JP7125193B2 - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP7125193B2
JP7125193B2 JP2016202748A JP2016202748A JP7125193B2 JP 7125193 B2 JP7125193 B2 JP 7125193B2 JP 2016202748 A JP2016202748 A JP 2016202748A JP 2016202748 A JP2016202748 A JP 2016202748A JP 7125193 B2 JP7125193 B2 JP 7125193B2
Authority
JP
Japan
Prior art keywords
seismic isolation
support plate
isolation device
sliding
base portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016202748A
Other languages
Japanese (ja)
Other versions
JP2018062823A (en
Inventor
理恵 長井
英輔 谷本
丈巳 乗物
信吾 浅原
千佐子 浜辺
弘樹 濱口
満 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2016202748A priority Critical patent/JP7125193B2/en
Publication of JP2018062823A publication Critical patent/JP2018062823A/en
Application granted granted Critical
Publication of JP7125193B2 publication Critical patent/JP7125193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、免震構造に関する。 The present invention relates to a seismic isolation structure.

下記特許文献1には、上部構造に固定され、積層ゴムを供えた弾性すべり支承が、下部構造に固定されたすべり板の上を滑ることで免震効果を発揮する免震装置が開示されている。 Patent Literature 1 below discloses a seismic isolation device that exerts a seismic isolation effect by sliding elastic slide bearings, which are fixed to an upper structure and provided with laminated rubber, on a slide plate fixed to a lower structure. there is

特開平11-210823号公報JP-A-11-210823

上記特許文献1に示された免震装置は、地震が発生すると個々の弾性すべり支承がすべり板の上を滑動するが、地震後に上部構造(構造物)と下部構造(支持版)との位置関係が元の状態となるように免震装置を復元することが困難である。 In the seismic isolation device shown in Patent Document 1, when an earthquake occurs, each elastic sliding bearing slides on the sliding plate, but after the earthquake, the position of the upper structure (structure) and the lower structure (support plate) It is difficult to restore the seismic isolation device so that the relationship is in the original state.

本発明は上記事実を考慮して、地震後の免震装置の復元が容易な免震構造を提供することを目的とする。 SUMMARY OF THE INVENTION In consideration of the above facts, it is an object of the present invention to provide a seismic isolation structure that facilitates restoration of the seismic isolation device after an earthquake.

請求項1の免震構造は、建物である構造物と、前記構造物を免震支持する複数の免震装置と、前記複数の免震装置の全数が固定された一つの支持版と、前記支持版が載置され、前記免震装置が塑性変形を始める前に前記支持版が滑る基礎部と、前記支持版と前記基礎部との間に設けられ、所定の水平力を受けて破断する滑動抑制部材と、を有する。 A seismic isolation structure according to claim 1 comprises a structure that is a building, a plurality of seismic isolation devices for seismically isolating and supporting the structure, one support plate to which all of the plurality of seismic isolation devices are fixed, and the A support plate is placed thereon, and before the seismic isolation device begins to plastically deform, the support plate slides on a base portion , provided between the support plate and the base portion, and is broken by receiving a predetermined horizontal force. and a sliding suppression member .

請求項1の免震構造によると、地震により免震装置の変形が所定値以上となると、免震装置が固定された支持版が基礎部の上を滑るので、免震装置の損傷を抑制できる。また、滑り始めた後は、支持版と基礎部との摩擦力により、地震エネルギーを消費できる。 According to the seismic isolation structure of claim 1, when the deformation of the seismic isolation device exceeds a predetermined value due to an earthquake, the support plate to which the seismic isolation device is fixed slides on the foundation, so damage to the seismic isolation device can be suppressed. . In addition, after the slide starts, the seismic energy can be consumed by the frictional force between the support plate and the foundation.

免震装置は支持版に固定されており、構造物、免震装置、及び支持版が一体に滑る。したがって、滑り材を設けた個々の免震装置が支持版の上を滑る構成と比較すると、構造物と支持版とが相対的に変位し難く、免震構造の復元が容易である。また、構造物と支持版の間に配置された配管の損傷も抑制できる。 The seismic isolation device is fixed to the support plate, and the structure, the seismic isolation device and the support plate slide together. Therefore, compared to a configuration in which each seismic isolation device provided with a slip member slides on a support plate, the structure and the support plate are relatively less likely to be displaced, and the seismic isolation structure can be easily restored. Moreover, damage to the piping arranged between the structure and the support plate can be suppressed.

さらに、滑りスペースは支持版の周囲に確保すれば良いので、免震装置に滑り材を設け、個々の免震装置ごとに滑りスペースを確保する構成と比較すると、滑りスペースを確保しやすく、免震装置の配置も密にできる。
請求項2の免震構造は、前記支持版と前記基礎部との間の静止摩擦係数が、前記免震装置が塑性変形を始める前に前記支持版が滑動を開始できる値に設定されている。
一態様の免震構造は、前記支持版は複数設けられ、それぞれに複数の前記免震装置が固定されている。
Furthermore, since it is sufficient to secure the sliding space around the support plate, it is easier to secure the sliding space than to secure a sliding space for each seismic isolation device by providing a sliding material for each seismic isolation device. The seismic device can also be arranged densely.
In the seismic isolation structure according to claim 2, the coefficient of static friction between the support plate and the base is set to a value that allows the support plate to start sliding before the seismic isolation device starts plastic deformation. .
In one aspect of the seismic isolation structure, a plurality of the support plates are provided, and a plurality of the seismic isolation devices are fixed to each of the support plates.

