以下に、本発明の実施形態に係る電力ケーブルの絶縁劣化検出装置および絶縁劣化検出方法につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。
[第1実施形態]
図1から図7を参照して、第1実施形態について説明する。本実施形態は、電力ケーブルの絶縁劣化検出装置および絶縁劣化検出方法に関する。図1は、第1実施形態に係る電力ケーブルの絶縁劣化検出装置の概略構成図、図2は、図2は、第1実施形態に係る電力ケーブルの絶縁劣化検出方法のフローチャート、図3は、第1実施形態の周波数解析結果の表示例を示す図、図4は、第1実施形態の周波数解析結果の表示例を示す他の図、図5は、第1実施形態の周波数解析結果の表示例を示す更に他の図、図6は、第1実施形態の周波数解析結果の一覧表示を示す図、図7は、劣化信号の周波数特性を示す図である。
図1に示すように、本実施形態に係る電力ケーブルの絶縁劣化検出装置1(以下、単に「ケーブル劣化検出装置1」と称する。)は、交流電源2、診断装置3、電流測定部4、保安回路5、および周波数取得部29を有する。劣化検出の測定対象である電力ケーブル10は、ケーブル端末11を介して高電圧母線12に接続されている。電力ケーブル10は、例えば、架橋ポリエチレン絶縁ビニルシースケーブル(CVケーブル)である。電力ケーブル10は、芯線10aおよび遮蔽層10bを有する。芯線10aと遮蔽層10bとの間には、図示しない絶縁層が設けられている。遮蔽層10bは、絶縁層を外側から覆う層であり、例えば、銅等の導電性を有する金属で構成されている。
交流電源2は、活線下において遮蔽層10bに対して交流電圧を印加する。交流電源2は、交流電圧発生回路21、変圧器22、および制御部25を有する。交流電圧発生回路21は、交流電圧を発生する回路である。交流電圧発生回路21は、指令された出力周波数f0の交流電圧を出力する。変圧器22は、交流電圧発生回路21が発生する交流電圧を昇圧する。変圧器22は、一次巻線23および二次巻線24を有する。一次巻線23は、交流電圧発生回路21の出力側に接続されている。二次巻線24の一端側は、接続線26を介して遮蔽層10bに対して電気的に接続されている。二次巻線24の他端側は、接続線27を介して接地されている。つまり、二次巻線24は、遮蔽層10bと接地部28との間に介在している。接続線26,27、および二次巻線24は、遮蔽層10bを接地する接地線として機能する。なお、接続線27はコンデンサ接地されてもよい。
制御部25は、後述する操作部34に対する操作入力に基づいて交流電圧発生回路21を制御する。より詳しくは、制御部25は、操作部34から送られる指令信号に基づき、交流電圧発生回路21に対して、発生すべき交流電圧の出力周波数f0を指令する。
電流測定部4は、接続線27に設けられている。電流測定部4は、接続線27を流れる電流、言い換えると二次巻線24と接地部28との間を流れる電流を測定する。つまり、電流測定部4は、電力ケーブル10から交流電源2を介して接地に流れる電流を測定する。保安回路5は、二次巻線24および電流測定部4に対してそれぞれ並列に接続されている。保安回路5は、二次巻線24および電流測定部4を過電流および過電圧から保護する。
診断装置3は、信号解析部31、同期回路32、ディスプレイ33、操作部34、データ記録媒体35、および判定部36を有する。信号解析部31は、電流測定部4により測定された電流の周波数解析を行う。信号解析部31は、電流測定部4と通信可能に接続されており、電流測定部4による測定結果を取得する。信号解析部31は、取得した測定結果の信号に対する信号解析を行う。本実施形態の信号解析部31は、取得した信号に対して高速フーリエ変換(以下、「FFT」とも称する。)による信号解析を実行する。FFTにより、周波数毎の電流成分が算出される。同期回路32は、交流電圧発生回路21の出力周波数f0と、信号解析部31が取得する検出信号とを同期させる回路である。
ディスプレイ33は、電流測定部4による測定結果の画像を表示する表示装置である。ディスプレイ33は、信号解析部31から取得した情報に基づいて、電流測定部4による測定結果に係る画像を画面に表示する。操作部34は、ユーザによって操作される操作入力部であり、例えば、スイッチ、ダイヤル、ボタン、タッチパネル等である。操作部34は、制御部25と通信可能に接続されている。操作部34に対する操作入力を示す信号は、制御部25に送信される。
データ記録媒体35は、コンピュータによる読み取りおよび書き込みが可能な記録媒体である。データ記録媒体35は、電流測定部4による測定結果に関するデータを記録するものであり、例えば、信号解析部31による解析結果のデータ等を記録する。データ記録媒体35には、信号解析部31によって実行されるプログラムが記録されていてもよい。データ記録媒体35は、診断装置3に対して着脱可能であってもよい。
判定部36は、信号解析部31による信号解析の結果に基づいて、電力ケーブル10の絶縁劣化判定を行う。判定部36による判定方法については、後述する。
周波数取得部29は、電力ケーブル10に供給される商用電源の周波数である商用周波数f1を取得する。周波数取得部29は、例えば、電力ケーブル10の芯線10aに対して電気的に接続されて実際の商用周波数f1を検出する。周波数取得部29は、既存の機器から実際の商用周波数f1を取得してもよい。周波数取得部29は、取得した商用周波数f1の情報を制御部25に出力する。本実施形態の周波数取得部29は、制御部25からの指令に応じて商用周波数f1を検出し、検出結果を制御部25に送信する。なお、周波数取得部29は、所定の時間間隔で繰り返し商用周波数f1を検出し、制御部25からの要求に応じて最新の商用周波数f1の値を送信してもよい。以下の説明では、周波数取得部29によって取得された実際の商用周波数f1の値を特に「実際の周波数fr」と称する。
本実施形態のケーブル劣化検出装置1の動作、およびケーブル劣化検出方法について詳細に説明する。ケーブル劣化検出装置1による劣化検出動作は、例えば、ユーザの指令によって開始される。ユーザは、操作部34に対して、劣化検出動作の開始を指示する操作入力を行う。また、ユーザは、操作部34に対して、交流電源2の出力周波数f0を変化させる掃引条件として、幅、分解能、速度等を指定する操作入力を行う。掃引条件の幅は、出力周波数f0を変化させる周波数領域の幅である。分解能は、出力周波数f0を変化させる際の変化幅である。速度は、出力周波数f0が一つの値に設定されてから次の値に変化するまでの時間である。
