレーザ11によれば、埋込体31に電流ブロック部35を提供して、電流ブロック部35は、半導体メサ23への電流狭窄を可能にするとともに、第2領域13dにおいて半導体メサ23からの熱の放散を容易にする。
基板33は、半導体支持体を含み、半導体支持体は基板面13fを提供する。本実施例では、半導体支持体は、例えばコア層24aの屈折率より小さい屈折率を有する。半導体メサ23は、基板33内に底23gを有する。背の高い半導体メサ23がレーザ構造体13に提供される。
図4の(d)部を参照すると、基板33は、第1領域13cの凹部27において第1厚H1Sと、第2領域13dの半導体メサ23において第2厚H2Sとを有する。第1厚H1Sは第2厚H2Sより薄く、この薄い基板厚は、第1領域13cにおける基板33を介して熱放散を容易にする。
図3の(a)部を参照すると、第1電極17が、第2端面13bから離れた位置では、レーザ構造体13の半導体メサ23の上面及び埋込体31の上面に絶縁膜15のコンタクト開口15aを介して接触を成している。
図3の(b)部を参照すると、絶縁膜15の開口が終端して、絶縁膜15がレーザ構造体13のエピ面13e、具体的には半導体メサ23の上面及び埋込体31の上面に接触を成す。絶縁膜15がレーザ構造体13の一側面13hから他側面13iまで延在しており、半導体メサ23及び埋込体31の上面に接触を成す。第1電極17が、絶縁膜15の上面に接触を成す。
図3の(c)部を参照すると、第1電極17が終点して、絶縁膜15が、半導体メサ23及び埋込体31の上面上においてレーザ構造体13の一側面13hから他側面13iまで延在している。
図3の(d)部を参照すると、エピ面13e上の絶縁膜15が、第2端面13bの上縁を経由して第2端面13b上を延在すると共に、レーザ構造体13の一側面13hから他側面13iまで延在していることがよい。金属膜19が第2端面13b上を延在して第2端面13bの上縁に到達し、引き続きレーザ構造体13のエピ面13e上を延在する。金属膜19は絶縁膜15上において終端する。
金属膜19及び第1電極17は、絶縁膜15上で隔置されるように絶縁膜15上において終端する。金属膜19は、第1電極17から10~100マイクロメートルの距離で離される。
(エピ構造1)
図1の(b)部及び(c)部並びに図4の(a)部及び(b)部に示されるように、第1領域13cにおいて、接続面25は、レーザ構造体13の一側面13hから他側面13iまで延在することができる。量子カスケードレーザ11によれば、第2端面13bがレーザ構造体13の一側面13hから他側面13iに延在することを可能にする。半導体メサ23のメサ端面23a及びその周辺のエリアを第2端面13bに提供できる。
図1の(b)部及び(c)部に示されるように、半導体メサ23のメサ端面23a及びその周辺エリアは、絶縁膜15及び金属膜19によって覆われる。また、絶縁膜15及び金属膜19は、接続面25上に設けられる。金属膜19は、半導体メサ23のメサ端面23aから接続面25を介して基板33への熱伝搬の経路を提供できる。本実施例では、絶縁膜15及び金属膜19は、接続面25上において、レーザ構造体13の一側面13hから他側面13iに延在する。
具体的には。図1の(b)部に示されるように、絶縁膜15及び金属膜19は、レーザ構造体13の一側面13hから他側面13iに延在するようにしてもよい。絶縁膜15は、第2端面13b上において、メサ端面23a及び埋込体31と金属膜19との間に設けられる。本実施例では、絶縁膜15は、メサ端面23a及び第2端面13bにおける埋込体31に接触を成す。
具体的には。図1の(c)部に示されるように、絶縁膜15は、第2端面13bの一部分、具体的には第2端面13bにおけるメサ端面23aの全て及びその近傍の埋込体31に接触を成すと共に、金属膜19は、メサ端面23a上の絶縁膜15及び第2端面13bの埋込体31に接触を成すようにしてもよい。絶縁膜15は、メサ端面23aの幅より大きな幅を有しており、本実施例では、金属膜19は、絶縁膜15の幅より大きな幅を有する。本実施例では、金属膜19は、レーザ構造体13の一側面13hから他側面13iに延在する。
(エピ構造2)