一態様の免震構造は、前記支持版と前記基礎部との間には所定の水平力を受けて破断する滑動抑制部材が設けられている。 In one aspect of the seismic isolation structure, a sliding suppressing member that breaks when receiving a predetermined horizontal force is provided between the support plate and the base portion.

一態様の免震構造によると、滑動抑制部材の破断強度を変えることで、支持版が滑り出すタイミングを調整できる。
請求項3の免震構造は、前記支持版の上部から前記支持版を貫通し前記基礎部の内部に到達する挿入孔に、前記滑動抑制部材が挿入されている。
請求項4の免震構造は、前記滑動抑制部材はコンクリート製である。
請求項5の免震構造は、前記免震装置の内部には鉛プラグが挿入されている。
According to one aspect of the seismic isolation structure, the timing at which the support plate starts to slide can be adjusted by changing the breaking strength of the anti-slip member.
In the seismic isolation structure according to claim 3 , the anti-slip member is inserted into an insertion hole penetrating through the support plate from the upper part of the support plate and reaching the inside of the base portion.
In the seismic isolation structure according to claim 4 , the sliding suppressing member is made of concrete.
In the seismic isolation structure according to claim 5 , a lead plug is inserted inside the seismic isolation device.

請求項6の免震構造は、前記構造物は原子力関連施設とされている。 In the seismic isolation structure according to claim 6 , the structure is a nuclear-related facility.

原子力関連施設は建物全体の重量が大きいため、免震装置は多くの数量が必要とされ、配置されるピッチも細かくなる。このため、個々の免震装置に滑り材を設ける場合、滑り面積を十分に確保できない虞がある。 Since the weight of the entire building of a nuclear power facility is large, a large number of seismic isolation devices are required, and the pitch of the installation is also fine. For this reason, when a sliding member is provided for each seismic isolation device, there is a possibility that a sufficient sliding area cannot be secured.

請求項6の免震構造においては、免震装置が支持版に固定され、支持版が基礎部の上を滑動するので、免震装置個々に滑り材と滑りスペースを確保する必要がなく、原子力関連施設周辺に支持版の滑りスペースを確保すればよい。 In the seismic isolation structure of claim 6 , the seismic isolation device is fixed to the support plate, and the support plate slides on the foundation, so there is no need to secure a sliding material and a sliding space for each seismic isolation device. All you have to do is secure a sliding space for the support plate around the related facilities.

また、免震装置の変形が所定値以上となると、免震装置が固定された支持版が基礎部の上を滑るので、免震装置の損傷が抑制される。これにより、免震装置は大地震時においても建物の重量を支持した状態を保持できる。このため、建物の健全性を維持しやすい。 Further, when the deformation of the seismic isolation device reaches or exceeds a predetermined value, the support plate to which the seismic isolation device is fixed slides on the foundation, thereby suppressing damage to the seismic isolation device. As a result, the seismic isolation device can maintain the state of supporting the weight of the building even in the event of a large earthquake. Therefore, it is easy to maintain the soundness of the building.

本発明に係る免震構造によると、地震後の免震装置の復元が容易である。 According to the seismic isolation structure according to the present invention, it is easy to restore the seismic isolation device after an earthquake.

本発明の実施形態に係る免震構造を示した立断面図である。1 is an elevation cross-sectional view showing a seismic isolation structure according to an embodiment of the present invention; FIG. (A)は本発明の実施形態に係る免震構造において、基礎部と支持版の接触面を鋼板で形成した変形例を示す部分拡大立断面図であり、(B)は基礎部と支持版との間に滑り材を挟んだ変形例を示す部分拡大立断面図である。(A) is a partially enlarged elevational sectional view showing a modification in which the contact surface between the base portion and the support plate is formed of a steel plate in the seismic isolation structure according to the embodiment of the present invention, and (B) is a base portion and the support plate. and FIG. 11 is a partially enlarged vertical cross-sectional view showing a modified example in which a sliding material is sandwiched between. (A)は本発明の実施形態に係る免震構造において、地震時に免震装置の積層体が変形している状態を示す立断面図であり、(B)はシアストッパーが破断して支持版が基礎部の上を滑動している状態を示し、(C)は地震後の状態を示している。(A) is a vertical cross-sectional view showing a state in which the laminate of the seismic isolation device is deformed during an earthquake in the seismic isolation structure according to the embodiment of the present invention; (C) shows the state after the earthquake. 本発明の実施形態に係る免震構造を地震後に復元する方法を示す立断面図である。It is an elevation sectional view showing the method of restoring the seismic isolation structure which concerns on embodiment of this invention after an earthquake. 本発明の実施形態に係る免震構造において支持版を複数設けた変形例を示す立断面図である。It is an elevation sectional view which shows the modification which provided multiple supporting plates in the seismic isolation structure which concerns on embodiment of this invention. (A)は本発明の実施形態に係る免震構造においてシアストッパーをコンクリートで形成した変形例を示す立断面図であり、(B)はコンクリート製のシアストッパーを円錐の一部の形状とした変形例を示す部分拡大立断面図であり、(C)はシアストッパーにスリットを形成した変形例を示す斜視図である。(A) is a cross-sectional elevational view showing a modification in which the shear stopper is made of concrete in the seismic isolation structure according to the embodiment of the present invention, and (B) is a concrete shear stopper formed in the shape of a part of a cone. It is a partially enlarged vertical cross-sectional view showing a modification, and (C) is a perspective view showing a modification in which a slit is formed in the shear stopper.