図2を参照して、本実施形態のケーブル劣化検出装置1の動作、すなわちケーブル劣化検出方法について説明する。ステップS1において、制御部25は、周波数取得部29から商用周波数f1を取得する。つまり、ステップS1において、制御部25は実際の周波数frの最新の値を取得する。制御部25は、その時点における実際の商用周波数f1を周波数取得部29によって検出させ、検出結果の値を取得してもよい。ステップS1が実行されるとステップS2に進む。
ステップS2において、制御部25は、出力周波数f0を決定する。制御部25は、ステップS1において周波数取得部29から取得した商用周波数f1に基づいて出力周波数f0を算出する。言い換えると、制御部25は、実際の周波数frに応じて出力周波数f0を決定する。ステップS2が実行されると、ステップS3に進む。
ステップS3において、制御部25は、交流電圧発生回路21によって出力周波数f0の交流電圧を発生させる。交流電圧発生回路21は、電力ケーブル10の遮蔽層10bに対して出力周波数f0の交流電圧を印加する。ステップS3が実行されると、ステップS4に進む。
ステップS4において、制御部25は、電流測定部4に電流を測定させる。電流測定部4は、電力ケーブル10から交流電源2を介して接地部28に流れる電流を測定する。ステップS4が実行されると、ステップS5に進む。
ステップS5において、信号解析部31は、周波数解析を実行する。信号解析部31は、ステップS4において測定された電流値の周波数解析を実行する。周波数解析の結果は、ディスプレイ33に表示される。ステップS5が実行されると、ステップS6に進む。
ステップS6において、制御部25は、測定を終了するか否かを判定する。本実施形態の制御部25は、互いに異なる出力周波数f0の交流電圧を遮蔽層10bに対して順番に印加して電力ケーブル10の劣化を検出する。複数の出力周波数f0の印加が完了していない場合、ステップS6で否定判定がなされ、ステップS1に移行する。一方、複数の出力周波数f0の印加が完了した場合、ステップS6で肯定判定がなされて本制御フローは終了する。
出力周波数f0についてより詳しく説明する。本実施形態の制御部25は、出力周波数f0を、実際の周波数frの整数倍からずれた周波数、言い換えると実際の周波数frの整数倍の近傍の周波数とする。本明細書では、実際の周波数frの整数倍の周波数を「N倍周波数fn」と称する(N=0,±1,±2,…)。
N倍周波数fnからずれた周波数の交流電圧が印加された場合、電力ケーブル10の絶縁層に加わる電圧Vは、下記式(1)で近似される。ただし、ω1=2πfr、ω2=2πΔa、frは実際の周波数fr、Δaは出力周波数f0とN倍周波数fnとの差分の周波数(以下、単に「差分周波数」と称する。)、V1は商用電源の電圧、V2は交流電圧発生回路21の出力電圧である。つまり、電力ケーブル10には、商用電源の電圧V1に加えて周波数が差分周波数Δaである交流の電圧V2が加わった状態となる。言い換えると、電力ケーブル10に対して差分周波数Δaの電圧V2を重畳させたのと同様の状態が実現される。従って、差分周波数Δaの電流成分に基づいて電力ケーブル10の劣化診断が可能である。
V=V1sinω1t-V2sinω2t…(1)
信号解析部31は、交流電圧発生回路21による交流電圧の発生開始と同期して、電流測定部4から取得する信号の解析を開始する。この同期は、同期回路32によってなされる。同期回路32は、例えば、交流電圧発生回路21の動作状態に関する情報を制御部25から取得する。同期回路32は、交流電圧発生回路21の動作状態が、交流電圧を発生している状態である場合、信号解析部31に対して、電流測定部4から取得する信号の解析を実行する指令を行う。解析実行の指令を受けた信号解析部31は、予め定められた所定期間が経過する間に電流測定部4から取得した信号を対象として信号解析を行う。本実施形態では、所定期間が、例えば20[秒]とされている。従って、信号解析部31は、解析実行の指令を受けてから例えば20秒の間に電流測定部4から取得した信号に対してFFT解析を実行する。
また、信号解析部31は、交流電源2が電力ケーブル10に対して印加する交流電圧を周波数解析する。交流電源2は、交流電圧発生回路21が生成する交流電圧を測定する図示しない電圧測定部を有している。信号解析部31は、電圧測定部から取得した測定電圧からFFT解析によって電圧の周波数特性を算出する。信号解析部31によって算出された電流の周波数特性データおよび電圧の周波数特性データは、交流電圧の周波数データと共にデータ記録媒体35に記録される。
ディスプレイ33は、信号解析部31による信号解析の結果のグラフを画面に表示する。図3は、ディスプレイ33に表示されるグラフの一例を示す図である。図3の上段および下段において、横軸は周波数[Hz]を示す。上段の縦軸は電圧[V]、下段の縦軸は電流[A]を示す。図3の上段には、交流電圧発生回路21によって電力ケーブル10に印加した(重畳した)電圧の周波数特性が示されている。図3の下段には、電流測定部4によって測定された電流の周波数特性(FFTグラフ)が示されている。図3は、差分周波数Δaの値をΔ1とした場合に測定された電流の周波数特性である。
ユーザは、図3の下段の周波数特性に基づいて、電力ケーブル10の劣化を判断することができる。この周波数特性は、交流電圧発生回路21によって電力ケーブル10に対して交流電圧が重畳されたときの各周波数の電流成分を示すものである。差分周波数Δa(=Δ1)における電流成分の大きさには、電力ケーブル10における水トリー等の絶縁劣化の有無や絶縁劣化の度合いが反映されていると考えられる。すなわち、差分周波数Δaにおける電流成分の値が大きい場合、電力ケーブル10が劣化している可能性が高い。また、差分周波数Δaにおける電流成分の値が大きいほど電力ケーブル10の絶縁劣化の度合いが大きいと考えられる。ユーザは、例えば、差分周波数Δaにおける電流成分の値と判定値との比較に基づいて電力ケーブル10の絶縁劣化の有無を判定することができる。
周辺の周波数における電流成分の値と差分周波数Δaにおける電流成分の値との差は、電力ケーブル10の劣化の有無や劣化の度合いを示している可能性が高い。このため、ユーザは、周辺の周波数における電流成分の値と差分周波数Δaにおける電流成分の値とを比較して電力ケーブル10の劣化判定を行ってもよい。