図1の(d)部、並びに図4の(d)部に示されるように、レーザ構造体13は、第1延在部37及び第2延在部39を第1領域13cに有する。第1延在部37及び第2延在部39は、埋込体31の電流ブロック部35から延出する。第1延在部37及び第2延在部39は、半導体メサ23の一側面23b及び他側面23cから電流ブロック部35を介して基板33への熱伝搬の経路を提供できる。
第1延在部37、凹部27及び第2延在部39は、第1軸Ax1及び第2軸Ax2に交差する第3軸Ax3の方向に配列される。第2端面13bは、第1延在部37及び第2延在部39の根元で終端して、レーザ構造体13の一側面13h及び他側面13iに到達しない。第1延在部37と第2延在部39との間隔は、半導体メサ23の一側面23b及び他側面23cの間隔(「メサ幅」として参照する)より大きく、第2端面13bにおいて、半導体メサ23中の導波光を高反射率にて反射するために、半導体メサ23のメサ幅の2倍以上の長さであることができる。
図4の(d)部に示されるように、本実施例では、絶縁膜15及び金属膜19は、第1延在部37及び第2延在部39上に設けられることができる。第1延在部37及び第2延在部39上の金属膜19は、半導体メサ23のメサ端面23aからの熱の放出に役立つ。
第1延在部37及び第2延在部39が電流ブロック部35から延出して、絶縁膜15及び金属膜19が第2端面13b及び接続面25並びに第1延在部37及び第2延在部39に連続して設けられることがよい。
絶縁膜15及び金属膜19は、接続面25、第1側面37a及び第2側面39a上に設けられる。
図4の(d)部に示されるように、第1延在部37及び第2延在部39は、それぞれ、第1側面37a及び第2側面39aを有し、第1側面37a及び第2側面39aは、第1軸Ax1の方向に延在する。接続面25は、第1側面37aを第2側面39aに接続する。第1側面37a及び第2側面39aは、第1端面13aを第2端面13bに接続し、第2端面13bは、第1側面37aを第2側面39aに接続する。第2端面13b、第1側面37a、第2側面39a、及び接続面25は、凹部27を規定する。第1側面37a及び第2側面39aは、基板33内に位置する第1底37b及び第2底39bを有する。
量子カスケードレーザ11によれば、接続面25、第1側面37a及び第2側面39aは、第1端面13aを第2端面13bに接続すると共に、第1端面13aを第2端面13bから離す。金属膜19は、半導体メサ23のメサ端面23aから接続面25を介した基板33への熱伝搬の経路を提供できる。
図2の(b)部、(c)部、及び(d)部に示される量子カスケードレーザは、図1の(b)部、(c)部、及び(d)部に示されるエピ構造のいずれかを含むことができる。
図5の(a)部は、図1に示されたVa-Va線にそって取られた断面を示す。接続面25は、半導体メサ23の底23gより深い凹部27を形成する。第2端面13bも、半導体メサ23の底23gより深い位置に下端13gを有する。金属膜19は第2端面13b上に設けられて、半導体メサ23及び基板33内を伝搬するレーザ光を反射する。
図5の(b)部は、図1に示されたVb-Vb線にそって取られた断面を示す。接続面25は、第1延在部37及び第2延在部39の間において第1端面13aから第2端面13bまで延在する。接続面25は、半導体メサ23の底23gより深い凹部27を形成する。第2端面13bも、半導体メサ23の底23gより深い位置に下端(13g)を有する。金属膜19は第2端面13b上に設けられて、半導体メサ23及び基板33内を伝搬するレーザ光を反射する。
図5の(a)部及び(b)部に示される量子カスケードレーザは、図2の(b)部、(c)部、及び(d)部、並びに図1の(b)部、(c)部、及び(d)部に示される絶縁膜15及び金属膜19の構造のいずれかを含むことができる。
図2の(a)部~(d)部、図4の(d)部及び図5の(a)部に示されるように、絶縁膜15は、メサ端面23a及び近端面31bを含む第2端面13b、接続面25、第1延在部37の第1側面37a、並びに第2延在部39の第2側面39aを覆う。或いは、絶縁膜15は、第2端面13b及び接続面25を覆う。接続面25は、メサ端面23a、更には近端面31b、第1側面37a及び第2側面39aといった半導体面に出会ってそれぞれの縁線を形成する。縁線の各々では、接続面25は、直角又は直角に近い角度で他方の半導体面と角度を成しており、このような角度の縁線の近傍では、絶縁膜15は、所望の厚さより薄く、又は膜質より劣ることがある。絶縁膜15は、縁線の近傍でも金属膜19に覆われている。