(免震構造)
図1に示すように、本実施形態に係る免震構造10は、構造物20と、構造物を免震支持する複数の免震装置30と、免震装置が固定された支持版40と、支持版40が載置される基礎部50と、を備えている。
(Seismic isolation structure)
As shown in FIG. 1, the seismic isolation structure 10 according to the present embodiment includes a structure 20, a plurality of seismic isolation devices 30 for supporting the structure in seismic isolation, a support plate 40 to which the seismic isolation devices are fixed, and a base portion 50 on which the support plate 40 is placed.

さらに、支持版40と基礎部50との間には、支持版40が基礎部50の上部を滑動することを抑制する滑動抑制部材としてのシアストッパー60が設けられている。 Furthermore, a shear stopper 60 is provided between the support plate 40 and the base portion 50 as a sliding suppression member that prevents the support plate 40 from sliding on the upper portion of the base portion 50 .

(構造物)
構造物20は原子力関連施設とされ、同規模の他用途建物と比較して総重量が大きく、またその重要性から想定する地震力も大きい。このため、構造物20を支持する免震装置30は、同規模の他用途建物と比較して多くの数量が設置されている。
(Structure)
The structure 20 is assumed to be a nuclear power related facility, and has a larger gross weight than other buildings of the same scale, and a large seismic force, which is assumed due to its importance. For this reason, a larger number of seismic isolation devices 30 for supporting the structure 20 are installed compared to other-purpose buildings of the same scale.

(免震装置)
免震装置30は、構造物20に固定された上フランジ32と、支持版40に固定された下フランジ34と、上下端が上フランジ32及び下フランジに固定された積層体36と、を備えている。積層体36は、ゴムと鋼板とが交互に積層、接着されて構成されており、上下(鉛直)方向の力に対しては変形しにくく、横(水平)方向の力に対しては変形しやすい。このため、地震時に構造物20へ水平力が入力された際には、積層体36が変形して振動エネルギーを吸収することができる。
(Seismic isolation device)
The seismic isolation device 30 includes an upper flange 32 fixed to the structure 20, a lower flange 34 fixed to the support plate 40, and a laminate 36 having upper and lower ends fixed to the upper flange 32 and the lower flange. ing. The laminated body 36 is constructed by alternately laminating and bonding rubber and steel plates, and is resistant to deformation against vertical (vertical) force and resistant to lateral (horizontal) force. Cheap. Therefore, when a horizontal force is applied to the structure 20 during an earthquake, the laminate 36 can be deformed to absorb the vibration energy.

(支持版、基礎部)
支持版40は、基礎部50の上部に打設された鉄筋コンクリート製の床版であり、免震装置30を介して構造物20を支持している。支持版40の上部には免震装置30の全数が固定されている他、図示しない構造物20の設備配管が敷設されている。
(support plate, foundation)
The support slab 40 is a floor slab made of reinforced concrete placed on the upper part of the foundation 50 and supports the structure 20 via the seismic isolation device 30 . All of the seismic isolation devices 30 are fixed on the upper part of the support plate 40, and equipment pipes of the structure 20 (not shown) are laid.

基礎部50は鉄筋コンクリート製とされ、地盤Gを掘削して形成した地下空間の底(根切り底)に形成されている。基礎部50の外周部には擁壁54が立設されて、地盤Gからの土圧または地下水からの水圧に抵抗する地下ピットが形成されている。なお、基礎部50は必ずしも地下空間に形成されている必要はなく、地盤Gを掘削しない地表面に形成することもできる。またこの場合、擁壁54は設けなくてもよい。 The foundation part 50 is made of reinforced concrete and is formed at the bottom (root cut bottom) of an underground space formed by excavating the ground G. A retaining wall 54 is erected on the outer peripheral portion of the foundation portion 50 to form an underground pit that resists earth pressure from the ground G or water pressure from groundwater. Note that the foundation portion 50 does not necessarily have to be formed in the underground space, and can be formed on the ground surface without excavating the ground G. Moreover, in this case, the retaining wall 54 may not be provided.