本実施形態のケーブル劣化検出装置1では、制御部25は、交流電圧発生回路21の出力周波数f0を複数の値に切り替える。より具体的には、制御部25は、出力周波数f0をN倍周波数fnからずれた周波数領域で変化させる。この周波数領域は、N倍周波数fnの近傍であって、かつN倍周波数fnを含まない領域、すなわち、N倍周波数fnに隣接する周波数領域である。ここで、近傍とは、例えば、N倍周波数fnから所定周波数b[Hz]以内に定められた領域である。所定周波数bは、例えば、10[Hz]、5[Hz]、2[Hz]等であってもよい。また、近傍の周波数領域の幅である所定幅c[Hz]の大きさは、例えば、1[Hz]以内や2[Hz]以内で適宜定められる。出力周波数f0を変化させる周波数領域は、N倍周波数fnから1[Hz]ずれた周波数を含む領域とされてもよい。また、この周波数領域は、N倍周波数fnから1[Hz]ずれた周波数を中心とする領域とされてもよい。
本実施形態のケーブル劣化検出装置1は、出力周波数f0を複数の値に順次変化させ、各出力周波数f0の交流電圧のもとで電流を測定する。ケーブル劣化検出装置1は、それぞれの出力周波数f0において、電流測定部4によって、交流電源2を介して接地に流れる電流を測定する。ケーブル劣化検出装置1は、出力周波数f0の各値について、電流測定部4による測定結果から求めた周波数特性をユーザに提供する。ユーザは、出力周波数f0の各値についての電流値の周波数特性に基づいて、電力ケーブル10の劣化を判定する。図4には、差分周波数Δaの値をΔ2とした場合に測定された電流の周波数特性が示されている。周波数Δ2は、図3の周波数Δ1よりも高い周波数である。図5には、差分周波数Δaの値をΔ3とした場合に測定された電流の周波数特性が示されている。周波数Δ3は、図4の周波数Δ2よりも高い周波数である。つまり、各周波数Δ1,Δ2,Δ3は、下記式(2)の関係を有する。
Δ1<Δ2<Δ3…(2)
図3乃至図5から分かるように、交流電圧発生回路21の出力周波数f0の変化に応じて、電流の周波数特性におけるピークが遷移している。より詳しくは、図3乃至図5に示されているように、差分周波数Δaの値Δ1,Δ2,Δ3にそれぞれ周波数特性の極大値の山PK1,PK2,PK3がある。このように差分周波数Δaの値の変化に追随して周波数特性の山PK1,PK2,PK3の位置が変化していく場合、高い信頼性で電力ケーブル10の絶縁劣化ありと判定することができる。また、差分周波数ΔaをΔ1とした場合(図3)に存在した山PK1が、差分周波数ΔaをΔ2(図4)およびΔ3(図5)とした場合に現れていない。この場合、印加される交流電圧の差分周波数Δaが周波数Δ1であることと、山PK1が現れたこととの相関度が高く、山PK1は電力ケーブル10の劣化を示している可能性が高い。従って、本実施形態のケーブル劣化検出装置1は、電力ケーブル10の絶縁劣化判定を高精度で行うことを可能とする判定材料を提供することができる。
本実施形態のケーブル劣化検出装置1によるケーブル劣化の検出例について、より詳細に説明する。本実施形態の制御部25は、差分周波数Δaを、例えば±1.5[Hz]、±1.25[Hz]、±1.0[Hz]、±0.75[Hz]、±0.5[Hz]に変化させる。つまり、制御部25は、出力周波数f0を、例えば0.25[Hz]刻みで異なる五つの周波数に変化させる。図6には、以下の条件で取得された周波数特性のグラフが示されている。なお、下記のFFT解析時間は、FFT解析の対象とする電流の測定期間である。つまり、本実施形態では、差分周波数Δaの一つの値について電流測定部4によって電流がT1秒間測定され、このT1秒間の測定データに対してFFT解析がなされる。FFT解析時間のT1は、例えば、数十秒とされる。
整数N:2 (N倍周波数fn=2×fr[Hz])
FFT解析時間:T1[秒]
ケーブル劣化検出装置1は、T1秒ごとに差分周波数Δaを±1.5[Hz]から±0.5[Hz]へと0.25[Hz]刻みで変化させていく。制御部25は、取得した実際の周波数frの2倍に差分周波数Δaを加算した値を出力周波数f0として設定する。交流電圧発生回路21は、設定された出力周波数f0を生成する。ケーブル劣化検出装置1は、それぞれの差分周波数Δaにおいて電流測定部4によって電流を測定し、各測定結果からFFT解析によって周波数特性を算出する。ケーブル劣化検出装置1は、電流の測定およびFFT解析が完了する毎に、FFTグラフを順次ディスプレイ33に表示する。これにより、ディスプレイ33には、図6(a)から(e)へとFFTグラフが順次追加的に表示される。本実施形態では、FFT解析時間がT1[秒]であるため、T1秒毎にディスプレイ33上にFFTグラフが追加されていく。
図6の(a)乃至(e)において、横軸は周波数[Hz]を示し、縦軸は電流[A]を示す。横軸における差分周波数Δaの位置には、目印として破線が示されている。図6(a)に示すように、差分周波数Δaを±1.5[Hz]とした場合の周波数特性には、差分周波数Δaに山PKaが認められる。この周波数特性に基づいて電力ケーブル10に絶縁劣化が生じていると判定することが可能である。ただし、この山PKaは、ノイズ等の他の原因により発生している可能性もある。図6(b)に示すように、差分周波数Δaが±1.25[Hz]に切り替えられると、1.25[Hz]の位置に山PKbが認められる。従って、図6(b)の周波数特性も電力ケーブル10に絶縁劣化が発生していることを示唆しているといえる。図6(c)に示すように、差分周波数Δaが±1.0[Hz]とされた場合の周波数特性は、1.0[Hz]の位置に山PKcを有する。この山PKcは、山PKa,PKbよりも突出度合いが大きい。従って、山PKcは、電力ケーブル10における絶縁劣化の存在を明瞭に示していると考えられる。
更に、図6(d)および(e)に示すように、差分周波数Δaを±0.75[Hz]、±0.5[Hz]とした場合にも周波数特性にはそれぞれ明瞭な山PKd,PKeが存在している。ユーザは、これらのデータに基づいて、検出対象の電力ケーブル10に水トリー等の絶縁劣化が発生していると判定することが可能である。
本実施形態のケーブル劣化検出装置1は、差分周波数Δaの下限を0.5[Hz]としている。これにより、以下に図7を参照して説明するように、検出精度の向上が図られる。図7は、劣化信号の周波数特性を示す図である。図7は、絶縁劣化が生じている電力ケーブルに対してケーブル劣化検出装置1によって実測された電流値が示されている。例えば、1.0[Hz]に対してプロットされている電流値は、差分周波数Δaを1.0[Hz]とした場合に測定された電流における1.0[Hz]の成分値である。