量子カスケードレーザ11は、第1電極17と第2電極21との間に、約十数ボルトの電圧を受ける。金属膜19は、第1電極17及び第2電極21から離れており、金属膜19は、量子カスケードレーザ11への印加電圧を受けない。
図6は、本実施形態に係る量子カスケードレーザ装置を概略的に示す図面である。量子カスケードレーザ装置51は、本実施形態に係る量子カスケードレーザ11、サブマウント53、及び半田材55を含み、量子カスケードレーザ11は、半田材55によりサブマウント53に固定される。半田材55は、サブマウント53の導電層53aに量子カスケードレーザ11の第2電極21を接着する。半田材55は、第2端面13b及び接続面25上の金属膜19から隔置されており、この隔置により、金属膜19は半田材55に電気的に接続されない。
絶縁膜15は、SiO、SiON、SiN、アルミナ、BCB、ポリイミドのうちの少なくともいずれかを含むことができる。上記の誘電体膜を絶縁膜15に使用可能である。これらの誘電体膜は、優れた耐久性及び絶縁性を提供できる。これらの誘電体膜はスパッタやCVD、スピンコートといった成膜法を用いて容易に形成されることができる。絶縁膜15は、エピ面13e上において10~50nmの範囲の厚さを有することができる。絶縁膜15は、メサ端面23aにおいて半導体メサ23の各側面から、例えば5マイクロメートル以上のマージンで横方向に広い横幅を有しており、可能な場合には、量子カスケードレーザ11の一側面13h及び他側面13iに到達することがよい。半導体メサ23のAx3軸方向の幅は、例えば3~10マイクロメートルの範囲にあることができる。
また、金属膜19は金、Pt、Ti等を含むことができる。金属膜19に金を使用可能である。金膜は、例えば蒸着により形成されることができる。量子カスケードレーザ11の発振波長(例えば3~20マイクロメートル)の波長範囲において所望の反射率を得るために、金属膜19は、第2端面13b上において例えば20~200nmの範囲の厚さを有することができる。
(実施例)
実施例に係る量子カスケードレーザ11を説明する。基板33は、導電性を有しており、例えばn型InP基板を備えることができる。中赤外のレーザ光を放出する量子カスケードレーザの半導体層の半導体材料は、InPに近い格子定数を有する。InPの半導体基板は、これらの半導体層に良好な結晶品質を提供できる。InPは、中赤外光を透過可能であって、このInP基板は下部クラッドとして使用可能である。半導体基板は、分子線エピタキシー及び有機金属気相成長といった成長法による結晶成長に用いられる。
上部クラッド層24b及び下部クラッド層24fは、中赤外光を透過可能なn-InPを備えることができ。上部クラッド層24b及び下部クラッド層24fのInPは、InP基板に格子整合する。また、InPは2元混晶であって、InP基板上に良好な結晶成長を提供できる。更に、InPの熱伝導性は、中赤外の量子カスケートレーザに使用可能な半導体材料の中で最も大きく、InPのクラッド層は、コア層24aからの良好な放熱を可能にして、量子カスケートレーザに向上された温度特性を提供できる。
コア層24aは、活性層及び注入層を含む単位構造の積層を用いており、具体的には、交互に多段に接続された活性層及び注入層を備える。活性層及び注入層の各々は、超格子構造を含み、超格子構造は、交互に積層された複数の量子井戸層及び複数のバリア層を含む。各量子井戸層は、数ナノメートル厚を有する薄膜であって、各バリア層は、量子井戸層よりも高いバンドギャップ及び数ナノメートル厚を有する薄膜である。量子カスケードレーザは、単一のキャリア、例えば電子を用いて、活性層内の伝導帯における電子のサブバンド上準位から下準位へのサブバンド間遷移によって放出される中赤外光を共振器で増幅する。サブバンド間遷移は、中赤外波長の光を提供できる。既に説明したように、コア層24aは、交互に配置された、超格子構造の活性層及び注入層から成り、注入層を経由することで、上流の活性層の伝導帯におけるサブバンド間遷移による発光をもたらした電子が、下流の活性層へスムーズに注入されて、各活性層におけるサブバン間遷移による発光が連続的に生じ、その結果、QCLとしての発振が可能になる。量子井戸層は、例えばGaInAs及びGaInAsPを備えることができ、バリア層はAlInAsを備えることができる。これらの材料を量子井戸層及びバリア層に含む活性層の超格子構造は、例えば3~20μmの中赤外波長の遷移を提供する伝導帯サブバンドの上準位と下準位とのエネルギー差を提供できる。