支持版40を構成するコンクリートは、基礎部50を構成するコンクリートが硬化した後に設置される。これにより支持版40と基礎部50とは縁が切られており、支持版40が地震によって水平力を受けた際には、支持版40が基礎部50の上部を滑動できる。なお、地震時には地盤Gが動くので、地盤Gから基礎部50を介して支持版40へ地震力が入力される。 The concrete forming the support plate 40 is installed after the concrete forming the base portion 50 hardens. As a result, the edge between the support plate 40 and the base portion 50 is cut, and the support plate 40 can slide on the upper portion of the base portion 50 when the support plate 40 receives a horizontal force due to an earthquake. Since the ground G moves during an earthquake, a seismic force is input from the ground G to the support plate 40 via the base portion 50 .

詳しくは後述するが、本実施形態において支持版40が滑動を開始する水平力、すなわち(支持版40と基礎部50との間の静止摩擦係数)×(垂直抗力:支持版40と、支持版40より上部の重量)は、免震装置30が塑性変形を始める水平力よりも小さく設定されている。換言すると、支持版40と基礎部50との間の静止摩擦係数は、免震装置30が塑性変形を始める前に支持版40が滑動を開始できる値に設定されている。 Although details will be described later, in this embodiment, the horizontal force at which the support plate 40 starts sliding, that is, (coefficient of static friction between the support plate 40 and the base portion 50) × (vertical force: the support plate 40 and the support plate 40) is set smaller than the horizontal force at which the seismic isolation device 30 begins plastic deformation. In other words, the coefficient of static friction between the support plate 40 and the base portion 50 is set to a value that allows the support plate 40 to start sliding before the seismic isolation device 30 starts plastic deformation.

なお、支持版40が基礎部50の上部を滑動する際の静止摩擦係数及び動摩擦係数は、支持版40及び基礎部50の接触面40E、50Eの仕上げ方法により任意の値に設定できる。 The static friction coefficient and the dynamic friction coefficient when the support plate 40 slides on the upper portion of the base portion 50 can be set to arbitrary values depending on the finishing method of the contact surfaces 40E, 50E of the support plate 40 and the base portion 50.

例えば本実施形態においては接触面40E、50Eはコンクリート面とされているがこれらの双方を鋼板の表面にしてもよい。この場合、図2(A)に示すように、基礎部50を構成するコンクリートの表面に、スタッドボルト等を用いて鋼板52を固定する。同様に支持版40を構成するコンクリートの表面にも鋼板42を固定する。 For example, in the present embodiment, the contact surfaces 40E and 50E are concrete surfaces, but both of them may be steel plate surfaces. In this case, as shown in FIG. 2A, a steel plate 52 is fixed to the surface of the concrete forming the foundation 50 using stud bolts or the like. Similarly, a steel plate 42 is also fixed to the concrete surface forming the support plate 40 .

これにより、支持版40が基礎部50の上部を滑動する際の静止摩擦係数及び動摩擦係数(以下、これらを総称して単に摩擦係数と称すことがある)を小さくすることができる。また、鋼板42、52の何れかまたは双方を鋼とは異なる金属とすることで、摩擦係数を調整することもできる。 As a result, the static friction coefficient and dynamic friction coefficient (hereinafter collectively referred to simply as friction coefficients) when the support plate 40 slides on the upper portion of the base portion 50 can be reduced. Further, by making either or both of the steel plates 42 and 52 a metal other than steel, the coefficient of friction can be adjusted.

また、接触面40E、50Eの一方をコンクリート面とし、他方を鋼板の表面にしてもよい。この場合、基礎部50を構成するコンクリートの表面又は支持版40を構成するコンクリートの表面の何れか一方に、スタッドボルト等を用いて鋼板を固定すればよい。 Also, one of the contact surfaces 40E and 50E may be a concrete surface and the other may be a steel plate surface. In this case, the steel plate may be fixed to either the surface of the concrete forming the base portion 50 or the surface of the concrete forming the support plate 40 using stud bolts or the like.

また、例えば図2(B)に示すように、支持版40と基礎部50との間に、滑り材44を挟む構成とすることもできる。滑り材44は金属、フッ素樹脂など任意の素材を選定できる。 Further, for example, as shown in FIG. 2B, a configuration in which a sliding member 44 is sandwiched between the support plate 40 and the base portion 50 may be employed. Any material such as metal or fluorine resin can be selected for the sliding member 44 .

(シアストッパー)
図1に示すように、シアストッパー60は円柱状の鋼棒であり、支持版40及び基礎部50の接触面40E、50Eを貫通するように軸方向を上下方向にして配置されている。
(Shear stopper)
As shown in FIG. 1, the shear stopper 60 is a cylindrical steel rod, and is arranged with its axial direction extending vertically so as to penetrate the contact surfaces 40E and 50E of the support plate 40 and the base portion 50. As shown in FIG.

シアストッパー60は、地震時に支持版40に水平力が作用した際に、支持版40の滑動を抑制する滑動抑制部材である。また、シアストッパー60は所定の水平力を受けた際にせん断破壊して支持版40の滑動を許容する。したがって、シアストッパー60の数量及び断面積を調整することにより、支持版40が基礎部50の上部を滑り出すタイミングを調整することができる。 The shear stopper 60 is a sliding suppression member that suppresses sliding of the support plate 40 when a horizontal force acts on the support plate 40 during an earthquake. Further, the shear stopper 60 is sheared and broken when receiving a predetermined horizontal force to allow the support plate 40 to slide. Therefore, by adjusting the number and cross-sectional area of the shear stoppers 60, the timing at which the support plate 40 starts to slide over the base portion 50 can be adjusted.