図7に示すように、差分周波数Δaが小さくなるに従って、差分周波数Δaにおける電流成分の大きさが小さくなる。また、差分周波数Δaが小さくなると、電流測定部4によって測定される電流値において、測定回路上の直流電流の影響が支配的となりやすい。言い換えると、出力周波数f0がN倍周波数fnに近すぎると、迷走電流等が劣化検出の精度に影響を与えやすくなる。
本実施形態のケーブル劣化検出装置1では、差分周波数Δaの下限が定められている。本実施形態では、差分周波数Δaの下限値が0.5[Hz]とされている。これにより、直流電流の影響を抑えて劣化検出の精度を向上させることができる。
また、本実施形態のケーブル劣化検出装置1では、差分周波数Δaの上限が定められている。本実施形態では、差分周波数Δaの上限値が1.5[Hz]とされている。これにより、商用電源(50[Hz]、60[Hz])の影響を避けて劣化検出を行うことができる。
本実施形態では、上記の下限値および上限値に基づき、差分周波数Δaの許容範囲Bxが定められている。許容範囲Bxは、0.5[Hz]を下限とし、1.5[Hz]を上限とする周波数の範囲である。つまり、ケーブル劣化検出装置1は、N倍周波数fnを中心とする0.5[Hz]未満の範囲には出力周波数f0を設定しない。また、ケーブル劣化検出装置1は、N倍周波数fnから1.5[Hz]よりも遠い範囲には出力周波数f0を設定しない。本実施形態のケーブル劣化検出装置1は、許容範囲Bxにおいて差分周波数Δaを変化させることで、劣化検出の精度を向上させることができる。
本実施形態のケーブル劣化検出装置1は、測定電流の周波数解析結果を提供することに加えて、判定部36によって電力ケーブル10の絶縁劣化を判定することができる。判定部36は、電流測定部4によって測定された電流値の周波数解析結果に基づいて電力ケーブル10の絶縁劣化を検出する。例えば、判定部36は、データ記録媒体35から差分周波数Δaの値と、この差分周波数Δaに対応する周波数特性のデータを読み出す。判定部36は、読み出した周波数特性のデータから、差分周波数Δaにおける電流成分の大きさを取得する。本実施形態のケーブル劣化検出装置1は、複数の差分周波数Δaにおいて電流の周波数特性を算出および記録している。従って、検出対象の電力ケーブル10に対して、差分周波数Δaの値と差分周波数Δaにおける電流成分の大きさとの組み合わせが複数存在している。
電力ケーブル10が絶縁劣化しているか否かの基本的な判定方法は、電流成分の大きさと判定値との比較結果による。判定部36は、例えば、少なくとも一つの差分周波数Δaの値について電流成分の大きさが判定値以上である場合に電力ケーブル10が絶縁劣化していると判定してもよい。このようにすれば、絶縁劣化を見落としてしまう誤判定を未然に防ぐことが可能である。また、判定部36は、所定数以上の差分周波数Δaの値において電流成分の大きさが判定値以上である場合に電力ケーブル10が絶縁劣化していると判定してもよい。この所定数は、差分周波数Δaを変化させた総数のうち過半数となる個数とされてもよい。判定部36は、変化させた全ての差分周波数Δaの値において電流成分の大きさが判定値以上である場合に電力ケーブル10が絶縁劣化していると判定してもよい。
判定部36は、差分周波数Δaにおける山PKx(x=1,2,3,a,b,c,d,e)の突出量に基づいて絶縁劣化の有無を判定してもよい。突出量は、差分周波数Δaの近傍の周波数における電流成分の大きさの平均値と、山PKxのピーク値との差分とされてもよい。この突出量が突出量に関する判定値以上である場合に、電力ケーブル10が絶縁劣化していると判定される。この判定においても、少なくとも一つの差分周波数Δaにおいて突出量が判定値以上である場合に絶縁劣化していると判定されてもよい。あるいは、所定数以上の差分周波数Δaの値において突出量が判定値以上である場合に電力ケーブル10が絶縁劣化していると判定されてもよい。
また、判定部36は、ノイズレベルが低い周波数領域に基づいて絶縁劣化の判定を行うようにしてもよい。例えば、図6に示す周波数特性では、差分周波数Δaを変化させる0.5[Hz]から1.5[Hz]の周波数領域において、低周波側の電流成分の大きさは、高周波側の電流成分の大きさよりも小さい。つまり、この周波数領域では、低周波のノイズレベルが高周波のノイズレベルよりも小さい。こうした周波数特性である場合、判定部36は、差分周波数Δaが低周波側の値であるときに得られた周波数特性に基づいて絶縁劣化の判定を行うようにしてもよい。その一例として、図6のような周波数特性を示す電力ケーブル10に対しては、差分周波数Δaを中心周波数である1.0[Hz]よりも低周波側の値とした場合の周波数特性に基づいて絶縁劣化を判定するようにしてもよい。
また、判定部36は、絶縁劣化の判定に関して、ノイズレベルに応じた重み付けを行うようにしてもよい。例えば、複数の差分周波数Δaにおいて電流成分の大きさが判定値以上である場合に、ノイズレベルが低い領域の差分周波数Δaに対する重み付けを大きくし、ノイズレベルが高い領域の差分周波数Δaに対する重み付けを小さくして絶縁劣化の判定を行うようにしてもよい。一例として、ノイズレベルが低い領域の差分周波数Δaにおいて電流成分が判定値以上である場合、当該箇所に対してそれぞれ1ポイントが与えられ、ノイズレベルが高い領域の差分周波数Δaにおいて電流成分が判定値以上である場合、当該箇所に対してそれぞれ0.5ポイントが加算される。電流成分が判定値未満である場合、当該箇所に対してそれぞれ0ポイントが与えられる。合計ポイントや平均ポイントに基づいて電力ケーブル10の絶縁劣化の有無や絶縁劣化の度合いが判定される。
判定部36は、交流電源2が交流電圧を印加している場合の周波数特性と、交流電源2が交流電圧を印加していない場合の周波数特性との比較に基づいて絶縁劣化の判定を行ってもよい。このようにすれば、定常的なノイズの影響を低減して絶縁劣化の判定精度を向上させることができる。
以上説明したように、本実施形態のケーブル劣化検出装置1は、交流電源2と、制御部25と、電流測定部4と、信号解析部31と、を有する。交流電源2は、電力ケーブル10の遮蔽層10bに対して電気的に接続され、かつ接地されている。交流電源2は、活線下において遮蔽層10bに対して交流電圧を印加する。