コンタクト層24eは、必要な場合に使用される。コンタクト層24eは、第1電極17に良好なオーミックコンタクトを提供できる低いバンドギャップを有すると共に、InP基板に格子整合可能な材料を備え、例えばn-GaInAsを含むことができる。
回折格子層24dは、量子カスケードレーザ11に分布帰還構造を提供する。回折格子層24dは、第1軸Ax1の方向に延在するようにエッチングにより形成された回折格子構造を有する。回折格子構造は、図2の(a)部に示される周期Pに対応したブラッグ波長の単一モード発振を提供できる。回折格子層24dは、大きい結合係数を提供できる高屈折率の半導体、例えばアンドープ又はn型のGaInAsを含むことができる。
埋込体31は、量子カスケードレーザ11に埋込ヘテロ構造を提供する。埋込体31は、高抵抗のアンドープ又は半絶縁半導体を含む電流ブロック層として機能し、半導体メサ23にキャリアを閉じ込める。半絶縁性半導体は、Fe、Ti、Cr、Coといった遷移金属を添加したIII-V化合物半導体であって、特にFeのドーパントを備えることが好ましい。遷移金属の添加によれば、半絶縁半導体は、電子に対して例えば10(Ωcm)以上の高抵抗を提供できる。可能な場合には、半絶縁半導体に替えて、アンドープIII-V化合物半導体を電流ブロック層に使用してもよい。アンドープまたは半絶縁の半導体埋込層は、InP、GaInAs、AlInAs、GaInAsP、AlGaInAsといった化合物半導体によって提供される。これら半導体はInPに格子整合する。
第1電極17及び第2電極21は、例えばTi/Au、Ti/Pt/Au、又はGe/Auを備えることができる。
必要な場合には、コア層24aの上に、下に、又は上下に、光閉じ込め領域を設けて、コア層24aへの導波光の閉じ込めを強化することができる。光閉じ込め領域は、InPに格子整合可能な高屈折率の半導体、例えばアンドープ、n型のGaInAsを備えることができる。
半導体へのn型導電性付与は、Si、S、Sn、Seといったn型ドーパントの添加により実現される。
図7~図10は、本実施形態に係る量子カスケードレーザ11を作製する方法における主要な工程を示す図面である。図7~図10において、座標系Sを描く。座標系Sは、個々の工程における生産物の向きを示す。
工程S101では、図7の(a)部に示されるように、エピタキシャル基板EPを準備する。エピタキシャル基板EPは以下のように作製される。半導体ウエハ61を準備する。積層体63を半導体ウエハ61上に有機金属気相成長又は分子線エピタキシーにより成長する。具体的には、半導体ウエハ61上に、下部クラッド層24f、コア層24a、回折格子層24dのための半導体膜63a、63b、63cを成長すると共に、回折格子層24dのための半導体膜63cの表面にフォトリソグラフィ及びエッチングを適用して、回折格子のための周期構造を形成する。半導体膜63c上に、上部クラッド層24b、及びコンタクト層24eのための残りの半導体膜(63d、63e)に成長して、積層体63を形成する。積層体63は、量子カスケードレーザのための半導体膜、具体的には下部クラッド層24f、コア層24a、回折格子層24d、上部クラッド層24b、及びコンタクト層24eのための半導体膜(63a、63b、63c、63d、63e)を含む。
例示的なエピタキシャル基板EP。
半導体ウエハ61:n型InP基板。
積層体63。
半導体膜63a(下部クラッド層24f):n型InP。
半導体膜63b(コア層24a):例えば、GaInAs/AlInAs、GaInAsP/AlInAsから成る超格子構造。
半導体膜63c(回折格子層24d):n型InGaAs。
半導体膜63d(上部クラッド層24b):n型InP。
半導体膜63e(コンタクト層24e):n型InGaAs。