つまり、シアストッパー60が破断する水平力は、(シアストッパー60を構成する鋼材の単位面積当たりのせん断強度)×(シアストッパー60の断面積)×(シアストッパーの数量)で与えられるため、例えばシアストッパー60の断面積を大きくすれば、シアストッパー60を破断させるために必要な水平力が大きくなり、支持版40が基礎部50の上部を滑り出すタイミングを遅らせることができる。シアストッパー60の数量を多くしても同様である。 That is, the horizontal force at which the shear stopper 60 breaks is given by (shear strength per unit area of the steel material forming the shear stopper 60)×(cross-sectional area of the shear stopper 60)×(number of shear stoppers). If the cross-sectional area of the sear stopper 60 is increased, the horizontal force required to break the sear stopper 60 is increased, and the timing at which the support plate 40 slides over the base portion 50 can be delayed. Even if the number of shear stoppers 60 is increased, the same is true.

また、シアストッパー60の断面積を小さくすれば、シアストッパー60を破断させるために必要な水平力が小さくなり、支持版40が基礎部50の上部を滑り出すタイミングを早めることができる。シアストッパー60の数量を少なくしても同様である。 Further, if the cross-sectional area of the sear stopper 60 is reduced, the horizontal force required to break the sear stopper 60 is reduced, and the timing at which the support plate 40 slides over the base portion 50 can be advanced. Even if the number of sear stoppers 60 is reduced, the same is true.

詳しくは後述するが、本実施形態においてシアストッパー60が破断する水平力は、免震装置30が塑性変形を始める水平力よりも小さくなるように、シアストッパーの断面積、数量が設定されている。換言すると、免震装置30が塑性変形を始める前に、シアストッパー60が破断する。 Although details will be described later, in this embodiment, the cross-sectional area and quantity of the shear stoppers are set so that the horizontal force at which the shear stopper 60 breaks is smaller than the horizontal force at which the seismic isolation device 30 starts plastic deformation. . In other words, the shear stopper 60 breaks before the seismic isolation device 30 starts plastic deformation.

(作用・効果)
本実施形態に係る免震構造10によると、構造物20が地震時に水平力を受けると、図3(A)に示すように、まず、免震装置30の積層体36が変形することで振動エネルギーを吸収し、構造物20に伝わる揺れを減衰する。
(action/effect)
According to the seismic isolation structure 10 according to this embodiment, when the structure 20 receives a horizontal force during an earthquake, as shown in FIG. It absorbs energy and attenuates the shaking transmitted to the structure 20. - 特許庁

そして大地震時には図3(B)に示すように、免震装置30が塑性変形を始める前にシアストッパー60が破断し(シアストッパー60A、60Bに分離)、支持版40が基礎部50の上を滑動する。 In the event of a major earthquake, as shown in FIG. 3B, the shear stopper 60 breaks (separates into shear stoppers 60A and 60B) before the seismic isolation device 30 starts plastic deformation, and the support plate 40 moves above the foundation 50. to slide.

これにより、免震装置30の損傷を抑制できる。さらに、支持版40が基礎部50の上を滑動すると、支持版40と基礎部50との間の動摩擦力により地震エネルギーが吸収され、振動が減衰される。 As a result, damage to the seismic isolation device 30 can be suppressed. Furthermore, when the support plate 40 slides on the base portion 50, the seismic energy is absorbed by the dynamic frictional force between the support plate 40 and the base portion 50, and the vibration is damped.

免震装置30は塑性変形が抑制されているため、振動が減衰された後は、図3(C)に示すように、免震装置30の形状は概ね変形前の状態に戻る。このため、構造物20と支持版40との相対的な位置関係は、図1に示された地震前の状態と略一致する。また、支持版40に敷設された構造物20の設備配管も、地震前の状態とほぼ同じ配置に復元される。 Since the plastic deformation of the seismic isolation device 30 is suppressed, after the vibration is damped, the shape of the seismic isolation device 30 generally returns to the state before deformation, as shown in FIG. 3(C). Therefore, the relative positional relationship between the structure 20 and the support plate 40 substantially matches the state before the earthquake shown in FIG. Also, the facility piping of the structure 20 laid on the support plate 40 is restored to substantially the same arrangement as before the earthquake.

このため、設備配管は、免震装置30の積層体36が弾性域で変形する変形量に対応できる追随性を持たせておくことで、容易に損傷を抑制できる。 For this reason, damage can be easily suppressed by providing the facility piping with followability that can correspond to the amount of deformation in which the laminate 36 of the seismic isolation device 30 deforms in the elastic region.