制御部25は、交流電源2が印加する出力周波数f0を商用周波数f1の整数倍からずれた周波数領域で変化させる。電流測定部4は、電力ケーブル10から交流電源2を介して接地に流れる電流を測定する。信号解析部31は、電流測定部4により測定された電流の周波数解析を行う。
出力周波数f0と商用周波数f1の整数倍との差分周波数Δaは、0.5[Hz]以上である。よって、本実施形態のケーブル劣化検出装置1は、迷走電流等の直流電流の影響を受けにくくして劣化検出の精度を向上させることができる。
本実施形態の差分周波数Δaは、1.5[Hz]以下である。これにより、商用電源の影響を受けにくくして劣化検出の精度を向上させることができる。
本実施形態のケーブル劣化検出装置1は、更に、電力ケーブル10に供給されている商用電源の実際の周波数frを取得する周波数取得部29を有する。ケーブル劣化検出装置1は、商用周波数f1として実際の周波数frを用いる。よって、本実施形態のケーブル劣化検出装置1は、実際の周波数frが規定の周波数からずれている場合であっても精度よく劣化検出を行うことができる。
本実施形態の制御部25は、差分周波数Δaを異なる値に変化させる場合、周波数取得部29から最新の実際の周波数frの値を取得して出力周波数f0を設定する。よって、本実施形態のケーブル劣化検出装置1は、実際の周波数frが短期的に変動している場合であっても精度よく劣化検出を行うことができる。
なお、本実施形態では、N倍周波数fnの整数N=2であったが、これに限定されず、整数Nは他の偶数であってもよい。本実施形態では、商用周波数f1として実際の周波数frが用いられたが、これには限定されない。商用周波数f1の値として、規定の周波数である50[Hz]や60[Hz]が用いられてもよい。
交流電源2において、交流電圧発生回路21が発生する交流電圧を昇圧する構成は、変圧器22には限定されない。交流電源2は、例えば、変圧器22に代えて差動アンプによって交流電圧を昇圧させてもよい。交流電源2の出力周波数f0を変化させる掃引条件(幅、分解能、速度)は、ユーザによって入力される代わりに、ケーブル劣化検出装置1によって指定されてもよい。
[第1実施形態の変形例]
第1実施形態の変形例について説明する。整数Nは奇数とされてもよい。整数Nが奇数である場合、電力ケーブル10の絶縁層に加わる電圧Vは、下記式(3)で近似される。なお、αは係数、ω1=2πfr、ω2=2πΔaである。
V=(V1+α・ω2)sinω1t…(3)
つまり、整数Nが奇数である場合、電力ケーブル10に加わる電圧の振幅が差分周波数Δaに応じて変化する。従って、交流電源2による交流電圧を印加する前後の電流の測定結果に基づいて電力ケーブル10の絶縁劣化を検出することが可能である。例えば、交流電源2による交流電圧の印加前および印加時において、それぞれ電流測定部4により電流が測定される。印加前後の測定結果は、それぞれ信号解析部31によって信号解析がなされ、周波数特性が算出される。印加前の周波数特性と印加時の周波数特性との比較結果に基づいて、電力ケーブル10の絶縁劣化が検出される。二つの周波数特性の比較では、例えば、実際の周波数frやN倍周波数fnにおける電流成分の大きさ同士が比較される。
交流電源2の出力周波数f0は、実際の周波数frの整数分の1倍からずれた周波数領域で変化してもよい。出力周波数f0は、例えば、下記式(4)で示される。なお、式(4)において、Mは2以上の整数である。
f0=(fr/M)±Δa…(4)
このような出力周波数f0の交流電圧が電力ケーブル10に印加された場合に得られる劣化信号の周波数f2は、下記式(5)のようになる。つまり、測定電流を周波数解析して得られる周波数特性から、周波数f2の電流成分に基づいて電力ケーブル10の絶縁劣化を検出することができる。
f2=|M・f0-f1|…(5)
[第2実施形態]
図8から図12を参照して、第2実施形態について説明する。第2実施形態については、上記第1実施形態で説明したものと同様の機能を有する構成要素には同一の符号を付して重複する説明は省略する。図8は、第2実施形態に係る電力ケーブルの絶縁劣化検出装置の概略構成図、図9は、第2実施形態の電力ケーブルの絶縁劣化検出方法に係るフローチャート、図10は、第2実施形態の電力ケーブルの絶縁劣化検出方法に係る他のフローチャート、図11は、帯域シフトの一例を説明する図、図12は、帯域シフトの他の例を説明する図である。
第2実施形態において、上記第1実施形態と異なる点は、例えば、ケーブル劣化検出装置1が判定不能の原因を推測する機能や、対処方法のアドバイスを行う機能を有する点である。また、第2実施形態のケーブル劣化検出装置1は、遮蔽層10bに印加させる交流電圧の周波数帯域をシフトさせることにより判定精度の向上を図る機能を有する。
図8に示すように、第2実施形態に係るケーブル劣化検出装置1は、交流電源2、診断装置3、電流測定部4、保安回路5、切替回路6、直流電源7、および周波数取得部29を有する。交流電源2、電流測定部4、保安回路5、および周波数取得部29は、上記第1実施形態の交流電源2、電流測定部4、保安回路5、および周波数取得部29と同様である。
切替回路6は、遮蔽層10bに印加する電圧を交流電圧または直流電圧に切り替える回路である。より詳しくは、切替回路6は、遮蔽層10bを交流電源2または直流電源7の何れかに電気的に接続することができる。また、切替回路6は、遮蔽層10bを交流電源2および直流電源7の何れからも遮断することができる。切替回路6は、第一リレー61および第二リレー62を有する。第一リレー61は、交流電源2の二次巻き線24の一端側と接続線26との間に介在している。第一リレー61は、二次巻き線24と接続線26とを接続または遮断する。
直流電源7は、直流電圧を出力する電源であり、例えばバッテリである。直流電源7の負極は、接続線27を介して接地されている。第二リレー62は、直流電源7の正極と接続線26との間に介在している。第二リレー62は、直流電源7と接続線26とを接続または遮断する。第一リレー61および第二リレー62は、例えば、制御部25によって開閉される。
第2実施形態の診断装置3は、信号解析部31、ディスプレイ33、操作部34、判定部36、およびデジタルフィルタ37を有する。第2実施形態に係る信号解析部31、ディスプレイ33、および操作部34は、上記第1実施形態の信号解析部31、ディスプレイ33、および操作部34と同様である。なお、診断装置3は、上記第1実施形態の診断装置3と同様に、同期回路32およびデータ記録媒体35を含んでいてもよい。