工程S102では、図7の(b)部に示されるように、エピタキシャル基板EP上に第1マスクM1を形成する。第1マスクM1は、量子カスケードレーザ11の半導体メサ23を規定するパターンを有する。第1マスクM1は、例えばシリコン酸化物又はシリコン窒化物といった誘電体絶縁膜を含むことができる。第1マスクM1を用いてエピタキシャル基板EPをエッチングして、半導体ストライプ64を含む第1生産物SP1を形成する。半導体ストライプ64は、半導体ウエハ61内に底を有しており、第1軸Ax1の方向に延在する。
工程S103では、図7の(c)部に示されるように、第1マスクM1を用いて、半導体ストライプ64を埋め込む埋込領域67を第1生産物SP1上に成長する。埋込領域67を形成した後に、第1マスクM1を除去して、一又は複数の半導体ストライプ64及び埋込領域67を含む第2生産物SP2を得る。半導体ストライプ64及び埋込領域67は、半導体ウエハ61上において、第3軸Ax3の方向に交互に配列されて、埋込領域67は、半導体ストライプ64の間に設けられて、半導体ストライプ64の両側面を埋め込む。
工程S104では、図8の(a)部に示されるように、第1マスクM1を除去した後、第2生産物SP2上に第2マスクM2を形成する。第2マスクM2は、量子カスケードレーザ11における凹部27を規定するストライプ開口M2APを有するパターンを有する。第2マスクM2は、半導体ストライプ64に沿って延在すると共に第3軸Ax3の方向に配列される複数のストライプ開口M2APを規定する。ストライプ開口M2APは、個々の半導体ストライプ64毎に設けられることができ、必要な場合には、第3軸Ax3の方向に延在するように、両隣のストライプ開口M2APが繋がることができる。本実施例では、ストライプ開口M2APは、第3軸Ax3の方向に延在するストライプ形状を有する。第2マスクM2は、シリコン酸化物又はシリコン窒化物といった誘電体絶縁膜を含むことができる。
第2マスクM2を用いて第2生産物SP2をエッチングして、図8の(b)部に示される第3生産物SP3を形成する。このエッチングにより、半導体ストライプ64から半導体メサ23及び埋込領域67から埋込体31が作製され、また、凹部27(詳細には、量子カスケードレーザ11の凹部27の2倍に長さを有する)が作製される。凹部27は、第2端面13bのためのエッチングされた端面27aを第3生産物SP3に提供する。
凹部27は、半導体ウエハ61内に底を有しており、この底は、半導体メサ23の底より深い。本実施例では。凹部27は、素子区画を越えて、第3軸Ax3の方向に延在する。
工程S105では、第2マスクM2を除去後に、図9の(a)部に示されるように、第3生産物SP3上に絶縁膜69を堆積する。絶縁膜69は、シリコン酸化物又はシリコン窒化物といった誘電体絶縁膜を含むことができる。絶縁膜69は、第3生産物SP3における凹部27の側面(第2端面13b)及び底面(接続面25)、並びに半導体メサ23及び埋込体31上に接触を成す。
工程S106では、図9の(a)部に示されるように、絶縁膜69上にレジストから成る第3マスクM3を形成することで、第4生産物SP4を得る。第3マスクM3は、第1電極17のためにコンタクト開口を規定するパターンを有する。本実施例では、このパターンは、素子区画を横切って第3軸Ax3の方向に延在して、半導体メサ23及び埋込体31上に位置する開口M3APを規定する。
工程S107では、第3マスクM3を用いて絶縁膜69をエッチングして絶縁膜15を形成した後、第3マスクM3を除去することで、図9の(b)部に示されるように、第5生産物SP5を得る。このエッチングは、ウエットエッチング又はドライエッチングであることができる。絶縁膜15は、コンタクト開口15aを有し、半導体メサ23及び埋込体31上に位置すると共に第3軸Ax3の方向に延在する。
工程S108では、図10の(a)部に示されるように、第5生産物SP5上にレジストから成る第4マスクM4を形成する。第4マスクM4は、リフトオフにより、単一の金属堆積膜70から第1電極17及び金属膜19を形成するためのパターンを有する。該パターンは、半導体メサ23及び埋込体31上の絶縁膜15上において素子区画を横切って第3軸Ax3の方向に延在すると共に、素子区画の配列の外に到達する。パターンは、互いに離された第1開口M4AP1及び第2開口M4AP2を規定する。第1開口M4AP1は、凹部27及び第2端面13bから離れると共に半導体メサ23及び埋込体31上に位置しており、第2開口M4AP2は、凹部27及び第2端面13bの全体上に位置する。第4マスクM4が形成された半導体ウエハ表面上に単一の金属堆積膜70を堆積して、図10の(a)部に示される第6生産物SP6が得られる。