なお、免震構造10を復元するためには図4に示すように、支持版40の上部から、支持版40を貫通し基礎部50の内部に到達する挿入孔4
0Hを穿孔し、この挿入孔40Hへ、シアストッパー60を挿入する。このように、免震構造10は復元が容易である。
In order to restore the seismic isolation structure 10, as shown in FIG.
0H is drilled, and the shear stopper 60 is inserted into this insertion hole 40H. Thus, the seismic isolation structure 10 can be easily restored.

また、本実施形態に係る免震構造10によると、図3(A)に示すように、複数の免震装置30が同じ構造物20及び同じ支持版40に固定されているため、これらの免震装置30は同様に変形する。このため、隣り合う免震装置30の間の間隔を狭くしても免震装置30同士がぶつからない。したがって免震装置30それぞれの周囲に個別に滑りスペースを確保する必要がなく、支持版40と擁壁54との間にまとめて滑りスペースVを確保すればよい。 Moreover, according to the seismic isolation structure 10 according to the present embodiment, as shown in FIG. The seismic device 30 is similarly deformed. Therefore, even if the distance between the adjacent seismic isolation devices 30 is narrowed, the seismic isolation devices 30 do not collide with each other. Therefore, it is not necessary to secure individual sliding spaces around each seismic isolation device 30, and it is only necessary to collectively secure a sliding space V between the support plate 40 and the retaining wall 54. - 特許庁

なお、本実施形態においては、支持版40と基礎部50との間の静止摩擦係数は、免震装置30が塑性変形を始める前に支持版40が滑動を開始できる値に設定されているものとしたが、本発明の実施形態はこれに限らない。例えば、支持版40と基礎部50との間の静止摩擦係数を、免震装置30が塑性変形を始めた後(あるいは塑性変形を始めると同時)に、支持版40が滑動を開始できる値に設定することもできる。 In this embodiment, the coefficient of static friction between the support plate 40 and the base portion 50 is set to a value that allows the support plate 40 to start sliding before the seismic isolation device 30 starts plastic deformation. However, the embodiment of the present invention is not limited to this. For example, the coefficient of static friction between the support plate 40 and the base portion 50 is set to a value that allows the support plate 40 to start sliding after the base isolation device 30 starts plastic deformation (or at the same time as it starts plastic deformation). Can also be set.

静止摩擦係数をこのように設定することで、免震装置30の振動減衰能力を十分に発揮させることができる。このような実施形態は、免震装置の内部に鉛プラグを挿入し、鉛プラグを塑性変形させることにより振動を減衰させる場合などにおいて好適である。 By setting the coefficient of static friction in this manner, the vibration damping ability of the seismic isolation device 30 can be sufficiently exhibited. Such an embodiment is suitable for damping vibration by inserting a lead plug into the seismic isolation device and plastically deforming the lead plug.

同様に、本実施形態においては、免震装置30が塑性変形を始める前に、シアストッパー60が破断するものとしたが、本発明の実施形態はこれに限らない。例えば、シアストッパー60のせん断強度又は断面積を大きくして、免震装置30が塑性変形を始めた後(あるいは塑性変形を始めると同時)に、シアストッパー60を破断させてもよい。このような構成によっても、免震装置30の振動減衰能力を十分に発揮させることができる。 Similarly, in the present embodiment, the shear stopper 60 is broken before the seismic isolation device 30 starts plastic deformation, but the embodiment of the present invention is not limited to this. For example, the shear strength or cross-sectional area of the shear stopper 60 may be increased to break the shear stopper 60 after the seismic isolation device 30 starts plastic deformation (or at the same time as it starts plastic deformation). With such a configuration as well, the vibration damping ability of the seismic isolation device 30 can be fully exhibited.

すなわち、支持版40と基礎部50との間の静止摩擦係数、シアストッパー60のせん断強度、断面積は任意であり、構造物20の用途、想定する地震力、免震装置30のせん断耐力等によって適宜設定することができる。したがって、構造物20も原子力関連施設に限定されるものではなく、個人住宅や美術館、オフィスビルなど、規模の大小や用途を問わない。 That is, the coefficient of static friction between the support plate 40 and the base portion 50, the shear strength of the shear stopper 60, and the cross-sectional area are arbitrary. can be set as appropriate. Therefore, the structure 20 is not limited to a nuclear-related facility, and may be a private residence, an art museum, an office building, or the like, regardless of the size and usage.

なお、免震装置30を塑性変形させる場合は、塑性変形させない場合と比較して免震装置の変形量が大きくなることがある。このような場合でも、例えば構造物20に固定された免震装置が支持版40の上を滑る場合と比較すると構造物20と支持版40との相対変位量は少ない。このため設備配管の損傷が抑制される。 When the seismic isolation device 30 is plastically deformed, the amount of deformation of the seismic isolation device may become larger than when it is not plastically deformed. Even in such a case, the amount of relative displacement between the structure 20 and the support plate 40 is small compared to, for example, the case where the seismic isolation device fixed to the structure 20 slides on the support plate 40 . Therefore, damage to the facility piping is suppressed.