本実施形態の判定部36は、以下に説明するように、判定不能の原因推測、ユーザに対する対処方法のアドバイス、および帯域シフトによる判定精度の向上、の各ステップを実行する。判定部36は、予め記憶されているプログラムに基づいて上記のステップを実行する。判定部36は、交流電源2の制御部25と接続されており、制御部25の動作を制御することができる。
また、判定部36は、ディスプレイ33と接続されており、ディスプレイ33に各種の情報を表示させる。例えば、ディスプレイ33には、ユーザに対する質問やユーザに対するアドバイスが表示される。第2実施形態のディスプレイ33は、タッチパネルを有している。ユーザは、ディスプレイ33に表示された質問に対する回答をタッチパネルに入力する。判定部36は、タッチパネルに入力された回答に基づいて各種の判断やアドバイス等を行う。
デジタルフィルタ37は、電流測定部4によって測定された信号に対するフィルタ処理を行う。デジタルフィルタ37は、例えば、位相検波、ロックインアンプ等のデジタルフィルタ処理により、ノイズに埋もれた劣化信号を検出する。デジタルフィルタ37によって処理がなされた後の情報は、例えば、ディスプレイ33に表示される。デジタルフィルタ37によって処理がなされた後の情報に対して、更に信号解析部31による解析がなされ、その解析結果がディスプレイ33に表示されてもよい。判定部36は、デジタルフィルタ37と接続されている。判定部36は、電流測定部4によって検出された信号をデジタルフィルタ37に処理させるか否かを切り替える。
図9から図12を参照して、第2実施形態に係る絶縁劣化検出方法について説明する。図9に示すフローチャートは、判定対象の電力ケーブル10に対するケーブル劣化検出装置1の取り付けが完了した状態で実行される。図9のフローチャートは、例えば、ユーザによる測定開始の指令に応じて開始される。
ステップS21において、判定部36は、遮蔽層10bのシース絶縁抵抗Rsを測定する。シース絶縁抵抗Rsは、第一リレー61を開放し、かつ第二リレー62を閉じた状態で測定される。以下の説明では、第一リレー61が開き、かつ第二リレー62が閉じた状態、すなわち遮蔽層10bに対して直流電源7が直流電圧を印加している状態を「第一の状態」と称する。また、第一リレー61が閉じ、かつ第二リレー62が開いた状態、すなわち遮蔽層10bに対して交流電源2が交流電圧を印加している状態を「第二の状態」と称する。
判定部36は、制御部25によって第一リレー61および第二リレー62を第一の状態とさせる。判定部36は、第一の状態において電流測定部4によって検出された電流値に基づいて、シース絶縁抵抗Rsを算出する。シース絶縁抵抗Rsの測定が完了すると、ステップS22へ進む。
ステップS22において、判定部36は、シース絶縁抵抗Rsが250[kΩ]未満であるか否かを判定する。ステップS22では、ステップS21で測定されたシース絶縁抵抗Rsの値と、判定値である250[kΩ]との比較がなされる。ステップS22の判定の結果、シース絶縁抵抗Rsが250[kΩ]未満であると肯定判定された場合(ステップS22-Y)にはステップS23に進み、否定判定された場合にはステップS31に進む。
ステップS23において、判定部36は、劣化判定が不能であると判断し、ステップS24に進む。
ステップS24において、判定部36は、ユーザに対して端末を清掃済みであるかを質問する。シース絶縁抵抗Rsが低下している場合、その原因の一つとして、遮蔽層10bの端末の汚損が考えられる。判定部36は、ディスプレイ33に「端末を清掃済みであるか?」との質問を表示する。判定部36は、ユーザから「端末を清掃済みである」との回答が入力された場合、ステップS25に進む。一方、判定部36は、ユーザから「端末の清掃が済んでいない」との回答が入力された場合、ステップS26に進み、端末の清掃をしてから再測定を開始した方がよいとのアドバイスをディスプレイ33に表示する。ステップS26が実行されると、本フローは終了する。
ステップS25において、判定部36は、ユーザに対して接地線の金属接触を離したかを質問する。シース絶縁抵抗Rsが低下している場合、その原因の一つとして、接続線26の金属接触が考えられる。判定部36は、ディスプレイ33に「接続線26を金属から離すよう処置したか?」との質問を表示する。判定部36は、ユーザから「接続線26を金属から離してある」との回答が入力された場合、ステップS27に進む。一方、判定部36は、ユーザから「接続線26を金属から離す処置をしていない」との回答が入力された場合、ステップS28に進み、再測定の開始前に接続線26を金属から離すようにとのアドバイスをディスプレイ33に表示する。ステップS28が実行されると、本フローは終了する。
ステップS27において、判定部36は、ユーザに対して天候が雨であるかを質問する。シース絶縁抵抗Rsが低下している場合、その原因の一つとして、降雨が考えられる。判定部36は、ディスプレイ33に「天候が雨であるか?」との質問を表示する。判定部36は、ユーザから「雨である」との回答が入力された場合、ステップS30に進み、日を変えて測定するようにとのアドバイスをディスプレイ33に表示する。端末の清掃がなされており(ステップS24-Y)、かつ接地線が金属から離されている(ステップS25-Y)場合、シース絶縁抵抗Rsの低下原因が降雨である可能性が高い。判定部36は、天候が降雨以外であるときに再測定を実行するように、とのアドバイスをディスプレイ33に表示する。ステップS30が実行されると、本フローは終了する。
判定部36は、ユーザから「雨ではない」との回答が入力された場合、ステップS29に進む。ステップS29において、判定部36は、判定不能であると判断する。判定部36は、現在の状態では電力ケーブル10の絶縁劣化を判定することが困難である旨をディスプレイ33に表示する。ステップS29が実行されると、本フローは終了する。