工程S109では、金属堆積膜70の堆積の後に、第4マスクM4をリフトオフで除去して、図10の(b)部に示されるように、第1電極17及び金属膜19を形成する。必要な場合には、第1電極17及び金属膜19を別の製造工程において形成するようにしてもよい。その後、半導体ウエハ61の裏面上に第2電極21のための金属膜71を形成して、第7生産物SP7を得る。
金属膜71を形成した後に、矢印CT1、CT2で示される位置で第7生産物SP7を分割して、量子カスケードレーザ11を得る。矢印CT1における分割により、第1端面13aが形成される。矢印CT2における分割により、量子カスケードレーザ11の第3端面13jが形成される。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
以上説明したように、本実施形態によれば、レーザバーへの堆積を用いる該金属膜の堆積を回避できると共に反射端面上に金属膜を配置できる構造を有する量子カスケードレーザを提供できる。
11…量子カスケードレーザ、13…レーザ構造体、15…絶縁膜、17…第1電極、19…金属膜、13a…第1端面、13b…第2端面、13c…第1領域、13d…第2領域、13e…エピ面、13f…基板面。

Claims (5)

  1. 量子カスケードレーザであって、
    第1端面を含む第1領域、第2端面を含む第2領域、エピ面、及び基板面を有するレーザ構造体と、
    前記レーザ構造体の前記第2端面及び前記エピ面上に設けられた絶縁膜と、
    前記レーザ構造体の前記エピ面及び前記絶縁膜上に設けられ、前記絶縁膜の開口を介して前記エピ面に接触を成す電極と、
    前記レーザ構造体の前記第2端面及び前記エピ面上に設けられ、前記電極及び前記基板面から離れた金属膜と、
    を備え、
    前記絶縁膜は、前記金属膜と前記第2端面及び前記エピ面との間に設けられ、
    前記エピ面は前記基板面の反対側にあり、
    前記第1領域及び第2領域は、第1軸の方向に配置され、
    前記第2領域は、前記第1軸の方向に延在するコア層を有する半導体メサを含み、
    前記第2端面は前記第1領域と前記第2領域との境界に位置し、
    前記第2端面は前記半導体メサを終端させ、
    前記第1領域は、前記第1軸の方向に延在する接続面を含み、
    前記接続面は、前記第2端面を前記第1端面に接続し、
    前記絶縁膜は、前記接続面上に設けられ、
    前記絶縁膜は、前記第1端面の上端から離れており、
    前記金属膜は、前記接続面上に設けられ、
    前記金属膜は、前記第1端面の上端から離れ、
    前記第1端面は、前記基板面を前記接続面に接続する、量子カスケードレーザ。
  2. 前記レーザ構造体は、埋込体及び基板を含み、
    前記第2端面は、前記基板内に底を有し、
    前記基板は前記埋込体を搭載し、
    前記埋込体は、前記第2領域において前記半導体メサを埋め込む電流ブロック部を有する、請求項1に記載された量子カスケードレーザ。
  3. 前記接続面は、前記レーザ構造体の一側面から他側面まで延在し、
    前記絶縁膜及び前記金属膜は、前記接続面上に設けられる、請求項1又は請求項2に記載された量子カスケードレーザ。
  4. 前記レーザ構造体は、前記埋込体の前記電流ブロック部から延出する第1延在部及び第2延在部を前記第1領域に有し、
    前記金属膜は、前記第1延在部及び前記第2延在部上に設けられる、請求項2に記載された量子カスケードレーザ。
  5. 前記第1延在部及び前記第2延在部は、それぞれ、前記第1軸の方向に延在する第1側面及び第2側面を有し、
    前記第1側面及び前記第2側面は前記第1端面に接続され、
    前記接続面は、前記第1側面及び前記第2側面を互いに接続し、
    前記第2端面は、前記第1側面及び前記第2側面を互いに接続し、
    前記絶縁膜及び前記金属膜は、前記接続面、前記第1側面及び前記第2側面上に設けられる、請求項4に記載された量子カスケードレーザ。