また、本実施形態において支持版40は床版とされ、免震装置30の全数が固定されているものとしたが本発明の実施形態はこれに限らない。例えば図5に示す支持版70のように、複数(2台以上)の免震装置30が固定される構成であればよい。このように構成する場合、複数の支持版70のそれぞれにシアストッパー60を設けることで、滑動のタイミングを調整できる。 Further, in the present embodiment, the support plate 40 is a floor plate and all the seismic isolation devices 30 are fixed, but the embodiment of the present invention is not limited to this. For example, like the support plate 70 shown in FIG. 5, any structure may be used as long as a plurality (two or more) of the seismic isolation devices 30 are fixed. In this configuration, by providing the shear stopper 60 to each of the plurality of support plates 70, the timing of sliding can be adjusted.

また、本実施形態においてシアストッパー60は鋼製とされているが、本発明の実施形態はこれに限らない。例えば図6(A)に示すシアストッパー65のように、コンクリート製としてもよい。この場合、基礎部50のコンクリート打設時に円柱状の雄型を表面から露出するように埋設する。コンクリートの硬化後にこれを取り出せば、基礎部50の上面に凹部が形成される。そして支持版40のコンクリートを、この凹部にも流し込んで一体的に打設する。これにより、コンクリート製のシアストッパー65が形成される。 Moreover, although the sear stopper 60 is made of steel in this embodiment, the embodiment of the present invention is not limited to this. For example, like a shear stopper 65 shown in FIG. 6A, it may be made of concrete. In this case, the cylindrical male mold is buried so as to be exposed from the surface when concrete is poured for the foundation portion 50 . If the concrete is taken out after hardening, a concave portion is formed in the upper surface of the base portion 50 . Then, the concrete of the support plate 40 is also poured into this concave portion and cast integrally. Thereby, a shear stopper 65 made of concrete is formed.

なお、シアストッパー65は円柱状に限らず、角柱状でもよいし、図6(B)に示すように、円錐の一部のような形状であってもよい。 Note that the shear stopper 65 is not limited to a columnar shape, and may be prismatic, or may have a shape like a part of a cone as shown in FIG. 6(B).

このように、シアストッパーに求められるせん断強度や、せん断強度を強くしたい方向などにより、シアストッパーの材質、外形状は適宜選択することができる。さらに、図6(C)に示すシアストッパー67のように、スリット60Sを設けることによりせん断強度を調整してもよい。このように、本発明の実施形態は様々な態様とすることができる。 In this manner, the material and outer shape of the shear stopper can be appropriately selected depending on the shear strength required of the shear stopper, the direction in which the shear strength is desired to be increased, and the like. Furthermore, shear strength may be adjusted by providing a slit 60S like a shear stopper 67 shown in FIG. 6(C). In this manner, embodiments of the present invention can have various aspects.

20 構造物(原子力関連施設)
30 免震装置
40、70 支持版
50 基礎部
60 シアストッパー(滑動抑制部材)
20 Structures (nuclear related facilities)
30 Seismic isolation device 40, 70 Support plate 50 Base portion 60 Shear stopper (slide suppressing member)

Claims (6)

建物である構造物と、
前記構造物を免震支持する複数の免震装置と、
前記複数の免震装置の全数が固定された一つの支持版と、
前記支持版が載置され、前記免震装置が塑性変形を始める前に前記支持版が滑る基礎部と、
前記支持版と前記基礎部との間に設けられ、所定の水平力を受けて破断する滑動抑制部材と、
を有する免震構造。
a structure that is a building ;
a plurality of seismic isolation devices for seismically isolating and supporting the structure;
a single support plate to which all of the plurality of seismic isolation devices are fixed;
a base on which the support plate is placed and on which the support plate slides before the seismic isolation device starts plastic deformation;
a sliding suppression member provided between the support plate and the base portion, and broken by receiving a predetermined horizontal force;
seismic isolation structure.
前記支持版と前記基礎部との間の静止摩擦係数が、前記免震装置が塑性変形を始める前に前記支持版が滑動を開始できる値に設定されている、請求項1に記載の免震構造。 2. The seismic isolation system according to claim 1, wherein the coefficient of static friction between said support plate and said base is set to a value that allows said support plate to start sliding before said base isolation device starts plastic deformation. structure. 前記支持版の上部から前記支持版を貫通し前記基礎部の内部に到達する挿入孔に、前記滑動抑制部材が挿入されている、請求項1又は2に記載の免震構造。 3. The seismic isolation structure according to claim 1 , wherein said sliding suppressing member is inserted into an insertion hole extending from an upper portion of said support plate through said support plate and reaching the inside of said base portion. 前記滑動抑制部材はコンクリート製である、請求項3に記載の免震構造。 The seismic isolation structure according to claim 3 , wherein said sliding suppression member is made of concrete. 前記免震装置の内部には鉛プラグが挿入されている、請求項1~4の何れか1項に記載の免震構造。 The seismic isolation structure according to any one of claims 1 to 4 , wherein a lead plug is inserted inside said seismic isolation device. 前記構造物は原子力関連施設とされた、
請求項1~5の何れか1項に記載の免震構造。
The structure was considered to be a nuclear related facility,
A seismic isolation structure according to any one of claims 1 to 5 .
JP2016202748A 2016-10-14 2016-10-14 Seismic isolation structure Active JP7125193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202748A JP7125193B2 (en) 2016-10-14 2016-10-14 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202748A JP7125193B2 (en) 2016-10-14 2016-10-14 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2018062823A JP2018062823A (en) 2018-04-19
JP7125193B2 true JP7125193B2 (en) 2022-08-24