ステップS31において、判定部36は、交流重畳電流Isaが判定値未満であるか否かを判定する。判定値は、例えば、10[nA]であるが、これには限定されない。判定部36は、第一リレー61および第二リレー62を第二の状態として、交流重畳電流Isa[A]を測定する。判定部36は、第二の状態で交流電源2の交流電圧を遮蔽層10bに対して印加させる。交流重畳電流Isaを計測するときの出力周波数f0は、実際の周波数frに差分周波数Δaを加算した周波数値である。交流重畳電流Isaは、電流測定部4によって測定された電流値の周波数解析結果であって、差分周波数Δaに対応する電流成分の値である。判定部36は、例えば、差分周波数Δaを1.0[Hz]としたときの交流重畳電流Isaの値に基づいてステップS31の判定を行う。
なお、判定部36は、図6に示すように、予め定められた周波数領域(例えば、0.5[Hz]-1.5[Hz])で差分周波数Δaの値を変化させ、差分周波数Δaの各値における電流成分の値PKa,PKb,PKc,PKd,Pkeからから交流重畳電流Isaを算出してもよい。この場合、交流重畳電流Isaは、例えば、電流成分の各値PKa,PKb,PKc,PKd,Pkeの平均値や最大値とされてもよい。
判定部36は、交流重畳電流Isaの値と、判定値との比較を行う。ステップS31の判定の結果、交流重畳電流Isaが判定値未満であると肯定判定された場合(ステップS31-Y)にはステップS32に進み、否定判定された場合にはステップS33に進む。
ステップS32において、判定部36は良判定を行う。判定部36は、電力ケーブル10の絶縁状態が良好であるとの判定結果をディスプレイ33に表示する。ステップS32が実行されると、本フローは終了する。
ステップS33において、判定部36は、仮劣化判定を行い、ステップS34に進む。
ステップS34において、判定部36は、シース絶縁抵抗Rsが1[MΩ]未満であるか否かを判定する。判定部36は、第一リレー61および第二リレー62を第一の状態として測定されたシース絶縁抵抗Rsの値に基づいてステップS34の判定を行う。ステップS34におけるシース絶縁抵抗Rsの判定値は、ステップS22におけるシース絶縁抵抗Rsの判定値よりも大きな値である。ステップS34の判定の結果、シース絶縁抵抗Rsが1[MΩ]未満であると肯定判定された場合(ステップS34-Y)にはステップS24に進み、否定判定された場合にはステップS35に進む。
ステップS35において、判定部36は、不平衡充電電流Iacが例えば100[mA]以上であるか否かを判定する。不平衡充電電流Iacは、電力ケーブル10における三相不平衡による電流値である。判定部36は、不平衡充電電流Iacを取得する。不平衡充電電流Iacの値が大きい場合、交流重畳電流Isaが影響を受けてしまい、劣化判定が困難となる。ステップS35において不平衡充電電流Iacが100[mA]以上であると肯定判定された場合(ステップS35-Y)にはステップS36に進み、否定判定された場合にはステップS39に進む。
ステップS36において、判定部36は、ユーザに対してケーブル条長が例えば1[km]以上であるか否かを質問する。判定部36は、ディスプレイ33に「電力ケーブル10の条長が1[km]以上であるか?」との質問を表示する。判定部36は、ユーザから「条長が1[km]以上である」との回答が入力された場合はステップS37に進み、「条長が1[km]以上ではない」との回答が入力された場合はステップS38に進む。
ステップS37において、判定部36は、不平衡充電電流Iacの原因が各相の長さ違いによる静電容量のアンバランスである可能性があることをディスプレイ33に表示する。判定部36は、ディスプレイ33の表示により、停電診断などで電力ケーブル10における静電容量のアンバランスを調査するようにユーザにアドバイスする。ステップS37が実行されると、本フローは終了する。
ステップS38において、判定部36は、不平衡充電電流Iacの原因が遮蔽銅テープの破断等の要因による静電容量のアンバランスである可能性があることをディスプレイ33に表示する。判定部36は、ディスプレイ33の表示により、停電診断などで電力ケーブル10における静電容量のアンバランスの要因を調査するようにユーザにアドバイスする。ステップS38が実行されると、本フローは終了する。
ステップS39において、判定部36は、帯域シフトを行う。本実施形態のケーブル劣化検出装置1は、不平衡充電電流Iacが判定値未満である(ステップS35-N)場合に、帯域シフトを実行する。判定部36は、帯域シフトによって、遮蔽層10bに印加する交流電圧の周波数帯域をシフトさせる。帯域シフトによって、ノイズの影響を低減して絶縁劣化の判定精度を向上させることができる。図10から図12を参照して、帯域シフトについて説明する。
ステップS41において、判定部36は、帯域毎のスペクトル値の大きさを比較する。ステップS41で比較されるスペクトル値は、[数1]に示す中間帯域のスペクトル値TSP1と、[数2]に示す低周波数帯域のスペクトル値TSP0である。
図11には、中間帯域B1および低周波数帯域B0の一例が示されている。中間帯域B1は、差分周波数Δaを変化させる周波数領域として現在設定されている帯域である。中間帯域B1は、例えば、0.9[Hz]-1.1[Hz]の帯域である。低周波数帯域B0は、中間帯域B1よりも低周波側の帯域である。本実施形態の低周波数帯域B0は、中間帯域B1と連続した帯域である。本実施形態の低周波数帯域B0は、例えば0.7[Hz]-0.9[Hz]の帯域である。
中間帯域のスペクトル値TSP1は、中間帯域B1のスペクトル値の総和である。言い換えると、中間帯域のスペクトル値TSP1は、図11の領域C1の面積である。低周波数帯域のスペクトル値TSP0は、低周波数帯域B0のスペクトル値の総和である。言い換えると、低周波数帯域のスペクトル値TSP0は、図11の領域C0の面積である。
ステップS41では、低周波数帯域のスペクトル値TSP0が中間帯域のスペクトル値TSP1の半分未満の値であるか否かが判定される。ステップS41の判定の結果、低周波数帯域のスペクトル値TSP0が中間帯域のスペクトル値TSP1の半分未満の値であると肯定判定された場合(ステップS41-Y)にはステップS42に進み、否定判定された場合にはステップS43に進む。
ステップS42において、判定部36は、低周波数帯域B0への帯域シフトを実行する。判定部36は、遮蔽層10bに印加する交流電圧の差分周波数Δaを低周波数帯域B0の周波数値に変更する。帯域シフトがなされると、変更後の差分周波数Δaにおける交流重畳電流Isaが計測される。新たに計測される交流重畳電流Isaは、例えば、低周波数帯域B0の中心値を差分周波数Δaとして設定したときの電流成分の値であってもよい。あるいは、差分周波数Δaを低周波数帯域B0における複数の値に変化させ、それぞれの電流成分の値から交流重畳電流Isaが算出されてもよい。