JP2018190154A 2018-10-05 2018-10-05 量子カスケードレーザ Active JP7131273B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018190154A JP7131273B2 (ja) 2018-10-05 2018-10-05 量子カスケードレーザ
US16/584,973 US11121525B2 (en) 2018-10-05 2019-09-27 Quantum cascade laser
CN201910933613.3A CN111009821A (zh) 2018-10-05 2019-09-29 量子级联激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190154A JP7131273B2 (ja) 2018-10-05 2018-10-05 量子カスケードレーザ

Publications (2)

Publication Number Publication Date
JP2020061408A JP2020061408A (ja) 2020-04-16
JP7131273B2 true JP7131273B2 (ja) 2022-09-06

Family

ID=70052398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190154A Active JP7131273B2 (ja) 2018-10-05 2018-10-05 量子カスケードレーザ

Country Status (3)

Country Link
US (1) US11121525B2 (ja)
JP (1) JP7131273B2 (ja)
CN (1) CN111009821A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060187985A1 (en) 2005-02-18 2006-08-24 Binoptics Corporation High reliability etched-facet photonic devices
JP2013254765A (ja) 2012-06-05 2013-12-19 Hamamatsu Photonics Kk 量子カスケードレーザ
JP2015222811A (ja) 2014-05-01 2015-12-10 住友電気工業株式会社 量子カスケード半導体レーザ、量子カスケード半導体レーザを作製する方法
JP2017037870A (ja) 2015-08-06 2017-02-16 住友電気工業株式会社 量子カスケードレーザデバイス
JP2018098263A (ja) 2016-12-08 2018-06-21 住友電気工業株式会社 量子カスケード半導体レーザ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966067B2 (ja) * 2002-04-26 2007-08-29 富士ゼロックス株式会社 表面発光型半導体レーザ素子およびその製造方法
CN102709812B (zh) * 2012-06-01 2013-11-13 长春理工大学 衬底上分布有导热通道的量子级联激光器
JP6163080B2 (ja) * 2013-10-28 2017-07-12 浜松ホトニクス株式会社 量子カスケードレーザ
CN103545712A (zh) * 2013-10-29 2014-01-29 中国科学院半导体研究所 带有分布反馈光栅和多孔波导量子级联激光器及制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060187985A1 (en) 2005-02-18 2006-08-24 Binoptics Corporation High reliability etched-facet photonic devices
JP2013254765A (ja) 2012-06-05 2013-12-19 Hamamatsu Photonics Kk 量子カスケードレーザ
JP2015222811A (ja) 2014-05-01 2015-12-10 住友電気工業株式会社 量子カスケード半導体レーザ、量子カスケード半導体レーザを作製する方法