Family

ID=61966482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202748A Active JP7125193B2 (en) 2016-10-14 2016-10-14 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP7125193B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055984B2 (en) * 2018-10-04 2022-04-19 株式会社竹中工務店 Lifting suppression structure
JP7374694B2 (en) * 2019-10-09 2023-11-07 清水建設株式会社 Design method for seismically isolated buildings
JP6889506B1 (en) * 2020-10-26 2021-06-18 株式会社シェルタージャパン Vibration control suspension building

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065196A (en) 1999-08-31 2001-03-13 Ntn Corp Sliding base-isolating device
JP2008156945A (en) 2006-12-25 2008-07-10 Takenaka Komuten Co Ltd Base isolation structure, base isolation structure designing method, and base isolated building
JP4202979B2 (en) 2004-08-06 2008-12-24 株式会社フジクラ Plating jig dryer
JP2010007793A (en) 2008-06-27 2010-01-14 Ohbayashi Corp Base isolation structure
JP2010037789A (en) 2008-08-04 2010-02-18 Takenaka Komuten Co Ltd Base-isolated structure, building, and base-isolated building
JP2010189998A (en) 2009-02-20 2010-09-02 Tokyo Institute Of Technology Base-isolation structure and building having the same
JP2013096169A (en) 2011-11-02 2013-05-20 Tokkyokiki Corp Vibration reducing device
JP2016176576A (en) 2015-03-20 2016-10-06 昭和電線デバイステクノロジー株式会社 Displacement suppression seismic isolator and seismic isolation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202979A (en) * 1990-11-30 1992-07-23 Hitachi Ltd Base isolation device
JP3827115B2 (en) * 1998-01-19 2006-09-27 三井住友建設株式会社 Seismic isolation structure
JPH11210823A (en) * 1998-01-22 1999-08-03 Taisei Corp Base isolation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065196A (en) 1999-08-31 2001-03-13 Ntn Corp Sliding base-isolating device
JP4202979B2 (en) 2004-08-06 2008-12-24 株式会社フジクラ Plating jig dryer
JP2008156945A (en) 2006-12-25 2008-07-10 Takenaka Komuten Co Ltd Base isolation structure, base isolation structure designing method, and base isolated building
JP2010007793A (en) 2008-06-27 2010-01-14 Ohbayashi Corp Base isolation structure
JP2010037789A (en) 2008-08-04 2010-02-18 Takenaka Komuten Co Ltd Base-isolated structure, building, and base-isolated building
JP2010189998A (en) 2009-02-20 2010-09-02 Tokyo Institute Of Technology Base-isolation structure and building having the same
JP2013096169A (en) 2011-11-02 2013-05-20 Tokkyokiki Corp Vibration reducing device
JP2016176576A (en) 2015-03-20 2016-10-06 昭和電線デバイステクノロジー株式会社 Displacement suppression seismic isolator and seismic isolation system

Also Published As

Publication number Publication date
JP2018062823A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP7125193B2 (en) Seismic isolation structure
US10619373B1 (en) Seismic damping systems and methods
EP2783057B1 (en) Seismic dissipation module made up of compression-resistant spheres immersed in a variable low density material
JP5284915B2 (en) Structure moving method and building
JP7055984B2 (en) Lifting suppression structure
KR101323587B1 (en) Vibration isolation system in transfer story of apartment housing
KR101323589B1 (en) Vibration isolation system in transfer story of apartment housing
JP2008121401A (en) Soil improvement-type vibration damping device
JP2015165067A (en) Retaining structure
KR101323588B1 (en) Vibration isolation system in transfer story of apartment housing
US10041267B1 (en) Seismic damping systems and methods
JP5290786B2 (en) Damping structure
KR101385154B1 (en) Reinforced concrete structure for vibration control using buried shear-key block and the construction method therefor
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JP5270739B2 (en) Seismic isolation structure for floor slabs
KR101385155B1 (en) Reinforced concrete structure for vibration control using concrete shear key and the construction method therefor
JPH094276A (en) Seismic isolator of building
Dolan et al. Tall cross-laminated timber building: Design and performance session WW300 experimental and modeling studies on wood frame buildings
JP5383944B1 (en) Seismic isolation structure for houses
JP5975892B2 (en) Ground liquefaction countermeasure structure by structure load and seismic isolation device
RU2539475C2 (en) Earthquake-isolating support
JP5220484B2 (en) Seismic isolation building
JP7191754B2 (en) Station platform reinforcement structure
Khan et al. Seismic Analysis of Fixed Base and Base Isolated Building Using Lead Rubber Bearing
JP6870910B2 (en) Seismic isolation device and seismic isolation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220531

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220607

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7125193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150