低周波数帯域のスペクトル値TSP0が中間帯域のスペクトル値TSP1の半分未満であることから、低周波数帯域B0のノイズレベルは中間帯域B1のノイズレベルよりも低いと考えられる。従って、低周波数帯域B0への帯域シフトによって、絶縁劣化の判定精度の向上を図ることができる。ステップS42が実行されると、ステップS46に進む。
ステップS43において、判定部36は、帯域毎のスペクトル値の大きさを比較する。ステップS43で比較されるスペクトル値は、中間帯域のスペクトル値TSP1と、[数3]に示す高周波数帯域のスペクトル値TSP2である。
図12には、中間帯域B1および高周波数帯域B2の一例が示されている。高周波数帯域B2は、中間帯域B1よりも高周波側の帯域である。本実施形態の高周波数帯域B2は、中間帯域B1と連続した帯域である。本実施形態の高周波数帯域B2は、例えば1.1[Hz]-1.3[Hz]の帯域である。
高周波数帯域のスペクトル値TSP2は、高周波数帯域B2のスペクトル値の総和である。言い換えると、高周波数帯域のスペクトル値TSP2は、図12の領域C2の面積である。
ステップS43では、高周波数帯域のスペクトル値TSP2が中間帯域のスペクトル値TSP1の半分未満の値であるか否かが判定される。ステップS43の判定の結果、高周波数帯域のスペクトル値TSP2が中間帯域のスペクトル値TSP1の半分未満の値であると肯定判定された場合(ステップS43-Y)にはステップS44に進み、否定判定された場合にはステップS45に進む。
ステップS44において、判定部36は、高周波数帯域B2への帯域シフトを実行する。判定部36は、遮蔽層10bに印加する交流電圧の差分周波数Δaを高周波数帯域B2の周波数値に変更する。帯域シフトがなされると、新たな差分周波数Δaにおける交流重畳電流Isaが計測される。新たに計測される交流重畳電流Isaは、例えば、高周波数帯域B2の中心値を差分周波数Δaとして設定したときの電流成分の値であってもよい。あるいは、差分周波数Δaを高周波数帯域B2における複数の値に変化させ、それぞれの電流成分の値から交流重畳電流Isaが算出されてもよい。
高周波数帯域のスペクトル値TSP2が中間帯域のスペクトル値TSP1の半分未満であることから、高周波数帯域B2のノイズレベルは中間帯域B1のノイズレベルよりも低いと考えられる。従って、高周波数帯域B2への帯域シフトによって、絶縁劣化の判定精度の向上を図ることができる。ステップS44が実行されると、ステップS46に進む。
ステップS45において、判定部36は、デジタルフィルタ処置を実行する。判定部36は、電流測定部4によって検出された信号をデジタルフィルタ37によって処理させ、処理後の信号を信号解析部31によって解析させる。判定部36は、信号解析部31の解析結果から交流重畳電流Isaを取得する。ステップS45が実行されると、ステップS46に進む。
ステップS46において、判定部36は、交流重畳電流Isaが判定値未満であるか否かを判定する。判定値は、例えば、10[nA]であるが、これには限定されない。ステップS46の判定の結果、交流重畳電流Isaが判定値未満であると肯定判定された場合(ステップS46-Y)にはステップS47に進み、否定判定された場合にはステップS48に進む。
ステップS47において、判定部36は、良判定を行う。判定部36は、電力ケーブル10の絶縁状態が良好であるとの判定結果をディスプレイ33に表示する。ステップS47が実行されると、本フローは終了する。
ステップS48において、判定部36は、劣化判定を行う。判定部36は、電力ケーブル10において絶縁劣化が発生していると判定する。判定部36は、ディスプレイ33に、電力ケーブル10において絶縁劣化が発生しているとの判定結果を表示する。ステップS48が実行されると、本フローは終了する。
本実施形態の電力ケーブルの絶縁劣化検出方法は、帯域変更ステップを含む。帯域変更ステップは、周波数解析結果のスペクトル分布に基づいて、交流電源2が遮蔽層10bに印加する交流電圧の周波数領域を変更させるステップ(ステップS42,S44)である。本実施形態の電力ケーブルの絶縁劣化検出方法によれば、交流電圧の周波数領域を変更させることにより、電力ケーブル10の絶縁劣化を高精度に検出することができる。ケーブル劣化検出装置1は、許容範囲Bxの範囲内で周波数領域を変更する。よって、本実施形態のケーブル劣化検出装置1は、迷走電流や商用電源の影響を抑制しつつ低ノイズの領域に周波数領域をシフトさせることができる。
上記のように、本実施形態に係るケーブル劣化検出装置1は、測定条件、測定結果、FFT解析結果からノイズの影響を低減する手段を判断・選択する診断支援ロジック(図9,図10)を有する。ディスプレイ33は、測定結果、ノイズ要因排除のアドバイス、FFT解析結果、デジタルフィルタ処理結果等を表示する。
よって、本実施形態のケーブル劣化検出装置1は、測定条件、測定結果から、測定環境に起因するノイズ要因を排除する手段をアドバイスすることができる。また、本実施形態のケーブル劣化検出装置1は、FFT解析結果に基づいて、よりノイズの影響が少ない周波数帯域に劣化信号をシフトする(図10)。従って、本実施形態のケーブル劣化検出装置1は、ユーザの熟練度にかかわらず測定環境やノイズの影響を低減することができ、高精度での電力ケーブル10の絶縁劣化判定を可能とする。
なお、上記のフローチャートにおける判定値の数値は一例であり、異なる値とされてもよい。ケーブル劣化検出装置1は、帯域シフトを行うことなく絶縁劣化の有無を判定してもよい。例えば、中間帯域のスペクトル値TSP1が予め定められた値よりも小さい場合には、中間帯域のスペクトル値TSP1と他のスペクトル値TSP0,TSP2との比較が行われなくてもよい。この場合、中間帯域B1の交流重畳電流Isaの値に基づいて絶縁劣化の有無が判定される。
帯域シフトの判定基準は、例示した基準には限定されない。上記の例では、中間帯域のスペクトル値TSP1に対して他のスペクトル値TSP0,TSP2が半分未満である場合に帯域シフトがなされた。しかしながら、中間帯域のスペクトル値TSP1に乗じられる係数は1/2には限定されない。
上記の各実施形態および変形例に開示された内容は、適宜組み合わせて実行することができる。