JP2017037870A (ja) 2015-08-06 2017-02-16 住友電気工業株式会社 量子カスケードレーザデバイス
JP2018098263A (ja) 2016-12-08 2018-06-21 住友電気工業株式会社 量子カスケード半導体レーザ

Also Published As

Publication number Publication date
US11121525B2 (en) 2021-09-14
JP2020061408A (ja) 2020-04-16
US20200112143A1 (en) 2020-04-09
CN111009821A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
US8705583B2 (en) Semiconductor laser
CN106972345B (zh) 形成半导体光学器件的方法及半导体光学器件
CN107579428B (zh) 具有光束形状修改的激光器
US7440666B2 (en) Buried heterostucture device having integrated waveguide grating fabricated by single step MOCVD
JP3540042B2 (ja) 半導体デバイスの作製方法
US8716044B2 (en) Optical semiconductor device having ridge structure formed on active layer containing P-type region and its manufacture method
JPH07114308B2 (ja) オプトエレクトロニクス半導体装置及びその製造方法
US9595811B2 (en) Quantum cascade semiconductor laser
US10608412B2 (en) Quantum cascade laser, light emitting apparatus
US10312667B2 (en) Quantum cascade laser
JP7131273B2 (ja) 量子カスケードレーザ
JP2009054721A (ja) 半導体素子及び半導体素子の製造方法
US6560266B2 (en) Distributed feedback semiconductor laser
JP2019140144A (ja) 量子カスケードレーザ、発光装置
JP7410276B2 (ja) 半導体光デバイス
US20230021415A1 (en) Manufacturing Method for Semiconductor Device
JP2019004105A (ja) 量子カスケード半導体レーザ、発光装置、半導体レーザを作製する方法
KR100584333B1 (ko) 반도체 레이저 장치 및 그 제조방법
US11777274B2 (en) Semiconductor optical device and method for manufacturing the same
US20220131344A1 (en) Semiconductor optical device and method of manufacturing the same
JP2004087564A (ja) 半導体レーザ素子及びその製造方法
US20220247155A1 (en) Semiconductor optical device and method for manufacturing the same
US20220206226A1 (en) Semiconductor optical device and method for manufacturing the same
WO2007108117A1 (ja) 光半導体素子
CN117581433A (zh) 半导体光元件

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7131273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150